Cortelazzo, G.M.,
Mian, G.A.,
Parolari, R.,
Statistical characteristics of granular camera noise,
CirSysVideo(4), No. 6, December 1994, pp. 536-543.
IEEE Top Reference.
0206
BibRef
Huang, Y.C.,
Liu, W.B.,
Building the Estimation Model of Digitizing Error,
PhEngRS(63), No. 10, October 1997, pp. 1203-1209.
9710
BibRef
Smith, E.H.B.[Elisa H. Barney],
Characterization of image degradation caused by scanning,
PRL(19), No. 13, November 1998, pp. 1191-1197.
BibRef
9811
Smith, E.H.B.,
Scanner parameter estimation using bilevel scans of star charts,
ICDAR01(1164-1168).
IEEE DOI
0109
BibRef
Gravel, P.,
Beaudoin, G.,
de Guise, J.A.,
A Method for Modeling Noise in Medical Images,
MedImg(23), No. 10, October 2004, pp. 1221-1232.
IEEE Abstract.
0410
BibRef
Grimble, M.J.,
Restricted-structure linear estimators for multiple-model systems,
VISP(147), No. 3, 2000, pp. 193-204.
0008
BibRef
Grimble, M.J.,
Restricted structure optimal linear estimators,
VISP(151), No. 5, October 2004, pp. 400-410.
IEEE Abstract.
0501
estimation of a signal heavily contaminated by both coloured and white noise
BibRef
Akbarpour, R.[Reza],
Friedman, S.N.[Saul N.],
Siewerdsen, J.H.[Jeffrey H.],
Neary, J.D.[John D.],
Cunningham, I.A.[Ian A.],
Signal and noise transfer in spatiotemporal quantum-based imaging
systems,
JOSA-A(24), No. 12, December 2007, pp. B151-B164.
DOI Link
0801
Noise analysis in images. (X-Ray imaging)
BibRef
Chandler, D.M.,
Hemami, S.S.,
VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images,
IP(16), No. 9, September 2007, pp. 2284-2298.
IEEE DOI
0709
BibRef
Shekter, J.M.[Jonathan Martin],
System for manipulating noise in digital images,
US_Patent6,990,252, Jan 24, 2006
WWW Link. based on constant color regions
BibRef
0601
Abbey, C.K.[Craig K.],
Eckstein, M.P.[Miguel P.],
Classification images for simple detection and discrimination tasks in
correlated noise,
JOSA-A(24), No. 12, December 2007, pp. B110-B124.
DOI Link
0801
Quality assessment.
BibRef
Bobrov, S.[Saar],
Schechner, Y.Y.[Yoav Y.],
Image-based prediction of imaging and vision performance,
JOSA-A(24), No. 7, July 2007, pp. 1920-1929.
DOI Link
0801
Predict performance of a sensor (IR) using all sources of distortion and
noise.
BibRef
Bae, S.H.[Soo Hyun],
Pappas, T.N.,
Juang, B.H.[Biing-Hwang],
Subjective Evaluation of Spatial Resolution and Quantization Noise
Tradeoffs,
IP(18), No. 3, March 2009, pp. 495-508.
IEEE DOI
0903
BibRef
Earlier:
Subjective Image Quality Tradeoffs Between Spatial Resolution and
Quantization Noise,
ICIP06(2957-2960).
IEEE DOI
0610
BibRef
Vollmerhausen, R.H.[Richard H.],
Driggers, R.G.[Ronald G.],
Wilson, D.L.[David L.],
Predicting range performance of sampled imagers by treating aliased
signal as target-dependent noise Open Access open access,
JOSA-A(25), No. 8, August 2008, pp. 2055-2065.
DOI Link
0804
BibRef
Cohen, E.[Erez],
Yitzhaky, Y.[Yitzhak],
No-reference assessment of blur and noise impacts on image quality,
SIViP(4), No. 3, September 2010, pp. 289-302.
WWW Link.
1011
BibRef
Hwang, Y.B.[Young-Bae],
Kim, J.S.[Jun-Sik],
Kweon, I.S.[In So],
Difference-Based Image Noise Modeling Using Skellam Distribution,
PAMI(34), No. 7, July 2012, pp. 1329-1341.
IEEE DOI
1205
Noise model from quantum analysis.
BibRef
Hwang, Y.B.[Young-Bae],
Kweon, I.S.[In-So],
A Probabilistic Derivative Measure Based on the Distribution of
Intensity Difference,
ECCV12(VI: 143-157).
Springer DOI
1210
BibRef
Menon, R.,
Gerstoft, P.,
Hodgkiss, W.S.,
Effect of Medium Attenuation on the Asymptotic Eigenvalues of Noise
Covariance Matrices,
SPLetters(20), No. 5, May 2013, pp. 435-438.
IEEE DOI
1304
BibRef
Laligant, O.,
Truchetet, F.,
Fauvet, E.,
Noise Estimation From Digital Step-Model Signal,
IP(22), No. 12, 2013, pp. 5158-5167.
IEEE DOI
1312
CCD image sensors
BibRef
Sur, F.[Frédéric],
Grédiac, M.[Michel],
Sensor Noise Modeling by Stacking Pseudo-Periodic Grid Images
Affected by Vibrations,
SPLetters(21), No. 4, April 2014, pp. 432-436.
IEEE DOI
1403
image processing
BibRef
Sur, F.[Frederic],
An a-contrario approach to quasi-periodic noise removal,
ICIP15(3841-3845)
IEEE DOI
1512
a-contrario method; quasi-periodic noise
BibRef
Sur, F.[Frédéric],
Grédiac, M.[Michel],
Measuring the Noise of Digital Imaging Sensors by Stacking Raw Images
Affected by Vibrations and Illumination Flickering,
SIIMS(8), No. 1, 2015, pp. 611-643.
DOI Link
1504
BibRef
Sur, F.[Frédéric],
Grédiac, M.[Michel],
Influence of the Analysis Window on the Metrological Performance of the
Grid Method,
JMIV(56), No. 3, November 2016, pp. 472-498.
WWW Link.
1609
BibRef
Colom, M.[Miguel],
Buades, A.[Antoni],
Morel, J.M.[Jean-Michel],
Nonparametric noise estimation method for raw images,
JOSA-A(31), No. 4, April 2014, pp. 863-871.
DOI Link
1404
Detectors. Rather than compressed images.
BibRef
Colom, M.[Miguel],
Lebrun, M.,
Buades, A.[Antoni],
Morel, J.M.[Jean-Michel],
Nonparametric Multiscale Blind Estimation of
Intensity-Frequency-Dependent Noise,
IP(24), No. 10, October 2015, pp. 3162-3175.
IEEE DOI
1507
BibRef
Earlier:
A non-parametric approach for the estimation of intensity-frequency
dependent noise,
ICIP14(4261-4265)
IEEE DOI
1502
cameras.
Discrete cosine transforms
BibRef
Liu, X.H.[Xin-Hao],
Tanaka, M.[Masayuki],
Okutomi, M.[Masatoshi],
Practical Signal-Dependent Noise Parameter Estimation From a Single
Noisy Image,
IP(23), No. 10, October 2014, pp. 4361-4371.
IEEE DOI
1410
BibRef
And:
Signal dependent noise removal from a single image,
ICIP14(2679-2683)
IEEE DOI
1502
BibRef
Earlier:
Estimation of signal dependent noise parameters from a single image,
ICIP13(79-82)
IEEE DOI
1402
AWGN.
Image processing
BibRef
Pollok, A.,
Chen, Y.[Ying],
Haley, D.,
Davis, L.M.,
Quantization Noise Mitigation via Parallel ADCs,
SPLetters(21), No. 12, December 2014, pp. 1491-1495.
IEEE DOI
1410
analogue-digital conversion
BibRef
Hernandez, L.,
Gutierrez, E.,
Analytical Evaluation of VCO-ADC Quantization Noise Spectrum Using
Pulse Frequency Modulation,
SPLetters(22), No. 2, February 2015, pp. 249-253.
IEEE DOI
1410
Discrete Fourier transforms
BibRef
Golts, A.[Alex],
Schechner, Y.Y.[Yoav Y.],
Cutoff due to pointwise degradations in color images,
JOSA-A(31), No. 12, December 2014, pp. 2711-2718.
DOI Link
1412
Low light level. Resolution limits.
BibRef
Reinhardt, M.,
Noack, B.,
Arambel, P.O.,
Hanebeck, U.D.,
Minimum Covariance Bounds for the Fusion under Unknown Correlations,
SPLetters(22), No. 9, September 2015, pp. 1210-1214.
IEEE DOI
1503
distributed linear estimation.
correlation theory
BibRef
Li, B.[Bin],
Ng, T.T.[Tian-Tsong],
Li, X.L.[Xiao-Long],
Tan, S.Q.[Shun-Quan],
Huang, J.W.[Ji-Wu],
Statistical Model of JPEG Noises and Its Application in Quantization
Step Estimation,
IP(24), No. 5, May 2015, pp. 1471-1484.
IEEE DOI
1504
data compression
BibRef
Aja-Fernández, S.[Santiago],
Pieciak, T.[Tomasz],
Vegas-Sánchez-Ferrero, G.[Gonzalo],
Spatially variant noise estimation in MRI: A homomorphic approach,
MIA(20), No. 1, 2015, pp. 184-197.
1506
BibRef
Cheremkhin, P.[Pavel],
Evtikhiev, N.[Nikolay],
Krasnov, V.[Vitaly],
Rodin, V.[Vladislav],
Starikov, R.[Rostislav],
Starikov, S.[Sergey],
Measuring random sensor noise in cameras,
SPIE(Newsroom), May 12, 2015.
DOI Link
1507
A modified method enables fast and accurate measurement of temporal
noise in photo and video camera sensors using a remarkably small
number of reference frames.
BibRef
Tang, C.,
Yang, X.,
Zhai, G.,
Noise Estimation of Natural Images via Statistical Analysis and Noise
Injection,
CirSysVideo(25), No. 8, August 2015, pp. 1283-1294.
IEEE DOI
1508
Discrete cosine transforms
BibRef
Wu, C.H.[Cheng-Ho],
Chang, H.H.[Herng-Hua],
Superpixel-based image noise variance estimation with local
statistical assessment,
JIVP(2015), No. 1, 2015, pp. 38.
DOI Link
1601
BibRef
Kim, D.S.[Dong Sik],
Noise Power Spectrum Measurements in Digital Imaging With Gain
Nonuniformity Correction,
IP(25), No. 8, August 2016, pp. 3712-3722.
IEEE DOI
1608
image sensors
BibRef
Lavrenko, A.,
Römer, F.,
Galdo, G.D.,
Thomä, R.,
On the SNR Variability in Noisy Compressed Sensing,
SPLetters(24), No. 8, August 2017, pp. 1148-1152.
IEEE DOI
1708
compressed sensing, matrix algebra, signal sampling, CS,
SNR variability, compressive measurements, noise folding effect,
noisy compressed sensing, nonuniform system performance,
sampling paradigm, sensing matrix,
signal- to-noise ratio degradation, Compressed sensing,
Noise measurement, Power measurement, Probability distribution,
Sensors, Signal to noise ratio, Sparse matrices, Noise folding,
noisy compressed sensing (CS), sensing matrix,
signal-to-noise ratio (SNR) variability, sparse, signals
BibRef
Suliman, M.A.,
Alrashdi, A.M.,
Ballal, T.,
Al-Naffouri, T.Y.,
SNR Estimation in Linear Systems With Gaussian Matrices,
SPLetters(24), No. 12, December 2017, pp. 1867-1871.
IEEE DOI
1712
matrix algebra, regression analysis, signal processing,
Gaussian matrices, SNR estimation, linear systems,
signal-to-noise ratio (SNR) estimation
BibRef
Khaw, H.Y.[Hui Ying],
Soon, F.C.[Foo Chong],
Chuah, J.H.[Joon Huang],
Chow, C.O.[Chee-Onn],
Image noise types recognition using convolutional neural network with
principal components analysis,
IET-IPR(11), No. 12, Decmeber 2017, pp. 1238-1245.
DOI Link
1712
BibRef
Khaw, H.Y.[Hui Ying],
Soon, F.C.[Foo Chong],
Chuah, J.H.[Joon Huang],
Chow, C.O.[Chee-Onn],
High-density impulse noise detection and removal using deep
convolutional neural network with particle swarm optimisation,
IET-IPR(13), No. 2, February 2019, pp. 365-374.
DOI Link
1902
BibRef
Palchikova, I.G.[Irina G.],
Smirnov, E.S.[Evgenii S.],
Palchikov, E.I.[Evgeny Iv.],
Quantization noise as a determinant for color thresholds in machine
vision,
JOSA-A(35), No. 4, April 2018, pp. B214-B222.
DOI Link
1804
Machine vision, Vision, color, and visual optics,
Vision modeling, Color inspection, Color, rendering and metamerism
BibRef
Kim, D.S.,
Lee, E.,
Estimation of Zero-Frequency Noise Power Density in Digital Imaging,
SPLetters(25), No. 11, November 2018, pp. 1755-1759.
IEEE DOI
1811
image processing, noise, spectral analysis,
zero-frequency noise power density, digital imaging,
zero-frequency noise power density
BibRef
Kamble, V.M.[Vipin Milind],
Parate, M.R.[Mayur Rajaram],
Bhurchandi, K.M.[Kishor M.],
No reference noise estimation in digital images using random
conditional selection and sampling theory,
VC(35), No. 1, January 2018, pp. 5-21.
WWW Link.
1902
BibRef
Elvira, V.,
Santamaría, I.,
Multiple Importance Sampling for Efficient Symbol Error Rate
Estimation,
SPLetters(26), No. 3, March 2019, pp. 420-424.
IEEE DOI
1903
digital communication, Gaussian noise, importance sampling,
Monte Carlo methods, multiple importance sampling,
symbol error rate
BibRef
Dong, L.,
Zhou, J.,
Tang, Y.Y.,
Content-Adaptive Noise Estimation for Color Images With Cross-Channel
Noise Modeling,
IP(28), No. 8, August 2019, pp. 4161-4176.
IEEE DOI
1907
Color, Image color analysis, Colored noise, Estimation,
Covariance matrices, Correlation, Adaptation models,
color image noise modeling
BibRef
Ma, B.[Ben],
Yao, J.C.[Jin-Cao],
Le, Y.F.[Yan-Fen],
Qin, C.[Chuan],
Yao, H.[Heng],
Efficient image noise estimation based on skewness invariance and
adaptive noise injection,
IET-IPR(14), No. 7, 29 May 2020, pp. 1393-1401.
DOI Link
2005
BibRef
Forero, M.G.[Manuel G.],
Miranda, S.L.[Sergio L.],
Jacanamejoy-Jamioy, C.[Carlos],
Improvement of the Turajlic Method for the Estimation of Gaussian Noise
in Images,
MCPR20(108-117).
Springer DOI
2007
BibRef
Jiang, P.[Ping],
Wang, Q.[Quan],
Wu, J.[Jiang],
Efficient Noise-Level Estimation Based on Principal Image Texture,
CirSysVideo(30), No. 7, July 2020, pp. 1987-1999.
IEEE DOI
2007
Noise level, Eigenvalues and eigenfunctions, Estimation,
Noise measurement, Covariance matrices,
principal component analysis
BibRef
Qiao, H.,
Estimating the Number of Sinusoids in Additive Sub-Gaussian Noise
With Finite Measurements,
SPLetters(27), 2020, pp. 1225-1229.
IEEE DOI
2007
Sum of complex sinusoids, order selection,
non-asymptotic analysis of eigenvalues, threshold-based algorithm
BibRef
Riutort-Mayol, G.[Gabriel],
Gómez-Rubio, V.[Virgilio],
Marqués-Mateu, Á.[Ángel],
Lerma, J.L.[José Luis],
López-Quílez, A.[Antonio],
Bayesian multilevel random-effects model for estimating noise in image
sensors,
IET-IPR(14), No. 12, October 2020, pp. 2737-2745.
DOI Link
2010
BibRef
Marras, I.[Ioannis],
Chrysos, G.G.[Grigorios G.],
Alexiou, I.[Ioannis],
Slabaugh, G.[Gregory],
Zafeiriou, S.P.[Stefanos P.],
Reconstructing the Noise Variance Manifold for Image Denoising,
ECCV20(IX:622-639).
Springer DOI
2011
BibRef
Popowicz, A.[Adam],
Farah, A.[Alejandro],
Metastable Dark Current in BRITE Nano-Satellite Image Sensors,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
Dark current in charge-coupled devices source of impulse noise.
BibRef
Li, M.,
Jing, Z.,
Leung, H.,
Robust Minimum Error Entropy Based Cubature Information Filter With
Non-Gaussian Measurement Noise,
SPLetters(28), 2021, pp. 349-353.
IEEE DOI
2102
Entropy, Noise measurement, Mathematical model, Convergence,
Measurement uncertainty, Extraterrestrial measurements,
convergence analysis
BibRef
Wu, M.W.,
Jin, Y.,
Li, Y.,
Song, T.,
Kam, P.Y.,
Maximum-Likelihood, Magnitude-Based, Amplitude and Noise Variance
Estimation,
SPLetters(28), 2021, pp. 414-418.
IEEE DOI
2103
Maximum likelihood estimation, Estimation, Rician channels,
Random variables, Noise measurement, Mathematical model, Receivers,
rician distribution
BibRef
Chen, J.[Jun],
Quan, W.T.[Wen-Ting],
Wang, K.[Kexin],
Han, Q.J.[Qi-Jin],
Liu, J.[Jia],
Xing, Q.G.[Qian-Guo],
Xu, N.[Na],
Using Triple Collocation Observations to Estimate Satellite
Measurement Noise,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Sea measurements, Noise measurement, Instruments, Oceans,
Image color analysis, Satellite broadcasting,
triple collocation observation (TCO) algorithm
BibRef
Yao, H.[Heng],
Zou, M.[Mian],
Qin, C.[Chuan],
Zhang, X.P.[Xin-Peng],
Signal-Dependent Noise Estimation for a Real-Camera Model via Weight
and Shape Constraints,
MultMed(24), 2022, pp. 640-654.
IEEE DOI
2202
Estimation, Cameras, Noise level, Computational modeling,
Noise measurement, AWGN, Shape, Signal-dependent noise, linear transform domain
BibRef
Monsalve, J.[Jonathan],
Ramirez, J.[Juan],
Esnaola, I.[Iñaki],
Arguello, H.[Henry],
Covariance Estimation From Compressive Data Partitions Using a
Projected Gradient-Based Algorithm,
IP(31), 2022, pp. 4817-4827.
IEEE DOI
2208
Image coding, Covariance matrices, Estimation,
Hyperspectral imaging, Principal component analysis, Toeplitz
BibRef
Qi, J.L.[Jin-Li],
Sun, L.[Lei],
Li, K.P.[Keng-Peng],
Wang, L.G.[Lin-Gang],
Gaussian noise parameter estimation based on multiple singular value
decomposition and non-linear fitting,
IET-IPR(16), No. 11, 2022, pp. 3025-3038.
DOI Link
2208
BibRef
LaRosa, N.[Nicholas],
Farber, J.[Jacob],
Venkitasubramaniam, P.[Parv],
Blum, R.[Rick],
Al Rashdan, A.[Ahmad],
Separating Sensor Anomalies From Process Anomalies in Data-Driven
Anomaly Detection,
SPLetters(29), 2022, pp. 1704-1708.
IEEE DOI
2208
Anomaly detection, Reliability, Detectors, Data models, Government,
History, Reliability theory, Sensor and process anomalies,
nested hypothesis test
BibRef
Lu, W.Z.[Wen-Zhe],
Qiao, H.[Heng],
Correlation-Aware Joint Support Recovery With Separation Prior,
SPLetters(29), 2022, pp. 1739-1743.
IEEE DOI
2208
Signal processing algorithms, Correlation, Estimation,
Noise measurement, Integer programming,
branch and bound
BibRef
Lin, X.D.[Xiao-Dan],
Li, Y.F.[Yang-Fu],
Zhu, J.Q.[Jian-Qing],
Zeng, H.Q.[Huan-Qiang],
DeflickerCycleGAN:
Learning to Detect and Remove Flickers in a Single Image,
IP(32), 2023, pp. 709-720.
IEEE DOI
2301
Generative adversarial networks, Generators, Task analysis,
Detectors, Training, Image color analysis, Cameras, Flicker removal,
unsupervised learning
BibRef
Gürman, M.[Mustafa],
Bilgehan, B.[Bülent],
Sabuncu, Ö.[Özlem],
Mirzaei, O.[Omid],
A powerful probabilistic model for noise analysis in medical images,
IJIST(33), No. 3, 2023, pp. 999-1013.
DOI Link
2305
image noise, medical image, noise distribution,
probabilistic noise model, statistical noise
BibRef
Song, L.F.[Ling-Fei],
Huang, H.[Hua],
Fixed Pattern Noise Removal Based on a Semi-Calibration Method,
PAMI(45), No. 10, October 2023, pp. 11842-11855.
IEEE DOI
2310
Error in sensor due to manfacturing imperfections.
BibRef
Song, L.F.[Ling-Fei],
Huang, H.[Hua],
Robust Image Restoration with an Adaptive Huber Function Based Fidelity,
IJCV(132), No. 12, December 2024, pp. 6127-6141.
Springer DOI
2501
BibRef
Sun, L.[Lu],
Lin, J.[Jie],
Dong, W.S.[Wei-Sheng],
Li, X.[Xin],
Wu, J.J.[Jin-Jian],
Shi, G.M.[Guang-Ming],
Learning real-world heterogeneous noise models with a benchmark
dataset,
PR(156), 2024, pp. 110823.
Elsevier DOI
2408
Benchmark dataset, Noise modeling,
Deep convolutional neural network, Real denoising
BibRef
Kousha, S.[Shayan],
Maleky, A.[Ali],
Brown, M.S.[Michael S.],
Brubaker, M.A.[Marcus A.],
Modeling sRGB Camera Noise with Normalizing Flows,
CVPR22(17442-17450)
IEEE DOI
2210
Training, Computational modeling, ISO, Noise reduction, Cameras,
Sensors, Low-level vision, Computational photography
BibRef
Maleky, A.[Ali],
Kousha, S.[Shayan],
Brown, M.S.[Michael S.],
Brubaker, M.A.[Marcus A.],
Noise2NoiseFlow: Realistic Camera Noise Modeling without Clean Images,
CVPR22(17611-17620)
IEEE DOI
2210
Training, Photography, Computational modeling, Noise reduction,
Cameras, Low-level vision,
Self- semi- meta- unsupervised learning
BibRef
Rastogi, S.[Swati],
Duttagupta, S.P.[Siddhartha P.],
Guha, A.[Anirban],
Digital Image Conspicuous Features Classification Using TLCNN Model
with SVM Classifier,
IbPRIA22(493-504).
Springer DOI
2205
BibRef
Zhang, Y.[Yi],
Qin, H.W.[Hong-Wei],
Wang, X.G.[Xiao-Gang],
Li, H.S.[Hong-Sheng],
Rethinking Noise Synthesis and Modeling in Raw Denoising,
ICCV21(4573-4581)
IEEE DOI
2203
Image sensors, Training, Systematics, Statistical analysis,
Noise reduction, Lighting, Cameras,
BibRef
Anikeeva, I.,
Chibunichev, A.,
Random Noise Assessment in Aerial and Satellite Images,
ISPRS21(B2-2021: 771-775).
DOI Link
2201
BibRef
Chang, K.C.[Ke-Chi],
Wang, R.[Ren],
Lin, H.J.[Hung-Jin],
Liu, Y.L.[Yu-Lun],
Chen, C.P.[Chia-Ping],
Chang, Y.L.[Yu-Lin],
Chen, H.T.[Hwann-Tzong],
Learning Camera-aware Noise Models,
ECCV20(XXIV:343-358).
Springer DOI
2012
BibRef
Pang, T.Y.[Tong-Yao],
Quan, Y.H.[Yu-Hui],
Ji, H.[Hui],
Self-supervised Bayesian Deep Learning for Image Recovery with
Applications to Compressive Sensing,
ECCV20(XI:475-491).
Springer DOI
2011
BibRef
Quan, Y.H.[Yu-Hui],
Chen, M.Q.[Ming-Qin],
Pang, T.Y.[Tong-Yao],
Ji, H.[Hui],
Self2Self With Dropout:
Learning Self-Supervised Denoising From Single Image,
CVPR20(1887-1895)
IEEE DOI
2008
Noise measurement, Training, Noise reduction, Image denoising,
Artificial neural networks, Machine learning, Predictive models
BibRef
Abdelhamed, A.,
Brubaker, M.,
Brown, M.,
Noise Flow: Noise Modeling With Conditional Normalizing Flows,
ICCV19(3165-3173)
IEEE DOI
2004
AWGN, calibration, cameras, image denoising,
learning (artificial intelligence), neural nets, noise, Noise measurement
BibRef
Erfurt, J.[Johannes],
Helmrich, C.R.[Christian R.],
Bosse, S.[Sebastian],
Schwarz, H.[Heiko],
Marpe, D.[Detlev],
Wiegand, T.[Thomas],
A Study of the Perceptually Weighted Peak Signal-To-Noise Ratio
(WPSNR) for Image Compression,
ICIP19(2339-2343)
IEEE DOI
1910
IQA, PSNR, SSIM, image compression
BibRef
Chen, C.,
Chen, Q.,
Xu, J.,
Koltun, V.,
Learning to See in the Dark,
CVPR18(3291-3300)
IEEE DOI
1812
Pipelines, Cameras, Noise reduction, Image color analysis, Colored noise
BibRef
Uss, M.[Mykhail],
Vozel, B.[Benoit],
Lukin, V.[Vladimir],
Chehdi, K.[Kacem],
NoiseNet: Signal-Dependent Noise Variance Estimation with Convolutional
Neural Network,
ACIVS18(414-425).
Springer DOI
1810
BibRef
Ravi, H.[Hareesh],
Subramanyam, A.V.,
Emmanuel, S.[Sabu],
Spatial domain quantization noise based image filtering detection,
ICIP15(1180-1184)
IEEE DOI
1512
Filtering detection; JPEG and TIFF; Markov features; Quantization noise
BibRef
Afonso, M.[Manya],
Sanches, J.M.[J. Miguel],
Noise Decomposition Using Polynomial Approximation,
IbPRIA15(157-164).
Springer DOI
1506
BibRef
Sur, F.[Frederic],
Grediac, M.[Michel],
Sensor noise measurement in the presence of a flickering illumination,
ICIP14(1763-1767)
IEEE DOI
1502
Cameras
BibRef
Stankiewicz, O.,
Domanski, M.,
Wegner, K.,
Analysis of noise in multi-camera systems,
3DTV-CON14(1-4)
IEEE DOI
1409
image denoising
BibRef
Bhattacharya, A.,
Palit, S.,
Determination of the cause and amount of image degradation using a
reduced reference approach,
IVCNZ13(418-423)
IEEE DOI
1402
Gaussian noise
BibRef
Vasuki, P.,
Bhavana, C.,
Roomi, S.M.M.[S. Mohamed Mansoor],
Deebikaa, E.L.[E. Lakshmi],
Automatic noise identification in images using moments and neural
network,
IMVIP12(61-64).
IEEE DOI
1302
BibRef
Meza, P.[Pablo],
San Martin, C.[César],
Vera, E.[Esteban],
Torres, S.N.[Sergio N.],
A Quantitative Evaluation of Fixed-Pattern Noise Reduction Methods in
Imaging Systems,
CIARP10(285-294).
Springer DOI
1011
BibRef
Kurimo, E.[Eero],
Lepistö, L.[Leena],
Nikkanen, J.[Jarno],
Grén, J.[Juuso],
Kunttu, I.[Iivari],
Laaksonen, J.T.[Jorma T.],
The Effect of Motion Blur and Signal Noise on Image Quality in Low
Light Imaging,
SCIA09(81-90).
Springer DOI
0906
BibRef
Zhang, W.W.[Wen-Wen],
Chen, Q.[Qian],
Signal-to-noise ratio performance comparison of Electron Multiplying
CCD and Intensified CCD detectors,
IASP09(337-341).
IEEE DOI
0904
BibRef
Goebel, P.M.[Peter Michael],
Belbachir, A.N.[Ahmed Nabil],
Truppe, M.[Michael],
A Study on the Influence of Image Dynamics and Noise on the JPEG 2000
Compression Performance for Medical Images,
CVAMIA06(214-224).
Springer DOI
0605
BibRef
Du, J.,
Xie, S.L.[Sheng-Li],
Yu, Y.L.[Ying-Lin],
Quality Assessment Based on Noise Influencing Force,
ICIP05(III: 481-484).
IEEE DOI
0512
BibRef
Salmeri, M.,
Mencattini, A.,
Ricci, E.,
Salsano, A.,
Noise Estimation in Digital Images Using Fuzzy Processing,
ICIP01(I: 517-520).
IEEE DOI
0108
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Noise Models, Noise Level .