Foody, G.M.,
Mathur, A.,
A Relative Evaluation of Multiclass Image Classification by Support
Vector Machines,
GeoRS(42), No. 6, June 2004, pp. 1335-1343.
IEEE Abstract.
0407
BibRef
Foody, G.M.,
Mathur, A.,
Toward intelligent training of supervised image classifications:
Directing training data acquisition for SVM classification,
RSE(93), No. 1-2, 2004, pp. 107-117.
Elsevier DOI
1102
BibRef
Zhan, Y.Q.[Yi-Qiang],
Shen, D.G.[Ding-Gang],
Design efficient support vector machine for fast classification,
PR(38), No. 1, January 2005, pp. 157-161.
Elsevier DOI
0410
BibRef
Zhan, Y.Q.[Yi-Qiang],
Shen, D.G.[Ding-Gang],
An adaptive error penalization method for training an efficient and
generalized SVM,
PR(39), No. 3, March 2006, pp. 342-350.
Elsevier DOI
0601
BibRef
Lin, C.F.[Chun-Fu],
Wang, S.D.[Sheng-De],
Training algorithms for fuzzy support vector machines with noisy data,
PRL(25), No. 14, 15 October 2004, pp. 1647-1656.
Elsevier DOI
0410
BibRef
Shin, H.J.[Hyun-Jung],
Cho, S.Z.[Sung-Zoon],
Invariance of neighborhood relation under input space to feature space
mapping,
PRL(26), No. 6, 1 May 2005, pp. 707-718.
Elsevier DOI
0501
SVM training by determining which will be useful.
BibRef
Bazi, Y.,
Melgani, F.,
Toward an Optimal SVM Classification System for Hyperspectral Remote
Sensing Images,
GeoRS(44), No. 11, November 2006, pp. 3374-3385.
IEEE DOI
0611
BibRef
Bazi, Y.,
Melgani, F.,
Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation,
GeoRS(45), No. 6, June 2007, pp. 1887-1895.
IEEE DOI
0706
See also Gaussian Process Approach to Remote Sensing Image Classification.
BibRef
Ghoggali, N.,
Melgani, F.,
Bazi, Y.,
A Multiobjective Genetic SVM Approach for Classification Problems With
Limited Training Samples,
GeoRS(47), No. 6, June 2009, pp. 1707-1718.
IEEE DOI
0905
BibRef
Ghoggali, N.,
Melgani, F.,
Automatic Ground-Truth Validation With Genetic Algorithms for
Multispectral Image Classification,
GeoRS(47), No. 7, July 2009, pp. 2172-2181.
IEEE DOI
0906
BibRef
Paoli, A.,
Melgani, F.,
Pasolli, E.,
Clustering of Hyperspectral Images Based on Multiobjective Particle
Swarm Optimization,
GeoRS(47), No. 12, December 2009, pp. 4175-4188.
IEEE DOI
0912
BibRef
Orabona, F.[Francesco],
Castellini, C.[Claudio],
Caputo, B.[Barbara],
Jie, L.[Luo],
Sandini, G.[Giulio],
On-line independent support vector machines,
PR(43), No. 4, April 2010, pp. 1402-1412.
Elsevier DOI
1002
BibRef
Earlier:
Indoor Place Recognition using Online Independent Support Vector
Machines,
BMVC07(xx-yy).
PDF File.
0709
Support vector machines; On-line learning; Bounded testing complexity;
Linear independence
BibRef
Jie, L.[Luo],
Orabona, F.[Francesco],
Fornoni, M.[Marco],
Caputo, B.[Barbara],
Cesa-Bianchi, N.[Nicolo],
OM-2: An online multi-class Multi-Kernel Learning algorithm,
OLCV10(43-50).
IEEE DOI
1006
BibRef
Orabona, F.[Francesco],
Jie, L.[Luo],
Caputo, B.[Barbara],
Online-batch strongly convex Multi Kernel Learning,
CVPR10(787-794).
IEEE DOI Video of talk:
WWW Link.
1006
BibRef
Earlier: A2, A1, A3:
An Online Framework for Learning Novel Concepts over Multiple Cues,
ACCV09(I: 269-280).
Springer DOI
0909
BibRef
Tommasi, T.[Tatiana],
Orabona, F.[Francesco],
Caputo, B.[Barbara],
Learning Categories From Few Examples With Multi Model Knowledge
Transfer,
PAMI(36), No. 5, May 2014, pp. 928-941.
IEEE DOI
1405
BibRef
Earlier:
Safety in numbers:
Learning categories from few examples with multi model knowledge transfer,
CVPR10(3081-3088).
IEEE DOI
1006
Adaptation models
BibRef
Cuttano, C.[Claudia],
Tavera, A.[Antonio],
Cermelli, F.[Fabio],
Averta, G.[Giuseppe],
Caputo, B.[Barbara],
Cross-Domain Transfer Learning with CoRTe: Consistent and Reliable
Transfer from Black-Box to Lightweight Segmentation Model,
REDLCV23(1404-1414)
IEEE DOI
2401
BibRef
Tommasi, T.[Tatiana],
Caputo, B.[Barbara],
The more you know, the less you learn: from knowledge transfer to
one-shot learning of object categories,
BMVC09(xx-yy).
PDF File.
0909
Learning from only a few examples.
BibRef
Kuzborskij, I.[Ilja],
Orabona, F.[Francesco],
Caputo, B.[Barbara],
Scalable greedy algorithms for transfer learning,
CVIU(156), No. 1, 2017, pp. 174-185.
Elsevier DOI
1702
Transfer learning
BibRef
Tommasi, T.[Tatiana],
Orabona, F.[Francesco],
Kaboli, M.[Mohsen],
Caputo, B.[Barbara],
Leveraging over prior knowledge for online learning of visual
categories,
BMVC12(87).
DOI Link
1301
BibRef
Jie, L.[Luo],
Tommasi, T.[Tatiana],
Caputo, B.[Barbara],
Multiclass transfer learning from unconstrained priors,
ICCV11(1863-1870).
IEEE DOI
1201
BibRef
Davenport, M.A.[Mark A.],
Baraniuk, R.G.[Richard G.],
Scott, C.D.[Clayton D.],
Tuning Support Vector Machines for Minimax and Neyman-Pearson
Classification,
PAMI(32), No. 10, October 2010, pp. 1888-1898.
IEEE DOI
1008
SVM training. Neyman-Pearson usually is sensitive to errors.
BibRef
Bellala, G.[Gowtham],
Stanley, J.[Jason],
Bhavnani, S.K.[Suresh K.],
Scott, C.D.[Clayton D.],
A Rank-Based Approach to Active Diagnosis,
PAMI(35), No. 9, 2013, pp. 2078-2090.
IEEE DOI
1307
Approximation methods. Disease diagnosis or network fault analysis.
BibRef
Kim, J.S.[Joo-Seuk],
Scott, C.D.[Clayton D.],
L(2) Kernel Classification,
PAMI(32), No. 10, October 2010, pp. 1822-1831.
IEEE DOI
1008
Vs. KDE and SVM approaches.
Optimizes the integrated squared error (ISE) of a difference of densities.
L_2 usually poor for higher dimensions (vs. SVM), regularization to
improve this.
BibRef
Maulik, U.[Ujjwal],
Chakraborty, D.[Debasis],
A self-trained ensemble with semisupervised SVM:
An application to pixel classification of remote sensing imagery,
PR(44), No. 3, March 2011, pp. 615-623.
Elsevier DOI
1011
Semisupervised learning; Support vector machines; Remote sensing
satellite images; Quadratic programming; Self-training; Classifier
ensemble
BibRef
Maulik, U.[Ujjwal],
Chakraborty, D.[Debasis],
Learning with transductive SVM for semisupervised pixel classification
of remote sensing imagery,
PandRS(77), No. 1, March 2013, pp. 66-78.
Elsevier DOI
1303
Pixel classification; Support vector machines; Remote sensing satellite
images; Quadratic programming; Semisupervised classification;
Transductive learning
BibRef
Airola, A.[Antti],
Pahikkala, T.[Tapio],
Salakoski, T.[Tapio],
Training linear ranking SVMs in linearithmic time using red-black trees,
PRL(32), No. 9, 1 July 2011, pp. 1328-1336.
Elsevier DOI
1101
Bundle methods; Cutting plane method; Learning to rank; Ranking
support vector machine; Red-black tree
BibRef
Heimonen, J.H.[Ju-Ho],
Salakoski, T.[Tapio],
Pahikkala, T.[Tapio],
Properties of Object-Level Cross-Validation Schemes for Symmetric
Pair-Input Data,
SSSPR14(384-393).
Springer DOI
1408
BibRef
Rivas-Perea, P.[Pablo],
Cota-Ruiz, J.[Juan],
An algorithm for training a large scale support vector machine for
regression based on linear programming and decomposition methods,
PRL(34), No. 4, 1 March 2013, pp. 439-451.
Elsevier DOI
1302
BibRef
And:
Corrigendum:
See also Corrigendum to An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods. Support vector machines; Support Vector Regression; Linear programming;
Interior point methods
BibRef
Rivas-Perea, P.[Pablo],
Cota-Ruiz, J.[Juan],
Rosiles, J.G.[Jose-Gerardo],
Corrigendum to 'An algorithm for training a large scale support vector
machine for regression based on linear programming and decomposition
methods',
PRL(34), No. 6, 15 April 2013, pp. 678.
Elsevier DOI
1303
See also algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods, An.
BibRef
Prato, M.,
Zanni, L.,
A practical use of regularization for supervised learning with kernel
methods,
PRL(34), No. 6, 15 April 2013, pp. 610-618.
Elsevier DOI
1303
Regularization algorithms; Kernel methods; Support vector machines;
Conjugate gradient; Inverse problems
BibRef
Xu, S.[Shuo],
An, X.[Xin],
Qiao, X.D.[Xiao-Dong],
Zhu, L.J.[Li-Jun],
Li, L.[Lin],
Multi-output least-squares support vector regression machines,
PRL(34), No. 9, July 2013, pp. 1078-1084.
Elsevier DOI
1305
Least-squares support vector regression machine (LS-SVR); Multiple task
learning (MTL); Multi-output LS-SVR (MLS-SVR); Positive definite
matrix
BibRef
Mordelet, F.,
Vert, J.P.[Jean-Philippe],
A bagging SVM to learn from positive and unlabeled examples,
PRL(37), No. 1, 2014, pp. 201-209.
Elsevier DOI
1402
PU learning
BibRef
Anguita, D.[Davide],
Ghio, A.[Alessandro],
Oneto, L.[Luca],
Ridella, S.[Sandro],
Unlabeled patterns to tighten Rademacher complexity error bounds for
kernel classifiers,
PRL(37), No. 1, 2014, pp. 210-219.
Elsevier DOI
1402
Support vector machine
BibRef
Singla, A.[Anshu],
Patra, S.[Swarnajyoti],
Bruzzone, L.[Lorenzo],
A novel classification technique based on progressive transductive
SVM learning,
PRL(42), No. 1, 2014, pp. 101-106.
Elsevier DOI
1404
Cluster assumption
BibRef
Jung, H.G.,
Kim, G.,
Support Vector Number Reduction: Survey and Experimental Evaluations,
ITS(15), No. 2, April 2014, pp. 463-476.
IEEE DOI
1404
Approximation error
BibRef
Doan, T.N.[Thanh-Nghi],
Do, T.N.[Thanh-Nghi],
Poulet, F.[François],
Parallel incremental power mean SVM for the classification of
large-scale image datasets,
MultInfoRetr(3), No. 2, June 2014, pp. 89-96.
Springer DOI
1407
BibRef
Guo, H.S.[Hu-Sheng],
Wang, W.J.[Wen-Jian],
An active learning-based SVM multi-class classification model,
PR(48), No. 5, 2015, pp. 1577-1597.
Elsevier DOI
1502
Multi-class classification with unknown categories
BibRef
Carrasco, M.[Miguel],
López, J.[Julio],
Maldonado, S.[Sebastián],
A multi-class SVM approach based on the L1-norm minimization of the
distances between the reduced convex hulls,
PR(48), No. 5, 2015, pp. 1598-1607.
Elsevier DOI
1502
Multi-class classification
BibRef
Zhang, Y.Q.[Yun-Qiang],
Zhang, P.L.[Pei-Lin],
Machine training and parameter settings with social emotional
optimization algorithm for support vector machine,
PRL(54), No. 1, 2015, pp. 36-42.
Elsevier DOI
1502
Support vector machine
BibRef
Chang, C.C.[Chin-Chun],
Chou, S.H.[Shen-Huan],
Tuning of the hyperparameters for L2-loss SVMs with the RBF kernel by
the maximum-margin principle and the jackknife technique,
PR(48), No. 12, 2015, pp. 3983-3992.
Elsevier DOI
1509
RBF kernels
BibRef
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
On the kernel Extreme Learning Machine speedup,
PRL(68, Part 1), No. 1, 2015, pp. 205-210.
Elsevier DOI
1512
Kernel extreme learning machine
BibRef
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Multi-class Support Vector Machine classifiers using intrinsic and
penalty graphs,
PR(55), No. 1, 2016, pp. 231-246.
Elsevier DOI
1604
Multi-class classification
BibRef
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Nyström-based approximate kernel subspace learning,
PR(57), No. 1, 2016, pp. 190-197.
Elsevier DOI
1605
Nonlinear pattern recognition
BibRef
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Prototype-based class-specific nonlinear subspace learning for
large-scale face verification,
IPTA16(1-6)
IEEE DOI
1703
Face Recognition. face recognition
BibRef
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Hierarchical class-specific kernel discriminant analysis for face
verification,
VCIP16(1-4)
IEEE DOI
1701
Face
BibRef
Vural, E.,
Guillemot, C.,
Out-of-Sample Generalizations for Supervised Manifold Learning for
Classification,
IP(25), No. 3, March 2016, pp. 1410-1424.
IEEE DOI
1602
Interpolation
BibRef
Loosli, G.[Gaëlle],
Canu, S.[Stéphane],
Ong, C.S.[Cheng Soon],
Learning SVM in Krein Spaces,
PAMI(38), No. 6, June 2016, pp. 1204-1216.
IEEE DOI
1605
Cost function
BibRef
Canu, S.[Stéphane],
Recent Advances in Kernel Machines,
CIARP10(1).
Springer DOI
1011
SVM techniques.
BibRef
Montagner, I.S.,
Hirata, N.S.T.,
Hirata, R.,
Canu, S.[Stéphane],
NILC: A two level learning algorithm with operator selection,
ICIP16(1873-1877)
IEEE DOI
1610
Computational efficiency
BibRef
Moraes, D.[Daniel],
Wainer, J.[Jacques],
Rocha, A.[Anderson],
Low false positive learning with support vector machines,
JVCIR(38), No. 1, 2016, pp. 340-350.
Elsevier DOI
1605
Support vector machines
BibRef
Houthooft, R.[Rein],
de Turck, F.[Filip],
Integrated inference and learning of neural factors in structural
support vector machines,
PR(59), No. 1, 2016, pp. 292-301.
Elsevier DOI
1705
Structural support vector machine
BibRef
Zhu, F.[Fa],
Yang, J.[Jian],
Gao, J.B.[Jun-Bin],
Xu, C.Y.[Chun-Yan],
Extended nearest neighbor chain induced instance-weights for SVMs,
PR(60), No. 1, 2016, pp. 863-874.
Elsevier DOI
1609
Weighted support vector machine
BibRef
Zhang, G.Q.[Guo-Qing],
Sun, H.J.[Huai-Jiang],
Ji, Z.X.[Ze-Xuan],
Xia, G.Y.[Gui-Yu],
Feng, L.[Lei],
Sun, Q.S.[Quan-Sen],
Kernel dictionary learning based discriminant analysis,
JVCIR(40, Part B), No. 1, 2016, pp. 470-484.
Elsevier DOI
1610
Kernel method
BibRef
Fan, Q.[Qi],
Wang, Z.[Zhe],
Zha, H.Y.[Hong-Yuan],
Gao, D.[Daqi],
MREKLM: A fast multiple empirical kernel learning machine,
PR(61), No. 1, 2017, pp. 197-209.
Elsevier DOI
1705
Multiple Kernel Learning
BibRef
Dong, A.,
Chung, F.l.,
Deng, Z.,
Wang, S.,
Semi-Supervised SVM With Extended Hidden Features,
Cyber(46), No. 12, December 2016, pp. 2924-2937.
IEEE DOI
1612
Convergence
BibRef
Jung, H.G.[Ho Gi],
Support vector number reduction by extending iterative preimage
addition using genetic algorithm-based preimage estimation,
PRL(84), No. 1, 2016, pp. 43-48.
Elsevier DOI
1612
Support vector number reduction (SVNR)
BibRef
Jung, H.G.[Ho Gi],
Analysis of reduced-set construction using image reconstruction from a
HOG feature vector,
IET-CV(11), No. 8, December 2017, pp. 725-732.
DOI Link
1712
BibRef
Morales, R.D.[Roberto Díaz],
Vázquez, Á.N.[Ángel Navia],
Improving the efficiency of IRWLS SVMs using parallel Cholesky
factorization,
PRL(84), No. 1, 2016, pp. 91-98.
Elsevier DOI
1612
Support Vector Machines
BibRef
Duarte, E.[Edson],
Wainer, J.[Jacques],
Empirical comparison of cross-validation and internal metrics for
tuning SVM hyperparameters,
PRL(88), No. 1, 2017, pp. 6-11.
Elsevier DOI
1703
SVM
BibRef
Chu, D.J.[De-Jun],
Zhang, C.S.[Chang-Shui],
Tao, Q.[Qing],
A faster cutting plane algorithm with accelerated line search for
linear SVM,
PR(67), No. 1, 2017, pp. 127-138.
Elsevier DOI
1704
Linear support vector machine
BibRef
Ding, S.F.[Shi-Fei],
Zhang, X.K.[Xie-Kai],
An, Y.X.[Yue-Xuan],
Xue, Y.[Yu],
Weighted linear loss multiple birth support vector machine based on
information granulation for multi-class classification,
PR(67), No. 1, 2017, pp. 32-46.
Elsevier DOI
1704
Multi-class classification
BibRef
Du, M.J.[Ming-Jing],
Ding, S.[Shifei],
Xue, Y.[Yu],
A novel density peaks clustering algorithm for mixed data,
PRL(97), No. 1, 2017, pp. 46-53.
Elsevier DOI
1709
Data clustering
BibRef
Ping, Y.[Yuan],
Tian, Y.J.[Ying-Jie],
Guo, C.[Chun],
Wang, B.C.[Bao-Cang],
Yang, Y.[Yuehua],
FRSVC: Towards making support vector clustering consume less,
PR(69), No. 1, 2017, pp. 286-298.
Elsevier DOI
1706
Large-scale, data
BibRef
Tharwat, A.[Alaa],
Hassanien, A.E.[Aboul Ella],
Elnaghi, B.E.[Basem E.],
A BA-based algorithm for parameter optimization of Support Vector
Machine,
PRL(93), No. 1, 2017, pp. 13-22.
Elsevier DOI
1706
Optimization, algorithms
BibRef
Wang, X.[Xin],
Thome, N.[Nicolas],
Cord, M.[Matthieu],
Gaze latent support vector machine for image classification improved
by weakly supervised region selection,
PR(72), No. 1, 2017, pp. 59-71.
Elsevier DOI
1708
BibRef
Earlier:
Gaze latent support vector machine for image classification,
ICIP16(236-240)
IEEE DOI
1610
Weakly supervised learning.
Computational modeling
BibRef
Zuo, W.,
Wang, F.,
Zhang, D.,
Lin, L.,
Huang, Y.,
Meng, D.,
Zhang, L.,
Distance Metric Learning via Iterated Support Vector Machines,
IP(26), No. 10, October 2017, pp. 4937-4950.
IEEE DOI
1708
Face, Kernel, Learning systems, Measurement, Optimization,
Support vector machines, Training, Lagrange duality,
Metric learning, alternating minimization, kernel method,
BibRef
Chum, O.[Ondrej],
Optimizing explicit feature maps on intervals,
IVC(66), No. 1, 2017, pp. 36-47.
Elsevier DOI
1710
Explicit feature maps
BibRef
Liu, Y.[Yang],
Wen, K.W.[Kai-Wen],
Gao, Q.X.[Quan-Xue],
Gao, X.B.[Xin-Bo],
Nie, F.P.[Fei-Ping],
SVM based multi-label learning with missing labels for image
annotation,
PR(78), 2018, pp. 307-317.
Elsevier DOI
1804
Multi-label learning, Missing labels, SVM, Image annotations
BibRef
Kumar, D.[Deepak],
Thakur, M.[Manoj],
All-in-one multicategory least squares nonparallel hyperplanes
support vector machine,
PRL(105), 2018, pp. 165-174.
Elsevier DOI
1804
Multi-class classification, Least squares problem,
Nonparallel support vector machine,
Support vector machines
BibRef
Melki, G.[Gabriella],
Cano, A.[Alberto],
Ventura, S.[Sebastián],
MIRSVM: Multi-instance support vector machine with bag
representatives,
PR(79), 2018, pp. 228-241.
Elsevier DOI
1804
Machine learning, Multiple-instance learning,
Support vector machines,
Bag-representative selection
BibRef
An, Y.X.[Yue-Xuan],
Ding, S.F.[Shi-Fei],
Shi, S.H.[Song-Hui],
Li, J.C.[Jing-Can],
Discrete space reinforcement learning algorithm based on support
vector machine classification,
PRL(111), 2018, pp. 30-35.
Elsevier DOI
1808
Support vector machines, Reinforcement learning, Actor-critic, Machine learning
BibRef
Yang, Z.J.[Zhi-Ji],
Xu, Y.T.[Yi-Tian],
A safe sample screening rule for Laplacian twin parametric-margin
support vector machine,
PR(84), 2018, pp. 1-12.
Elsevier DOI
1809
Semi-supervised learning, Laplacian graph,
Support vector machine, Safe screening
BibRef
Wang, Q.C.[Qing-Chao],
Fu, G.Y.[Guang-Yuan],
Li, L.L.[Lin-Lin],
Wang, H.Q.[Hong-Qiao],
Li, Y.Q.[Yong-Qiang],
Data-dependent multiple kernel learning algorithm based on
soft-grouping,
PRL(112), 2018, pp. 111-117.
Elsevier DOI
1809
Multiple kernel learning, Data-dependent kernel,
Soft-clustering, Support vector machine
BibRef
Yao, Y.Z.[Ya-Zhou],
Shen, F.M.[Fu-Min],
Zhang, J.[Jian],
Liu, L.[Li],
Tang, Z.M.[Zhen-Min],
Shao, L.[Ling],
Extracting Privileged Information for Enhancing Classifier Learning,
IP(28), No. 1, January 2019, pp. 436-450.
IEEE DOI
1810
Noise measurement, Training, Dogs, Visualization, Semantics,
Data mining, Robustness, Untagged corpora, classifier learning,
privileged information
BibRef
Kang, X.,
Duan, P.,
Xiang, X.,
Li, S.,
Benediktsson, J.A.,
Detection and Correction of Mislabeled Training Samples for
Hyperspectral Image Classification,
GeoRS(56), No. 10, October 2018, pp. 5673-5686.
IEEE DOI
1810
Hyperspectral imaging, Training, Feature extraction, Transforms,
Object detection, Image edge detection,
support vector machines (SVMs)
BibRef
Liu, Y.,
Hoai, M.,
Shao, M.,
Kim, T.,
Latent Bi-Constraint SVM for Video-Based Object Recognition,
CirSysVideo(28), No. 10, October 2018, pp. 3044-3052.
IEEE DOI
1811
Object recognition, Image recognition, Support vector machines,
Training, Clutter, Manifolds, Face recognition, Object recognition,
structured-output SVM
BibRef
Zareapoor, M.[Masoumeh],
Shamsolmoali, P.[Pourya],
Jain, D.K.[Deepak Kumar],
Wang, H.X.[Hao-Xiang],
Yang, J.[Jie],
Kernelized support vector machine with deep learning:
An efficient approach for extreme multiclass dataset,
PRL(115), 2018, pp. 4-13.
Elsevier DOI
1812
Deep learning, Deep belief networks, Multiclass-classification,
Kernel-based SVM, Feature extraction
BibRef
de Mello, A.R.[Alexandre Reeberg],
Stemmer, M.R.[Marcelo Ricardo],
Barbosa, F.G.O.[Flávio Gabriel Oliveira],
Support vector candidates selection via Delaunay graph and
convex-hull for large and high-dimensional datasets,
PRL(116), 2018, pp. 43-49.
Elsevier DOI
1812
Support vector machine, Support vector candidates, Convex-hull, Delaunay graph
BibRef
Durand, T.[Thibaut],
Thome, N.[Nicolas],
Cord, M.[Matthieu],
Exploiting Negative Evidence for Deep Latent Structured Models,
PAMI(41), No. 2, February 2019, pp. 337-351.
IEEE DOI
1901
BibRef
Earlier:
MANTRA: Minimum Maximum Latent Structural SVM for Image
Classification and Ranking,
ICCV15(2713-2721)
IEEE DOI
1602
Computational modeling, Predictive models, Training,
Image segmentation, Semantics, Analytical models,
localization.
Detectors
BibRef
Durand, T.[Thibaut],
Mordan, T.,
Thome, N.[Nicolas],
Cord, M.[Matthieu],
WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image
Classification, Pointwise Localization and Segmentation,
CVPR17(5957-5966)
IEEE DOI
1711
BibRef
Earlier: A1, A3, A4, Only:
WELDON:
Weakly Supervised Learning of Deep Convolutional Neural Networks,
CVPR16(4743-4752)
IEEE DOI
1612
Dogs, Feature extraction, Head, Image segmentation,
Legged locomotion, Object detection, Semantics
BibRef
Durand, T.[Thibaut],
Thome, N.[Nicolas],
Cord, M.[Matthieu],
Picard, D.[David],
Incremental learning of latent structural SVM for weakly supervised
image classification,
ICIP14(4246-4250)
IEEE DOI
1502
Agriculture
BibRef
Mills, P.[Peter],
Accelerating kernel classifiers through borders mapping,
RealTimeIP(17), No. 2, April 2020, pp. 313-327.
Springer DOI
2004
SVM.
BibRef
Liu, L.M.[Li-Ming],
Chu, M.X.[Mao-Xiang],
Gong, R.F.[Rong-Fen],
Peng, Y.C.[Yong-Cheng],
Nonparallel support vector machine with large margin distribution for
pattern classification,
PR(106), 2020, pp. 107374.
Elsevier DOI
2006
Pattern classification, Nonparallel support vector machine,
Margin distribution, Generalization performance
BibRef
Wang, K.[Ke],
Cheng, L.G.[Li-Gang],
Yong, B.[Bin],
Spectral-Similarity-Based Kernel of SVM for Hyperspectral Image
Classification,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Dang, S.,
Cao, Z.,
Cui, Z.,
Pi, Y.,
Liu, N.,
Class Boundary Exemplar Selection Based Incremental Learning for
Automatic Target Recognition,
GeoRS(58), No. 8, August 2020, pp. 5782-5792.
IEEE DOI
2007
Training, Target recognition, Learning systems, Training data,
Task analysis, Data models, Support vector machines,
incremental learning
BibRef
da Silva Santos, C.E.[Carlos Eduardo],
Sampaio, R.C.[Renato Coral],
dos Santos Coelho, L.[Leandro],
Bestard, G.A.[Guillermo Alvarez],
Llanos, C.H.[Carlos Humberto],
Multi-objective adaptive differential evolution for SVM/SVR
hyperparameters selection,
PR(110), 2021, pp. 107649.
Elsevier DOI
2011
Support vector machines, Parameters selection problem,
Multi-objective optimization, Differential evolution,
Adaptive parameters strategy
BibRef
Torres-Barrán, A.[Alberto],
Alaíz, C.M.[Carlos M.],
Dorronsoro, J.R.[José R.],
Faster SVM training via conjugate SMO,
PR(111), 2021, pp. 107644.
Elsevier DOI
2012
SVM, Conjugate gradient, SMO
BibRef
Liang, Z.Z.[Zhi-Zheng],
Zhang, L.[Lei],
Uncertainty-aware twin support vector machines,
PR(129), 2022, pp. 108706.
Elsevier DOI
2206
Uncertain data, Twin support vector machines, Halfspaces,
Kernel functions, Data classification
BibRef
Zhou, S.L.[Sheng-Long],
Sparse SVM for Sufficient Data Reduction,
PAMI(44), No. 9, September 2022, pp. 5560-5571.
IEEE DOI
2208
Support vector machines, Training, Optimization, Kernel, Fasteners,
Convergence, Computational efficiency, Data reduction,
one-step convergence property
BibRef
Wang, Y.G.[You-Gan],
Wu, J.[Jinran],
Hu, Z.H.[Zhi-Hua],
McLachlan, G.J.[Geoffrey J.],
A new algorithm for support vector regression with automatic
selection of hyperparameters,
PR(133), 2023, pp. 108989.
Elsevier DOI
2210
Automatic selection, Loss functions, Noise models,
Parameter estimation, Probability regularization
BibRef
Aceña, V.[Víctor],
Martín de Diego, I.[Isaac],
Fernández, R.R.[Rubén R.],
Moguerza, J.M.[Javier M.],
Support subsets estimation for support vector machines retraining,
PR(134), 2023, pp. 109117.
Elsevier DOI
2212
Support subset, Incremental learning, Retraining, Alpha seeding
BibRef
Wu, W.[Wenguo],
Zhou, Z.C.[Zheng-Chun],
Adhikary, A.R.[Avik Ranjan],
Dutta, B.[Bapi],
Discrete space reinforcement learning algorithm based on twin support
vector machine classification,
PRL(164), 2022, pp. 254-260.
Elsevier DOI
2212
Twin support vector machines, Actor-Critic,
Reinforcement learning, Small-scale discrete space environment
BibRef
Shao, Y.H.[Yuan-Hai],
Lv, X.J.[Xiao-Jing],
Huang, L.W.[Ling-Wei],
Bai, L.[Lan],
Twin SVM for conditional probability estimation in binary and
multiclass classification,
PR(136), 2023, pp. 109253.
Elsevier DOI
2301
Support vector machine, Twin support vector machines,
Conditional probability, Binary classification, Multiclass classification
BibRef
Xie, X.J.[Xi-Jiong],
Sun, F.X.[Fei-Xiang],
Qian, J.B.[Jiang-Bo],
Guo, L.J.[Li-Jun],
Zhang, R.[Rong],
Ye, X.[Xulun],
Wang, Z.J.[Zhi-Jin],
Laplacian Lp norm least squares twin support vector machine,
PR(136), 2023, pp. 109192.
Elsevier DOI
2301
Semi-supervised learning, Geometric information,
Laplacian Lp norm least squares twin support vector machine
BibRef
Yu, L.[Lang],
Li, S.J.[Sheng-Jie],
Liu, S.Y.[Si-Yi],
Fast support vector machine training via three-term conjugate-like
SMO algorithm,
PR(139), 2023, pp. 109478.
Elsevier DOI
2304
Support vector machine, Sequential minimal optimization,
Three-term conjugate direction
BibRef
Gao, T.[Tong],
Chen, H.[Hao],
Multicycle disassembly-based decomposition algorithm to train
multiclass support vector machines,
PR(140), 2023, pp. 109479.
Elsevier DOI
2305
Multicycle disassembly-based decomposition algorithm,
Multiclass support vector machine, Decomposition algorithm,
Support vector machine training
BibRef
Dong, Z.J.[Zi-Jie],
Xu, C.[Chen],
Xu, J.[Jie],
Zou, B.[Bin],
Zeng, J.J.[Jing-Jing],
Tang, Y.Y.[Yuan Yan],
Generalization capacity of multi-class SVM based on Markovian
resampling,
PR(142), 2023, pp. 109720.
Elsevier DOI
2307
MSVM, Markovian resampling, Learning rate, Generalization bound
BibRef
Kim, S.B.[Sang-Baeg],
Bae, J.M.[Jung-Man],
A New Convex Loss Function For Multiple Instance Support Vector
Machines,
ICPR21(9023-9029)
IEEE DOI
2105
Support vector machines, Integer programming,
Computational modeling, Perturbation methods, Video Classification
BibRef
Tajima, K.[Kenya],
Tsuchida, K.[Kohei],
Zara, E.R.R.[Esmeraldo Ronnie R.],
Ohta, N.[Naoya],
Kato, T.[Tsuyoshi],
Learning Sign-Constrained Support Vector Machines,
ICPR21(3264-3271)
IEEE DOI
2105
Support vector machines, Training, Gradient methods,
Prediction algorithms, Solids, Computational efficiency,
Classification algorithms
BibRef
Sahbi, H.[Hichem],
Deep Total Variation Support Vector Networks,
CEFRL19(3028-3038)
IEEE DOI
2004
image classification, action recognition,
learning (artificial intelligence), object recognition.
BibRef
Lee, W.,
Ko, B.J.,
Wang, S.,
Liu, C.,
Leung, K.K.,
Exact Incremental and Decremental Learning for LS-SVM,
ICIP19(2334-2338)
IEEE DOI
1910
Least-squares support vector machine (LS-SVM),
machine learning, model updating
BibRef
Wu, G.,
Tian, Y.,
Liu, D.,
Privileged Multi-Target Support Vector Regression,
ICPR18(385-390)
IEEE DOI
1812
Correlation, Kernel, Support vector machines,
Biological system modeling, Training, Task analysis, Quadratic programming
BibRef
Raziperchikolaei, R.,
Carreira-Perpiñán, M.Á.,
Learning circulant support vector machines for fast image search,
ICIP17(385-389)
IEEE DOI
1803
Binary codes, Complexity theory, Fast Fourier transforms,
Frequency-domain analysis, Optimization, Support vector machines,
image retrieval
BibRef
Kawulok, M.[Michal],
Nalepa, J.[Jakub],
Dudzik, W.[Wojciech],
An Alternating Genetic Algorithm for Selecting SVM Model and Training
Set,
MCPR17(94-104).
Springer DOI
1706
BibRef
Guo, X.F.[Xi-Feng],
Chen, W.[Wei],
Yin, J.P.[Jian-Ping],
A simple approach for unsupervised domain adaptation,
ICPR16(1566-1570)
IEEE DOI
1705
Benchmark testing, Kernel, Manifolds, Standards,
Support vector machines, Training
BibRef
Saikia, G.,
Shivagunde, S.,
Saradhi, V.V.,
Kannao, R.D.,
Guha, P.,
Multiple kernel learning using data envelopment analysis and feature
vector selection and projection,
ICPR16(520-524)
IEEE DOI
1705
Complexity theory, Data envelopment analysis, Data models, Kernel,
Mathematical model, Support vector machines
BibRef
Langenkämper, D.,
Nattkemper, T.W.,
COATL: A learning architecture for online real-time detection and
classification assistance for environmental data,
ICPR16(597-602)
IEEE DOI
1705
Feature extraction, Image color analysis,
Labeling, Real-time systems, Support vector machines, Training
BibRef
Mao, X.[Xue],
Fu, Z.Y.[Zhou-Yu],
Wu, O.[Ou],
Hu, W.M.[Wei-Ming],
Fast kernel SVM training via support vector identification,
ICPR16(1554-1559)
IEEE DOI
1705
Kernel, Mathematical model, Prediction algorithms, Standards,
Support vector machines, Training, Training, data
BibRef
Liu, Y.W.[Yang-Wei],
Xu, J.,
One-pass online SVM with extremely small space complexity,
ICPR16(3482-3487)
IEEE DOI
1705
Algorithm design and analysis, Approximation algorithms,
Computer science, Support vector machines,
Training, Training, data
BibRef
Li, W.,
Dai, D.,
Tan, M.,
Xu, D.,
Van Gool, L.J.,
Fast Algorithms for Linear and Kernel SVM+,
CVPR16(2258-2266)
IEEE DOI
1612
BibRef
Mohapatra, P.[Pritish],
Dokania, P.K.[Puneet Kumar],
Jawahar, C.V.,
Kumar, M.P.[M. Pawan],
Partial Linearization Based Optimization for Multi-class SVM,
ECCV16(V: 842-857).
Springer DOI
1611
BibRef
Namin, S.R.,
Alvarez, J.M.,
Kneip, L.,
Petersson, L.,
Latent structural SVM with marginal probabilities for weakly labeled
structured learning,
ICIP16(3733-3737)
IEEE DOI
1610
Algorithm design and analysis
BibRef
Hoseinkhani, F.,
Nasersharif, B.,
A feature transformation method based on multi objective particle
swarm optimization for reducing support vector machine error,
IPRIA15(1-6)
IEEE DOI
1603
feature extraction
BibRef
Bouchacourt, D.[Diane],
Nowozin, S.[Sebastian],
Kumar, M.P.[M. Pawan],
Entropy-Based Latent Structured Output Prediction,
ICCV15(2920-2928)
IEEE DOI
1602
Computer vision
BibRef
Goto, M.[Masanori],
Ishida, R.[Ryosuke],
Uchida, S.[Seiichi],
Preselection of support vector candidates by relative neighborhood
graph for large-scale character recognition,
ICDAR15(306-310)
IEEE DOI
1511
BibRef
Stamos, D.[Dimitris],
Martelli, S.[Samuele],
Nabi, M.[Moin],
McDonald, A.[Andrew],
Murino, V.[Vittorio],
Pontil, M.[Massimiliano],
Learning with dataset bias in latent subcategory models,
CVPR15(3650-3658)
IEEE DOI
1510
Latent subcategory models for training SVM
BibRef
Shah, N.[Neel],
Kolmogorov, V.[Vladimir],
Lampert, C.H.[Christoph H.],
A multi-plane block-coordinate frank-wolfe algorithm for training
structural SVMs with a costly max-oracle,
CVPR15(2737-2745)
IEEE DOI
1510
BibRef
Xu, X.[Xing],
Shimada, A.[Atsushi],
Taniguch, R.I.[Rin-Ichiro],
Exploring Image Specific Structured Loss for Image Annotation with
Incomplete Labelling,
ACCV14(I: 704-719).
Springer DOI
1504
BibRef
Blondel, M.[Mathieu],
Fujino, A.[Akinori],
Ueda, N.[Naonori],
Large-Scale Multiclass Support Vector Machine Training via Euclidean
Projection onto the Simplex,
ICPR14(1289-1294)
IEEE DOI
1412
Accuracy
BibRef
Chen, Y.D.[Yao-Dong],
Li, R.[Renfa],
Effective Part Localization in Latent-SVM Training,
ICPR14(4269-4274)
IEEE DOI
1412
Detectors
BibRef
Álvarez-Meza, A.M.[Andrés Marino],
Cárdenas-Peña, D.,
Castellanos-Domínguez, C.G.[César Germán],
Unsupervised Kernel Function Building Using Maximization of Information
Potential Variability,
CIARP14(335-342).
Springer DOI
1411
BibRef
Bilen, H.[Hakan],
Pedersoli, M.[Marco],
Namboodiri, V.P.[Vinay P.],
Tuytelaars, T.[Tinne],
Van Gool, L.J.[Luc J.],
Object Classification with Adaptable Regions,
CVPR14(3662-3669)
IEEE DOI
1409
latent svm; object classification; weakly supervised detection
BibRef
Behl, A.[Aseem],
Mohapatra, P.,
Jawahar, C.V.,
Kumar, M.P.[M. Pawan],
Optimizing Average Precision Using Weakly Supervised Data,
PAMI(37), No. 12, December 2015, pp. 2545-2557.
IEEE DOI
1512
BibRef
Earlier: A1, A3, A4, Only:
CVPR14(1011-1018)
IEEE DOI
1409
character recognition
Optimization methods; Statistical methods and learning
BibRef
Yang, J.[Jiyan],
Sindhwani, V.[Vikas],
Fan, Q.F.[Quan-Fu],
Avron, H.[Haim],
Mahoney, M.W.[Michael W.],
Random Laplace Feature Maps for Semigroup Kernels on Histograms,
CVPR14(971-978)
IEEE DOI
1409
BibRef
Takami, M.[Masato],
Bell, P.[Peter],
Ommer, B.[Bjorn],
Offline learning of prototypical negatives for efficient online
Exemplar SVM,
WACV14(377-384)
IEEE DOI
1406
Art
BibRef
Chen, D.Z.[Dao-Zheng],
Batra, D.[Dhruv],
Freeman, W.T.[William T.],
Group Norm for Learning Structured SVMs with Unstructured Latent
Variables,
ICCV13(409-416)
IEEE DOI
1403
Concave-Convex Procedure
BibRef
Vemulapalli, R.[Raviteja],
Pillai, J.K.[Jaishanker K.],
Chellappa, R.[Rama],
Kernel Learning for Extrinsic Classification of Manifold Features,
CVPR13(1782-1789)
IEEE DOI
1309
Extrinsic Classification. Features in non-linear space harder to cluster.
BibRef
Branson, S.[Steve],
Beijbom, O.[Oscar],
Belongie, S.J.[Serge J.],
Efficient Large-Scale Structured Learning,
CVPR13(1806-1813)
IEEE DOI
1309
cost-sensitive SVM
BibRef
Candel, D.[Diego],
Ñanculef, R.[Ricardo],
Concha, C.[Carlos],
Allende, H.[Héctor],
A Sequential Minimal Optimization Algorithm for the All-Distances
Support Vector Machine,
CIARP10(484-491).
Springer DOI
1011
BibRef
Frandi, E.[Emanuele],
Gasparo, M.G.[Maria Grazia],
Lodi, S.[Stefano],
Ñanculef, R.[Ricardo],
Sartori, C.[Claudio],
A New Algorithm for Training SVMs Using Approximate Minimal Enclosing
Balls,
CIARP10(87-95).
Springer DOI
1011
BibRef
Zhang, D.Y.[De-Yuan],
Wang, X.L.[Xiao-Long],
Liu, B.Q.[Bing-Quan],
Learning the Kernel Combination for Object Categorization,
ICPR10(2929-2932).
IEEE DOI
1008
Learn optimal combination of kernels before SVM training
BibRef
Timm, F.[Fabian],
Klement, S.[Sascha],
Martinetz, T.[Thomas],
Fast model selection for MaxMinOver-based training of support vector
machines,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Sentelle, C.[Christopher],
Anagnostopoulos, G.C.[Georgios C.],
Georgiopoulos, M.[Michael],
A fast revised simplex method for SVM training,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Schnitzspan, P.[Paul],
Fritz, M.[Mario],
Schiele, B.[Bernt],
Hierarchical Support Vector Random Fields:
Joint Training to Combine Local and Global Features,
ECCV08(II: 527-540).
Springer DOI
0810
BibRef
Mejía-Guevara, I.[Iván],
Kuri-Morales, Á.[Ángel],
MP-Polynomial Kernel for Training Support Vector Machines,
CIARP07(584-593).
Springer DOI
0711
BibRef
Lebrun, G.,
Charrier, C.,
Cardot, H.,
SVM training time reduction using vector quantization,
ICPR04(I: 160-163).
IEEE DOI
0409
BibRef
Yang, M.H.[Ming-Hsuan],
Ahuja, N.[Narendra],
A Geometric Approach to Train Support Vector Machines,
CVPR00(I: 430-437).
IEEE DOI
0005
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Support Vector Machines, SVM, Incremental, Multi-Step .