22.1.4.2 Land Cover, Land Use, Very High Resolution

Chapter Contents (Back)
High Resolution.

Qian, Y.[Yuguo], Zhou, W.Q.[Wei-Qi], Yan, J.L.[Jing-Li], Li, W.F.[Wei-Feng], Han, L.J.[Li-Jian],
Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery,
RS(7), No. 1, 2014, pp. 153-168.
DOI Link 1502
BibRef

Baraldi, A., Boschetti, L., Humber, M.L.,
Probability Sampling Protocol for Thematic and Spatial Quality Assessment of Classification Maps Generated From Spaceborne/Airborne Very High Resolution Images,
GeoRS(52), No. 1, January 2014, pp. 701-760.
IEEE DOI 1402
decision trees BibRef

Lv, Z.Y.[Zhi-Yong], He, H.Q.[Hai-Qing], Benediktsson, J.A.[Jón Atli], Huang, H.[Hong],
A Generalized Image Scene Decomposition-Based System for Supervised Classification of Very High Resolution Remote Sensing Imagery,
RS(8), No. 10, 2016, pp. 814.
DOI Link 1609
Regions based for classification. BibRef

Witharana, C.[Chandi], Lynch, H.J.[Heather J.],
An Object-Based Image Analysis Approach for Detecting Penguin Guano in very High Spatial Resolution Satellite Images,
RS(8), No. 5, 2016, pp. 375.
DOI Link 1606
BibRef

Lv, Z.Y.[Zhi-Yong], Shi, W.Z.[Wen-Zhong], Benediktsson, J.A.[Jón Atli], Ning, X.J.[Xiao-Juan],
Novel Object-Based Filter for Improving Land-Cover Classification of Aerial Imagery with Very High Spatial Resolution,
RS(8), No. 12, 2016, pp. 1023.
DOI Link 1612
BibRef

Lv, Z.Y.[Zhi-Yong], Zhang, P.L.[Peng-Lin], Benediktsson, J.A.[Jón Atli],
Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven by Tobler's First Law of Geography for Very High Resolution Aerial Imagery Classification,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Wang, M.[Min], Cui, Q.[Qi], Sun, Y.[Yujie], Wang, Q.[Qiao],
Photovoltaic panel extraction from very high-resolution aerial imagery using region-line primitive association analysis and template matching,
PandRS(141), 2018, pp. 100-111.
Elsevier DOI 1806
Photovoltaic panel, Object-based image analysis, Region-line primitive association framework, High-resolution imagery BibRef

Georganos, S.[Stefanos], Grippa, T.[Tais], Lennert, M.[Moritz], Vanhuysse, S.[Sabine], Johnson, B.A.[Brian Alan], Wolff, E.[Eléonore],
Scale Matters: Spatially Partitioned Unsupervised Segmentation Parameter Optimization for Large and Heterogeneous Satellite Images,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
For very high resolution, use regions (objects). BibRef

Marcos, D.[Diego], Volpi, M.[Michele], Kellenberger, B.[Benjamin], Tuia, D.[Devis],
Land cover mapping at very high resolution with rotation equivariant CNNs: Towards small yet accurate models,
PandRS(145), 2018, pp. 96-107.
Elsevier DOI 1810
Semantic labeling, Deep learning, Rotation invariance, Sub-decimeter resolution BibRef

Liu, Y.C.[Yong-Cheng], Fan, B.[Bin], Wang, L.F.[Ling-Feng], Bai, J.[Jun], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Semantic labeling in very high resolution images via a self-cascaded convolutional neural network,
PandRS(145), 2018, pp. 78-95.
Elsevier DOI 1810
Semantic labeling, Convolutional neural networks (CNNs), Multi-scale contexts, End-to-end BibRef


Wu, L.[Linmei], Shen, L.[Li], Li, Z.P.[Zhi-Peng],
A Kernel Method Based On Topic Model For Very High Spatial Resolution (VHSR) Remote Sensing Image Classification,
ISPRS16(B7: 399-403).
DOI Link 1610
BibRef

Nogueira, K.[Keiller], Dalla Mura, M., Chanussot, J.[Jocelyn], Schwartz, W.R., dos Santos, J.A.[Jefersson A.],
Learning to Semantically Segment High-Resolution Remote Sensing Images,
ICPR16(3566-3571)
IEEE DOI 1705
Context, Feature extraction, Image segmentation, Machine learning, Remote sensing, Semantics, Visualization, Deep Learning, Feature Learning, High-resolution Images, Land-cover Mapping, Pixel-wise Classification, Remote Sensing, Semantic, Segmentation BibRef

Luo, B.[Bin], Chanussot, J.[Jocelyn],
Geometrical features for the classification of very high resolution multispectral remote-sensing images,
ICIP10(1045-1048).
IEEE DOI 1009
BibRef

Fan, J., Chen, T., Lu, S.,
Vegetation coverage detection from very high resolution satellite imagery,
VCIP15(1-4)
IEEE DOI 1605
Histograms BibRef

Arroyo, L.A.[Lara A.], Johansen, K.[Kasper], Phinn, S.R.[Stuart R.],
Mapping Land Cover Types from Very High Spatial Resolution Imagery: Automatic Application of an Object Based Classification Scheme,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Carleer, A.P., Wolff, E.,
Region-based classification potential for land-cover classification with very high spatial resolution satellite data,
OBIA06(xx-yy).
PDF File. 0607
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Object Based Land Cover, Region Based Land Cover, Land Use Analysis .


Last update:Nov 12, 2018 at 11:26:54