26.1.5.2 Time Series Analysis, Recovery, Restoration, Prediction, Reconstruction, Forecast, Estimation

Chapter Contents (Back)
Time Series.

Li, T.F.[Tze Fen], Chang, S.W.[Sung Wu],
A quick method for estimation of parameters of individual pulses in a multipath signal,
PR(25), No. 12, December 1992, pp. 1529-1533.
Elsevier DOI 0401
BibRef

Leskow, J.[Jacek], Napolitano, A.[Antonio],
Quantile prediction for time series in the fraction-of-time probability framework,
SP(82), No. 11, November 2002, pp. 1727-1741.
Elsevier DOI 0210
BibRef

Vijayakumar, P., Gunavatohi, K.,
Efficient Energy Recovery for Positive Feedback Adiabatic Logic,
GVIP(05), No. V7, 2005, pp. xx-yy
HTML Version. BibRef 0500

Thomas, T., Weijermars, W., van Berkum, E.,
Predictions of Urban Volumes in Single Time Series,
ITS(11), No. 1, March 2010, pp. 71-80.
IEEE DOI 1003
BibRef

Gazor, S., Derakhtian, M., Tadaion, A.A.,
Computationally Efficient Maximum Likelihood Sequence Estimation and Activity Detection for M-PSK Signals in Unknown Flat Fading Channels,
SPLetters(17), No. 10, October 2010, pp. 871-874.
IEEE DOI 1008
BibRef

Yang, H.[Hui], Bukkapatnam, S.T.S.[Satish T.S.], Barajas, L.G.[Leandro G.],
Local recurrence based performance prediction and prognostics in the nonlinear and nonstationary systems,
PR(44), No. 8, August 2011, pp. 1834-1840.
Elsevier DOI 1104
Prediction; Recurrence plot; Nonstationary; Time series BibRef

Martinez-Alvarez, F., Troncoso, A., Riquelme, J.C., Aguilar-Ruiz, J.S.,
Discovery of motifs to forecast outlier occurrence in time series,
PRL(32), No. 12, 1 September 2011, pp. 1652-1665.
Elsevier DOI 1108
Time series forecasting; Pattern recognition; Motifs; Outliers BibRef

Sugiura, S., Hanzo, L.,
Effects of Channel Estimation on Spatial Modulation,
SPLetters(19), No. 12, December 2012, pp. 805-808.
IEEE DOI 1212
BibRef

Onchis, D.M.[Darian M.],
Signal Reconstruction in Multi-Windows Spline-Spaces Using the Dual System,
SPLetters(19), No. 11, November 2012, pp. 729-732.
IEEE DOI 1210
BibRef

Khan, N.A., Boashash, B.,
Instantaneous Frequency Estimation of Multicomponent Nonstationary Signals Using Multiview Time-Frequency Distributions Based on the Adaptive Fractional Spectrogram,
SPLetters(20), No. 2, February 2013, pp. 157-160.
IEEE DOI 1302
BibRef

Stankovic, L., Stankovic, S., Orovic, I., Amin, M.G.,
Robust Time-Frequency Analysis Based on the L-Estimation and Compressive Sensing,
SPLetters(20), No. 5, May 2013, pp. 499-502.
IEEE DOI 1304
BibRef

Huang, R.[Renke], Zheng, H.[Hao], Kuruoglu, E.E.[Ercan E.],
Time-varying ARMA stable process estimation using sequential Monte Carlo,
SIViP(7), No. 5, September 2013, pp. 951-958.
Springer DOI 1309
BibRef

Zhu, Z.W.[Zhi-Wen], Huang, X.P.[Xin-Ping], Caron, M., Leung, H.,
A Blind AM/PM Estimation Method for Power Amplifier Linearization,
SPLetters(20), No. 11, 2013, pp. 1042-1045.
IEEE DOI 1310
higher order statistics BibRef

Ren, X.T.[Xiao-Tian], Xu, H.[Hui], Huang, Z.T.[Zhi-Tao], Wang, F.H.[Feng-Hua], Wang, X.[Xiang],
Blind joint information and spreading sequence estimation for short-code DS-SS signal in asynchronous and synchronous systems,
SIViP(7), No. 6, November 2013, pp. 1183-1194.
Springer DOI 1310
BibRef

Senejohnny, D.M.[Danial Mohammadi], Delavari, H.[Hadi],
Linear estimator for fractional systems,
SIViP(8), No. 2, February 2014, pp. 389-396.
Springer DOI 1402
BibRef

Uhlich, S.,
Computing Jacobian and Hessian of Estimators and Their Application to Risk Approximation,
SPLetters(21), No. 4, April 2014, pp. 469-472.
IEEE DOI 1403
Jacobian matrices BibRef

Seelamantula, C.S.[Chandra Sekhar], Shenoy, R.R.,
A Contraction Mapping Approach for Robust Estimation of Lagged Autocorrelation,
SPLetters(21), No. 9, September 2014, pp. 1054-1058.
IEEE DOI 1406
Correlation BibRef

Gupta, R.[Rinki], Kumar, A.[Arun], Bahl, R.[Rajendar],
Estimation of instantaneous frequencies using iterative empirical mode decomposition,
SIViP(8), No. 5, July 2014, pp. 799-812.
Springer DOI 1407
BibRef

Liu, L.F.[Lu-Feng], Du, X.P.[Xin-Peng], Cheng, L.Z.[Li-Zhi],
Stable Signal Recovery via Randomly Enhanced Adaptive Subspace Pursuit Method,
SPLetters(20), No. 8, 2013, pp. 823-826.
IEEE DOI 1307
adaptive signal processing BibRef

McKilliam, R.G., Clarkson, I.V.L., Quinn, B.G.,
Fast Sparse Period Estimation,
SPLetters(22), No. 1, January 2015, pp. 62-66.
IEEE DOI 1410
Monte Carlo methods BibRef

Hansson-Sandsten, M., Brynolfsson, J.,
The Scaled Reassigned Spectrogram with Perfect Localization for Estimation of Gaussian Functions,
SPLetters(22), No. 1, January 2015, pp. 100-104.
IEEE DOI 1410
Gaussian processes BibRef

Shahmansoori, A.[Arash],
Consecutive adaptive blind estimation of timing offsets for arbitrary channel time-interleaved ADCs,
SIViP(9), No. 1, January 2015, pp. 45-55.
Springer DOI 1503
analog-to-digital convertors. BibRef

Shahmansoori, A.[Arash],
Adaptive blind calibration of timing offsets in a two-channel time-interleaved analog-to-digital converter through Lagrange interpolation,
SIViP(9), No. 5, July 2015, pp. 1047-1054.
WWW Link. 1506
BibRef

Trigano, T., Gildin, I., Sepulcre, Y.,
Pileup Correction Algorithm using an Iterated Sparse Reconstruction Method,
SPLetters(22), No. 9, September 2015, pp. 1392-1395.
IEEE DOI 1503
Computational modeling BibRef

Elvira, V., Martino, L., Luengo, D., Bugallo, M.F.,
Efficient Multiple Importance Sampling Estimators,
SPLetters(22), No. 10, October 2015, pp. 1757-1761.
IEEE DOI 1506
computational complexity BibRef

Yang, P.[Peng], Liu, Z.[Zheng], Jiang, W.L.[Wen-Li],
Parameter estimation of multi-component chirp signals based on discrete chirp Fourier transform and population Monte Carlo,
SIViP(9), No. 5, July 2015, pp. 1137-1149.
WWW Link. 1506
BibRef

Guerrier, S., Molinari, R., Stebler, Y.,
Theoretical Limitations of Allan Variance-based Regression for Time Series Model Estimation,
SPLetters(23), No. 5, May 2016, pp. 597-601.
IEEE DOI 1604
calibration BibRef

Wang, G.[Guinan], Zhang, H.J.[Hong-Juan], Yu, S.W.[Shi-Wei], Ding, S.X.[Shu-Xue],
A family of the subgradient algorithm with several cosparsity inducing functions to the cosparse recovery problem,
PRL(80), No. 1, 2016, pp. 64-69.
Elsevier DOI 1609
Cosparse analysis model BibRef

de Mattos Neto, P.S.G.[Paulo S.G.], Cavalcanti, G.D.C.[George D.C.], Madeiro, F.[Francisco],
Nonlinear combination method of forecasters applied to PM time series,
PRL(95), No. 1, 2017, pp. 65-72.
Elsevier DOI 1708
Forecasting BibRef

Ahmed, A.,
Compressive Acquisition and Least-Squares Reconstruction of Correlated Signals,
SPLetters(24), No. 7, July 2017, pp. 933-937.
IEEE DOI 1706
Coherence, Fourier series, Frequency modulation, Signal reconstruction, Standards, Array processing, compressive sampling, correlated signals, micro-sensor arrays, randomized SVD, sub-Nyquist, sampling BibRef

Göken, Ç., Gezici, S.,
Optimal Parameter Encoding Based on Worst Case Fisher Information Under a Secrecy Constraint,
SPLetters(24), No. 11, November 2017, pp. 1611-1615.
IEEE DOI 1710
encoding, mean square error methods, linear minimum MSE estimator, low-complexity algorithm, BibRef

Wang, P., Orlik, P.V., Sadamoto, K., Tsujita, W., Gini, F.,
Parameter Estimation of Hybrid Sinusoidal FM-Polynomial Phase Signal,
SPLetters(24), No. 1, January 2017, pp. 66-70.
IEEE DOI 1702
frequency modulation BibRef

Arriaga-Trejo, I.A., Orozco-Lugo, A.G., Villanueva-Maldonado, J., Flores-Troncoso, J.,
Joint I/Q imbalances estimation using data-dependent superimposed training,
SIViP(11), No. 4, May 2017, pp. 729-736.
Springer DOI 1704
Joint estimation of the channel impulse response and frequency-dependent in-phase and quadrature-phase (I/Q) imbalances. BibRef

Deng, S.[Song], Yuan, C.A.[Chang-An], Yang, L.C.[Le-Chan], Zhang, L.P.[Li-Ping],
Distributed electricity load forecasting model mining based on hybrid gene expression programming and cloud computing,
PRL(109), 2018, pp. 72-80.
Elsevier DOI 1806
Load forecasting, Artificial fish swarm, Gene expression programming, Cloud computing BibRef

Baltazar-Raigosa, A.[Antonio],
Identification of Widely Linear Systems Using Data-Dependent Superimposed Training,
SPLetters(29), 2022, pp. 2133-2137.
IEEE DOI 2211
Training, Estimation, Mathematical models, Nonlinear distortion, Finite impulse response filters, Channel estimation, complementary autocorrelation BibRef

Bokde, N.[Neeraj], Beck, M.W.[Marcus W.], Álvarez, F.M.[Francisco Martínez], Kulat, K.[Kishore],
A novel imputation methodology for time series based on pattern sequence forecasting,
PRL(116), 2018, pp. 88-96.
Elsevier DOI 1812
Time series, Imputation, Forecasting, Data mining BibRef

Wang, P., Orlik, P.V., Sadamoto, K., Tsujita, W., Sawa, Y.,
Cramer-Rao Bounds for a Coupled Mixture of Polynomial Phase and Sinusoidal FM Signals,
SPLetters(24), No. 6, June 2017, pp. 746-750.
IEEE DOI 1609
polynomials, signal processing, CRB, Crame´r-Rao bounds, polynomial phase signal, pure PPS case, sinusoidal FM signals, Doppler radar, Frequency modulation, Indexes, Mixture models, Parameter estimation. BibRef

Tobar, F., Rios, G., Valdivia, T., Guerrero, P.,
Recovering Latent Signals From a Mixture of Measurements Using a Gaussian Process Prior,
SPLetters(24), No. 2, February 2017, pp. 231-235.
IEEE DOI 1702
Bayes methods BibRef

Wang, W.D.[Wen-Dong], Wang, J.J.[Jian-Jun], Zhang, Z.L.[Zi-Li],
Robust Signal Recovery With Highly Coherent Measurement Matrices,
SPLetters(24), No. 3, March 2017, pp. 304-308.
IEEE DOI 1702
Approximation algorithms BibRef

Chen, S.J.[Shao-Jie], Liu, K.[Kai], Yang, Y.G.[Yu-Guang], Xu, Y.T.[Yu-Ting], Lee, S.[Seonjoo], Lindquist, M.[Martin], Caffo, B.S.[Brian S.], Vogelstein, J.T.[Joshua T.],
An M-estimator for reduced-rank system identification,
PRL(86), No. 1, 2017, pp. 76-81.
Elsevier DOI 1702
High dimensional time-series data. BibRef

Bendory, T., Eldar, Y.C.,
Recovery of Sparse Positive Signals on the Sphere from Low Resolution Measurements,
SPLetters(22), No. 12, December 2015, pp. 2383-2386.
IEEE DOI 1512
convex programming BibRef

Wan, Z.[Zhong], Guo, J.[Jie], Liu, J.J.[Jing-Jing], Liu, W.Y.[Wei-Yi],
A modified spectral conjugate gradient projection method for signal recovery,
SIViP(12), No. 8, November 2018, pp. 1455-1462.
Springer DOI 1809
Signal recovery. BibRef

Perotti, L.C., Vrinceanu, D., Bessis, D.,
Recovery of the Starting Times of Delayed Signals,
SPLetters(25), No. 10, October 2018, pp. 1455-1459.
IEEE DOI 1810
iterative methods, signal processing, smoothing methods, starting times, delayed signals, starting point, arbitrary number, Padé approximant BibRef

Bey, N.Y.[Nourédine Yahya],
Highly accurate frequency estimation of brief duration signals in noise,
SIViP(12), No. 7, October 2018, pp. 1279-1283.
WWW Link. 1809
BibRef

Horstmann, S., Ramírez, D., Schreier, P.J.,
Joint Detection of Almost-Cyclostationary Signals and Estimation of Their Cycle Period,
SPLetters(25), No. 11, November 2018, pp. 1695-1699.
IEEE DOI 1811
channel bank filters, interpolation, signal detection, signal sampling, cycle period, wide-sense stationary noise, sample rate conversion BibRef

Xie, C.[Christopher], Bijral, A.[Avleen], Ferres, J.L.[Juan Lavista],
NonSTOP: A NonSTationary Online Prediction Method for Time Series,
SPLetters(25), No. 10, October 2018, pp. 1545-1549.
IEEE DOI 1810
learning (artificial intelligence), time series, NonSTationary online prediction method, prediction methods, online learning BibRef

Wang, X., Li, G., Varshney, P.K.,
Distributed Detection of Weak Signals From One-Bit Measurements Under Observation Model Uncertainties,
SPLetters(26), No. 3, March 2019, pp. 415-419.
IEEE DOI 1903
maximum likelihood estimation, quantisation (signal), signal detection, wireless sensor networks, one-bit data, locally most powerful test BibRef

Khan, N.A.[Nabeel Ali], Mohammadi, M.[Mokhtar], Ali, S.[Sadiq],
Instantaneous frequency estimation of intersecting and close multi-component signals with varying amplitudes,
SIViP(13), No. 3, April 2019, pp. 517-524.
Springer DOI 1904
BibRef

Khan, S.A., Saleem, S., Hassan, S.A., Ilyas, M.U.,
An Improved Data-Aided Linear Estimator of Modulation Index for Binary CPM Signals,
SPLetters(26), No. 5, May 2019, pp. 780-784.
IEEE DOI 1905
continuous phase modulation, error statistics, estimation algorithm, partial response BibRef

Nichols, J.M., Hutchinson, M.N., Menkart, N., Cranch, G.A., Rohde, G.K.,
Time Delay Estimation Via Wasserstein Distance Minimization,
SPLetters(26), No. 6, June 2019, pp. 908-912.
IEEE DOI 1906
computational complexity, delay estimation, minimisation, signal processing, linear time, time delay estimation, Wasserstein distance BibRef

Gan, M., Chen, X., Ding, F., Chen, G., Chen, C.L.P.,
Adaptive RBF-AR Models Based on Multi-Innovation Least Squares Method,
SPLetters(26), No. 8, August 2019, pp. 1182-1186.
IEEE DOI 1908
autoregressive processes, learning (artificial intelligence), least mean squares methods, parameter estimation, time series prediction BibRef

Deprem, Z.[Zeynel], Çetin, A.E.[A. Enis], Arikan, O.[Orhan],
AM/FM signal estimation with micro-segmentation and polynomial fit,
SIViP(8), No. 3, March 2014, pp. 399-413.
Springer DOI 1403
BibRef

Mehrkam, M.[Mehrrad], Tinati, M.A.[Mohammad Ali], Rezaii, T.Y.[Tohid Yousefi],
Reconstruction of low-rank jointly sparse signals from multiple measurement vectors,
SIViP(13), No. 4, June 2019, pp. 683-691.
Springer DOI 1906
BibRef

Delgado, R.A.[Ramón A.], Middleton, R.H.[Richard H.],
Sparse Representation Using Stepwise Tikhonov Regularization With Offline Computations,
SPLetters(26), No. 6, June 2019, pp. 873-877.
IEEE DOI 1906
iterative methods, least squares approximations, signal reconstruction, signal representation, matching pursuit algorithms BibRef

Abavisani, M., Patel, V.M.,
Deep Sparse Representation-Based Classification,
SPLetters(26), No. 6, June 2019, pp. 948-952.
IEEE DOI 1906
Decoding, Training, Feeds, Encoding, Kernel, Optimization, Testing, Deep learning, sparse representation-based classification, deep sparse representation-based classification BibRef

Abavisani, M., Patel, V.M.,
Deep Multimodal Sparse Representation-Based Classification,
ICIP20(773-777)
IEEE DOI 2011
Training, Sparse matrices, Decoding, Encoding, Data models, Testing, Image reconstruction, Sparse representation, deep multimodal sparse representation classification BibRef

Romanov, E., Ordentlich, O.,
Above the Nyquist Rate, Modulo Folding Does Not Hurt,
SPLetters(26), No. 8, August 2019, pp. 1167-1171.
IEEE DOI 1908
bandlimited signals, information theory, signal reconstruction, signal sampling, discrete-time signal, finite energy signals, unlimited sampling BibRef

Zhang, S.M.[Shui-Mei], Zhang, Y.M.D.[Yi-Min D.],
Robust Time-Frequency Analysis of Multiple FM Signals With Burst Missing Samples,
SPLetters(26), No. 8, August 2019, pp. 1172-1176.
IEEE DOI 1908
Hankel matrices, signal reconstruction, time-frequency analysis, time-frequency analysis, burst missing samples, nonstationary signal BibRef

Brugnoli, E., Toscano, E., Vetro, C.,
Iterative Reconstruction of Signals on Graph,
SPLetters(27), 2020, pp. 76-80.
IEEE DOI 2001
Convergence, Eigenvalues and eigenfunctions, Signal processing algorithms, Laplace equations, spectral analysis BibRef

Muniraju, G., Tepedelenlioglu, C., Spanias, A.,
Consensus Based Distributed Spectral Radius Estimation,
SPLetters(27), 2020, pp. 1045-1049.
IEEE DOI 2007
Convergence, Eigenvalues and eigenfunctions, Packet loss, Estimation, Distributed algorithms, Signal processing algorithms, spectral radius BibRef

Mohammadi, E., Gohari, A., Marvasti, F.,
A Square Root Sampling Law for Signal Recovery,
SPLetters(26), No. 4, April 2019, pp. 562-566.
IEEE DOI 1903
Noise measurement, Distortion, Distortion measurement, Stochastic processes, Atmospheric measurements, square root law BibRef

Dlask, M.[Martin], Kukal, J.[Jaromir],
Hurst exponent estimation from short time series,
SIViP(13), No. 2, March 2019, pp. 263-269.
Springer DOI 1904
Time series. BibRef

Fosson, S.M., Abuabiah, M.,
Recovery of Binary Sparse Signals From Compressed Linear Measurements via Polynomial Optimization,
SPLetters(26), No. 7, July 2019, pp. 1070-1074.
IEEE DOI 1906
Optimization, Noise measurement, Sparse matrices, Compressed sensing, Image coding, Sensors, Programming, sparse signal recovery BibRef

Guo, J., Chen, H., Chen, S.,
Improved Kernel Recursive Least Squares Algorithm Based Online Prediction for Nonstationary Time Series,
SPLetters(27), 2020, pp. 1365-1369.
IEEE DOI 2008
Signal processing algorithms, Kernel, Prediction algorithms, Heuristic algorithms, Time series analysis, Dictionaries, quantized kernel recursive least squares BibRef

Nie, D., Xie, K., Zhou, F., Qiao, G.,
A Correlation Detection Method of Low SNR Based on Multi-Channelization,
SPLetters(27), 2020, pp. 1375-1379.
IEEE DOI 2008
Correlation, Signal to noise ratio, Signal processing algorithms, Signal detection, Detection algorithms, Analytical models, time-varying signal BibRef

Garg, K., Baranwal, M.,
CAPPA: Continuous-Time Accelerated Proximal Point Algorithm for Sparse Recovery,
SPLetters(27), 2020, pp. 1760-1764.
IEEE DOI 2010
Convergence, Heuristic algorithms, Signal processing algorithms, Machine learning algorithms, Convex functions, Acceleration, signal reconstruction BibRef

Ilic, I.[Igor], Görgülü, B.[Berk], Cevik, M.[Mucahit], Baydogan, M.G.[Mustafa Gökçe],
Explainable boosted linear regression for time series forecasting,
PR(120), 2021, pp. 108144.
Elsevier DOI 2109
Time series regression, Probabilistic forecasting, Decision trees, Linear regression, ARIMA BibRef

Bandara, K.[Kasun], Hewamalage, H.[Hansika], Liu, Y.H.[Yuan-Hao], Kang, Y.F.[Yan-Fei], Bergmeir, C.[Christoph],
Improving the accuracy of global forecasting models using time series data augmentation,
PR(120), 2021, pp. 108148.
Elsevier DOI 2109
Time series forecasting, Global forecasting models, Data augmentation, Transfer learning, RNN BibRef

Hewamalage, H.[Hansika], Bergmeir, C.[Christoph], Bandara, K.[Kasun],
Global models for time series forecasting: A Simulation study,
PR(124), 2022, pp. 108441.
Elsevier DOI 2203
Time series forecasting, Global forecasting models, Time series simulation, Data generating processes BibRef

Harel, N.[Nadav], Routtenberg, T.[Tirza],
Bayesian Post-Model-Selection Estimation,
SPLetters(28), 2021, pp. 175-179.
IEEE DOI 2102
Estimation, Bayes methods, Probability density function, Parameter estimation, Computational modeling, sparse recovery BibRef

Berman, I.E.[Itai E.], Routtenberg, T.[Tirza],
Partially Linear Bayesian Estimation Using Mixed-Resolution Data,
SPLetters(28), 2021, pp. 2202-2206.
IEEE DOI 2112
Q measurement, Estimation, Quantization (signal), Closed-form solutions, Channel estimation, mixed-resolution data BibRef

Cheng, Y.Y.[Yi-Yao], Liu, L.[Lei], Ping, L.[Li],
An Integral-Based Approach to Orthogonal AMP,
SPLetters(28), 2021, pp. 194-198.
IEEE DOI 2102
Monte Carlo methods, Training, Signal processing algorithms, Binary phase shift keying, Software algorithms, Sensors, state evolution BibRef

Rupniewski, M.W.,
Reconstruction of Periodic Signals From Asynchronous Trains of Samples,
SPLetters(28), 2021, pp. 289-293.
IEEE DOI 2102
Random variables, Signal reconstruction, Signal processing algorithms, Sensors, Probabilistic logic, Shape, signal sampling BibRef

Řyvind Mikalsen, K.[Karl], Soguero-Ruiz, C.[Cristina], Maria Bianchi, F.[Filippo], Revhaug, A.[Arthur], Jenssen, R.[Robert],
Time series cluster kernels to exploit informative missingness and incomplete label information,
PR(115), 2021, pp. 107896.
Elsevier DOI 2104
Multivariate time series, Kernel methods, Missing data, Informative missingness, Semi-supervised learning BibRef

Xie, C.L.[Chun-Lei], Sun, Y.[Yu], Ming, Y.[Yang],
Constructions of Optimal Binary Z-Complementary Sequence Sets With Large Zero Correlation Zone,
SPLetters(28), 2021, pp. 1694-1698.
IEEE DOI 2109
Boolean functions, Zero correlation zone, Correlation, Sun, Companies, Systematics, Research and development, zero correlation zone BibRef

Lai, H.D.[Hua-Dong], Xu, W.C.[Wei-Chao], Dai, J.S.[Ji-Sheng], Zhou, Y.Z.[Yan-Zhou],
Threshold Setting of Generalized Likelihood Ratio Test for Impropriety of Complex Signals,
SPLetters(28), 2021, pp. 1699-1703.
IEEE DOI 2109
Covariance matrices, Transforms, Simulation, Signal processing algorithms, Random variables, impropriety test BibRef

Haley, C.,
Missing-Data Nonparametric Coherency Estimation,
SPLetters(28), 2021, pp. 1704-1708.
IEEE DOI 2109
Coherence, Time series analysis, Frequency estimation, Smoothing methods, Recruitment, Oscillators, Indexes, Coherence, power spectrum BibRef

Ye, R.[Rui], Dai, Q.[Qun],
Implementing transfer learning across different datasets for time series forecasting,
PR(109), 2021, pp. 107617.
Elsevier DOI 2009
Time series prediction, Deep learning, Transfer learning, Convolutional neural network (CNN) BibRef

Song, X.X.[Xiao-Xiang], Guo, Y.[Yan], Li, N.[Ning], Zhang, L.X.[Li-Xiong],
Integrated Online Prediction Model for IoT Data,
SPLetters(28), 2021, pp. 2043-2047.
IEEE DOI 2111
Predictive models, Data models, Time series analysis, Linear programming, Training, Time-domain analysis, time series BibRef

Riba, J.[Jaume], Vilŕ, M.[Marc],
On Infinite Past Predictability of Cyclostationary Signals,
SPLetters(29), 2022, pp. 647-651.
IEEE DOI 2203
Signal processing, Eigenvalues and eigenfunctions, Coherence, Autocorrelation, Wiener filters, Matrix decomposition, Modulation, spectral coherence BibRef

Ramakrishna, A.[Anil], Gupta, R.[Rahul], Narayanan, S.[Shrikanth],
Joint Multi-Dimensional Model for Global and Time-Series Annotations,
AffCom(13), No. 1, January 2022, pp. 473-484.
IEEE DOI 2203
Annotations, Task analysis, Predictive models, Time series analysis, Mathematical model, Computational modeling, factor analysis BibRef

Monteil, J.[Julien], Dekusar, A.[Anton], Gambella, C.[Claudio], Lassoued, Y.[Yassine], Mevissen, M.[Martin],
On Model Selection for Scalable Time Series Forecasting in Transport Networks,
ITS(23), No. 7, July 2022, pp. 6699-6708.
IEEE DOI 2207
Predictive models, Time series analysis, Deep learning, Forecasting, Data models, Correlation, Roads, Time series, autoregressive models BibRef

Liu, Y.F.[Yu-Feng], Zhu, Z.B.[Zhi-Bin], Zhang, B.X.[Ben-Xin],
Improved iteratively reweighted least squares algorithms for sparse recovery problem,
IET-IPR(16), No. 5, 2022, pp. 1324-1340.
DOI Link 2203
BibRef

Pang, Y.[Yue], Zhou, X.D.[Xiang-Dong], Zhang, J.Q.[Jun-Qi], Sun, Q.[Quan], Zheng, J.B.[Jian-Bin],
Hierarchical electricity time series prediction with cluster analysis and sparse penalty,
PR(126), 2022, pp. 108555.
Elsevier DOI 2204
Hierarchical time series forecasting, Data mining, Machine learning BibRef

Guo, H.L.[Han-Lin], Lu, Y.[Yang], Xiao, G.B.[Guo-Bao], Lin, S.Y.[Shu-Yuan], Wang, H.Z.[Han-Zi],
Triplet Relationship Guided Sampling Consensus for Robust Model Estimation,
SPLetters(29), 2022, pp. 817-821.
IEEE DOI 2204
Estimation, Data models, Computational modeling, Impedance matching, Adaptation models, Task analysis, sampling BibRef

Chen, X.Y.[Xin-Yu], Sun, L.J.[Li-Jun],
Bayesian Temporal Factorization for Multidimensional Time Series Prediction,
PAMI(44), No. 9, September 2022, pp. 4659-4673.
IEEE DOI 2208
Time series analysis, Data models, Bayes methods, Spatiotemporal phenomena, Tensors, Reactive power, Markov chain Monte Carlo (MCMC) BibRef

Liu, Y.[Yang], Wang, Z.[Zheng], Yu, X.Y.[Xin-Yang], Chen, X.[Xin], Sun, M.[Meijun],
Memory-based Transformer with shorter window and longer horizon for multivariate time series forecasting,
PRL(160), 2022, pp. 26-33.
Elsevier DOI 2208
Multivariate time series, Long-term forecasting, Transformer, Deep learning BibRef

Koç, E.[Emirhan], Koç, A.[Aykut],
Fractional Fourier Transform in Time Series Prediction,
SPLetters(29), 2022, pp. 2542-2546.
IEEE DOI 2301
Time series analysis, Feature extraction, Decoding, Fourier transforms, Training, Wavelet transforms, decoder BibRef

Huang, J.W.[Jian-Wen], Zhang, F.[Feng], Jia, J.P.[Jin-Ping],
A New Sufficient Condition for Non-Convex Sparse Recovery via Weighted L_r-L_1 Minimization,
SPLetters(29), 2022, pp. 1555-1558.
IEEE DOI 2208
Minimization, Sparse matrices, Pollution measurement, Compressed sensing, Indexes, Technological innovation, nonconvex sparse recovery BibRef

Semenoglou, A.A.[Artemios-Anargyros], Spiliotis, E.[Evangelos], Assimakopoulos, V.[Vassilios],
Data augmentation for univariate time series forecasting with neural networks,
PR(134), 2023, pp. 109132.
Elsevier DOI 2212
Time series, Forecasting, Data augmentation, Neural networks, M4 competition BibRef

Le Guen, V.[Vincent], Thome, N.[Nicolas],
Deep Time Series Forecasting With Shape and Temporal Criteria,
PAMI(45), No. 1, January 2023, pp. 342-355.
IEEE DOI 2212
Forecasting, Shape, Probabilistic logic, Time series analysis, Predictive models, Training, Kernel, Time series forecasting, determinantal point processes BibRef

Moreno-Pino, F.[Fernando], Olmos, P.M.[Pablo M.], Artés-Rodríguez, A.[Antonio],
Deep autoregressive models with spectral attention,
PR(133), 2023, pp. 109014.
Elsevier DOI 2210
Attention models, Deep learning, Filtering, Global-local contexts, Signal processing, Time series forecasting BibRef

Money, R.[Rohan], Krishnan, J.[Joshin], Beferull-Lozano, B.[Baltasar], Isufi, E.[Elvin],
Online Edge Flow Imputation on Networks,
SPLetters(30), 2023, pp. 115-119.
IEEE DOI 2303
Signal processing algorithms, Laplace equations, Optimization, Time series analysis, Signal reconstruction, Reactive power, simplicial complex BibRef

Liu, N.[Naihao], Wang, J.Y.[Jing-Yu], Yang, Y.[Yang], Li, Z.[Zhen], Gao, J.H.[Jing-Huai],
WVDNet: Time-Frequency Analysis via Semi-Supervised Learning,
SPLetters(30), 2023, pp. 55-59.
IEEE DOI 2302
Training, Data models, Predictive models, Kernel, Training data, Time-frequency analysis, Task analysis, Deep learning, wigner-ville distribution BibRef

Li, Z.L.[Zhuo Lin], Zhang, G.W.[Gao Wei], Yu, J.[Jie], Xu, L.Y.[Ling Yu],
Dynamic graph structure learning for multivariate time series forecasting,
PR(138), 2023, pp. 109423.
Elsevier DOI 2303
Multivariate time series forecasting, Dynamic spatio-temporal dependencies, Graph neural networks, Graph structure learning BibRef

Almeida, A.[Ana], Brás, S.[Susana], Sargento, S.[Susana], Pinto, F.C.[Filipe Cabral],
Time Series Imputation in Faulty Systems,
IbPRIA23(28-39).
Springer DOI 2307
BibRef

Pang, J.[Jie], Gao, B.[Bo],
Application of a Randomized Algorithm for Extracting a Shallow Low-Rank Structure in Low-Frequency Reverberation,
RS(15), No. 14, 2023, pp. 3648.
DOI Link 2307
BibRef

Huo, L.[Limei], Chen, W.[Wengu], Ge, H.M.[Huan-Min], Ng, M.K.[Michael K.],
L_1 beta L_q Minimization for Signal and Image Recovery,
SIIMS(16), No. 4, 2023, pp. 1886-1928.
DOI Link 2312
BibRef

Sun, C.S.[Cong-Shan], Li, H.W.[Hong-Wei], Xu, C.[Cong], Ma, L.[Lin], Li, H.F.[Hai-Feng],
Adaptively Optimized Masking EMD for Separating Intrinsic Oscillatory Modes of Nonstationary Signals,
SPLetters(31), 2024, pp. 216-220.
IEEE DOI 2401
Empirical mode decomposition. BibRef

Li, Z.J.[Zi-Jian], Cai, R.[Ruichu], Fu, T.Z.J.[Tom Z. J.], Hao, Z.F.[Zhi-Feng], Zhang, K.[Kun],
Transferable Time-Series Forecasting Under Causal Conditional Shift,
PAMI(46), No. 4, April 2024, pp. 1932-1949.
IEEE DOI 2403
Forecasting, Adaptation models, Predictive models, Mathematical models, Data models, Time series analysis, semi-supervised domain adaptation BibRef

Yin, N.[Nan], Shen, L.[Li], Xiong, H.[Huan], Gu, B.[Bin], Chen, C.[Chong], Hua, X.S.[Xian-Sheng], Liu, S.W.[Si-Wei], Luo, X.[Xiao],
Messages are Never Propagated Alone: Collaborative Hypergraph Neural Network for Time-Series Forecasting,
PAMI(46), No. 4, April 2024, pp. 2333-2347.
IEEE DOI 2403
Time series analysis, Collaboration, Forecasting, Message passing, Correlation, Data models, Convolution, hypergraph neural network BibRef

Yang, L.[Luxuan], Gao, T.[Ting], Wei, W.[Wei], Dai, M.[Min], Fang, C.[Cheng], Duan, J.Q.[Jin-Qiao],
Multi-task meta label correction for time series prediction,
PR(150), 2024, pp. 110319.
Elsevier DOI 2403
Data visualization, Bi-level optimization, Meta-learning, Multi-task learning BibRef

Yu, Y.[Yang], Ma, R.Z.[Rui-Zhe], Ma, Z.M.[Zong-Min],
Robformer: A robust decomposition transformer for long-term time series forecasting,
PR(153), 2024, pp. 110552.
Elsevier DOI 2405
Long-term time series forecasting, Transformer, Time series decomposition BibRef

Liang, H.[Haobo], Feng, Y.[Yuan], Zhang, Y.S.[Yu-Shi], Qiao, X.[Xingshuai], Wang, Z.[Zhi], Shan, T.[Tao],
A Segmented Sliding Window Reference Signal Reconstruction Method Based on Fuzzy C-Means,
RS(16), No. 10, 2024, pp. 1813.
DOI Link 2405
BibRef

Zhan, T.X.[Tian-Xiang], Xiao, F.Y.[Fu-Yuan],
A novel weighted approach for time series forecasting based on visibility graph,
PR(155), 2024, pp. 110720.
Elsevier DOI 2408
Time series, Complex network, Visibility graph, Link forecasting BibRef

Li, C.H.[Chang-Hao], Ma, Z.X.[Zhi-Xin], Sun, D.[Dazhi], Zhang, G.M.[Guo-Ming], Wen, J.M.[Jin-Ming],
Stochastic IHT With Stochastic Polyak Step-Size for Sparse Signal Recovery,
SPLetters(31), 2024, pp. 2035-2039.
IEEE DOI 2408
Signal processing algorithms, Convergence, Vectors, Iterative algorithms, Stochastic processes, Sun, stochastic algorithms BibRef

Seddighi, Z.[Zahra], Taban, M.R.[Mohammad Reza], Gazor, S.[Saeed],
Cross-Terms and Spectral Leakage Minimization in Time-Frequency Distribution,
SPLetters(31), 2024, pp. 2025-2029.
IEEE DOI 2408
Kernel, Time-frequency analysis, Noise, Signal resolution, Discrete Fourier transforms, Estimation, Cross-term, quadratic, time-frequency distribution BibRef

Wen, L.J.[Liang-Jian], Hu, Q.[Quan], Guo, C.[Cong], Hu, A.[Ao], Zhang, M.Y.[Ming-Yi],
Cross-Scale Attention for Long-Term Time Series Forecasting,
SPLetters(31), 2024, pp. 2675-2679.
IEEE DOI 2410
Time series analysis, Forecasting, Transformers, Computational modeling, Biological system modeling, Semantics, cross-scale interaction BibRef

Zade, M.S.[Malihe Shojaee], Mesbah, M.[Mahmoud], Habibian, M.[Meeghat], Faroqi, H.[Hamed],
Converting Urban Trips to Multi-Dimensional Signals to Improve Trip Purpose Inference,
ITS(25), No. 10, October 2024, pp. 14497-14506.
IEEE DOI 2410
Smart cards, Public transportation, Time series analysis, Surveys, Signal processing algorithms, Probabilistic logic, Planning, trip purpose BibRef

Li, L.[Linzhi], Zhou, X.F.[Xiao-Feng], Hu, G.L.[Guo-Liang], Li, S.[Shuai], Jia, D.[Dongni],
A Recurrent Spatio-Temporal Graph Neural Network Based on Latent Time Graph for Multi-Channel Time Series Forecasting,
SPLetters(31), 2024, pp. 2875-2879.
IEEE DOI 2411
Time series analysis, Convolution, Predictive models, Forecasting, Correlation, Decoding, Mathematical models, Feature extraction, latent time graph BibRef

Ahishali, M.[Mete], Yamac, M.[Mehmet], Kiranyaz, S.[Serkan], Gabbouj, M.[Moncef],
Operational Support Estimator Networks,
PAMI(46), No. 12, December 2024, pp. 8442-8458.
IEEE DOI 2411
Inding the locations of non-zero elements in sparse signals. Task analysis, Estimation, Kernel, Neurons, Training, Dictionaries, Sparse approximation, Support estimation, sparse representation, machine learning BibRef

Zhang, D.D.[Dan-Dan], Zhang, Z.Q.[Zhi-Qiang], Chen, N.[Nanguang], Wang, Y.[Yun],
Dynamic convolutional time series forecasting based on adaptive temporal bilateral filtering,
PR(158), 2025, pp. 110985.
Elsevier DOI 2411
Nonlinear feature, Adaptive temporal bilateral filtering, Gated deformable convolution, Time series forecasting BibRef

Hou, M.J.[Ming-Jie], Liu, Z.Y.[Zhen-Yu], Sa, G.D.[Guo-Dong], Wang, Y.Y.[Yue-Yang], Sun, J.C.[Jia-Cheng], Li, Z.[Zhinan], Tan, J.R.[Jiang-Rong],
Parallel multi-scale dynamic graph neural network for multivariate time series forecasting,
PR(158), 2025, pp. 111037.
Elsevier DOI 2411
Multivariate time series forecasting, Parallel multi-scale dynamic modeling, Graph structure learning BibRef


Chen, Y.J.[Ya-Juan], Li, Z.L.[Zhan-Li], Li, H.A.[Hong-An], Yang, S.[Sa],
Attention-GRU Based Method for Predicting Coal Mine Water Surge Analysis,
ICIVC22(913-920)
IEEE DOI 2301
Training, Measurement, Computational modeling, Neural networks, Predictive models, Prediction algorithms, Data models, gated recurrent unit neural networks BibRef

Zhang, Z.Z.[Zhao-Zhao], Wang, X.H.[Xiao-Hui], Zhu, Y.Q.[Ying-Qin],
Echo State Network Optimization Based on Improved Fireworks Algorithm,
ICIVC22(854-859)
IEEE DOI 2301
Fireworks algorithm, Analytical models, Computational modeling, Time series analysis, Predictive models, Benchmark testing, echo state network BibRef

Khryashchev, D.A.[Denis A.], Vo, H.T.[Huy T.], Haralick, R.M.[Robert M.],
Partial Monotone Dependence,
ICPR21(6375-6382)
IEEE DOI 2105
Correlation coefficient, Cellular networks, Correlation, Time series analysis, Stochastic processes, Predictive models, Time measurement BibRef

Ojeda, C.[César], Georgiev, B.[Bogdan], Cvejoski, K.[Kostadin], Schucker, J.[Jannis], Bauckhage, C.[Christian], Sánchez, R.J.[Ramsés J.],
Switching Dynamical Systems with Deep Neural Networks,
ICPR21(6305-6312)
IEEE DOI 2105
Time series analysis, Neural networks, Switches, Predictive models, Data models, Dynamical systems BibRef

Holmgren, K.[Kimberly], Gibby, P.[Paul], Zipkin, J.R.[Joseph R.],
Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and Evaluation,
ICPR21(1282-1289)
IEEE DOI 2105
Resistance, Time series analysis, Fitting, Training data, Predictive models, Nonhomogeneous media, Data models BibRef

Kim, J.H.[Jin-Hee], Kim, T.[Taesung], Choi, J.H.[Jang-Ho], Choo, J.[Jaegul],
End-to-end Multi-task Learning of Missing Value Imputation and Forecasting in Time-Series Data,
ICPR21(8849-8856)
IEEE DOI 2105
Training, Noise reduction, Predictive models, Logic gates, Data models, Sensors BibRef

Camastra, F.[Francesco], Capone, V.[Vincenzo], Ciaramella, A.[Angelo], Landi, T.C.[Tony Christian], Riccio, A.[Angelo], Staiano, A.[Antonino],
Environmental Time Series Prediction with Missing Data by Machine Learning and Dynamics Recostruction,
MAES20(26-33).
Springer DOI 2103
BibRef

Wang, Z.Y.[Zi-Yin], Tsechpenakis, G.[Gavriil],
Stream Clustering with Dynamic Estimation of Emerging Local Densities,
ICPR18(2100-2105)
IEEE DOI 1812
Kernel, Clustering algorithms, Dictionaries, Approximation algorithms, Estimation, Complexity theory, Testing BibRef

Jiang, L.[Li], Zhou, J.[Junni], Yang, R.L.[Run-Ling], Liu, L.[Li], Li, L.[Lin],
Parameter estimation of LFMCW signal using S-Method with adaptive window,
ICIVC17(875-878)
IEEE DOI 1708
Estimation, Frequency estimation, Frequency modulation, Signal to noise ratio, Time-frequency analysis, Transforms, S-Method, adaptive window, linear frequency modulated continuous wave, short-time fourier transform, time frequency analysis. BibRef

Singh, P.[Pritpal], Dhiman, G.[Gaurav],
A Fuzzy-LP Approach in Time Series Forecasting,
PReMI17(243-253).
Springer DOI 1711
BibRef

Marcacini, R.M., Carnevali, J.C., Domingos, J.,
On combining Websensors and DTW distance for kNN Time Series Forecasting,
ICPR16(2521-2525)
IEEE DOI 1705
Biological system modeling, Forecasting, Knowledge engineering, Mathematical model, Predictive models, Time measurement, Time, series, analysis BibRef

Molaei, S.M., Keyvanpour, M.R.,
An analytical review for event prediction system on time series,
IPRIA15(1-6)
IEEE DOI 1603
data mining BibRef

Gkoktsi, K., Tau Siesakul, B., Giaralis, A.,
Multi-channel sub-Nyquist cross-spectral estimation for modal analysis of vibrating structures,
WSSIP15(287-290)
IEEE DOI 1603
acceleration measurement BibRef

Narayanan, S., Sahoo, S.K., Makur, A.,
Recovery of correlated sparse signals using adaptive backtracking matching pursuit,
VCIP15(1-4)
IEEE DOI 1605
Correlated sparse signals BibRef

Ravelomanantsoa, A., Rabah, H., Rouane, A.,
Fast and efficient signals recovery for deterministic compressive sensing: Applications to biosignals,
DASIP15(1-6)
IEEE DOI 1605
compressed sensing BibRef

Aizenberg, I.[Igor], Sheremetov, L.[Leonid], Villa-Vargas, L.[Luis],
Multilayer Neural Network with Multi-Valued Neurons in Time Series Forecasting of Oil Production,
MCPR14(61-70).
Springer DOI 1407
BibRef

Ulloa, G.[Gustavo], Allende-Cid, H.[Héctor], Allende, H.[Héctor],
Sieve Bootstrap Prediction Intervals for Contaminated Non-linear Processes,
CIARP13(I:84-91).
Springer DOI 1311
BibRef

Semenovich, D.[Dimitri], Sowmya, A.[Arcot], Goldsmith, B.E.[Benjamin E.],
Predicting onsets of genocide with sparse additive models,
ICPR12(3549-3552).
WWW Link. 1302
BibRef

Hirade, R.[Ryo], Yoshizumi, T.[Takayuki],
Ensemble learning for change-point prediction,
ICPR12(1860-1863).
WWW Link. 1302
BibRef

Takahashi, T.[Toshihiro], Ide, T.[Tsuyoshi],
Predicting battery life from usage trajectory patterns,
ICPR12(2946-2949).
WWW Link. 1302
BibRef

Hido, S.[Shohei], Morimura, T.[Tetsuro],
Temporal feature selection for time-series prediction,
ICPR12(3557-3560).
WWW Link. 1302
BibRef

Liu, S.[Song], Yamada, M.[Makoto], Collier, N.[Nigel], Sugiyama, M.[Masashi],
Change-Point Detection in Time-Series Data by Relative Density-Ratio Estimation,
SSSPR12(363-372).
Springer DOI 1211
BibRef

Deng, J.Q.[Jin-Qiu], Chen, D.R.[Di-Rong],
Hooke and jeeves algorithm for linear least-square problems in sparse signal reconstruction,
IASP11(16-20).
IEEE DOI 1112
BibRef

Rodriguez, N.[Nibaldo], Rubio, J.[Jose], Yańez, E.[Eleuterio],
Wavelet Autoregressive Model for Monthly Sardines Catches Forecasting Off Central Southern Chile,
CIARP11(654-663).
Springer DOI 1111
BibRef

Jibia, A.U., Salami, M.J.E., Khalifa, O.O., Elfaki, F.,
Cramer-Rao Lower Bound for Parameter Estimation of Multiexponential Signals,
WSSIP09(1-5).
IEEE DOI 0906
BibRef

Wen, F.[Fei], Wan, Q.[Qun],
Time Delay Estimation Based on Mutual Information Estimation,
CISP09(1-5).
IEEE DOI 0910
BibRef

Li, X.M.[Xue Mei], Tao, R.[Ran], Wang, Y.[Yue],
Time Delay Estimation Based on the Fractional Fourier Transform in the Passive System,
CISP09(1-4).
IEEE DOI 0910
BibRef

Wang, T.[Tao], Wan, Q.[Qun],
Sparse Signal Recovery via Multi-Residual Based Greedy Method,
CISP09(1-4).
IEEE DOI 0910
BibRef

Li, Z.L.[Zhi-Lin], Chen, H.[Houjin], Yao, C.[Chang], Li, J.[Jupeng], Yang, N.[Na],
Sparse Signal Recovery via Optimized Orthogonal Matching Pursuit,
CISP09(1-4).
IEEE DOI 0910
BibRef

Hanias, M.P., Karras, D.A., Mobarak, M.,
Non-Linear Analysis and Time Series Prediction of an Electrical Analogue of the Mechanical Double Pendulum,
WSSIP09(1-5).
IEEE DOI 0906
BibRef

Nelson, D., Loughlin, P.J., Cristobal, G., Cohen, L.[Leon],
Time-frequency methods for biological signal estimation,
ICPR00(Vol III: 110-114).
IEEE DOI 0403
BibRef

Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Network Analysis, Wireless, Network Intrusion .


Last update:Nov 26, 2024 at 16:40:19