Zhao, L.,
Thorpe, C.E.,
Stereo- and neural network-based pedestrian detection,
ITS(1), No. 3, September 2000, pp. 148-154.
IEEE Abstract.
0402
BibRef
Broggi, A.,
Cerri, P.,
Ghidoni, S.,
Grisleri, P.,
Jung, H.G.,
A New Approach to Urban Pedestrian Detection for Automatic Braking,
ITS(10), No. 4, December 2009, pp. 594-605.
IEEE DOI
0912
See also tool for vision based pedestrian detection performance evaluation, A.
BibRef
Bertozzi, M.,
Binelli, E.,
Broggi, A.,
del Rose, M.,
Stereo Vision-Based Approaches for Pedestrian Detection,
OTCBVS05(III: 16-16).
IEEE DOI
0507
See also Pedestrian detection by means of far-infrared stereo vision.
BibRef
Oliveira, L.[Luciano],
Nunes, U.[Urbano],
Peixoto, P.[Paulo],
Silva, M.[Marco],
Moita, F.[Fernando],
Semantic fusion of laser and vision in pedestrian detection,
PR(43), No. 10, October 2010, pp. 3648-3659.
Elsevier DOI
1007
Semantic sensor fusion; Pedestrian detection; Markov logic network
BibRef
Wang, Y.[Yu],
Kato, J.[Jien],
Pedestrian Detection with Sparse Depth Estimation,
IEICE(E94-D), No. 8, August 2011, pp. 1690-1699.
WWW Link.
1108
BibRef
Enzweiler, M.[Markus],
Gavrila, D.M.[Dariu M.],
A Multilevel Mixture-of-Experts Framework for Pedestrian Classification,
IP(20), No. 10, October 2011, pp. 2967-2979.
IEEE DOI
1110
BibRef
Enzweiler, M.[Markus],
Eigenstetter, A.[Angela],
Schiele, B.[Bernt],
Gavrila, D.M.[Dariu M.],
Multi-cue pedestrian classification with partial occlusion handling,
CVPR10(990-997).
IEEE DOI
1006
BibRef
Rohrbach, M.[Marcus],
Enzweiler, M.[Markus],
Gavrila, D.M.[Dariu M.],
High-Level Fusion of Depth and Intensity for Pedestrian Classification,
DAGM09(101-110).
Springer DOI
0909
BibRef
Keller, C.G.[Christoph G.],
Hermes, C.[Christoph],
Gavrila, D.M.[Dariu M.],
Will the Pedestrian Cross? Probabilistic Path Prediction Based on
Learned Motion Features,
DAGM11(386-395).
Springer DOI
1109
Award, GCPR, HM.
BibRef
Keller, C.G.[Christoph Gustav],
Fernández Llorca, D.[David],
Gavrila, D.M.[Dariu M.],
Dense Stereo-Based ROI Generation for Pedestrian Detection,
DAGM09(81-90).
Springer DOI
0909
BibRef
Keller, C.G.,
Enzweiler, M.,
Rohrbach, M.,
Llorca, D.F.,
Schnorr, C.,
Gavrila, D.M.,
The Benefits of Dense Stereo for Pedestrian Detection,
ITS(12), No. 4, December 2011, pp. 1096-1106.
IEEE DOI
1112
BibRef
Corneliu, T.,
Nedevschi, S.[Sergiu],
Real-time pedestrian classification exploiting 2D and 3D information,
IET-ITS(2), No. 3, 2008, pp. 201-210.
DOI Link
1204
BibRef
Bota, S.,
Nedevschi, S.[Sergiu],
Multi-feature walking pedestrians detection for driving assistance
systems,
IET-ITS(2), No. 2, 2008, pp. 92-104.
DOI Link
1204
BibRef
Ye, Q.X.[Qi-Xiang],
Liang, J.X.[Ji-Xiang],
Jiao, J.B.[Jian-Bin],
Pedestrian Detection in Video Images via Error Correcting Output Code
Classification of Manifold Subclasses,
ITS(13), No. 1, March 2012, pp. 193-202.
IEEE DOI
1203
BibRef
Wu, B.[Bo],
Liang, J.X.[Ji-Xiang],
Ye, Q.X.[Qi-Xiang],
Han, Z.J.[Zhen-Jun],
Jiao, J.B.[Jian-Bin],
Fast Pedestrian Detection with Laser and Image Data Fusion,
ICIG11(605-608).
IEEE DOI
1109
BibRef
Hou, Y.L.[Ya-Li],
Pang, G.K.H.[Grantham K. H.],
Multicue-Based Crowd Segmentation Using Appearance and Motion,
SMCS(43), No. 2, March 2013, pp. 356-369.
IEEE DOI
1303
BibRef
Earlier:
Multi-cue-Based Crowd Segmentation in Stereo Vision,
CAIP11(I: 93-101).
Springer DOI
1109
BibRef
Zhang, H.,
Reardon, C.,
Parker, L.E.,
Real-Time Multiple Human Perception With Color-Depth Cameras on a
Mobile Robot,
Cyber(43), No. 5, 2013, pp. 1429-1441.
IEEE DOI
1309
Cameras
BibRef
Kiss, Á.[Ákos],
Szirányi, T.[Tamás],
Localizing people in multi-view environment using height map
reconstruction in real-time,
PRL(34), No. 16, 2013, pp. 2135-2143.
Elsevier DOI
1310
Multi-view localization
BibRef
Baltieri, D.[Davide],
Vezzani, R.[Roberto],
Cucchiara, R.[Rita],
Utasi, A.[Akos],
Benedek, C.[Csaba],
Sziranyi, T.[Tamas],
Multi-view people surveillance using 3D information,
VS11(1817-1824).
IEEE DOI
1201
BibRef
van Oosterhout, T.[Tim],
Englebienne, G.[Gwenn],
Kröse, B.J.A.[Ben J.A.],
RARE: people detection in crowded passages by range image
reconstruction,
MVA(26), No. 5, July 2015, pp. 561-573.
WWW Link.
1506
BibRef
Liu, J.[Jun],
Zhang, G.[Guyue],
Liu, Y.[Ye],
Tian, L.C.[Lu-Chao],
Chen, Y.Q.[Yan Qiu],
An ultra-fast human detection method for color-depth camera,
JVCIR(31), No. 1, 2015, pp. 177-185.
Elsevier DOI
1508
Human detection
BibRef
Zhang, G.[Guyue],
Liu, J.[Jun],
Liu, Y.[Ye],
Zhao, J.W.[Jing-Wen],
Tian, L.[Luchao],
Chen, Y.Q.[Yan Qiu],
Physical blob detector and Multi-Channel Color Shape Descriptor for
human detection,
JVCIR(52), 2018, pp. 13-23.
Elsevier DOI
1804
Human detection, RGB-D camera, Physical blob detector,
Multi-Channel Color Shape Descriptor
BibRef
Zhao, X.H.[Xiao-Hui],
Jiang, Y.C.[Yi-Cheng],
Stathaki, T.[Tania],
A novel low false alarm rate pedestrian detection framework based on
single depth images,
IVC(45), No. 1, 2016, pp. 11-21.
Elsevier DOI
1601
Pedestrian detection
BibRef
Li, K.,
Wang, X.,
Xu, Y.,
Wang, J.,
Density Enhancement-Based Long-Range Pedestrian Detection Using 3-D
Range Data,
ITS(17), No. 5, May 2016, pp. 1368-1380.
IEEE DOI
1605
Detectors
BibRef
Zhang, Z.G.[Zhi-Guo],
Tao, W.B.[Wen-Bing],
Sun, K.[Kun],
Hu, W.B.[Wen-Bin],
Yao, L.[Li],
Pedestrian detection aided by fusion of binocular information,
PR(60), No. 1, 2016, pp. 227-238.
Elsevier DOI
1609
Pedestrian detection
BibRef
Zhang, Z.G.[Zhi-Guo],
Tao, W.B.[Wen-Bing],
Pedestrian Detection in Binocular Stereo Sequence Based on Appearance
Consistency,
CirSysVideo(26), No. 9, September 2016, pp. 1772-1785.
IEEE DOI
1609
Computational modeling
BibRef
Wang, H.Y.[Hui-Yan],
Yan, Y.X.[Yi-Xiang],
Hua, J.[Jing],
Yang, Y.T.[Yu-Tao],
Wang, X.[Xun],
Li, X.L.[Xiao-Lan],
Deller, J.R.[John Robert],
Zhang, G.F.[Guo-Feng],
Bao, H.J.[Hu-Jun],
Pedestrian recognition in multi-camera networks using multilevel
important salient feature and multicategory incremental learning,
PR(67), No. 1, 2017, pp. 340-352.
Elsevier DOI
1704
Video pedestrian recognition
BibRef
Kocur, D.[Dusan],
Novak, D.[Daniel],
Svecova, M.[Maria],
UWB Radar Signal Processing for Localization of Persons with the
Changing Nature of Their Movement,
Sensors(207), No. 12, December 2016, pp. 50-57.
HTML Version.
1705
BibRef
Fan, Y.Y.[Yang-Yu],
Du, R.[Rui],
Wang, J.S.[Jian-Shu],
Identification of Pedestrian and Bicyclist through Range Micro Doppler
Signatures,
IEICE(E101-D), No. 2, February 2018, pp. 552-555.
WWW Link.
1802
BibRef
Tian, L.,
Li, M.,
Hao, Y.,
Liu, J.,
Zhang, G.,
Chen, Y.Q.,
Robust 3-D Human Detection in Complex Environments With a Depth
Camera,
MultMed(20), No. 9, September 2018, pp. 2249-2261.
IEEE DOI
1809
cameras, learning (artificial intelligence), neural nets,
object detection, candidate head-top locating stage,
deep learning
BibRef
Wang, P.[Pichao],
Li, W.Q.[Wan-Qing],
Ogunbona, P.[Philip],
Wan, J.[Jun],
Escalera, S.[Sergio],
RGB-D-based human motion recognition with deep learning: A survey,
CVIU(171), 2018, pp. 118-139.
Elsevier DOI
1812
Human motion recognition, RGB-D data, Deep learning, Survey
BibRef
Savelonas, M.A.[Michalis A.],
Pratikakis, I.[Ioannis],
Theoharis, T.[Theoharis],
Thanellas, G.[Georgios],
Abad, F.[Frédéric],
Bendahan, R.[Rémy],
Spatially sensitive statistical shape analysis for pedestrian
recognition from LIDAR data,
CVIU(171), 2018, pp. 1-9.
Elsevier DOI
1812
Local shape descriptors, Fisher encoding, LIDAR, Pedestrian recognition
BibRef
Jia, Y.[Yong],
Guo, Y.[Yong],
Yan, C.[Chao],
Sheng, H.X.[Hao-Xuan],
Cui, G.L.[Guo-Long],
Zhong, X.L.[Xiao-Ling],
Detection and Localization for Multiple Stationary Human Targets
Based on Cross-Correlation of Dual-Station SFCW Radars,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Li, J.J.[Jiao-Jiao],
Wu, J.J.[Jia-Ji],
You, Y.[Yang],
Jeon, G.G.[Gwang-Gil],
Parallel binocular stereo-vision-based GPU accelerated pedestrian
detection and distance computation,
RealTimeIP(17), No. 3, June 2020, pp. 447-457.
Springer DOI
2006
BibRef
Pinho Ferraz, P.A.[Pedro Augusto],
Godinho de Oliveira, B.A.[Bernardo Augusto],
Freitas Ferreira, F.M.[Flávia Magalhăes],
Paiva da Silva Martins, C.A.[Carlos Augusto],
Three-stage RGBD architecture for vehicle and pedestrian detection
using convolutional neural networks and stereo vision,
IET-ITS(14), No. 10, October 2020, pp. 1319-1327.
DOI Link
2009
BibRef
Fang, Z.,
López, A.M.,
Intention Recognition of Pedestrians and Cyclists by 2D Pose
Estimation,
ITS(21), No. 11, November 2020, pp. 4773-4783.
IEEE DOI
2011
Task analysis, Pose estimation, Roads,
Legged locomotion, Skeleton, Videos, Autonomous driving, ADAS,
cyclists intention recognition
BibRef
Yan, Y.[Yuyao],
Xu, M.[Ming],
Smith, J.S.[Jeremy S.],
Shen, M.[Mo],
Xi, J.[Jin],
Multicamera pedestrian detection using logic minimization,
PR(112), 2021, pp. 107703.
Elsevier DOI
2102
Pedestrian detection, Multicamera, Homography,
Logic minimization, Video surveillance
BibRef
Gao, X.[Xin],
Xiong, Y.J.[Yi-Jin],
Zhang, G.Y.[Guo-Ying],
Deng, H.[Hui],
Kou, K.K.[Kang-Kang],
Exploiting key points supervision and grouped feature fusion for
multiview pedestrian detection,
PR(131), 2022, pp. 108866.
Elsevier DOI
2208
Multiview aggregation, Pedestrian detection, Key points, Grouped feature fusion
BibRef
Katircioglu, I.[Isinsu],
Rhodin, H.[Helge],
Constantin, V.[Victor],
Spörri, J.[Jörg],
Salzmann, M.[Mathieu],
Fua, P.[Pascal],
Self-Supervised Human Detection and Segmentation via Background
Inpainting,
PAMI(44), No. 12, December 2022, pp. 9574-9588.
IEEE DOI
2212
BibRef
Earlier: A1, A2, A4, A5, A6, Only:
Human Detection and Segmentation via Multi-view Consensus,
ICCV21(2835-2844)
IEEE DOI
2203
Image segmentation, Training, Cameras, Optical imaging, Proposals,
Optical sensors, Object detection, Self-supervised training,
image inpainting.
Location awareness, Geometry, Image segmentation,
Motion segmentation, Training data,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Dai, X.B.[Xiao-Biao],
Hu, J.P.[Jun-Ping],
Luo, C.L.[Chun-Lei],
Zerfa, H.[Houcine],
Zhang, H.[Hai],
Duan, Y.X.[Yu-Xia],
NIRPed: A Novel Benchmark for Nighttime Pedestrian and Its Distance
Joint Detection,
ITS(24), No. 7, July 2023, pp. 6932-6942.
IEEE DOI
2307
Laser radar, Narrowband, Imaging, Cameras, Roads, Object detection,
Lighting, Distance detection, faster-RCNN,
pedestrian dataset
BibRef
Qiu, R.[Rui],
Xu, M.[Ming],
Yan, Y.[Yuyao],
Smith, J.S.[Jeremy S.],
Ling, Y.C.[Yu-Chen],
PPM: A boolean optimizer for data association in multi-view
pedestrian detection,
PR(156), 2024, pp. 110807.
Elsevier DOI
2408
Multi-camera, Data fusion, Video surveillance,
Logic minimization, Pedestrian detection
BibRef
Yamane, T.[Taiga],
Suzuki, S.[Satoshi],
Masumura, R.[Ryo],
Tora, S.[Shotaro],
MVAFormer: RGB-Based Multi-View Spatio-Temporal Action Recognition
with Transformer,
ICIP24(332-338)
IEEE DOI
2411
Image recognition, Stars, Transformers, Cameras, Vectors,
Task analysis, Multi-view action recognition, transformer
BibRef
Suzuki, S.[Satoshi],
Tora, S.[Shotaro],
Masumura, R.[Ryo],
Scene Generalized Multi-View Pedestrian Detection with Rotation-Based
Augmentation and Regularization,
ICIP24(596-602)
IEEE DOI
2411
Training, Learning systems, Pedestrians, Layout, Feature extraction,
Cameras, Data augmentation, Multi-view pedestrian detection,
regularization
BibRef
Blanch, M.R.[Miquel Romero],
Li, Z.[Zenjie],
Escalera, S.[Sergio],
Nasrollahi, K.[Kamal],
LiDAR-Assisted 3D Human Detection for Video Surveillance,
RWSurvil24(123-131)
IEEE DOI Code:
WWW Link.
2404
Adaptation models, Solid modeling, Pedestrians, Laser radar, Merging, Focusing
BibRef
Aung, S.[Sithu],
Park, H.[Haesol],
Jung, H.[Hyungjoo],
Cho, J.[Junghyun],
Enhancing Multi-view Pedestrian Detection Through Generalized 3D
Feature Pulling,
WACV24(1185-1194)
IEEE DOI
2404
Pedestrians, Computational modeling, Lighting, Feature extraction,
Cameras, Algorithms, Image recognition and understanding,
3D computer vision
BibRef
Hwang, J.[Jinwoo],
Benz, P.[Philipp],
Kim, P.[Pete],
Booster-SHOT: Boosting Stacked Homography Transformations for
Multiview Pedestrian Detection with Attention,
WACV24(362-371)
IEEE DOI
2404
Measurement, Pedestrians, Computational modeling, Logic gates,
Benchmark testing, Cameras, Algorithms, Image recognition and understanding
BibRef
Pei, Y.F.[Yi-Fei],
Shi, Z.P.[Zhi-Ping],
Geng, Q.[Qichuan],
Wang, Z.F.[Zhao-Fa],
Zhang, Y.K.[Yong-Kang],
Jiang, N.[Na],
RDEPD: Re-Exploring Depth Estimation for Pedestrian Detection,
ICIP23(2380-2384)
IEEE DOI
2312
BibRef
Lee, W.Y.[Wei-Yu],
Jovanov, L.[Ljubomir],
Philips, W.[Wilfried],
Cross-modality Attention and Multimodal Fusion Transformer for
Pedestrian Detection,
RealWorld22(608-623).
Springer DOI
2304
BibRef
Lee, W.Y.[Wei-Yu],
Jovanov, L.[Ljubomir],
Philips, W.[Wilfried],
Multi-view Target Transformation for Pedestrian Detection,
RealWorld23(1-10)
IEEE DOI
2302
Learning systems, Limiting, Target recognition, Conferences,
Network architecture, Distortion, Feature extraction
BibRef
Vora, J.[Jeet],
Dutta, S.[Swetanjal],
Jain, K.[Kanishk],
Karthik, S.[Shyamgopal],
Gandhi, V.[Vineet],
Bringing Generalization to Deep Multi-View Pedestrian Detection,
RealWorld23(110-119)
IEEE DOI
2302
Training, Deep learning, Codes, Conferences, Benchmark testing
BibRef
Qiu, R.[Rui],
Xu, M.[Ming],
Yan, Y.[Yuyao],
Smith, J.S.[Jeremy S.],
Yang, X.[Xi],
3D Random Occlusion and Multi-layer Projection for Deep Multi-camera
Pedestrian Localization,
ECCV22(X:695-710).
Springer DOI
2211
BibRef
Song, L.C.[Liang-Chen],
Wu, J.[Jialian],
Yang, M.[Ming],
Zhang, Q.[Qian],
Li, Y.[Yuan],
Yuan, J.S.[Jun-Song],
Stacked Homography Transformations for Multi-View Pedestrian
Detection,
ICCV21(6029-6037)
IEEE DOI
2203
Benchmark testing, Cameras, Task analysis, Standards, Stereo,
3D from multiview and other sensors, Detection and localization in 2D and 3D
BibRef
Li, T.H.[Tian-Hong],
Fan, L.J.[Li-Jie],
Yuan, Y.[Yuan],
Katabi, D.[Dina],
Unsupervised Learning for Human Sensing Using Radio Signals,
WACV22(1091-1100)
IEEE DOI
2202
Radio frequency, Representation learning,
RF signals, Supervised learning, Sensors, Trajectory, Transfer,
Semi- and Un- supervised Learning
BibRef
Lima, J.P.[Joăo Paulo],
Roberto, R.[Rafael],
Figueiredo, L.[Lucas],
Simőes, F.[Francisco],
Teichrieb, V.[Veronica],
Generalizable Multi-Camera 3D Pedestrian Detection,
LXCV21(1232-1240)
IEEE DOI
2109
Training, Sensitivity, Fuses, Pose estimation
BibRef
Zhong, T.[Tao],
Kim, W.[Wonjik],
Tanaka, M.[Masayuki],
Okutomi, M.[Masatoshi],
Human Segmentation with Dynamic LiDAR Data,
ICPR21(1166-1172)
IEEE DOI
2105
Image segmentation, Laser radar,
Motion segmentation, Dynamics, Neural networks, Estimation
BibRef
Zhao, Z.,
Zhang, J.,
Shan, S.,
Noise Robust Hard Example Mining for Human Detection with Efficient
Depth-Thermal Fusion,
FG20(809-813)
IEEE DOI
2102
Noise robustness, Feature extraction, Training, Head, Thermal noise,
Kernel, Detectors
BibRef
Tupper, A.,
Green, R.,
Pedestrian Proximity Detection using RGB-D Data,
IVCNZ19(1-6)
IEEE DOI
2004
cameras, edge detection, image capture, image colour analysis,
image filtering, image matching, image segmentation,
Intel RealSense D435 stereo vision depth camera
BibRef
Wang, F.,
Zhou, S.,
Panev, S.,
Han, J.,
Huang, D.,
Person-in-WiFi: Fine-Grained Person Perception Using WiFi,
ICCV19(5451-5460)
IEEE DOI
2004
image segmentation, learning (artificial intelligence),
neural nets, pose estimation, receiving antennas, signal detection, Laser radar
BibRef
Carletti, V.[Vincenzo],
del Pizzo, L.[Luca],
Percannella, G.[Gennaro],
Vento, M.[Mario],
An efficient and effective method for people detection from top-view
depth cameras,
AVSS18(1-6)
IEEE DOI
1806
BibRef
Earlier:
Benchmarking Two Algorithms for People Detection from Top-View Depth
Cameras,
CIAP17(I:73-83).
Springer DOI
1711
cameras, computational complexity, image sensors,
object detection, object tracking, optimisation,
Magnetic heads
BibRef
Lin, T.,
Tan, D.S.,
Tang, H.,
Chien, S.,
Chang, F.,
Chen, Y.,
Cheng, W.,
Hua, K.,
Pedestrian Detection from Lidar Data via Cooperative Deep and
Hand-Crafted Features,
ICIP18(1922-1926)
IEEE DOI
1809
Feature extraction,
Laser radar, Sensors,
deep learning
BibRef
Corbetta, A.,
Menkovski, V.,
Toschi, F.,
Weakly supervised training of deep convolutional neural networks for
overhead pedestrian localization in depth fields,
AVSS17(1-6)
IEEE DOI
1806
learning (artificial intelligence), neural nets,
object detection, object tracking, pedestrians, DL algorithms,
Training data
BibRef
Matti, D.,
Ekenel, H.K.,
Thiran, J.P.,
Combining LiDAR space clustering and convolutional neural networks
for pedestrian detection,
AVSS17(1-6)
IEEE DOI
1806
feature extraction, image classification, neural nets,
object detection, optical radar, pattern clustering, pedestrians,
Visualization
BibRef
Santoso, P.S.,
Hang, H.M.,
Learning-based human detection applied to RGB-D images,
ICIP17(3365-3369)
IEEE DOI
1803
Feature extraction, Principal component analysis, Proposals,
Robustness, Sensors, Support vector machines, Training, CNNs,
depth map
BibRef
Li, H.,
Liu, J.,
Zhang, G.,
Gao, Y.,
Wu, Y.,
Multi-glimpse LSTM with color-depth feature fusion for human
detection,
ICIP17(905-909)
IEEE DOI
1803
Context modeling, Feature extraction, Fuses, Image color analysis,
Logic gates, Proposals, Training, Feature fusion, Human detection,
RGB-D
BibRef
Park, K.,
Kim, S.,
Sohn, K.,
Pedestrian proposal generation using depth-aware scale estimation,
ICIP17(2045-2049)
IEEE DOI
1803
Cameras, Estimation, Feature extraction, Image color analysis,
Proposals, Radio frequency, Training, RGB-D object proposal,
scale-invariant feature
BibRef
Zhou, K.,
Paiement, A.,
Mirmehdi, M.,
Detecting humans in RGB-D data with CNNs,
MVA17(306-309)
DOI Link
1708
Cameras, Color, Encoding, Feature extraction, Image color analysis, Proposals
BibRef
Candido, J.[Jorge],
Marengoni, M.[Mauricio],
Ground Plane Segmentation Using Artificial Neural Network for
Pedestrian Detection,
ICIAR17(268-277).
Springer DOI
1706
BibRef
Haque, A.[Albert],
Alahi, A.[Alexandre],
Fei-Fei, L.[Li],
Recurrent Attention Models for Depth-Based Person Identification,
CVPR16(1229-1238)
IEEE DOI
1612
BibRef
Hu, Z.,
Ai, H.,
Ren, H.,
Zhang, Y.,
Fast human detection in RGB-D images based on color-depth joint
feature learning,
ICIP16(266-270)
IEEE DOI
1610
Cameras
BibRef
Barsi, A.,
Lovas, T.,
Molnar, B.,
Somogyi, A.,
Igazvolgyi, Z.,
Pedestrian Detection By Laser Scanning And Depth Imagery,
ISPRS16(B3: 465-468).
DOI Link
1610
BibRef
Lin, Y.S.,
Chen, H.T.,
Chuang, J.H.,
An efficient probabilistic occupancy map-based people localization
approach,
VCIP15(1-4)
IEEE DOI
1605
Cameras
BibRef
Zarshenas, A.[Amin],
Mesmakhosroshahi, M.[Maral],
Kim, J.[Joohee],
Fast depth estimation using spatio-temporal prediction for
stereo-based pedestrian detection,
VCIP15(1-4)
IEEE DOI
1605
Advanced driver assistance systems
BibRef
Mesmakhosroshahi, M.[Maral],
Kim, J.[Joohee],
Lee, Y.[Yunsik],
Kim, J.B.[Jong-Bok],
Stereo based region of interest generation for pedestrian detection
in driver assistance systems,
ICIP13(3386-3389)
IEEE DOI
1402
Advanced driver assistance system
BibRef
Mesmakhosroshahi, M.[Maral],
Kim, J.[Joohee],
Reducing search space for fast pedestrian detection,
VCIP15(1-4)
IEEE DOI
1605
Correlation
BibRef
Yi, J.[Jaeho],
Lee, S.K.[Seung-Kyu],
Bae, S.[Sujung],
Jeong, M.[Moonsik],
Human Body Volume Recovery from Single Depth Image,
ISVC15(I: 396-405).
Springer DOI
1601
BibRef
Mehmood, M.O.,
Ambellouis, S.,
Achard, C.,
Exploiting 3D geometric primitives for multicamera pedestrian
detection,
AVSS15(1-6)
IEEE DOI
1511
computational geometry
BibRef
Seib, V.[Viktor],
Schmidt, G.[Guido],
Kusenbach, M.[Michael],
Paulus, D.[Dietrich],
Fourier Features For Person Detection in Depth Data,
CAIP15(I:824-836).
Springer DOI
1511
BibRef
Ubukata, T.[Tom],
Shibata, M.[Masatoshi],
Terabayashi, K.[Kenji],
Mora, A.[Alessandro],
Kawashita, T.[Takehiro],
Masuyama, G.[Gakuto],
Umeda, K.[Kazunori],
Fast Human Detection Combining Range Image Segmentation and Local
Feature Based Detection,
ICPR14(4281-4286)
IEEE DOI
1412
Cameras
BibRef
Hoegner, L.,
Hanel, A.,
Weinmann, M.,
Jutzi, B.,
Hinz, S.,
Stilla, U.,
Towards people detection from fused time-of-flight and thermal infrared
images,
PCV14(121-126).
DOI Link
1404
BibRef
Rodríguez González, D.I.[Domingo Iván],
Hayet, J.B.[Jean-Bernard],
Fast Human Detection in RGB-D Images with Progressive
SVM-Classification,
PSIVT13(337-348).
Springer DOI
1402
BibRef
Liu, J.[Jun],
Liu, Y.[Ye],
Cui, Y.[Ying],
Chen, Y.Q.[Yan Qiu],
Real-time human detection and tracking in complex environments using
single RGBD camera,
ICIP13(3088-3092)
IEEE DOI
1402
Human detection;RGBD;Tracking
BibRef
Shen, Y.J.[Yu-Jie],
Hao, Z.H.[Zhong-Hua],
Wang, P.F.[Peng-Fei],
Ma, S.W.[Shi-Wei],
Liu, W.Q.[Wan-Quan],
A Novel Human Detection Approach Based on Depth Map via Kinect,
HAU3D13(535-541)
IEEE DOI
1309
BibRef
Rauter, M.[Michael],
Reliable Human Detection and Tracking in Top-View Depth Images,
HAU3D13(529-534)
IEEE DOI
1309
3D Vision
See also GPU-Accelerated Human Detection Using Fast Directional Chamfer Matching.
BibRef
Won, K.H.[Kwang Hee],
Gurmu, S.[Sisay],
Jung, S.K.[Soon Ki],
Pedestrian detection using labeled depth data,
FCV13(117-120).
IEEE DOI
1304
BibRef
Migniot, C.[Cyrille],
Ababsa, F.[Fakhreddine],
3D Human Tracking from Depth Cue in a Buying Behavior Analysis Context,
CAIP13(482-489).
Springer DOI
1308
BibRef
Liu, W.[Wu],
Xia, T.[Tian],
Wan, J.[Ji],
Zhang, Y.D.[Yong-Dong],
Li, J.T.[Jin-Tao],
RGB-D Based Multi-attribute People Search in Intelligent Visual
Surveillance,
MMMod12(750-760).
Springer DOI
1201
BibRef
Ikemura, S.[Sho],
Fujiyoshi, H.[Hironobu],
Human detection by Haar-like filtering using depth information,
ICPR12(813-816).
WWW Link.
1302
BibRef
Li, Y.R.[Yan-Ran],
Yu, S.Q.[Shi-Qi],
Wu, S.Y.[Sheng-Yin],
Framelet features for pedestrian detection in noisy depth images,
ICIP13(2949-2952)
IEEE DOI
1402
Pedestrian detection;adaptive selection features;framelet
BibRef
Martelli, S.[Samuele],
San Biagio, M.,
Murino, V.[Vittorio],
Latent subcategory models for pedestrian detection with partial
occlusion handling,
AVSS15(1-6)
IEEE DOI
1511
feature extraction
BibRef
Martelli, S.[Samuele],
Cristani, M.[Marco],
Murino, V.[Vittorio],
Stereo-Based Framework for Pedestrian Detection with Partial Occlusion
Handling,
AVSS12(25-30).
IEEE DOI
1211
BibRef
Cui, Y.[Yan],
Chang, W.[Will],
Nöll, T.[Tobias],
Stricker, D.[Didier],
KinectAvatar: Fully Automatic Body Capture Using a Single Kinect,
CDF12(II:133-147).
Springer DOI
1304
BibRef
Mandeljc, R.[Rok],
Kovac(ic(, S.[Stanislav],
Kristan, M.[Matej],
Per, J.[Janez],
Non-sequential Multi-view Detection, Localization and Identification of
People Using Multi-modal Feature Maps,
ACCV12(III:691-704).
Springer DOI
1304
BibRef
Sheasby, G.[Glenn],
Valentin, J.[Julien],
Crook, N.[Nigel],
Torr, P.H.S.[Philip H.S.],
A Robust Stereo Prior for Human Segmentation,
ACCV12(II:94-107).
Springer DOI
1304
BibRef
Wang, N.[Ningbo],
Gong, X.J.[Xiao-Jin],
Liu, J.L.[Ji-Lin],
A new depth descriptor for pedestrian detection in RGB-D images,
ICPR12(3688-3691).
WWW Link.
1302
BibRef
Gu, D.G.[Dong-Ge],
Zhao, Y.[Yong],
Yuan, Y.[Yule],
Hu, G.[Gang],
Human segmentation based on disparity map and GrabCut,
CVRS12(67-71).
IEEE DOI
1302
BibRef
Yu, S.Q.[Shi-Qi],
Wu, S.Y.[Sheng-Yin],
Wang, L.[Liang],
SLTP: A Fast Descriptor for People Detection in Depth Images,
AVSS12(43-47).
IEEE DOI
1211
BibRef
Borjas, V.[Víctor],
Drozdzal, M.[Michal],
Radeva, P.I.[Petia I.],
Vitriŕ, J.[Jordi],
Human Relative Position Detection Based on Mutual Occlusion,
CIARP12(332-339).
Springer DOI
1209
BibRef
Lee, J.T.[Jong Taek],
Chen, C.C.[Chia-Chih],
Aggarwal, J.K.,
Recognizing human-vehicle interactions from aerial video without
training,
WAVP11(53-60).
IEEE DOI
1106
BibRef
Xia, L.[Lu],
Chen, C.C.[Chia-Chih],
Aggarwal, J.K.,
View invariant human action recognition using histograms of 3D joints,
HAU3D12(20-27).
IEEE DOI
1207
BibRef
And:
Human detection using depth information by Kinect,
HAU3D11(15-22).
IEEE DOI
1106
BibRef
Ryoo, M.S.,
Lee, J.T.[Jong Taek],
Aggarwal, J.K.,
Video scene analysis of interactions between humans and vehicles using
event context,
CIVR10(462-469).
DOI Link
1007
BibRef
Earlier: A2, A1, A3:
View independent recognition of human-vehicle interactions using 3-D
models,
WMVC09(1-8).
IEEE DOI
0912
BibRef
Zeng, C.B.[Cheng-Bin],
Ma, H.D.[Hua-Dong],
Human detection using multi-camera and 3D scene knowledge,
ICIP11(1793-1796).
IEEE DOI
1201
BibRef
Cho, S.H.[Sang-Ho],
Kim, D.[Daehwan],
Kim, T.[Taewan],
Kim, D.J.[Dai-Jin],
Pose robust human detection using multiple oriented 2d elliptical
filters,
VNBA08(9-16).
DOI Link
1208
multiple oriented 2D elliptical filters (MO2DEFs),
BibRef
Gill, T.,
Keller, J.M.[James M.],
Anderson, D.T.[Derek T.],
Luke, R.H.[Robert H.],
A system for change detection and human recognition in voxel space
using the Microsoft Kinect sensor,
AIPR11(1-8).
IEEE DOI
1204
BibRef
Bombini, L.[Luca],
Broggi, A.[Alberto],
Buzzoni, M.[Michele],
Medici, P.[Paolo],
Intelligent Overhead Sensor for Sliding Doors:
A Stereo Based Method for Augmented Efficiency,
CIAP11(I: 217-226).
Springer DOI
1109
BibRef
Nam, B.[Bodam],
Kang, S.I.[Sung-Il],
Hong, H.K.[Hyun-Ki],
Pedestrian detection system based on stereo vision for mobile robot,
FCV11(1-7).
IEEE DOI
1102
BibRef
Ikemura, S.[Sho],
Fujiyoshi, H.[Hironobu],
Real-Time Human Detection Using Relational Depth Similarity Features,
ACCV10(IV: 25-38).
Springer DOI
1011
BibRef
Hosotani, D.[Daisuke],
Yoda, I.[Ikushi],
Sakaue, K.[Katsuhiko],
Wheelchair recognition by using stereo vision and histogram of oriented
gradients (HOG) in real environments,
WACV09(1-6).
IEEE DOI
0912
BibRef
Seki, A.[Akihito],
Hattori, H.[Hiroshi],
Nishiyama, M.[Manabu],
Watanabe, T.[Tomoki],
Temporal integration for on-board stereo-based pedestrian detection,
WACV09(1-6).
IEEE DOI
0912
BibRef
Hattori, H.[Hiroshi],
Seki, A.[Akihito],
Nishiyama, M.[Manabu],
Watanabe, T.[Tomoki],
Stereo-Based Pedestrian Detection using Multiple Patterns,
BMVC09(xx-yy).
PDF File.
0909
See also Real-time 3D tracking using multiple sample points.
BibRef
Walk, S.[Stefan],
Schindler, K.[Konrad],
Schiele, B.[Bernt],
Disparity Statistics for Pedestrian Detection:
Combining Appearance, Motion and Stereo,
ECCV10(VI: 182-195).
Springer DOI
1009
BibRef
Walk, S.[Stefan],
Majer, N.[Nikodem],
Schindler, K.[Konrad],
Schiele, B.[Bernt],
New features and insights for pedestrian detection,
CVPR10(1030-1037).
IEEE DOI
1006
BibRef
Wojek, C.[Christian],
Walk, S.[Stefan],
Schiele, B.[Bernt],
Multi-cue onboard pedestrian detection,
CVPR09(794-801).
IEEE DOI
0906
BibRef
Sun, L.[Luo],
Di, H.J.[Hui-Jun],
Tao, L.M.[Lin-Mi],
Xu, G.Y.[Guang-You],
A Robust Approach for Person Localization in Multi-camera Environment,
ICPR10(4036-4039).
IEEE DOI
1008
BibRef
Bansal, M.[Mayank],
Matei, B.C.[Bogdan C.],
Sawhney, H.S.[Harpreet S.],
Jung, S.H.[Sang-Hack],
Eledath, J.[Jayan],
Pedestrian detection with depth-guided structure labeling,
S3DV09(31-38).
IEEE DOI
0910
BibRef
Li, Y.[Yuan],
Wu, B.[Bo],
Nevatia, R.[Ram],
Human detection by searching in 3d space using camera and scene
knowledge,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Bahadori, S.,
Iocchi, L.,
Nardi, D.,
Settembre, G.P.,
Stereo vision based human body detection from a localized mobile robot,
AVSBS05(499-504).
IEEE DOI
0602
BibRef
Li, L.Y.[Li-Yuan],
Koh, Y.T.[Ying Ting],
Ge, S.Z.S.[Shu-Zhi Sam],
Huang, W.M.[Wei-Min],
Stereo-based human detection for mobile service robots,
ICARCV04(I: 74-79).
IEEE DOI
0412
BibRef
Kruse, F.,
Folster, F.,
Ahrholdt, M.,
Rohling, H.,
Meinecke, M.M.,
To, T.B.,
Target classification based on near-distance radar sensors,
IVS04(722-727).
IEEE DOI
0411
E.g. detect petestrians.
BibRef
Munkelt, O.[Olaf],
Ridder, C.[Christof],
Hansel, D.[David],
Hafner, W.[Walter],
A Model Driven 3D Image Interpretation System Applied to
Person Detection in Video Images,
ICPR98(Vol I: 70-73).
IEEE DOI
9808
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human Detection, People Detection, Pedestrians, Using Body Parts, Body Shape .