Ehlers, M.[Manfred],
Gähler, M.[Monika],
Janowsky, R.[Ronald],
Automated analysis of ultra high resolution remote sensing data for
biotope type mapping: new possibilities and challenges,
PandRS(57), No. 5-6, April 2003, pp. 315-326.
Elsevier DOI
0307
BibRef
Chen, X.,
Fang, T.,
Huo, H.,
Li, D.,
Graph-Based Feature Selection for Object-Oriented Classification in VHR
Airborne Imagery,
GeoRS(49), No. 1, January 2011, pp. 353-365.
IEEE DOI
1101
BibRef
Qian, Y.G.[Yu-Guo],
Zhou, W.Q.[Wei-Qi],
Yan, J.L.[Jing-Li],
Li, W.F.[Wei-Feng],
Han, L.J.[Li-Jian],
Comparing Machine Learning Classifiers for Object-Based Land Cover
Classification Using Very High Resolution Imagery,
RS(7), No. 1, 2014, pp. 153-168.
DOI Link
1502
BibRef
Baraldi, A.,
Boschetti, L.,
Humber, M.L.,
Probability Sampling Protocol for Thematic and Spatial Quality
Assessment of Classification Maps Generated From Spaceborne/Airborne
Very High Resolution Images,
GeoRS(52), No. 1, January 2014, pp. 701-760.
IEEE DOI
1402
decision trees
BibRef
Lv, Z.Y.[Zhi-Yong],
He, H.Q.[Hai-Qing],
Benediktsson, J.A.[Jón Atli],
Huang, H.[Hong],
A Generalized Image Scene Decomposition-Based System for Supervised
Classification of Very High Resolution Remote Sensing Imagery,
RS(8), No. 10, 2016, pp. 814.
DOI Link
1609
Regions based for classification.
BibRef
Shi, C.[Cheng],
Lv, Z.Y.[Zhi-Yong],
Yang, X.H.[Xiu-Hong],
Xu, P.F.[Peng-Fei],
Bibi, I.[Irfana],
Hierarchical Multi-View Semi-Supervised Learning for Very
High-Resolution Remote Sensing Image Classification,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Witharana, C.[Chandi],
Lynch, H.J.[Heather J.],
An Object-Based Image Analysis Approach for Detecting Penguin Guano
in very High Spatial Resolution Satellite Images,
RS(8), No. 5, 2016, pp. 375.
DOI Link
1606
BibRef
Lv, Z.Y.[Zhi-Yong],
Shi, W.Z.[Wen-Zhong],
Benediktsson, J.A.[Jón Atli],
Ning, X.J.[Xiao-Juan],
Novel Object-Based Filter for Improving Land-Cover Classification of
Aerial Imagery with Very High Spatial Resolution,
RS(8), No. 12, 2016, pp. 1023.
DOI Link
1612
BibRef
Lv, Z.Y.[Zhi-Yong],
Zhang, P.L.[Peng-Lin],
Benediktsson, J.A.[Jón Atli],
Automatic Object-Oriented, Spectral-Spatial Feature Extraction Driven
by Tobler's First Law of Geography for Very High Resolution Aerial
Imagery Classification,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Georganos, S.[Stefanos],
Grippa, T.[Tais],
Lennert, M.[Moritz],
Vanhuysse, S.[Sabine],
Johnson, B.A.[Brian Alan],
Wolff, E.[Eléonore],
Scale Matters: Spatially Partitioned Unsupervised Segmentation
Parameter Optimization for Large and Heterogeneous Satellite Images,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
For very high resolution, use regions (objects).
BibRef
Marcos, D.[Diego],
Volpi, M.[Michele],
Kellenberger, B.[Benjamin],
Tuia, D.[Devis],
Land cover mapping at very high resolution with rotation equivariant
CNNs: Towards small yet accurate models,
PandRS(145), 2018, pp. 96-107.
Elsevier DOI
1810
Semantic labeling, Deep learning, Rotation invariance, Sub-decimeter resolution
BibRef
Zhang, L.,
Bai, M.,
Liao, R.,
Urtasun, R.,
Marcos, D.,
Tuia, D.,
Kellenberger, B.,
Learning Deep Structured Active Contours End-to-End,
CVPR18(8877-8885)
IEEE DOI
1812
Buildings, Image segmentation, Active contours, Force, Training,
Inference algorithms, Semantics
BibRef
Liu, Y.C.[Yong-Cheng],
Fan, B.[Bin],
Wang, L.F.[Ling-Feng],
Bai, J.[Jun],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Semantic labeling in very high resolution images via a self-cascaded
convolutional neural network,
PandRS(145), 2018, pp. 78-95.
Elsevier DOI
1810
Semantic labeling, Convolutional neural networks (CNNs),
Multi-scale contexts, End-to-end
BibRef
Pan, X.[Xin],
Zhao, J.[Jian],
High-Resolution Remote Sensing Image Classification Method Based on
Convolutional Neural Network and Restricted Conditional Random Field,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Pan, X.[Xin],
Zhang, C.[Ce],
Xu, J.[Jun],
Zhao, J.[Jian],
Simplified Object-Based Deep Neural Network for Very High Resolution
Remote Sensing Image Classification,
PandRS(181), 2021, pp. 218-237.
Elsevier DOI
2110
CNN, Very high resolution, Semantic segmentation, Classification, OBIA
BibRef
Diao, Q.[Qi],
Dai, Y.P.[Ya-Ping],
Wang, J.C.[Jia-Cheng],
Feng, X.X.[Xiao-Xue],
Pan, F.[Feng],
Zhang, C.[Ce],
Spatial-Pooling-Based Graph Attention U-Net for Hyperspectral Image
Classification,
RS(16), No. 6, 2024, pp. 937.
DOI Link
2403
BibRef
Lu, Y.B.[Yuan-Bing],
Li, H.P.[Hua-Peng],
Zhang, C.[Ce],
Zhang, S.Q.[Shu-Qing],
Object-Based Semi-Supervised Spatial Attention Residual UNet for
Urban High-Resolution Remote Sensing Image Classification,
RS(16), No. 8, 2024, pp. 1444.
DOI Link
2405
BibRef
Pan, X.[Xin],
Xu, J.[Jun],
Zhao, J.[Jian],
Li, X.F.[Xiao-Feng],
Hierarchical Object-Focused and Grid-Based Deep Unsupervised
Segmentation Method for High-Resolution Remote Sensing Images,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Y.H.[Yu-Hao],
Liang, B.X.[Bin-Xiu],
Ding, M.[Meng],
Li, J.Y.[Jiang-Yun],
Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and
Decoder for High-Resolution Remote Sensing Imagery,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wang, Y.H.[Yu-Hao],
Chen, C.[Chen],
Ding, M.[Meng],
Li, J.Y.[Jiang-Yun],
Real-Time Dense Semantic Labeling with Dual-Path Framework for
High-Resolution Remote Sensing Image,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Flores, E.[Eliezer],
Zortea, M.[Maciel],
Scharcanski, J.[Jacob],
Dictionaries of deep features for land-use scene classification of
very high spatial resolution images,
PR(89), 2019, pp. 32-44.
Elsevier DOI
1902
Deep learning, Dictionary learning, Feature learning,
Land-use classification, Sparse representation
BibRef
Xu, L.[Lu],
Ming, D.P.[Dong-Ping],
Zhou, W.[Wen],
Bao, H.Q.[Han-Qing],
Chen, Y.Y.[Yang-Yang],
Ling, X.[Xiao],
Farmland Extraction from High Spatial Resolution Remote Sensing
Images Based on Stratified Scale Pre-Estimation,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Mo, N.[Nan],
Yan, L.[Li],
Zhu, R.X.[Rui-Xi],
Xie, H.[Hong],
Class-Specific Anchor Based and Context-Guided Multi-Class Object
Detection in High Resolution Remote Sensing Imagery with a
Convolutional Neural Network,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Mboga, N.[Nicholus],
Georganos, S.[Stefanos],
Grippa, T.[Tais],
Lennert, M.[Moritz],
Vanhuysse, S.[Sabine],
Wolff, E.[Eléonore],
Fully Convolutional Networks and Geographic Object-Based Image
Analysis for the Classification of VHR Imagery,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Geiß, C.[Christian],
Pelizari, P.A.[Patrick Aravena],
Blickensdörfer, L.[Lukas],
Taubenböck, H.[Hannes],
Virtual Support Vector Machines with self-learning strategy for
classification of multispectral remote sensing imagery,
PandRS(151), 2019, pp. 42-58.
Elsevier DOI
1904
Classification, Support Vector Machines, Self-learning,
Active learning heuristics, Very high spatial resolution imagery
BibRef
Zhang, H.[Heng],
Eziz, A.[Anwar],
Xiao, J.[Jian],
Tao, S.L.[Sheng-Li],
Wang, S.P.[Shao-Peng],
Tang, Z.Y.[Zhi-Yao],
Zhu, J.L.[Jiang-Ling],
Fang, J.Y.[Jing-Yun],
High-Resolution Vegetation Mapping Using eXtreme Gradient Boosting
Based on Extensive Features,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Huang, H.[Hong],
Xu, K.[Kejie],
Combing Triple-Part Features of Convolutional Neural Networks for
Scene Classification in Remote Sensing,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Guo, J.[Jifa],
Du, S.H.[Shi-Hong],
Huo, H.Y.[Hong-Yuan],
Du, S.J.[Shou-Ji],
Zhang, X.Y.[Xiu-Yuan],
Modelling the Spectral Uncertainty of Geographic Features in
High-Resolution Remote Sensing Images: Semi-Supervising and Weighted
Interval Type-2 Fuzzy C-Means Clustering,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Liu, X.L.[Xin-Long],
He, C.[Chu],
Xiong, D.[Dehui],
Liao, M.S.[Ming-Sheng],
Pattern Statistics Network for Classification of High-Resolution SAR
Images,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Stoian, A.[Andrei],
Poulain, V.[Vincent],
Inglada, J.[Jordi],
Poughon, V.[Victor],
Derksen, D.[Dawa],
Land Cover Maps Production with High Resolution Satellite Image Time
Series and Convolutional Neural Networks: Adaptations and Limits for
Operational Systems,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhu, R.X.[Rui-Xi],
Yan, L.[Li],
Mo, N.[Nan],
Liu, Y.[Yi],
Retraction:
Attention-Based Deep Feature Fusion for the Scene Classification of
High-Resolution Remote Sensing Images,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
And:
Retraction:
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Mo, N.[Nan],
Zhu, R.X.[Rui-Xi],
Semi-Supervised Subcategory Centroid Alignment-Based Scene
Classification for High-Resolution Remote Sensing Images,
RS(16), No. 19, 2024, pp. 3728.
DOI Link
2410
BibRef
Yue, K.[Kai],
Yang, L.[Lei],
Li, R.R.[Rui-Rui],
Hu, W.[Wei],
Zhang, F.[Fan],
Li, W.[Wei],
TreeUNet: Adaptive Tree convolutional neural networks for
subdecimeter aerial image segmentation,
PandRS(156), 2019, pp. 1-13.
Elsevier DOI
1909
Aerial imagery, Semantic segmentation, Tree structures,
Adaptive network, ISPRS, CNN
BibRef
Kiani, A.[Abbas],
Ebadi, H.[Hamid],
Ahmadi, F.F.[Farshid Farnood],
Development of an Object-Based Interpretive System Based on Weighted
Scoring Method in a Multi-Scale Manner,
IJGI(8), No. 9, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Lv, Z.Y.[Zhi-Yong],
Li, G.F.[Guang-Fei],
Chen, Y.X.[Yi-Xiang],
Benediktsson, J.A.[Jón Atli],
Novel Multi-Scale Filter Profile-Based Framework for VHR Remote
Sensing Image Classification,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Lei, T.[Tao],
Li, L.Z.[Lin-Ze],
Lv, Z.Y.[Zhi-Yong],
Zhu, M.Z.[Ming-Zhe],
Du, X.G.[Xiao-Gang],
Nandi, A.K.[Asoke K.],
Multi-Modality and Multi-Scale Attention Fusion Network for Land
Cover Classification from VHR Remote Sensing Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, H.P.[Hua-Peng],
Zhang, C.[Ce],
Zhang, S.Q.[Shu-Qing],
Atkinson, P.M.[Peter M.],
A hybrid OSVM-OCNN Method for Crop Classification from Fine Spatial
Resolution Remotely Sensed Imagery,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Abdollahnejad, A.[Azadeh],
Panagiotidis, D.[Dimitrios],
Bílek, L.[Luká],
An Integrated GIS and Remote Sensing Approach for Monitoring
Harvested Areas from Very High-Resolution, Low-Cost Satellite Images,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Li, Y.S.[Yan-Shan],
Xu, J.J.[Jian-Jie],
Xia, R.J.[Rong-Jie],
Wang, X.C.[Xian-Chen],
Xie, W.X.[Wei-Xin],
A two-stage framework of target detection in high-resolution
hyperspectral images,
SIViP(13), No. 7, October 2019, pp. 1339-1346.
Springer DOI
1911
BibRef
Tong, H.J.[Heng-Jian],
Tong, F.[Fei],
Zhou, W.[Wei],
Zhang, Y.[Yun],
Purifying SLIC Superpixels to Optimize Superpixel-Based
Classification of High Spatial Resolution Remote Sensing Image,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Tang, J.C.[Jie-Chen],
Tong, H.J.[Heng-Jian],
Tong, F.[Fei],
Zhang, Y.[Yun],
Chen, W.T.[Wei-Tao],
Exploiting Superpixel-Based Contextual Information on Active Learning
for High Spatial Resolution Remote Sensing Image Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wu, Y.D.[Ying-Dan],
Di, L.P.[Li-Ping],
Ming, Y.[Yang],
Lv, H.[Hui],
Tan, H.[Han],
High-Resolution Optical Remote Sensing Image Registration via
Reweighted Random Walk Based Hyper-Graph Matching,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Li, E.[Erzhu],
Samat, A.[Alim],
Liu, W.[Wei],
Lin, C.[Cong],
Bai, X.[Xuyu],
High-Resolution Imagery Classification Based on Different Levels of
Information,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Zhang, G.[Gang],
Lei, T.[Tao],
Cui, Y.[Yi],
Jiang, P.[Ping],
A Dual-Path and Lightweight Convolutional Neural Network for
High-Resolution Aerial Image Segmentation,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Zhang, S.Y.[Shu-Yu],
Li, C.R.[Chuan-Rong],
Qiu, S.[Shi],
Gao, C.X.[Cai-Xia],
Zhang, F.[Feng],
Du, Z.H.[Zhen-Hong],
Liu, R.Y.[Ren-Yi],
EMMCNN: An ETPS-Based Multi-Scale and Multi-Feature Method Using CNN
for High Spatial Resolution Image Land-Cover Classification,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Gong, Y.,
Xiao, Z.,
Tan, X.,
Sui, H.,
Xu, C.,
Duan, H.,
Li, D.,
Context-Aware Convolutional Neural Network for Object Detection in
VHR Remote Sensing Imagery,
GeoRS(58), No. 1, January 2020, pp. 34-44.
IEEE DOI
2001
Feature extraction, Object detection, Proposals,
Semantics, Context modeling, Convolutional codes,
object detection
BibRef
Zhang, X.[Xin],
Han, L.X.[Liang-Xiu],
Han, L.H.[Liang-Hao],
Zhu, L.[Liang],
How Well Do Deep Learning-Based Methods for Land Cover Classification
and Object Detection Perform on High Resolution Remote Sensing
Imagery?,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Liang, W.W.[Wan-Wan],
Abidi, M.[Mongi],
Carrasco, L.[Luis],
McNelis, J.[Jack],
Tran, L.[Liem],
Li, Y.K.[Ying-Kui],
Grant, J.[Jerome],
Mapping Vegetation at Species Level with High-Resolution
Multispectral and Lidar Data Over a Large Spatial Area:
A Case Study with Kudzu,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Lin, W.J.[Wen-Jie],
Li, Y.[Yu],
Parallel Regional Segmentation Method of High-Resolution Remote
Sensing Image Based on Minimum Spanning Tree,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Pan, X.[Xin],
Zhao, J.[Jian],
Xu, J.[Jun],
An End-to-End and Localized Post-Processing Method for Correcting
High-Resolution Remote Sensing Classification Result Images,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Meier, E.S.[Eliane Seraina],
Indermaur, A.[Alexander],
Ginzler, C.[Christian],
Psomas, A.[Achilleas],
An Effective Way to Map Land-Use Intensity with a High Spatial
Resolution Based on Habitat Type and Environmental Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Zhang, X.G.[Xin-Gang],
Yan, H.[Haowen],
Zhang, L.M.[Li-Ming],
Wang, H.[Hao],
High-Resolution Remote Sensing Image Integrity Authentication Method
Considering Both Global and Local Features,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Samasse, K.[Kaboro],
Hanan, N.P.[Niall P.],
Anchang, J.Y.[Julius Y.],
Diallo, Y.[Yacouba],
A High-Resolution Cropland Map for the West African Sahel Based on
High-Density Training Data, Google Earth Engine, and Locally
Optimized Machine Learning,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhao, X.L.[Xiao-Lei],
Zhang, J.[Jing],
Tian, J.[Jimiao],
Zhuo, L.[Li],
Zhang, J.[Jie],
Residual Dense Network Based on Channel-Spatial Attention for the
Scene Classification of a High-Resolution Remote Sensing Image,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Körez, A.[Atakan],
Barisçi, N.[Necaattin],
Çetin, A.[Aydin],
Ergün, U.[Uçman],
Weighted Ensemble Object Detection with Optimized Coefficients for
Remote Sensing Images,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Ding, L.,
Zhang, J.,
Bruzzone, L.,
Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a
Two-Stage Multiscale Training Architecture,
GeoRS(58), No. 8, August 2020, pp. 5367-5376.
IEEE DOI
2007
Semantics, Training, Image segmentation, Feature extraction,
Remote sensing, Convolution,
semantic segmentation
BibRef
Li, Y.,
Melgani, F.[Farid],
He, B.,
CSVM Architectures for Pixel-Wise Object Detection in High-Resolution
Remote Sensing Images,
GeoRS(58), No. 9, September 2020, pp. 6059-6070.
IEEE DOI
2008
Object detection, Convolution, Remote sensing, Feature extraction,
Training, Image resolution, Support vector machines,
very high resolution (VHR)
BibRef
Qi, X.M.[Xiao-Man],
Zhu, P.P.[Pan-Pan],
Wang, Y.B.[Yue-Bin],
Zhang, L.Q.[Li-Qiang],
Peng, J.H.[Jun-Huan],
Wu, M.F.[Meng-Fan],
Chen, J.L.[Jia-Long],
Zhao, X.D.[Xu-Dong],
Zang, N.[Ning],
Mathiopoulos, P.T.[P. Takis],
MLRSNet: A multi-label high spatial resolution remote sensing dataset
for semantic scene understanding,
PandRS(169), 2020, pp. 337-350.
Elsevier DOI
2011
Multi-label image dataset, Semantic scene understanding,
Convolutional Neural Network (CNN), Image classification, Image retrieval
BibRef
Li, F.P.[Feng-Peng],
Feng, R.[Ruyi],
Han, W.[Wei],
Wang, L.Z.[Li-Zhe],
High-Resolution Remote Sensing Image Scene Classification via Key
Filter Bank Based on Convolutional Neural Network,
GeoRS(58), No. 11, November 2020, pp. 8077-8092.
IEEE DOI
2011
Feature extraction, Task analysis, Data models, Remote sensing,
Benchmark testing, Computational modeling,
scene classification
BibRef
Li, M.M.[Meng-Meng],
Stein, A.[Alfred],
Mapping Land Use from High Resolution Satellite Images by Exploiting
the Spatial Arrangement of Land Cover Objects,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Lv, Z.,
Li, G.,
Jin, Z.,
Benediktsson, J.A.,
Foody, G.M.,
Iterative Training Sample Expansion to Increase and Balance the
Accuracy of Land Classification From VHR Imagery,
GeoRS(59), No. 1, January 2021, pp. 139-150.
IEEE DOI
2012
Training, Sensors, Hyperspectral imaging, Iterative methods,
Feature extraction, Land cover classification,
very high-resolution remote-sensing image
BibRef
Gao, H.[Han],
Guo, J.H.[Jin-Hui],
Guo, P.[Peng],
Chen, X.W.[Xiu-Wan],
Classification of Very-High-Spatial-Resolution Aerial Images Based on
Multiscale Features with Limited Semantic Information,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Huang, Z.[Zhou],
Chen, H.X.[Huai-Xin],
Zhou, T.[Tao],
Yang, Y.Z.[Yun-Zhi],
Wang, C.Y.[Chang-Yin],
Liu, B.Y.[Bi-Yuan],
Contrast-weighted dictionary learning based saliency detection for
VHR optical remote sensing images,
PR(113), 2021, pp. 107757.
Elsevier DOI
2103
Contrast-weighted dictionary, Dictionary learning,
Gradient optimization, Remote sensing, Saliency detection
BibRef
Fan, J.L.[Jin-Long],
Zhang, X.Y.[Xiao-Yu],
Zhao, C.L.[Chun-Liang],
Qin, Z.H.[Zhi-Hao],
de Vroey, M.[Mathilde],
Defourny, P.[Pierre],
Evaluation of Crop Type Classification with Different High Resolution
Satellite Data Sources,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Luo, X.[Xin],
Du, H.Q.[Hua-Qiang],
Zhou, G.[Guomo],
Li, X.J.[Xue-Jian],
Mao, F.J.[Fang-Jie],
Zhu, D.[Di'en],
Xu, Y.X.[Yan-Xin],
Zhang, M.[Meng],
He, S.B.[Shao-Bai],
Huang, Z.H.[Zi-Hao],
A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method
for High-Resolution Remote Sensing Image Classification,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chen, Y.L.[Yu-Ling],
Teng, W.T.[Wen-Tao],
Li, Z.[Zhen],
Zhu, Q.Q.[Qi-Qi],
Guan, Q.F.[Qing-Feng],
Cross-Domain Scene Classification Based on a Spatial Generalized
Neural Architecture Search for High Spatial Resolution Remote Sensing
Images,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Shi, H.[Hao],
Fan, J.H.[Jia-He],
Wang, Y.P.[Yu-Pei],
Chen, L.[Liang],
Dual Attention Feature Fusion and Adaptive Context for Accurate
Segmentation of Very High-Resolution Remote Sensing Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Guo, Y.J.[Yong-Jie],
Wang, F.[Feng],
Xiang, Y.M.[Yu-Ming],
You, H.J.[Hong-Jian],
DGFNet: Dual Gate Fusion Network for Land Cover Classification in
Very High-Resolution Images,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Lin, F.C.[Feng-Cheng],
Chuang, Y.C.[Yung-Chung],
Interoperability Study of Data Preprocessing for Deep Learning and
High-Resolution Aerial Photographs for Forest and Vegetation Type
Identification,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Shi, G.[Guang],
Zhang, J.S.[Jiang-She],
Liu, J.M.[Jun-Min],
Zhang, C.X.[Chun-Xia],
Zhou, C.S.[Chang-Sheng],
Yang, S.Y.[Shu-Yun],
Global Context-Augmented Objection Detection in VHR Optical Remote
Sensing Images,
GeoRS(59), No. 12, December 2021, pp. 10604-10617.
IEEE DOI
2112
Object detection, Remote sensing, Feature extraction,
Geospatial analysis, Optical sensors, Optical imaging, Convolution,
rotation invariant
BibRef
Gong, Y.P.[Yi-Ping],
Zhang, F.[Fan],
Jia, X.Y.[Xiang-Yang],
Mao, Z.[Zhu],
Huang, X.F.[Xian-Feng],
Li, D.R.[De-Ren],
Instance Segmentation in Very High Resolution Remote Sensing Imagery
Based on Hard-to-Segment Instance Learning and Boundary Shape
Analysis,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Kwong, I.H.Y.[Ivan H. Y.],
Wong, F.K.K.[Frankie K. K.],
Fung, T.[Tung],
Liu, E.K.Y.[Eric K. Y.],
Lee, R.H.[Roger H.],
Ng, T.P.T.[Terence P. T.],
A Multi-Stage Approach Combining Very High-Resolution Satellite
Image, GIS Database and Post-Classification Modification Rules for
Habitat Mapping in Hong Kong,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Yao, H.T.[Hong-Tai],
Wang, X.P.[Xian-Pei],
Zhao, L.[Le],
Tian, M.[Meng],
Jian, Z.[Zini],
Gong, L.[Li],
Li, B.[Bowen],
An Object-Based Markov Random Field with Partition-Global Alternately
Updated for Semantic Segmentation of High Spatial Resolution Remote
Sensing Image,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Akcay, O.[Ozgun],
Kinaci, A.C.[Ahmet Cumhur],
Avsar, E.O.[Emin Ozgur],
Aydar, U.[Umut],
Semantic Segmentation of High-Resolution Airborne Images with
Dual-Stream DeepLabV3+,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Qin, R.J.[Rong-Jun],
Liu, T.[Tao],
A Review of Landcover Classification with Very-High Resolution
Remotely Sensed Optical Images:
Analysis Unit, Model Scalability and Transferability,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Bhatt, P.[Parth],
Maclean, A.[Ann],
Dickinson, Y.[Yvette],
Kumar, C.[Chandan],
Fine-Scale Mapping of Natural Ecological Communities Using Machine
Learning Approaches,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Zheng, Y.[Yalan],
Yang, M.Y.[Meng-Yuan],
Wang, M.[Min],
Qian, X.J.[Xiao-Jun],
Yang, R.[Rui],
Zhang, X.[Xin],
Dong, W.[Wen],
Semi-Supervised Adversarial Semantic Segmentation Network Using
Transformer and Multiscale Convolution for High-Resolution Remote
Sensing Imagery,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Luo, Y.C.[Yu-Chuan],
Zhang, Z.[Zhao],
Zhang, L.L.[Liang-Liang],
Han, J.C.[Ji-Chong],
Cao, J.[Juan],
Zhang, J.[Jing],
Developing High-Resolution Crop Maps for Major Crops in the European
Union Based on Transductive Transfer Learning and Limited Ground Data,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Xu, Y.Z.[Yi-Zhe],
Jiang, J.[Jie],
High-Resolution Boundary-Constrained and Context-Enhanced Network for
Remote Sensing Image Segmentation,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Chen, F.L.[Feng-Lei],
Liu, H.J.[Hai-Jun],
Zeng, Z.H.[Zhi-Hong],
Zhou, X.C.[Xi-Chuan],
Tan, X.H.[Xiao-Heng],
BES-Net: Boundary Enhancing Semantic Context Network for
High-Resolution Image Semantic Segmentation,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Diao, C.Y.[Chun-Yuan],
Li, G.[Geyang],
Near-Surface and High-Resolution Satellite Time Series for Detecting
Crop Phenology,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Li, Z.Q.[Zhu-Qiang],
Chen, S.B.[Sheng-Bo],
Meng, X.Y.[Xiang-Yu],
Zhu, R.F.[Rui-Fei],
Lu, J.Y.[Jun-Yan],
Cao, L.[Lisai],
Lu, P.[Peng],
Full Convolution Neural Network Combined with Contextual Feature
Representation for Cropland Extraction from High-Resolution Remote
Sensing Images,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Yuan, J.[Jianye],
Ma, X.[Xin],
Han, G.[Ge],
Li, S.[Song],
Gong, W.[Wei],
Research on Lightweight Disaster Classification Based on
High-Resolution Remote Sensing Images,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Sharma, R.C.[Ram C.],
An Ultra-Resolution Features Extraction Suite for Community-Level
Vegetation Differentiation and Mapping at a Sub-Meter Resolution,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, C.Y.[Chun-Yan],
Wang, X.[Xiang],
Wu, D.F.[Dan-Feng],
Kuang, M.[Minchi],
Li, Z.[Zhengtong],
Meticulous Land Cover Classification of High-Resolution Images Based
on Interval Type-2 Fuzzy Neural Network with Gaussian Regression
Model,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ji, S.P.[Shun-Ping],
Wang, D.P.[Ding-Pan],
Luo, M.Y.[Mu-Ying],
Generative Adversarial Network-Based Full-Space Domain Adaptation for
Land Cover Classification From Multiple-Source Remote Sensing Images,
GeoRS(59), No. 5, May 2021, pp. 3816-3828.
IEEE DOI
2104
Image segmentation, Remote sensing, Training,
Decoding, Generative adversarial networks, Feature extraction,
remote sensing
BibRef
Luo, M.Y.[Mu-Ying],
Ji, S.P.[Shun-Ping],
Cross-spatiotemporal land-cover classification from VHR remote
sensing images with deep learning based domain adaptation,
PandRS(191), 2022, pp. 105-128.
Elsevier DOI
2208
Domain adaptation, Land cover classification,
Very-high resolution images, Deep learning, Cross-spatiotemporal
BibRef
Boulila, W.[Wadii],
Khlifi, M.K.[Manel Khazri],
Ammar, A.[Adel],
Koubaa, A.[Anis],
Benjdira, B.[Bilel],
Farah, I.R.[Imed Riadh],
A Hybrid Privacy-Preserving Deep Learning Approach for Object
Classification in Very High-Resolution Satellite Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, Z.H.[Zhuo-Hong],
Zhang, H.Y.[Hong-Yan],
Lu, F.X.[Fang-Xiao],
Xue, R.[Ruoyao],
Yang, G.Y.[Guang-Yi],
Zhang, L.P.[Liang-Pei],
Breaking the resolution barrier: A low-to-high network for
large-scale high-resolution land-cover mapping using low-resolution
labels,
PandRS(192), 2022, pp. 244-267.
Elsevier DOI
2209
Multi-resolution, Land-cover mapping, Semantic segmentation, Low-to-high task
BibRef
Sertel, E.[Elif],
Ekim, B.[Burak],
Osgouei, P.E.[Paria Ettehadi],
Kabadayi, M.E.[M. Erdem],
Land Use and Land Cover Mapping Using Deep Learning Based
Segmentation Approaches and VHR Worldview-3 Images,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Li, J.[Jia],
Liao, Y.J.[Yu-Jia],
Zhang, J.J.[Jun-Jie],
Zeng, D.[Dan],
Qian, X.L.[Xiao-Liang],
Semi-Supervised DEGAN for Optical High-Resolution Remote Sensing
Image Scene Classification,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Wang, X.[Xuan],
Zhang, Y.[Yue],
Lei, T.[Tao],
Wang, Y.B.[Ying-Bo],
Zhai, Y.J.[Yu-Jie],
Nandi, A.K.[Asoke K.],
Dynamic Convolution Self-Attention Network for Land-Cover
Classification in VHR Remote-Sensing Images,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Chaib, S.[Souleyman],
Mansouri, D.E.[Dou El_Kefel],
Omara, I.[Ibrahim],
Hagag, A.[Ahmed],
Dhelim, S.[Sahraoui],
Bensaber, D.A.[Djamel Amar],
On the Co-Selection of Vision Transformer Features and Images for
Very High-Resolution Image Scene Classification,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Luo, Y.Y.[Yi-Yun],
Wang, J.N.[Jin-Nian],
Yang, X.K.[Xian-Kun],
Yu, Z.Y.[Zhen-Yu],
Tan, Z.X.[Zi-Xuan],
Pixel Representation Augmented through Cross-Attention for
High-Resolution Remote Sensing Imagery Segmentation,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Gun, Z.[Zhao],
Chen, J.Y.[Jian-Yu],
Novel Knowledge Graph- and Knowledge Reasoning-Based Classification
Prototype for OBIA Using High Resolution Remote Sensing Imagery,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Liu, Y.H.[Yu-Heng],
Zhang, Y.F.[Yi-Fan],
Wang, Y.[Ye],
Mei, S.H.[Shao-Hui],
BiTSRS: A Bi-Decoder Transformer Segmentor for
High-Spatial-Resolution Remote Sensing Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Jiang, S.[Shenlu],
Tarabalka, Y.[Yuliya],
Yao, W.[Wei],
Hong, Z.H.[Zhong-Hua],
Feng, G.[Guofu],
Space-to-speed architecture supporting acceleration on VHR image
processing,
PandRS(198), 2023, pp. 30-44.
Elsevier DOI
2304
Space-to-speed architecture, Building segmentation,
Deep neural networks (DNNs), Very high-resolution (VHR) aerial images
BibRef
Baiocchi, V.[Valerio],
Giannone, F.[Francesca],
New Trends in High-Resolution Imagery Processing,
RS(15), No. 8, 2023, pp. 2164.
DOI Link
2305
BibRef
Fagua, J.C.[J. Camilo],
Rodríguez-Buriticá, S.[Susana],
Jantz, P.[Patrick],
Advancing High-Resolution Land Cover Mapping in Colombia:
The Importance of a Locally Appropriate Legend,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Cuypers, S.[Suzanna],
Nascetti, A.[Andrea],
Vergauwen, M.[Maarten],
Land Use and Land Cover Mapping with VHR and Multi-Temporal
Sentinel-2 Imagery,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Bai, L.[Lubin],
Huang, W.M.[Wei-Ming],
Zhang, X.Y.[Xiu-Yuan],
Du, S.H.[Shi-Hong],
Cong, G.[Gao],
Wang, H.Y.[Hao-Yu],
Liu, B.[Bo],
Geographic mapping with unsupervised multi-modal representation
learning from VHR images and POIs,
PandRS(201), 2023, pp. 193-208.
Elsevier DOI
2307
Multi-modal Representation Learning, Remote sensing images, Point-of-interest,
Urban Function, Population Density, Geospatial Pretraining
BibRef
Fu, H.[Hang],
Sun, G.Y.[Gen-Yun],
Zhang, L.[Li],
Zhang, A.[Aizhu],
Ren, J.C.[Jin-Chang],
Jia, X.P.[Xiu-Ping],
Li, F.[Feng],
Three-dimensional singular spectrum analysis for precise land cover
classification from UAV-borne hyperspectral benchmark datasets,
PandRS(203), 2023, pp. 115-134.
Elsevier DOI
2310
Precise classification, UAV-borne HSI, Feature extraction,
3DSSA, QUH dataset
BibRef
Zhou, L.M.[Li-Ming],
Zhao, H.[Hang],
Liu, Z.H.[Zhe-Hao],
Cai, K.[Kun],
Liu, Y.[Yang],
Zuo, X.Y.[Xian-Yu],
MHLDet: A Multi-Scale and High-Precision Lightweight Object Detector
Based on Large Receptive Field and Attention Mechanism for Remote
Sensing Images,
RS(15), No. 18, 2023, pp. 4625.
DOI Link
2310
BibRef
Ye, Y.P.[Yong-Peng],
Lu, D.S.[Deng-Sheng],
Wu, Z.[Zuohang],
Liao, K.[Kuo],
Zhou, M.X.[Ming-Xing],
Jian, K.[Kai],
Li, D.Q.[Deng-Qiu],
Vertical Characteristics of Vegetation Distribution in Wuyishan
National Park Based on Multi-Source High-Resolution Remotely Sensed
Data,
RS(15), No. 20, 2023, pp. 5023.
DOI Link
2310
BibRef
Chang, Z.[Zhu],
Li, H.[Hu],
Chen, D.H.[Dong-Hua],
Liu, Y.F.[Yu-Feng],
Zou, C.[Chen],
Chen, J.[Jian],
Han, W.J.[Wei-Jie],
Liu, S.S.[Sai-Sai],
Zhang, N.[Naiming],
Crop Type Identification Using High-Resolution Remote Sensing Images
Based on an Improved DeepLabV3+ Network,
RS(15), No. 21, 2023, pp. 5088.
DOI Link
2311
BibRef
Longchamps, L.[Louis],
Philpot, W.[William],
Full-Season Crop Phenology Monitoring Using Two-Dimensional
Normalized Difference Pairs,
RS(15), No. 23, 2023, pp. 5565.
DOI Link
2312
BibRef
Li, S.[Shiou],
Fei, X.Y.[Xian-Yun],
Chen, P.L.[Pei-Long],
Wang, Z.[Zhen],
Gao, Y.J.[Ya-Jun],
Cheng, K.[Kai],
Wang, H.L.[Hui-Long],
Zhang, Y.Z.[Yuan-Zhi],
Self-Adaptive-Filling Deep Convolutional Neural Network
Classification Method for Mountain Vegetation Type Based on High
Spatial Resolution Aerial Images,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
He, L.[Lei],
Liao, K.[Kunwei],
Li, Y.X.[Yu-Xia],
Li, B.[Bin],
Zhang, J.L.[Jing-Lin],
Wang, Y.[Yong],
Lu, L.M.[Li-Ming],
Jian, S.[Sichun],
Qin, R.[Rui],
Fu, X.J.[Xin-Jun],
Extraction of Tobacco Planting Information Based on UAV
High-Resolution Remote Sensing Images,
RS(16), No. 2, 2024, pp. 359.
DOI Link
2402
BibRef
Li, Y.[Yan],
Min, S.[Songhan],
Song, B.B.[Bin-Bin],
Yang, H.[Hui],
Wang, B.[Biao],
Wu, Y.[Yongchuang],
Multisource High-Resolution Remote Sensing Image Vegetation
Extraction with Comprehensive Multifeature Perception,
RS(16), No. 4, 2024, pp. 712.
DOI Link
2402
BibRef
Pampanoni, V.[Valerio],
Fascetti, F.[Fabio],
Cenci, L.[Luca],
Laneve, G.[Giovanni],
Santella, C.[Carla],
Boccia, V.[Valentina],
Analysing the Relationship between Spatial Resolution, Sharpness and
Signal-to-Noise Ratio of Very High Resolution Satellite Imagery Using
an Automatic Edge Method,
RS(16), No. 6, 2024, pp. 1041.
DOI Link
2403
BibRef
Shen, Y.Z.[Yu-Zhen],
Wei, Y.C.[Yu-Chun],
Zhang, H.[Hong],
Rui, X.D.[Xu-Dong],
Li, B.B.[Bing-Bing],
Wang, J.[Junshu],
Unsupervised Change Detection in HR Remote Sensing Imagery Based on
Local Histogram Similarity and Progressive Otsu,
RS(16), No. 8, 2024, pp. 1357.
DOI Link
2405
BibRef
Hu, Q.Q.[Qiong-Qiong],
Wang, F.T.[Fei-Ting],
Li, Y.[Ying],
EAD-Net: Efficiently Asymmetric Network for Semantic Labeling of
High-Resolution Remote Sensing Images with Dynamic Routing Mechanism,
RS(16), No. 9, 2024, pp. 1478.
DOI Link
2405
BibRef
Li, H.D.[Hua-Dong],
Wei, Y.[Ying],
Peng, H.[Han],
Zhang, W.[Wei],
DiffuPrompter: Pixel-Level Automatic Annotation for High-Resolution
Remote Sensing Images with Foundation Models,
RS(16), No. 11, 2024, pp. 2004.
DOI Link
2406
BibRef
Perregrini, D.[Dario],
Casella, V.[Vittorio],
Land Use Recognition by Applying Fuzzy Logic and Object-Based
Classification to Very High Resolution Satellite Images,
RS(16), No. 13, 2024, pp. 2273.
DOI Link
2407
BibRef
Xu, C.J.[Cheng-Jun],
Shu, J.Q.[Jing-Qian],
Wang, Z.[Zhenghan],
Wang, J.L.[Jia-Lin],
A Scene Classification Model Based on Global-Local Features and
Attention in Lie Group Space,
RS(16), No. 13, 2024, pp. 2323.
DOI Link
2407
BibRef
Li, Z.Y.[Zhi-Yong],
Wang, Y.[Youming],
Tian, F.[Fa],
Zhang, J.[Junbo],
Chen, Y.J.[Yi-Jie],
Li, K.[Kunhong],
BAFormer: A Novel Boundary-Aware Compensation UNet-like Transformer
for High-Resolution Cropland Extraction,
RS(16), No. 14, 2024, pp. 2526.
DOI Link
2408
BibRef
Wang, G.Y.[Guo-Ying],
Chen, J.H.[Jia-Hao],
Mo, L.[Lufeng],
Wu, P.[Peng],
Yi, X.M.[Xiao-Mei],
Border-Enhanced Triple Attention Mechanism for High-Resolution Remote
Sensing Images and Application to Land Cover Classification,
RS(16), No. 15, 2024, pp. 2814.
DOI Link
2408
BibRef
Sun, Y.H.[Yi-Hao],
Wang, M.[Mingrui],
Huang, X.Y.[Xiao-Yi],
Xin, C.S.[Cheng-Shu],
Sun, Y.[Yinan],
Fast Semantic Segmentation of Ultra-High-Resolution Remote Sensing
Images via Score Map and Fast Transformer-Based Fusion,
RS(16), No. 17, 2024, pp. 3248.
DOI Link
2409
BibRef
Huang, Z.X.[Zhong-Xin],
Jing, H.T.[Hai-Tao],
Liu, Y.M.[Yue-Ming],
Yang, X.M.[Xiao-Mei],
Wang, Z.H.[Zhi-Hua],
Liu, X.L.[Xiao-Liang],
Gao, K.[Ku],
Luo, H.F.[Hao-Feng],
Segment Anything Model Combined with Multi-Scale Segmentation for
Extracting Complex Cultivated Land Parcels in High-Resolution Remote
Sensing Images,
RS(16), No. 18, 2024, pp. 3489.
DOI Link
2410
BibRef
Yuan, S.[Shuai],
Zhang, L.X.[Li-Xian],
Dong, R.[Runmin],
Xiong, J.[Jie],
Zheng, J.[Juepeng],
Fu, H.[Haohuan],
Gong, P.[Peng],
Relational Part-Aware Learning for Complex Composite Object Detection
in High-Resolution Remote Sensing Images,
Cyber(54), No. 10, October 2024, pp. 6118-6131.
IEEE DOI
2410
Object detection, Feature extraction, Transformers,
Power generation, Semantics, Correlation, Remote sensing, Transformer
BibRef
Ophoff, T.[Tanguy],
van Beeck, K.[Kristof],
Goedemé, T.[Toon],
Improving Object Detection in VHR Aerial Orthomosaics,
CVCivil22(268-282).
Springer DOI
2304
BibRef
Xia, J.[Junshi],
Yokoya, N.[Naoto],
Adriano, B.[Bruno],
Broni-Bediako, C.[Clifford],
OpenEarthMap: A Benchmark Dataset for Global High-Resolution Land
Cover Mapping,
WACV23(6243-6253)
IEEE DOI
2302
Adaptation models, Image segmentation, Satellites,
Computational modeling, Benchmark testing,
visual reasoning
BibRef
Mallet, C.,
Le Bris, A.,
Current Challenges In Operational Very High Resolution Land-cover
Mapping,
ISPRS20(B2:703-710).
DOI Link
2012
BibRef
Pluto-Kossakowska, J.,
Automatic Detection of Grey Infrastructure Based on VHR Image,
ISPRS20(B3:181-187).
DOI Link
2012
BibRef
James, D.,
Collin, A.,
Mury, A.,
Costa, S.,
Very High Resolution Land Use and Land Cover Mapping Using Pleiades-1
Stereo Imagery and Machine Learning,
ISPRS20(B2:675-682).
DOI Link
2012
BibRef
Robinson, C.[Caleb],
Hou, L.[Le],
Malkin, K.[Kolya],
Soobitsky, R.[Rachel],
Czawlytko, J.[Jacob],
Dilkina, B.[Bistra],
Jojic, N.[Nebojsa],
Large Scale High-Resolution Land Cover Mapping With Multi-Resolution
Data,
CVPR19(12718-12727).
IEEE DOI
2002
BibRef
Xu, Y.,
Hu, X.,
Wei, Y.,
Yang, Y.,
Wang, D.,
A Machine Learning Dataset for Large-scope High Resolution Remote
Sensing Image Interpretation Considering Landscape Spatial
Heterogeneity,
IWIDF19(731-736).
DOI Link
1912
BibRef
Chen, Y.,
Ming, D.,
Superpixel Classification of High Spatial Resolution Remote Sensing
Image Based On Multi-Scale CNN and Scale Parameter Estimation,
IWIDF19(681-685).
DOI Link
1912
BibRef
Wu, L.[Linmei],
Shen, L.[Li],
Li, Z.P.[Zhi-Peng],
A Kernel Method Based On Topic Model For Very High Spatial Resolution
(VHSR) Remote Sensing Image Classification,
ISPRS16(B7: 399-403).
DOI Link
1610
BibRef
Fan, J.,
Chen, T.,
Lu, S.,
Vegetation coverage detection from very high resolution satellite
imagery,
VCIP15(1-4)
IEEE DOI
1605
Histograms
BibRef
Taberner, M.,
Shutler, J.,
Walker, P.,
Poulter, D.,
Piolle, J.F.,
Donlon, C.,
Guidetti, V.,
The ESA FELYX High Resolution Diagnostic Data Set System Design and
Implementation,
SSG13(243-249).
DOI Link
1402
BibRef
Bindel, M.,
Hese, S.,
Berger, C.,
Schmullius, C.,
Feature selection from high resolution remote sensing data for biotope
mapping,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Arroyo, L.A.[Lara A.],
Johansen, K.[Kasper],
Phinn, S.R.[Stuart R.],
Mapping Land Cover Types from Very High Spatial Resolution Imagery:
Automatic Application of an Object Based Classification Scheme,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Carleer, A.P.,
Wolff, E.,
Region-based classification potential for land-cover classification
with very high spatial resolution satellite data,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Agrafiotis, P.,
Georgopoulos, A.,
Comparative Assessment of Very High Resolution Satellite and Aerial
Orthoimagery,
PIA15(1-7).
DOI Link
1504
BibRef
Aminipouri, M.,
Sliuzas, R.,
Kuffer, M.,
Object-Oriented Analysis of Very High Resolution Orthophotos for
Estimating the Population of Slum Areas, A Case of Dar-Es-Salaam,
Tanzania,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Zhang, J.Q.[Jian-Qing],
Zhang, Z.X.[Zu-Xun],
Strict Geometric Model Based on Affine Transformation for Remote
Sensing Image with High Resolution,
PCV02(B: 309).
0305
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Land Cover, Land Use, Super-Resolution Techniques .