Li, T.F.[Tze Fen],
Chang, S.W.[Sung Wu],
A quick method for estimation of parameters of individual pulses in a
multipath signal,
PR(25), No. 12, December 1992, pp. 1529-1533.
Elsevier DOI
0401
BibRef
Leskow, J.[Jacek],
Napolitano, A.[Antonio],
Quantile prediction for time series in the fraction-of-time probability
framework,
SP(82), No. 11, November 2002, pp. 1727-1741.
Elsevier DOI
0210
BibRef
Vijayakumar, P.,
Gunavatohi, K.,
Efficient Energy Recovery for Positive Feedback Adiabatic Logic,
GVIP(05), No. V7, 2005, pp. xx-yy
HTML Version.
BibRef
0500
Thomas, T.,
Weijermars, W.,
van Berkum, E.,
Predictions of Urban Volumes in Single Time Series,
ITS(11), No. 1, March 2010, pp. 71-80.
IEEE DOI
1003
BibRef
Gazor, S.,
Derakhtian, M.,
Tadaion, A.A.,
Computationally Efficient Maximum Likelihood Sequence Estimation and
Activity Detection for M-PSK Signals in Unknown Flat Fading Channels,
SPLetters(17), No. 10, October 2010, pp. 871-874.
IEEE DOI
1008
BibRef
Yang, H.[Hui],
Bukkapatnam, S.T.S.[Satish T.S.],
Barajas, L.G.[Leandro G.],
Local recurrence based performance prediction and prognostics in the
nonlinear and nonstationary systems,
PR(44), No. 8, August 2011, pp. 1834-1840.
Elsevier DOI
1104
Prediction; Recurrence plot; Nonstationary; Time series
BibRef
Martinez-Alvarez, F.,
Troncoso, A.,
Riquelme, J.C.,
Aguilar-Ruiz, J.S.,
Discovery of motifs to forecast outlier occurrence in time series,
PRL(32), No. 12, 1 September 2011, pp. 1652-1665.
Elsevier DOI
1108
Time series forecasting; Pattern recognition; Motifs; Outliers
BibRef
Sugiura, S.,
Hanzo, L.,
Effects of Channel Estimation on Spatial Modulation,
SPLetters(19), No. 12, December 2012, pp. 805-808.
IEEE DOI
1212
BibRef
Onchis, D.M.[Darian M.],
Signal Reconstruction in Multi-Windows Spline-Spaces Using the Dual
System,
SPLetters(19), No. 11, November 2012, pp. 729-732.
IEEE DOI
1210
BibRef
Khan, N.A.,
Boashash, B.,
Instantaneous Frequency Estimation of Multicomponent Nonstationary
Signals Using Multiview Time-Frequency Distributions Based on the
Adaptive Fractional Spectrogram,
SPLetters(20), No. 2, February 2013, pp. 157-160.
IEEE DOI
1302
BibRef
Stankovic, L.,
Stankovic, S.,
Orovic, I.,
Amin, M.G.,
Robust Time-Frequency Analysis Based on the L-Estimation and
Compressive Sensing,
SPLetters(20), No. 5, May 2013, pp. 499-502.
IEEE DOI
1304
BibRef
Huang, R.[Renke],
Zheng, H.[Hao],
Kuruoglu, E.E.[Ercan E.],
Time-varying ARMA stable process estimation using sequential Monte
Carlo,
SIViP(7), No. 5, September 2013, pp. 951-958.
Springer DOI
1309
BibRef
Zhu, Z.W.[Zhi-Wen],
Huang, X.P.[Xin-Ping],
Caron, M.,
Leung, H.,
A Blind AM/PM Estimation Method for Power Amplifier Linearization,
SPLetters(20), No. 11, 2013, pp. 1042-1045.
IEEE DOI
1310
higher order statistics
BibRef
Ren, X.T.[Xiao-Tian],
Xu, H.[Hui],
Huang, Z.T.[Zhi-Tao],
Wang, F.H.[Feng-Hua],
Wang, X.[Xiang],
Blind joint information and spreading sequence estimation for
short-code DS-SS signal in asynchronous and synchronous systems,
SIViP(7), No. 6, November 2013, pp. 1183-1194.
Springer DOI
1310
BibRef
Senejohnny, D.M.[Danial Mohammadi],
Delavari, H.[Hadi],
Linear estimator for fractional systems,
SIViP(8), No. 2, February 2014, pp. 389-396.
Springer DOI
1402
BibRef
Uhlich, S.,
Computing Jacobian and Hessian of Estimators and Their Application to
Risk Approximation,
SPLetters(21), No. 4, April 2014, pp. 469-472.
IEEE DOI
1403
Jacobian matrices
BibRef
Seelamantula, C.S.[Chandra Sekhar],
Shenoy, R.R.,
A Contraction Mapping Approach for Robust Estimation of Lagged
Autocorrelation,
SPLetters(21), No. 9, September 2014, pp. 1054-1058.
IEEE DOI
1406
Correlation
BibRef
Gupta, R.[Rinki],
Kumar, A.[Arun],
Bahl, R.[Rajendar],
Estimation of instantaneous frequencies using iterative empirical mode
decomposition,
SIViP(8), No. 5, July 2014, pp. 799-812.
Springer DOI
1407
BibRef
Liu, L.F.[Lu-Feng],
Du, X.P.[Xin-Peng],
Cheng, L.Z.[Li-Zhi],
Stable Signal Recovery via Randomly Enhanced Adaptive Subspace
Pursuit Method,
SPLetters(20), No. 8, 2013, pp. 823-826.
IEEE DOI
1307
adaptive signal processing
BibRef
McKilliam, R.G.,
Clarkson, I.V.L.,
Quinn, B.G.,
Fast Sparse Period Estimation,
SPLetters(22), No. 1, January 2015, pp. 62-66.
IEEE DOI
1410
Monte Carlo methods
BibRef
Hansson-Sandsten, M.,
Brynolfsson, J.,
The Scaled Reassigned Spectrogram with Perfect Localization for
Estimation of Gaussian Functions,
SPLetters(22), No. 1, January 2015, pp. 100-104.
IEEE DOI
1410
Gaussian processes
BibRef
Shahmansoori, A.[Arash],
Consecutive adaptive blind estimation of timing offsets for arbitrary
channel time-interleaved ADCs,
SIViP(9), No. 1, January 2015, pp. 45-55.
Springer DOI
1503
analog-to-digital convertors.
BibRef
Shahmansoori, A.[Arash],
Adaptive blind calibration of timing offsets in a two-channel
time-interleaved analog-to-digital converter through Lagrange
interpolation,
SIViP(9), No. 5, July 2015, pp. 1047-1054.
WWW Link.
1506
BibRef
Trigano, T.,
Gildin, I.,
Sepulcre, Y.,
Pileup Correction Algorithm using an Iterated Sparse Reconstruction
Method,
SPLetters(22), No. 9, September 2015, pp. 1392-1395.
IEEE DOI
1503
Computational modeling
BibRef
Elvira, V.,
Martino, L.,
Luengo, D.,
Bugallo, M.F.,
Efficient Multiple Importance Sampling Estimators,
SPLetters(22), No. 10, October 2015, pp. 1757-1761.
IEEE DOI
1506
computational complexity
BibRef
Yang, P.[Peng],
Liu, Z.[Zheng],
Jiang, W.L.[Wen-Li],
Parameter estimation of multi-component chirp signals based on discrete
chirp Fourier transform and population Monte Carlo,
SIViP(9), No. 5, July 2015, pp. 1137-1149.
WWW Link.
1506
BibRef
Guerrier, S.,
Molinari, R.,
Stebler, Y.,
Theoretical Limitations of Allan Variance-based Regression for Time
Series Model Estimation,
SPLetters(23), No. 5, May 2016, pp. 597-601.
IEEE DOI
1604
calibration
BibRef
Wang, G.[Guinan],
Zhang, H.J.[Hong-Juan],
Yu, S.W.[Shi-Wei],
Ding, S.X.[Shu-Xue],
A family of the subgradient algorithm with several cosparsity
inducing functions to the cosparse recovery problem,
PRL(80), No. 1, 2016, pp. 64-69.
Elsevier DOI
1609
Cosparse analysis model
BibRef
de Mattos Neto, P.S.G.[Paulo S.G.],
Cavalcanti, G.D.C.[George D.C.],
Madeiro, F.[Francisco],
Nonlinear combination method of forecasters applied to PM time series,
PRL(95), No. 1, 2017, pp. 65-72.
Elsevier DOI
1708
Forecasting
BibRef
Ahmed, A.,
Compressive Acquisition and Least-Squares Reconstruction of
Correlated Signals,
SPLetters(24), No. 7, July 2017, pp. 933-937.
IEEE DOI
1706
Coherence, Fourier series,
Frequency modulation, Signal reconstruction, Standards,
Array processing, compressive sampling, correlated signals,
micro-sensor arrays, randomized SVD, sub-Nyquist, sampling
BibRef
Göken, Ç.,
Gezici, S.,
Optimal Parameter Encoding Based on Worst Case Fisher Information
Under a Secrecy Constraint,
SPLetters(24), No. 11, November 2017, pp. 1611-1615.
IEEE DOI
1710
encoding, mean square error methods,
linear minimum MSE estimator, low-complexity algorithm,
BibRef
Wang, P.,
Orlik, P.V.,
Sadamoto, K.,
Tsujita, W.,
Gini, F.,
Parameter Estimation of Hybrid Sinusoidal FM-Polynomial Phase Signal,
SPLetters(24), No. 1, January 2017, pp. 66-70.
IEEE DOI
1702
frequency modulation
BibRef
Arriaga-Trejo, I.A.,
Orozco-Lugo, A.G.,
Villanueva-Maldonado, J.,
Flores-Troncoso, J.,
Joint I/Q imbalances estimation using data-dependent superimposed
training,
SIViP(11), No. 4, May 2017, pp. 729-736.
Springer DOI
1704
Joint estimation of the channel impulse response and
frequency-dependent in-phase and quadrature-phase (I/Q) imbalances.
BibRef
Deng, S.[Song],
Yuan, C.A.[Chang-An],
Yang, L.C.[Le-Chan],
Zhang, L.P.[Li-Ping],
Distributed electricity load forecasting model mining based on hybrid
gene expression programming and cloud computing,
PRL(109), 2018, pp. 72-80.
Elsevier DOI
1806
Load forecasting, Artificial fish swarm,
Gene expression programming, Cloud computing
BibRef
Baltazar-Raigosa, A.[Antonio],
Identification of Widely Linear Systems Using Data-Dependent
Superimposed Training,
SPLetters(29), 2022, pp. 2133-2137.
IEEE DOI
2211
Training, Estimation, Mathematical models, Nonlinear distortion,
Finite impulse response filters, Channel estimation,
complementary autocorrelation
BibRef
Bokde, N.[Neeraj],
Beck, M.W.[Marcus W.],
Álvarez, F.M.[Francisco Martínez],
Kulat, K.[Kishore],
A novel imputation methodology for time series based on pattern
sequence forecasting,
PRL(116), 2018, pp. 88-96.
Elsevier DOI
1812
Time series, Imputation, Forecasting, Data mining
BibRef
Wang, P.,
Orlik, P.V.,
Sadamoto, K.,
Tsujita, W.,
Sawa, Y.,
Cramer-Rao Bounds for a Coupled Mixture of Polynomial Phase and
Sinusoidal FM Signals,
SPLetters(24), No. 6, June 2017, pp. 746-750.
IEEE DOI
1609
polynomials, signal processing, CRB, Crame´r-Rao bounds,
polynomial phase signal, pure PPS case, sinusoidal FM signals,
Doppler radar, Frequency modulation, Indexes, Mixture models,
Parameter estimation.
BibRef
Tobar, F.,
Rios, G.,
Valdivia, T.,
Guerrero, P.,
Recovering Latent Signals From a Mixture of Measurements Using a
Gaussian Process Prior,
SPLetters(24), No. 2, February 2017, pp. 231-235.
IEEE DOI
1702
Bayes methods
BibRef
Wang, W.D.[Wen-Dong],
Wang, J.J.[Jian-Jun],
Zhang, Z.L.[Zi-Li],
Robust Signal Recovery With Highly Coherent Measurement Matrices,
SPLetters(24), No. 3, March 2017, pp. 304-308.
IEEE DOI
1702
Approximation algorithms
BibRef
Chen, S.J.[Shao-Jie],
Liu, K.[Kai],
Yang, Y.G.[Yu-Guang],
Xu, Y.T.[Yu-Ting],
Lee, S.[Seonjoo],
Lindquist, M.[Martin],
Caffo, B.S.[Brian S.],
Vogelstein, J.T.[Joshua T.],
An M-estimator for reduced-rank system identification,
PRL(86), No. 1, 2017, pp. 76-81.
Elsevier DOI
1702
High dimensional time-series data.
BibRef
Bendory, T.,
Eldar, Y.C.,
Recovery of Sparse Positive Signals on the Sphere from Low Resolution
Measurements,
SPLetters(22), No. 12, December 2015, pp. 2383-2386.
IEEE DOI
1512
convex programming
BibRef
Wan, Z.[Zhong],
Guo, J.[Jie],
Liu, J.J.[Jing-Jing],
Liu, W.Y.[Wei-Yi],
A modified spectral conjugate gradient projection method for signal
recovery,
SIViP(12), No. 8, November 2018, pp. 1455-1462.
Springer DOI
1809
Signal recovery.
BibRef
Perotti, L.C.,
Vrinceanu, D.,
Bessis, D.,
Recovery of the Starting Times of Delayed Signals,
SPLetters(25), No. 10, October 2018, pp. 1455-1459.
IEEE DOI
1810
iterative methods, signal processing, smoothing methods,
starting times, delayed signals, starting point, arbitrary number,
Padé approximant
BibRef
Bey, N.Y.[Nourédine Yahya],
Highly accurate frequency estimation of brief duration signals in noise,
SIViP(12), No. 7, October 2018, pp. 1279-1283.
WWW Link.
1809
BibRef
Horstmann, S.,
Ramírez, D.,
Schreier, P.J.,
Joint Detection of Almost-Cyclostationary Signals and Estimation of
Their Cycle Period,
SPLetters(25), No. 11, November 2018, pp. 1695-1699.
IEEE DOI
1811
channel bank filters, interpolation, signal detection,
signal sampling, cycle period, wide-sense stationary noise,
sample rate conversion
BibRef
Xie, C.[Christopher],
Bijral, A.[Avleen],
Ferres, J.L.[Juan Lavista],
NonSTOP: A NonSTationary Online Prediction Method for Time Series,
SPLetters(25), No. 10, October 2018, pp. 1545-1549.
IEEE DOI
1810
learning (artificial intelligence), time series,
NonSTationary online prediction method, prediction methods,
online learning
BibRef
Wang, X.,
Li, G.,
Varshney, P.K.,
Distributed Detection of Weak Signals From One-Bit Measurements Under
Observation Model Uncertainties,
SPLetters(26), No. 3, March 2019, pp. 415-419.
IEEE DOI
1903
maximum likelihood estimation, quantisation (signal),
signal detection, wireless sensor networks, one-bit data,
locally most powerful test
BibRef
Khan, N.A.[Nabeel Ali],
Mohammadi, M.[Mokhtar],
Ali, S.[Sadiq],
Instantaneous frequency estimation of intersecting and close
multi-component signals with varying amplitudes,
SIViP(13), No. 3, April 2019, pp. 517-524.
Springer DOI
1904
BibRef
Khan, S.A.,
Saleem, S.,
Hassan, S.A.,
Ilyas, M.U.,
An Improved Data-Aided Linear Estimator of Modulation Index for
Binary CPM Signals,
SPLetters(26), No. 5, May 2019, pp. 780-784.
IEEE DOI
1905
continuous phase modulation, error statistics,
estimation algorithm,
partial response
BibRef
Nichols, J.M.,
Hutchinson, M.N.,
Menkart, N.,
Cranch, G.A.,
Rohde, G.K.,
Time Delay Estimation Via Wasserstein Distance Minimization,
SPLetters(26), No. 6, June 2019, pp. 908-912.
IEEE DOI
1906
computational complexity, delay estimation, minimisation,
signal processing, linear time, time delay estimation,
Wasserstein distance
BibRef
Gan, M.,
Chen, X.,
Ding, F.,
Chen, G.,
Chen, C.L.P.,
Adaptive RBF-AR Models Based on Multi-Innovation Least Squares Method,
SPLetters(26), No. 8, August 2019, pp. 1182-1186.
IEEE DOI
1908
autoregressive processes, learning (artificial intelligence),
least mean squares methods, parameter estimation,
time series prediction
BibRef
Deprem, Z.[Zeynel],
Çetin, A.E.[A. Enis],
Arikan, O.[Orhan],
AM/FM signal estimation with micro-segmentation and polynomial fit,
SIViP(8), No. 3, March 2014, pp. 399-413.
Springer DOI
1403
BibRef
Mehrkam, M.[Mehrrad],
Tinati, M.A.[Mohammad Ali],
Rezaii, T.Y.[Tohid Yousefi],
Reconstruction of low-rank jointly sparse signals from multiple
measurement vectors,
SIViP(13), No. 4, June 2019, pp. 683-691.
Springer DOI
1906
BibRef
Delgado, R.A.[Ramón A.],
Middleton, R.H.[Richard H.],
Sparse Representation Using Stepwise Tikhonov Regularization With
Offline Computations,
SPLetters(26), No. 6, June 2019, pp. 873-877.
IEEE DOI
1906
iterative methods, least squares approximations,
signal reconstruction, signal representation,
matching pursuit algorithms
BibRef
Abavisani, M.,
Patel, V.M.,
Deep Sparse Representation-Based Classification,
SPLetters(26), No. 6, June 2019, pp. 948-952.
IEEE DOI
1906
Decoding, Training, Feeds, Encoding, Kernel, Optimization, Testing,
Deep learning, sparse representation-based classification,
deep sparse representation-based classification
BibRef
Abavisani, M.,
Patel, V.M.,
Deep Multimodal Sparse Representation-Based Classification,
ICIP20(773-777)
IEEE DOI
2011
Training, Sparse matrices, Decoding, Encoding, Data models, Testing,
Image reconstruction, Sparse representation,
deep multimodal sparse representation classification
BibRef
Romanov, E.,
Ordentlich, O.,
Above the Nyquist Rate, Modulo Folding Does Not Hurt,
SPLetters(26), No. 8, August 2019, pp. 1167-1171.
IEEE DOI
1908
bandlimited signals, information theory, signal reconstruction,
signal sampling, discrete-time signal, finite energy signals,
unlimited sampling
BibRef
Zhang, S.M.[Shui-Mei],
Zhang, Y.M.D.[Yi-Min D.],
Robust Time-Frequency Analysis of Multiple FM Signals With Burst
Missing Samples,
SPLetters(26), No. 8, August 2019, pp. 1172-1176.
IEEE DOI
1908
Hankel matrices, signal reconstruction, time-frequency analysis,
time-frequency analysis, burst missing samples,
nonstationary signal
BibRef
Brugnoli, E.,
Toscano, E.,
Vetro, C.,
Iterative Reconstruction of Signals on Graph,
SPLetters(27), 2020, pp. 76-80.
IEEE DOI
2001
Convergence, Eigenvalues and eigenfunctions,
Signal processing algorithms, Laplace equations, spectral analysis
BibRef
Muniraju, G.,
Tepedelenlioglu, C.,
Spanias, A.,
Consensus Based Distributed Spectral Radius Estimation,
SPLetters(27), 2020, pp. 1045-1049.
IEEE DOI
2007
Convergence, Eigenvalues and eigenfunctions, Packet loss,
Estimation, Distributed algorithms, Signal processing algorithms,
spectral radius
BibRef
Mohammadi, E.,
Gohari, A.,
Marvasti, F.,
A Square Root Sampling Law for Signal Recovery,
SPLetters(26), No. 4, April 2019, pp. 562-566.
IEEE DOI
1903
Noise measurement, Distortion, Distortion measurement,
Stochastic processes, Atmospheric measurements,
square root law
BibRef
Dlask, M.[Martin],
Kukal, J.[Jaromir],
Hurst exponent estimation from short time series,
SIViP(13), No. 2, March 2019, pp. 263-269.
Springer DOI
1904
Time series.
BibRef
Fosson, S.M.,
Abuabiah, M.,
Recovery of Binary Sparse Signals From Compressed Linear Measurements
via Polynomial Optimization,
SPLetters(26), No. 7, July 2019, pp. 1070-1074.
IEEE DOI
1906
Optimization, Noise measurement, Sparse matrices,
Compressed sensing, Image coding, Sensors, Programming,
sparse signal recovery
BibRef
Guo, J.,
Chen, H.,
Chen, S.,
Improved Kernel Recursive Least Squares Algorithm Based Online
Prediction for Nonstationary Time Series,
SPLetters(27), 2020, pp. 1365-1369.
IEEE DOI
2008
Signal processing algorithms, Kernel, Prediction algorithms,
Heuristic algorithms, Time series analysis, Dictionaries,
quantized kernel recursive least squares
BibRef
Nie, D.,
Xie, K.,
Zhou, F.,
Qiao, G.,
A Correlation Detection Method of Low SNR Based on
Multi-Channelization,
SPLetters(27), 2020, pp. 1375-1379.
IEEE DOI
2008
Correlation, Signal to noise ratio, Signal processing algorithms,
Signal detection, Detection algorithms, Analytical models,
time-varying signal
BibRef
Garg, K.,
Baranwal, M.,
CAPPA: Continuous-Time Accelerated Proximal Point Algorithm for
Sparse Recovery,
SPLetters(27), 2020, pp. 1760-1764.
IEEE DOI
2010
Convergence, Heuristic algorithms, Signal processing algorithms,
Machine learning algorithms, Convex functions, Acceleration,
signal reconstruction
BibRef
Ilic, I.[Igor],
Görgülü, B.[Berk],
Cevik, M.[Mucahit],
Baydogan, M.G.[Mustafa Gökçe],
Explainable boosted linear regression for time series forecasting,
PR(120), 2021, pp. 108144.
Elsevier DOI
2109
Time series regression, Probabilistic forecasting,
Decision trees, Linear regression, ARIMA
BibRef
Bandara, K.[Kasun],
Hewamalage, H.[Hansika],
Liu, Y.H.[Yuan-Hao],
Kang, Y.F.[Yan-Fei],
Bergmeir, C.[Christoph],
Improving the accuracy of global forecasting models using time series
data augmentation,
PR(120), 2021, pp. 108148.
Elsevier DOI
2109
Time series forecasting, Global forecasting models,
Data augmentation, Transfer learning, RNN
BibRef
Hewamalage, H.[Hansika],
Bergmeir, C.[Christoph],
Bandara, K.[Kasun],
Global models for time series forecasting: A Simulation study,
PR(124), 2022, pp. 108441.
Elsevier DOI
2203
Time series forecasting, Global forecasting models,
Time series simulation, Data generating processes
BibRef
Harel, N.[Nadav],
Routtenberg, T.[Tirza],
Bayesian Post-Model-Selection Estimation,
SPLetters(28), 2021, pp. 175-179.
IEEE DOI
2102
Estimation, Bayes methods, Probability density function,
Parameter estimation, Computational modeling,
sparse recovery
BibRef
Berman, I.E.[Itai E.],
Routtenberg, T.[Tirza],
Partially Linear Bayesian Estimation Using Mixed-Resolution Data,
SPLetters(28), 2021, pp. 2202-2206.
IEEE DOI
2112
Q measurement, Estimation, Quantization (signal),
Closed-form solutions, Channel estimation, mixed-resolution data
BibRef
Cheng, Y.Y.[Yi-Yao],
Liu, L.[Lei],
Ping, L.[Li],
An Integral-Based Approach to Orthogonal AMP,
SPLetters(28), 2021, pp. 194-198.
IEEE DOI
2102
Monte Carlo methods, Training, Signal processing algorithms,
Binary phase shift keying, Software algorithms, Sensors,
state evolution
BibRef
Rupniewski, M.W.,
Reconstruction of Periodic Signals From Asynchronous Trains of
Samples,
SPLetters(28), 2021, pp. 289-293.
IEEE DOI
2102
Random variables, Signal reconstruction,
Signal processing algorithms, Sensors, Probabilistic logic, Shape,
signal sampling
BibRef
Řyvind Mikalsen, K.[Karl],
Soguero-Ruiz, C.[Cristina],
Maria Bianchi, F.[Filippo],
Revhaug, A.[Arthur],
Jenssen, R.[Robert],
Time series cluster kernels to exploit informative missingness and
incomplete label information,
PR(115), 2021, pp. 107896.
Elsevier DOI
2104
Multivariate time series, Kernel methods, Missing data,
Informative missingness, Semi-supervised learning
BibRef
Xie, C.L.[Chun-Lei],
Sun, Y.[Yu],
Ming, Y.[Yang],
Constructions of Optimal Binary Z-Complementary Sequence Sets With
Large Zero Correlation Zone,
SPLetters(28), 2021, pp. 1694-1698.
IEEE DOI
2109
Boolean functions, Zero correlation zone, Correlation, Sun,
Companies, Systematics, Research and development,
zero correlation zone
BibRef
Lai, H.D.[Hua-Dong],
Xu, W.C.[Wei-Chao],
Dai, J.S.[Ji-Sheng],
Zhou, Y.Z.[Yan-Zhou],
Threshold Setting of Generalized Likelihood Ratio Test for
Impropriety of Complex Signals,
SPLetters(28), 2021, pp. 1699-1703.
IEEE DOI
2109
Covariance matrices, Transforms, Simulation,
Signal processing algorithms, Random variables,
impropriety test
BibRef
Haley, C.,
Missing-Data Nonparametric Coherency Estimation,
SPLetters(28), 2021, pp. 1704-1708.
IEEE DOI
2109
Coherence, Time series analysis, Frequency estimation,
Smoothing methods, Recruitment, Oscillators, Indexes, Coherence,
power spectrum
BibRef
Ye, R.[Rui],
Dai, Q.[Qun],
Implementing transfer learning across different datasets for time
series forecasting,
PR(109), 2021, pp. 107617.
Elsevier DOI
2009
Time series prediction, Deep learning, Transfer learning,
Convolutional neural network (CNN)
BibRef
Song, X.X.[Xiao-Xiang],
Guo, Y.[Yan],
Li, N.[Ning],
Zhang, L.X.[Li-Xiong],
Integrated Online Prediction Model for IoT Data,
SPLetters(28), 2021, pp. 2043-2047.
IEEE DOI
2111
Predictive models, Data models, Time series analysis,
Linear programming, Training, Time-domain analysis, time series
BibRef
Riba, J.[Jaume],
Vilŕ, M.[Marc],
On Infinite Past Predictability of Cyclostationary Signals,
SPLetters(29), 2022, pp. 647-651.
IEEE DOI
2203
Signal processing, Eigenvalues and eigenfunctions, Coherence,
Autocorrelation, Wiener filters, Matrix decomposition, Modulation,
spectral coherence
BibRef
Ramakrishna, A.[Anil],
Gupta, R.[Rahul],
Narayanan, S.[Shrikanth],
Joint Multi-Dimensional Model for Global and Time-Series Annotations,
AffCom(13), No. 1, January 2022, pp. 473-484.
IEEE DOI
2203
Annotations, Task analysis, Predictive models,
Time series analysis, Mathematical model, Computational modeling,
factor analysis
BibRef
Monteil, J.[Julien],
Dekusar, A.[Anton],
Gambella, C.[Claudio],
Lassoued, Y.[Yassine],
Mevissen, M.[Martin],
On Model Selection for Scalable Time Series Forecasting in Transport
Networks,
ITS(23), No. 7, July 2022, pp. 6699-6708.
IEEE DOI
2207
Predictive models, Time series analysis, Deep learning,
Forecasting, Data models, Correlation, Roads, Time series,
autoregressive models
BibRef
Liu, Y.F.[Yu-Feng],
Zhu, Z.B.[Zhi-Bin],
Zhang, B.X.[Ben-Xin],
Improved iteratively reweighted least squares algorithms for sparse
recovery problem,
IET-IPR(16), No. 5, 2022, pp. 1324-1340.
DOI Link
2203
BibRef
Pang, Y.[Yue],
Zhou, X.D.[Xiang-Dong],
Zhang, J.Q.[Jun-Qi],
Sun, Q.[Quan],
Zheng, J.B.[Jian-Bin],
Hierarchical electricity time series prediction with cluster analysis
and sparse penalty,
PR(126), 2022, pp. 108555.
Elsevier DOI
2204
Hierarchical time series forecasting, Data mining, Machine learning
BibRef
Guo, H.L.[Han-Lin],
Lu, Y.[Yang],
Xiao, G.B.[Guo-Bao],
Lin, S.Y.[Shu-Yuan],
Wang, H.Z.[Han-Zi],
Triplet Relationship Guided Sampling Consensus for Robust Model
Estimation,
SPLetters(29), 2022, pp. 817-821.
IEEE DOI
2204
Estimation, Data models, Computational modeling,
Impedance matching, Adaptation models, Task analysis, sampling
BibRef
Chen, X.Y.[Xin-Yu],
Sun, L.J.[Li-Jun],
Bayesian Temporal Factorization for Multidimensional Time Series
Prediction,
PAMI(44), No. 9, September 2022, pp. 4659-4673.
IEEE DOI
2208
Time series analysis, Data models, Bayes methods,
Spatiotemporal phenomena, Tensors, Reactive power,
Markov chain Monte Carlo (MCMC)
BibRef
Liu, Y.[Yang],
Wang, Z.[Zheng],
Yu, X.Y.[Xin-Yang],
Chen, X.[Xin],
Sun, M.[Meijun],
Memory-based Transformer with shorter window and longer horizon for
multivariate time series forecasting,
PRL(160), 2022, pp. 26-33.
Elsevier DOI
2208
Multivariate time series, Long-term forecasting, Transformer, Deep learning
BibRef
Koç, E.[Emirhan],
Koç, A.[Aykut],
Fractional Fourier Transform in Time Series Prediction,
SPLetters(29), 2022, pp. 2542-2546.
IEEE DOI
2301
Time series analysis, Feature extraction, Decoding,
Fourier transforms, Training, Wavelet transforms, decoder
BibRef
Huang, J.W.[Jian-Wen],
Zhang, F.[Feng],
Jia, J.P.[Jin-Ping],
A New Sufficient Condition for Non-Convex Sparse Recovery via
Weighted L_r-L_1 Minimization,
SPLetters(29), 2022, pp. 1555-1558.
IEEE DOI
2208
Minimization, Sparse matrices, Pollution measurement,
Compressed sensing, Indexes, Technological innovation,
nonconvex sparse recovery
BibRef
Semenoglou, A.A.[Artemios-Anargyros],
Spiliotis, E.[Evangelos],
Assimakopoulos, V.[Vassilios],
Data augmentation for univariate time series forecasting with neural
networks,
PR(134), 2023, pp. 109132.
Elsevier DOI
2212
Time series, Forecasting, Data augmentation, Neural networks, M4 competition
BibRef
Le Guen, V.[Vincent],
Thome, N.[Nicolas],
Deep Time Series Forecasting With Shape and Temporal Criteria,
PAMI(45), No. 1, January 2023, pp. 342-355.
IEEE DOI
2212
Forecasting, Shape, Probabilistic logic, Time series analysis,
Predictive models, Training, Kernel, Time series forecasting,
determinantal point processes
BibRef
Moreno-Pino, F.[Fernando],
Olmos, P.M.[Pablo M.],
Artés-Rodríguez, A.[Antonio],
Deep autoregressive models with spectral attention,
PR(133), 2023, pp. 109014.
Elsevier DOI
2210
Attention models, Deep learning, Filtering,
Global-local contexts, Signal processing, Time series forecasting
BibRef
Money, R.[Rohan],
Krishnan, J.[Joshin],
Beferull-Lozano, B.[Baltasar],
Isufi, E.[Elvin],
Online Edge Flow Imputation on Networks,
SPLetters(30), 2023, pp. 115-119.
IEEE DOI
2303
Signal processing algorithms, Laplace equations, Optimization,
Time series analysis, Signal reconstruction, Reactive power,
simplicial complex
BibRef
Liu, N.[Naihao],
Wang, J.Y.[Jing-Yu],
Yang, Y.[Yang],
Li, Z.[Zhen],
Gao, J.H.[Jing-Huai],
WVDNet: Time-Frequency Analysis via Semi-Supervised Learning,
SPLetters(30), 2023, pp. 55-59.
IEEE DOI
2302
Training, Data models, Predictive models, Kernel, Training data,
Time-frequency analysis, Task analysis, Deep learning,
wigner-ville distribution
BibRef
Li, Z.L.[Zhuo Lin],
Zhang, G.W.[Gao Wei],
Yu, J.[Jie],
Xu, L.Y.[Ling Yu],
Dynamic graph structure learning for multivariate time series
forecasting,
PR(138), 2023, pp. 109423.
Elsevier DOI
2303
Multivariate time series forecasting,
Dynamic spatio-temporal dependencies, Graph neural networks,
Graph structure learning
BibRef
Almeida, A.[Ana],
Brás, S.[Susana],
Sargento, S.[Susana],
Pinto, F.C.[Filipe Cabral],
Time Series Imputation in Faulty Systems,
IbPRIA23(28-39).
Springer DOI
2307
BibRef
Pang, J.[Jie],
Gao, B.[Bo],
Application of a Randomized Algorithm for Extracting a Shallow
Low-Rank Structure in Low-Frequency Reverberation,
RS(15), No. 14, 2023, pp. 3648.
DOI Link
2307
BibRef
Huo, L.[Limei],
Chen, W.[Wengu],
Ge, H.M.[Huan-Min],
Ng, M.K.[Michael K.],
L_1 beta L_q Minimization for Signal and Image Recovery,
SIIMS(16), No. 4, 2023, pp. 1886-1928.
DOI Link
2312
BibRef
Sun, C.S.[Cong-Shan],
Li, H.W.[Hong-Wei],
Xu, C.[Cong],
Ma, L.[Lin],
Li, H.F.[Hai-Feng],
Adaptively Optimized Masking EMD for Separating Intrinsic Oscillatory
Modes of Nonstationary Signals,
SPLetters(31), 2024, pp. 216-220.
IEEE DOI
2401
Empirical mode decomposition.
BibRef
Li, Z.J.[Zi-Jian],
Cai, R.[Ruichu],
Fu, T.Z.J.[Tom Z. J.],
Hao, Z.F.[Zhi-Feng],
Zhang, K.[Kun],
Transferable Time-Series Forecasting Under Causal Conditional Shift,
PAMI(46), No. 4, April 2024, pp. 1932-1949.
IEEE DOI
2403
Forecasting, Adaptation models, Predictive models,
Mathematical models, Data models, Time series analysis,
semi-supervised domain adaptation
BibRef
Yin, N.[Nan],
Shen, L.[Li],
Xiong, H.[Huan],
Gu, B.[Bin],
Chen, C.[Chong],
Hua, X.S.[Xian-Sheng],
Liu, S.W.[Si-Wei],
Luo, X.[Xiao],
Messages are Never Propagated Alone: Collaborative Hypergraph Neural
Network for Time-Series Forecasting,
PAMI(46), No. 4, April 2024, pp. 2333-2347.
IEEE DOI
2403
Time series analysis, Collaboration, Forecasting, Message passing,
Correlation, Data models, Convolution, hypergraph neural network
BibRef
Yang, L.[Luxuan],
Gao, T.[Ting],
Wei, W.[Wei],
Dai, M.[Min],
Fang, C.[Cheng],
Duan, J.Q.[Jin-Qiao],
Multi-task meta label correction for time series prediction,
PR(150), 2024, pp. 110319.
Elsevier DOI
2403
Data visualization, Bi-level optimization, Meta-learning, Multi-task learning
BibRef
Yu, Y.[Yang],
Ma, R.Z.[Rui-Zhe],
Ma, Z.M.[Zong-Min],
Robformer: A robust decomposition transformer for long-term time
series forecasting,
PR(153), 2024, pp. 110552.
Elsevier DOI
2405
Long-term time series forecasting, Transformer, Time series decomposition
BibRef
Liang, H.[Haobo],
Feng, Y.[Yuan],
Zhang, Y.S.[Yu-Shi],
Qiao, X.[Xingshuai],
Wang, Z.[Zhi],
Shan, T.[Tao],
A Segmented Sliding Window Reference Signal Reconstruction Method
Based on Fuzzy C-Means,
RS(16), No. 10, 2024, pp. 1813.
DOI Link
2405
BibRef
Zhan, T.X.[Tian-Xiang],
Xiao, F.Y.[Fu-Yuan],
A novel weighted approach for time series forecasting based on
visibility graph,
PR(155), 2024, pp. 110720.
Elsevier DOI
2408
Time series, Complex network, Visibility graph,
Link forecasting
BibRef
Li, C.H.[Chang-Hao],
Ma, Z.X.[Zhi-Xin],
Sun, D.[Dazhi],
Zhang, G.M.[Guo-Ming],
Wen, J.M.[Jin-Ming],
Stochastic IHT With Stochastic Polyak Step-Size for Sparse Signal
Recovery,
SPLetters(31), 2024, pp. 2035-2039.
IEEE DOI
2408
Signal processing algorithms, Convergence, Vectors,
Iterative algorithms, Stochastic processes, Sun,
stochastic algorithms
BibRef
Seddighi, Z.[Zahra],
Taban, M.R.[Mohammad Reza],
Gazor, S.[Saeed],
Cross-Terms and Spectral Leakage Minimization in Time-Frequency
Distribution,
SPLetters(31), 2024, pp. 2025-2029.
IEEE DOI
2408
Kernel, Time-frequency analysis, Noise, Signal resolution,
Discrete Fourier transforms, Estimation, Cross-term, quadratic,
time-frequency distribution
BibRef
Wen, L.J.[Liang-Jian],
Hu, Q.[Quan],
Guo, C.[Cong],
Hu, A.[Ao],
Zhang, M.Y.[Ming-Yi],
Cross-Scale Attention for Long-Term Time Series Forecasting,
SPLetters(31), 2024, pp. 2675-2679.
IEEE DOI
2410
Time series analysis, Forecasting, Transformers,
Computational modeling, Biological system modeling, Semantics,
cross-scale interaction
BibRef
Zade, M.S.[Malihe Shojaee],
Mesbah, M.[Mahmoud],
Habibian, M.[Meeghat],
Faroqi, H.[Hamed],
Converting Urban Trips to Multi-Dimensional Signals to Improve Trip
Purpose Inference,
ITS(25), No. 10, October 2024, pp. 14497-14506.
IEEE DOI
2410
Smart cards, Public transportation, Time series analysis, Surveys,
Signal processing algorithms, Probabilistic logic, Planning,
trip purpose
BibRef
Li, L.[Linzhi],
Zhou, X.F.[Xiao-Feng],
Hu, G.L.[Guo-Liang],
Li, S.[Shuai],
Jia, D.[Dongni],
A Recurrent Spatio-Temporal Graph Neural Network Based on Latent Time
Graph for Multi-Channel Time Series Forecasting,
SPLetters(31), 2024, pp. 2875-2879.
IEEE DOI
2411
Time series analysis, Convolution, Predictive models, Forecasting,
Correlation, Decoding, Mathematical models, Feature extraction,
latent time graph
BibRef
Ahishali, M.[Mete],
Yamac, M.[Mehmet],
Kiranyaz, S.[Serkan],
Gabbouj, M.[Moncef],
Operational Support Estimator Networks,
PAMI(46), No. 12, December 2024, pp. 8442-8458.
IEEE DOI
2411
Inding the locations of non-zero elements in sparse signals.
Task analysis, Estimation, Kernel, Neurons, Training, Dictionaries,
Sparse approximation, Support estimation, sparse representation,
machine learning
BibRef
Zhang, D.D.[Dan-Dan],
Zhang, Z.Q.[Zhi-Qiang],
Chen, N.[Nanguang],
Wang, Y.[Yun],
Dynamic convolutional time series forecasting based on adaptive
temporal bilateral filtering,
PR(158), 2025, pp. 110985.
Elsevier DOI
2411
Nonlinear feature, Adaptive temporal bilateral filtering,
Gated deformable convolution, Time series forecasting
BibRef
Hou, M.J.[Ming-Jie],
Liu, Z.Y.[Zhen-Yu],
Sa, G.D.[Guo-Dong],
Wang, Y.Y.[Yue-Yang],
Sun, J.C.[Jia-Cheng],
Li, Z.[Zhinan],
Tan, J.R.[Jiang-Rong],
Parallel multi-scale dynamic graph neural network for multivariate
time series forecasting,
PR(158), 2025, pp. 111037.
Elsevier DOI
2411
Multivariate time series forecasting,
Parallel multi-scale dynamic modeling, Graph structure learning
BibRef
Zhang, Z.Z.[Zhao-Zhao],
Wang, X.H.[Xiao-Hui],
Zhu, Y.Q.[Ying-Qin],
Echo State Network Optimization Based on Improved Fireworks Algorithm,
ICIVC22(854-859)
IEEE DOI
2301
Fireworks algorithm, Analytical models, Computational modeling,
Time series analysis, Predictive models, Benchmark testing, echo state network
BibRef
Khryashchev, D.A.[Denis A.],
Vo, H.T.[Huy T.],
Haralick, R.M.[Robert M.],
Partial Monotone Dependence,
ICPR21(6375-6382)
IEEE DOI
2105
Correlation coefficient, Cellular networks, Correlation,
Time series analysis, Stochastic processes, Predictive models, Time measurement
BibRef
Ojeda, C.[César],
Georgiev, B.[Bogdan],
Cvejoski, K.[Kostadin],
Schucker, J.[Jannis],
Bauckhage, C.[Christian],
Sánchez, R.J.[Ramsés J.],
Switching Dynamical Systems with Deep Neural Networks,
ICPR21(6305-6312)
IEEE DOI
2105
Time series analysis, Neural networks, Switches, Predictive models,
Data models, Dynamical systems
BibRef
Holmgren, K.[Kimberly],
Gibby, P.[Paul],
Zipkin, J.R.[Joseph R.],
Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and
Evaluation,
ICPR21(1282-1289)
IEEE DOI
2105
Resistance, Time series analysis, Fitting, Training data,
Predictive models, Nonhomogeneous media, Data models
BibRef
Kim, J.H.[Jin-Hee],
Kim, T.[Taesung],
Choi, J.H.[Jang-Ho],
Choo, J.[Jaegul],
End-to-end Multi-task Learning of Missing Value Imputation and
Forecasting in Time-Series Data,
ICPR21(8849-8856)
IEEE DOI
2105
Training, Noise reduction, Predictive models, Logic gates,
Data models, Sensors
BibRef
Camastra, F.[Francesco],
Capone, V.[Vincenzo],
Ciaramella, A.[Angelo],
Landi, T.C.[Tony Christian],
Riccio, A.[Angelo],
Staiano, A.[Antonino],
Environmental Time Series Prediction with Missing Data by Machine
Learning and Dynamics Recostruction,
MAES20(26-33).
Springer DOI
2103
BibRef
Wang, Z.Y.[Zi-Yin],
Tsechpenakis, G.[Gavriil],
Stream Clustering with Dynamic Estimation of Emerging Local Densities,
ICPR18(2100-2105)
IEEE DOI
1812
Kernel, Clustering algorithms, Dictionaries,
Approximation algorithms, Estimation, Complexity theory, Testing
BibRef
Jiang, L.[Li],
Zhou, J.[Junni],
Yang, R.L.[Run-Ling],
Liu, L.[Li],
Li, L.[Lin],
Parameter estimation of LFMCW signal using S-Method with adaptive
window,
ICIVC17(875-878)
IEEE DOI
1708
Estimation, Frequency estimation, Frequency modulation,
Signal to noise ratio, Time-frequency analysis, Transforms,
S-Method, adaptive window,
linear frequency modulated continuous wave,
short-time fourier transform, time frequency analysis.
BibRef
Singh, P.[Pritpal],
Dhiman, G.[Gaurav],
A Fuzzy-LP Approach in Time Series Forecasting,
PReMI17(243-253).
Springer DOI
1711
BibRef
Marcacini, R.M.,
Carnevali, J.C.,
Domingos, J.,
On combining Websensors and DTW distance for kNN Time Series
Forecasting,
ICPR16(2521-2525)
IEEE DOI
1705
Biological system modeling, Forecasting, Knowledge engineering,
Mathematical model, Predictive models, Time measurement, Time,
series, analysis
BibRef
Molaei, S.M.,
Keyvanpour, M.R.,
An analytical review for event prediction system on time series,
IPRIA15(1-6)
IEEE DOI
1603
data mining
BibRef
Gkoktsi, K.,
Tau Siesakul, B.,
Giaralis, A.,
Multi-channel sub-Nyquist cross-spectral estimation for modal
analysis of vibrating structures,
WSSIP15(287-290)
IEEE DOI
1603
acceleration measurement
BibRef
Narayanan, S.,
Sahoo, S.K.,
Makur, A.,
Recovery of correlated sparse signals using adaptive backtracking
matching pursuit,
VCIP15(1-4)
IEEE DOI
1605
Correlated sparse signals
BibRef
Ravelomanantsoa, A.,
Rabah, H.,
Rouane, A.,
Fast and efficient signals recovery for deterministic compressive
sensing: Applications to biosignals,
DASIP15(1-6)
IEEE DOI
1605
compressed sensing
BibRef
Aizenberg, I.[Igor],
Sheremetov, L.[Leonid],
Villa-Vargas, L.[Luis],
Multilayer Neural Network with Multi-Valued Neurons in Time Series
Forecasting of Oil Production,
MCPR14(61-70).
Springer DOI
1407
BibRef
Ulloa, G.[Gustavo],
Allende-Cid, H.[Héctor],
Allende, H.[Héctor],
Sieve Bootstrap Prediction Intervals for Contaminated Non-linear
Processes,
CIARP13(I:84-91).
Springer DOI
1311
BibRef
Semenovich, D.[Dimitri],
Sowmya, A.[Arcot],
Goldsmith, B.E.[Benjamin E.],
Predicting onsets of genocide with sparse additive models,
ICPR12(3549-3552).
WWW Link.
1302
BibRef
Hirade, R.[Ryo],
Yoshizumi, T.[Takayuki],
Ensemble learning for change-point prediction,
ICPR12(1860-1863).
WWW Link.
1302
BibRef
Takahashi, T.[Toshihiro],
Ide, T.[Tsuyoshi],
Predicting battery life from usage trajectory patterns,
ICPR12(2946-2949).
WWW Link.
1302
BibRef
Hido, S.[Shohei],
Morimura, T.[Tetsuro],
Temporal feature selection for time-series prediction,
ICPR12(3557-3560).
WWW Link.
1302
BibRef
Liu, S.[Song],
Yamada, M.[Makoto],
Collier, N.[Nigel],
Sugiyama, M.[Masashi],
Change-Point Detection in Time-Series Data by Relative Density-Ratio
Estimation,
SSSPR12(363-372).
Springer DOI
1211
BibRef
Deng, J.Q.[Jin-Qiu],
Chen, D.R.[Di-Rong],
Hooke and jeeves algorithm for linear least-square problems in sparse
signal reconstruction,
IASP11(16-20).
IEEE DOI
1112
BibRef
Rodriguez, N.[Nibaldo],
Rubio, J.[Jose],
Yańez, E.[Eleuterio],
Wavelet Autoregressive Model for Monthly Sardines Catches Forecasting
Off Central Southern Chile,
CIARP11(654-663).
Springer DOI
1111
BibRef
Jibia, A.U.,
Salami, M.J.E.,
Khalifa, O.O.,
Elfaki, F.,
Cramer-Rao Lower Bound for Parameter Estimation of Multiexponential
Signals,
WSSIP09(1-5).
IEEE DOI
0906
BibRef
Wen, F.[Fei],
Wan, Q.[Qun],
Time Delay Estimation Based on Mutual Information Estimation,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, X.M.[Xue Mei],
Tao, R.[Ran],
Wang, Y.[Yue],
Time Delay Estimation Based on the Fractional Fourier Transform in the
Passive System,
CISP09(1-4).
IEEE DOI
0910
BibRef
Wang, T.[Tao],
Wan, Q.[Qun],
Sparse Signal Recovery via Multi-Residual Based Greedy Method,
CISP09(1-4).
IEEE DOI
0910
BibRef
Li, Z.L.[Zhi-Lin],
Chen, H.[Houjin],
Yao, C.[Chang],
Li, J.[Jupeng],
Yang, N.[Na],
Sparse Signal Recovery via Optimized Orthogonal Matching Pursuit,
CISP09(1-4).
IEEE DOI
0910
BibRef
Hanias, M.P.,
Karras, D.A.,
Mobarak, M.,
Non-Linear Analysis and Time Series Prediction of an Electrical
Analogue of the Mechanical Double Pendulum,
WSSIP09(1-5).
IEEE DOI
0906
BibRef
Nelson, D.,
Loughlin, P.J.,
Cristobal, G.,
Cohen, L.[Leon],
Time-frequency methods for biological signal estimation,
ICPR00(Vol III: 110-114).
IEEE DOI
0403
BibRef
Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Network Analysis, Wireless, Network Intrusion .