Papageorgiou, C.P.[Constantine P.],
Poggio, T.[Tomaso],
A Trainable System for Object Detection,
IJCV(38), No. 1, June 2000, pp. 15-33.
DOI Link
0006
BibRef
Earlier:
A Pattern Classification Approach to Dynamical Object Detection,
ICCV99(1223-1228).
IEEE DOI
BibRef
And:
Trainable Pedestrian Detection,
ICIP99(IV:35-39).
IEEE DOI Object detection in Video using wavelets.
BibRef
Papageorgiou, C.P.[Constantine P.],
A Trainable System for Object Detection in Images and Video Sequences,
MIT AI-TR-1685, May 2000.
BibRef
0005
Ph.D.Thesis, May 2000.
WWW Link.
0105
BibRef
Mohan, A.[Anuj],
Papageorgiou, C.P.[Constantine P.],
Poggio, T.[Tomaso],
Example-Based Object Detection in Images by Components,
PAMI(23), No. 4, April 2001, pp. 349-361.
IEEE DOI
0001
Locate people in cluttered scenes by finding the 4 components -- head,
legs, left arm, and right arm, then a second classifier is applied
to exclude non-persons.
BibRef
Papageorgiou, C.P.[Constantine P.],
Evgeniou, T.[Theodoros],
Poggio, T.[Tomaso],
A Trainable Object Detection System,
DARPA98(1019-1024).
BibRef
9800
And:
A trainable pedestrian detection system,
IVS98(xx-yy).
BibRef
Papageorgiou, C.P.[Constantine P.],
Oren, M.[Michael], and
Poggio, T.[Tomaso],
A General Framework for Object Detection,
ICCV98(555-562).
IEEE DOI
BibRef
9800
Oren, M.[Michael],
Papageorgiou, C.P.[Constantine P.],
Sinha, P.[Pawan],
Osuna, E.[Edgar],
Poggio, T.[Tomaso],
Pedestrian Detection Using Wavelet Templates,
CVPR97(193-199).
IEEE DOI
9704
BibRef
And:
A Trainable System for People Detection,
DARPA97(207-214).
Template average wavelet representations. vertical/horizontal/corner
BibRef
Ioffe, S.[Sergey],
Forsyth, D.A.[David A.],
Probabilistic Methods for Finding People,
IJCV(43), No. 1, June 2001, pp. 45-68.
DOI Link Or:
PDF File.
0108
BibRef
Earlier:
Finding People by Sampling,
ICCV99(1092-1097).
IEEE DOI Find candidate parts then assemble those that are consistent with
being a person. Not all combinations can be
tested, use a sampling approach. Segmentation into parts
is the limiting factor.
BibRef
Ioffe, S.[Sergey],
Forsyth, D.A.[David A.],
Mixtures of Trees for Object Recognition,
CVPR01(II:180-185).
IEEE DOI
0110
BibRef
And:
Human Tracking with Mixtures of Trees,
ICCV01(I: 690-695).
IEEE DOI Or:
PDF File.
0106
BibRef
Tran, D.[Duan],
Forsyth, D.A.[David A.],
Improved Human Parsing with a Full Relational Model,
ECCV10(IV: 227-240).
Springer DOI
1009
BibRef
Nanni, L.,
Lumini, A.,
Ensemble of Multiple Pedestrian Representations,
ITS(9), No. 2, June 2008, pp. 365-369.
IEEE DOI
0806
BibRef
Armanfard, N.[Narges],
Komeili, M.[Majid],
Kabir, E.[Ehsanollah],
TED: A texture-edge descriptor for pedestrian detection in video
sequences,
PR(45), No. 3, March 2012, pp. 983-992.
Elsevier DOI
1111
Pedestrian detection; Texture; Edge; Local binary pattern; Block-based
approach; Background subtraction; Surveillance systems
BibRef
Tran, K.N.[Khai N.],
Kakadiaris, I.A.[Ioannis A.],
Shah, S.K.[Shishir K.],
Part-based motion descriptor image for human action recognition,
PR(45), No. 7, July 2012, pp. 2562-2572.
Elsevier DOI
1203
BibRef
Earlier:
Modeling Motion of Body Parts for Action Recognition,
BMVC11(xx-yy).
HTML Version.
1110
Human action recognition; Motion descriptor image; Subspace learning;
Principal component analysis; Discriminant analysis; Sparse
representation
BibRef
Andriluka, M.[Mykhaylo],
Roth, S.[Stefan],
Schiele, B.[Bernt],
Discriminative Appearance Models for Pictorial Structures,
IJCV(99), No. 3, September 2012, pp. 259-280.
WWW Link.
1206
BibRef
Earlier:
Monocular 3D pose estimation and tracking by detection,
CVPR10(623-630).
IEEE DOI
1006
Video of talk:
WWW Link.
BibRef
Earlier:
Pictorial structures revisited:
People detection and articulated pose estimation,
CVPR09(1014-1021).
IEEE DOI
0906
BibRef
Earlier:
People-tracking-by-detection and people-detection-by-tracking,
CVPR08(1-8).
IEEE DOI
0806
See also 3D Pictorial Structures Revisited: Multiple Human Pose Estimation.
BibRef
Andriluka, M.[Mykhaylo],
Sigal, L.[Leonid],
Human Context: Modeling Human-Human Interactions for Monocular 3D Pose
Estimation,
AMDO12(260-272).
Springer DOI
1208
BibRef
Tang, S.[Siyu],
Andriluka, M.[Mykhaylo],
Schiele, B.[Bernt],
Detection and Tracking of Occluded People,
IJCV(110), No. 1, October 2014, pp. 58-69.
Springer DOI
1410
BibRef
Earlier:
BMVC12(9).
DOI Link
1301
Award, BMVC.
BibRef
Tang, S.[Siyu],
Andriluka, M.[Mykhaylo],
Andres, B.[Bjoern],
Schiele, B.[Bernt],
Multiple People Tracking by Lifted Multicut and Person
Re-identification,
CVPR17(3701-3710)
IEEE DOI
1711
BibRef
Earlier: A1, A3, A2, A4:
Multi-person Tracking by Multicut and Deep Matching,
MOTC16(II: 100-111).
Springer DOI
1611
Benchmark testing, Image edge detection, Mathematical model,
Optimization, Target tracking, Trajectory
BibRef
Tang, S.[Siyu],
Andriluka, M.[Mykhaylo],
Milan, A.[Anton],
Schindler, K.[Konrad],
Roth, S.[Stefan],
Schiele, B.[Bernt],
Learning People Detectors for Tracking in Crowded Scenes,
ICCV13(1049-1056)
IEEE DOI
1403
Multiple People Tracking
BibRef
Pishchulin, L.[Leonid],
Jain, A.[Arjun],
Andriluka, M.[Mykhaylo],
Thormahlen, T.[Thorsten],
Schiele, B.[Bernt],
Articulated people detection and pose estimation: Reshaping the future,
CVPR12(3178-3185).
IEEE DOI
1208
BibRef
Wojek, C.[Christian],
Schiele, B.[Bernt],
A Performance Evaluation of Single and Multi-feature People Detection,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Bhattacharyya, A.,
Fritz, M.[Mario],
Schiele, B.[Bernt],
Long-Term On-board Prediction of People in Traffic Scenes Under
Uncertainty,
CVPR18(4194-4202)
IEEE DOI
1812
Pattern recognition
BibRef
Seemann, E.[Edgar],
Fritz, M.[Mario],
Schiele, B.[Bernt],
Towards Robust Pedestrian Detection in Crowded Image Sequences,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Seemann, E.[Edgar],
Schiele, B.[Bernt],
Cross-Articulation Learning for Robust Detection of Pedestrians,
DAGM06(242-252).
Springer DOI
0610
Award, GCPR, HM.
BibRef
Seemann, E.[Edgar],
Leibe, B.[Bastian],
Schiele, B.[Bernt],
Multi-Aspect Detection of Articulated Objects,
CVPR06(II: 1582-1588).
IEEE DOI
0606
BibRef
Earlier: A2, A1, A3:
Pedestrian Detection in Crowded Scenes,
CVPR05(I: 878-885).
IEEE DOI
0507
Pedestrians.
BibRef
Seemann, E.,
Leibe, B.,
Mikolajczyk, K.[Krystian],
Schiele, B.,
An Evaluation of Local Shape-Based Features for Pedestrian Detection,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Li, S.F.[Shi-Feng],
Lu, H.C.[Hu-Chuan],
Zhang, L.[Lei],
Arbitrary body segmentation in static images,
PR(45), No. 9, September 2012, pp. 3402-3413.
Elsevier DOI
1206
Pictorial structure; Superpixel based EM algorithm; L1 based graph
cuts
Human body from static images.
BibRef
Ma, L.Y.[Lian-Yang],
Yang, X.K.[Xiao-Kang],
Xu, Y.[Yi],
Zhu, J.[Jun],
A generalized EMD with body prior for pedestrian identification,
JVCIR(24), No. 6, August 2013, pp. 708-716.
Elsevier DOI
1306
BibRef
Earlier:
Human identification using body prior and generalized EMD,
ICIP11(1441-1444).
IEEE DOI
1201
EMD; Generalized EMD; Pedestrian identification; Body prior;
Probabilistic map; Matching metric; KL divergence; Learning weight
BibRef
Lo, K.H.[Kuo-Hua],
Chuang, J.H.[Jen-Hui],
Vanishing Point-based Line Sampling for Real-time People Localization,
CirSysVideo(23), No. 7, 2013, pp. 1209-1223.
IEEE DOI
1307
BibRef
Earlier:
View-invariant measure of line correspondence and its application in
people localization,
ICIP12(1985-1988).
IEEE DOI
1302
BibRef
Earlier:
Vanishing point-based line sampling for efficient axis-based people
localization,
ICIP11(521-524).
IEEE DOI
1201
filtering theory
BibRef
Liu, C.W.,
Chen, H.T.,
Lo, K.H.[Kuo-Hua],
Wang, C.J.,
Chuang, J.H.[Jen-Hui],
Accelerating Vanishing Point-Based Line Sampling Scheme for Real-Time
People Localization,
CirSysVideo(27), No. 3, March 2017, pp. 409-420.
IEEE DOI
1703
Adaptation models
BibRef
Lin, Y.S.[Yen-Shuo],
Lo, K.H.[Kuo-Hua],
Chen, H.T.[Hua-Tsung],
Chuang, J.H.[Jen-Hui],
Vanishing Point-Based Image Transforms for Enhancement of
Probabilistic Occupancy Map-Based People Localization,
IP(23), No. 12, December 2014, pp. 5586-5598.
IEEE DOI
1402
cameras
BibRef
Vansteenberge, J.[Jarich],
Mukunoki, M.[Masayuki],
Minoh, M.[Michihiko],
Improving Hough Based Pedestrian Detection Accuracy by Using
Segmentation and Pose Subspaces,
IEICE(E97-D), No. 10, October 2014, pp. 2760-2768.
WWW Link.
1411
BibRef
Xu, J.L.[Jiao-Long],
Vazquez, D.,
Lopez, A.M.[Antonio M.],
Marin, J.,
Ponsa, D.[Daniel],
Learning a Part-Based Pedestrian Detector in a Virtual World,
ITS(15), No. 5, October 2014, pp. 2121-2131.
IEEE DOI
1410
accident prevention
BibRef
Vazquez, D.[David],
Xu, J.L.[Jiao-Long],
Ramos, S.[Sebastian],
Lopez, A.M.[Antonio M.],
Ponsa, D.[Daniel],
Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes,
GT13(706-711)
IEEE DOI
1309
ADAS;Domain Adaptation;Pedestrian Detection
BibRef
Xu, J.L.[Jiao-Long],
Vazquez, D.[David],
Ramos, S.[Sebastian],
Lopez, A.M.[Antonio M.],
Ponsa, D.[Daniel],
Adapting a Pedestrian Detector by Boosting LDA Exemplar Classifiers,
GT13(688-693).
IEEE DOI
1309
LDA
BibRef
Delibasis, K.K.,
Plagianakos, V.P.,
Maglogiannis, I.,
Refinement of human silhouette segmentation in omni-directional
indoor videos,
CVIU(128), No. 1, 2014, pp. 65-83.
Elsevier DOI
1410
Video segmentation
BibRef
Al-Maadeed, S.[Somaya],
Almotaeryi, R.[Resheed],
Jiang, R.[Richard],
Bouridane, A.[Ahmed],
Robust human silhouette extraction with Laplacian fitting,
PRL(49), No. 1, 2014, pp. 69-76.
Elsevier DOI
1410
Human silhouette
BibRef
Liu, W.,
Yu, B.,
Duan, C.,
Chai, L.,
Yuan, H.,
Zhao, H.,
A Pedestrian-Detection Method Based on Heterogeneous Features and
Ensemble of Multi-View Pose Parts,
ITS(16), No. 2, April 2015, pp. 813-824.
IEEE DOI
1504
Detectors
BibRef
Takarli, F.[Fariba],
Aghagolzadeh, A.[Ali],
Seyedarabi, H.[Hadi],
Combination of high-level features with low-level features for
detection of pedestrian,
SIViP(10), No. 1, January 2016, pp. 93-101.
WWW Link.
1601
BibRef
Kim, K.[Kyuwon],
Sohn, K.H.[Kwang-Hoon],
Real-time Human Detection based on Personness Estimation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Yan, Z.,
Zhan, Y.,
Peng, Z.,
Liao, S.,
Shinagawa, Y.,
Zhang, S.,
Metaxas, D.N.,
Zhou, X.S.,
Multi-Instance Deep Learning:
Discover Discriminative Local Anatomies for Bodypart Recognition,
MedImg(35), No. 5, May 2016, pp. 1332-1343.
IEEE DOI
1605
Algorithm design and analysis
BibRef
Liu, J.J.[Jing-Jing],
Zhang, S.T.[Shao-Ting],
Wang, S.[Shu],
Metaxas, D.M.[Dimitris M.],
Multispectral Deep Neural Networks for Pedestrian Detection,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Cao, J.,
Pang, Y.,
Li, X.,
Pedestrian Detection Inspired by Appearance Constancy and Shape
Symmetry,
IP(25), No. 12, December 2016, pp. 5538-5551.
IEEE DOI
1612
BibRef
Earlier:
CVPR16(1316-1324)
IEEE DOI
1612
object detection
BibRef
Cao, J.,
Pang, Y.,
Li, X.,
Learning Multilayer Channel Features for Pedestrian Detection,
IP(26), No. 7, July 2017, pp. 3210-3220.
IEEE DOI
1706
Computational modeling, Feature extraction, Image resolution,
Neural networks, Object detection, Proposals, CNN, HOG+LUV, NMS,
Pedestrian detection, multi-layer, channel, features, (MCF)
BibRef
Hariharan, B.[Bharath],
Arbeláez, P.[Pablo],
Girshick, R.[Ross],
Malik, J.[Jitendra],
Object Instance Segmentation and Fine-Grained Localization Using
Hypercolumns,
PAMI(39), No. 4, April 2017, pp. 627-639.
IEEE DOI
1703
BibRef
Earlier:
Hypercolumns for object segmentation and fine-grained localization,
CVPR15(447-456)
IEEE DOI
1510
Image segmentation
See also Indoor Scene Understanding with RGB-D Images: Bottom-up Segmentation, Object Detection and Semantic Segmentation.
BibRef
Alcázar, J.L.[Juan León],
Heilbron, F.C.[Fabian Caba],
Mai, L.[Long],
Perazzi, F.[Federico],
Lee, J.Y.[Joon-Young],
Arbeláez, P.[Pablo],
Ghanem<", B.[Bernard], /A1>,
APES: Audiovisual Person Search in Untrimmed Video,
MULA21(1720-1729)
IEEE DOI
2109
Visualization, Annotations,
Streaming media, Benchmark testing, Search problems
BibRef
Gkioxari, G.[Georgia],
Malik, J.[Jitendra],
Finding action tubes,
CVPR15(759-768)
IEEE DOI
1510
BibRef
Gkioxari, G.[Georgia],
Girshick, R.[Ross],
Malik, J.[Jitendra],
Actions and Attributes from Wholes and Parts,
ICCV15(2470-2478)
IEEE DOI
1602
BibRef
And:
Contextual Action Recognition with R*CNN,
ICCV15(1080-1088)
IEEE DOI
1602
Birds.
BibRef
Gkioxari, G.[Georgia],
Hariharan, B.[Bharath],
Girshick, R.[Ross],
Malik, J.[Jitendra],
Using k-Poselets for Detecting People and Localizing Their Keypoints,
CVPR14(3582-3589)
IEEE DOI
1409
BibRef
Li, M.[Meng],
Leung, H.[Howard],
Graph-based approach for 3D human skeletal action recognition,
PRL(87), No. 1, 2017, pp. 195-202.
Elsevier DOI
1703
Action recognition
BibRef
Huang, L.[Lei],
Nie, J.[Jie],
Wei, Z.Q.[Zhi-Qiang],
Human body segmentation based on shape constraint,
MVA(28), No. 7, October 2017, pp. 715-724.
WWW Link.
1710
BibRef
Wang, S.,
Cheng, J.,
Liu, H.,
Wang, F.,
Zhou, H.,
Pedestrian Detection via Body Part Semantic and Contextual
Information With DNN,
MultMed(20), No. 11, November 2018, pp. 3148-3159.
IEEE DOI
1810
Semantics, Detectors, Feature extraction, Machine learning,
Object detection, Proposals, Bidirectional control,
adaptive context selection
BibRef
Zhou, C.L.[Chun-Luan],
Yuan, J.S.[Jun-Song],
Multi-label learning of part detectors for occluded pedestrian
detection,
PR(86), 2019, pp. 99-111.
Elsevier DOI
1811
BibRef
Earlier:
Multi-label Learning of Part Detectors for Heavily Occluded
Pedestrian Detection,
ICCV17(3506-3515)
IEEE DOI
1802
BibRef
Earlier:
Learning to Integrate Occlusion-Specific Detectors for Heavily Occluded
Pedestrian Detection,
ACCV16(II: 305-320).
Springer DOI
1704
BibRef
Earlier:
Non-rectangular Part Discovery for Object Detection,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Earlier:
Arbitrary-Shape Object Localization Using Adaptive Image Grids,
ACCV12(I:71-84).
Springer DOI
1304
Pedestrian detection, Part detectors, Multi-label learning,
Occlusion handling, Detector integration, Context.
decision trees, learning (artificial intelligence),
object detection, pedestrians, traffic engineering computing,
Training
BibRef
Zhao, Y.,
Yuan, Z.,
Chen, B.,
Accurate Pedestrian Detection by Human Pose Regression,
IP(29), 2020, pp. 1591-1605.
IEEE DOI
1911
Feature extraction, Detectors, Pose estimation,
Task analysis, Shape, Decision trees, Pedestrian detection,
cascade decision trees
BibRef
Yang, P.,
Zhang, G.,
Wang, L.,
Xu, L.,
Deng, Q.,
Yang, M.H.,
A Part-Aware Multi-Scale Fully Convolutional Network for Pedestrian
Detection,
ITS(22), No. 2, February 2021, pp. 1125-1137.
IEEE DOI
2102
Detectors, Feature extraction, Proposals, Semantics,
Intelligent transportation systems, Object detection, Buildings,
fully convolutional network
BibRef
Zhang, S.,
Qi, G.J.,
Cao, X.,
Song, Z.,
Zhou, J.,
Human Parsing With Pyramidical Gather-Excite Context,
CirSysVideo(31), No. 3, March 2021, pp. 1016-1030.
IEEE DOI
2103
Task analysis, Semantics, Aggregates, Lips, Clothing,
Encoding, Human parsing, Pyramid Spatial Parsing (PSP),
context encoding
BibRef
Chen, Z.[Zhe],
Ouyang, W.L.[Wan-Li],
Liu, T.L.[Tong-Liang],
Tao, D.C.[Da-Cheng],
A Shape Transformation-based Dataset Augmentation Framework for
Pedestrian Detection,
IJCV(129), No. 4, April 2021, pp. 1121-1138.
Springer DOI
2104
BibRef
Zhao, Y.[Yang],
Shen, C.H.[Chun-Hua],
Yu, X.H.[Xiao-Han],
Chen, H.[Hao],
Gao, Y.S.[Yong-Sheng],
Xiong, S.W.[Sheng-Wu],
Learning deep part-aware embedding for person retrieval,
PR(116), 2021, pp. 107938.
Elsevier DOI
2106
Person retrieval, Part-aware embedding, Improved triplet loss
BibRef
Chu, H.Z.[Hua-Zhen],
Ma, H.M.[Hui-Min],
Li, X.[Xi],
Pedestrian instance segmentation with prior structure of semantic
parts,
PRL(149), 2021, pp. 9-16.
Elsevier DOI
2108
Pedestrian instance segmentation, Occlusion, Semantic parts,
Pedestrian detection
BibRef
Ruan, B.J.[Bin-Jie],
Zhang, C.Y.[Chong-Yang],
Occluded pedestrian detection combined with semantic features,
IET-IPR(15), No. 10, 2021, pp. 2292-2300.
DOI Link
2108
BibRef
He, Y.[Ye],
Zhu, C.[Chao],
Yin, X.C.[Xu-Cheng],
Occluded Pedestrian Detection via Distribution-Based
Mutual-Supervised Feature Learning,
ITS(23), No. 8, August 2022, pp. 10514-10529.
IEEE DOI
2208
BibRef
Earlier:
Mutual-Supervised Feature Modulation Network for Occluded Pedestrian
Detection,
ICPR21(8453-8460)
IEEE DOI
2105
Detectors, Feature extraction, Annotations, Training, Standards,
Proposals, Task analysis, Pedestrian detection, occlusion handling,
visible body information.
Modulation.
BibRef
Abdelmutalab, A.[Ameen],
Wang, C.Y.[Chun-Yan],
Pedestrian Detection Using MB-CSP Model and Boosted Identity Aware
Non-Maximum Suppression,
ITS(23), No. 12, December 2022, pp. 24454-24463.
IEEE DOI
2212
Feature extraction, Detectors, Unified modeling language,
Complexity theory, Task analysis, Convolution, Training,
part fusing
BibRef
Althoupety, A.[Afnan],
Wang, L.Y.[Li-Yun],
Feng, W.C.[Wu-Chi],
Rekabdar, B.[Banafsheh],
DaFF: Dual Attentive Feature Fusion for Multispectral Pedestrian
Detection,
PBVS24(2997-3006)
IEEE DOI
2410
Degradation, Pedestrians, Attention mechanisms, Lighting,
Feature extraction, Multispectral Pedestrian Detection, Attention Mechanisms
BibRef
Terreran, M.[Matteo],
Evangelista, D.[Daniele],
Lazzaro, J.[Jacopo],
Pretto, A.[Alberto],
Make It Easier: An Empirical Simplification of a Deep 3D Segmentation
Network for Human Body Parts,
CVS21(144-156).
Springer DOI
2109
BibRef
Xie, X.,
Wang, Z.,
Multi-scale Semantic Segmentation Enriched Features for Pedestrian
Detection,
ICPR18(2196-2201)
IEEE DOI
1812
Feature extraction, Detectors, Training, Object detection, Semantics,
Feeds, Convolutional neural networks, pedestrian detection,
convolutional neural network
BibRef
Tan, F.,
Bernier, C.,
Cohen, B.,
Ordonez, V.,
Barnes, C.,
Where and Who? Automatic Semantic-Aware Person Composition,
WACV18(1519-1528)
IEEE DOI
1806
convolution, feature extraction, feedforward neural nets,
image representation, image segmentation,
Task analysis
BibRef
Yu, H.,
Ohn-Bar, E.,
Yoo, D.,
Kitani, K.M.,
SmartPartNet: Part-Informed Person Detection for Body-Worn
Smartphones,
WACV18(1103-1112)
IEEE DOI
1806
image motion analysis, mobile computing,
neural nets, object detection, smart phones, wearable computers,
Training
BibRef
Chen, G.,
Cai, X.,
Han, H.,
Shan, S.,
Chen, X.,
HeadNet: Pedestrian Head Detection Utilizing Body in Context,
FG18(556-563)
IEEE DOI
1806
Feature extraction, Head, Object detection, Proposals, Robustness,
Semantics, Training, Body in Context, Head detection,
Semantic feature fusion
BibRef
Kong, W.J.[Wei-Jie],
Li, N.N.[Nan-Nan],
Li, T.H.[Thomas H.],
Li, G.[Ge],
Deep Pedestrian Detection Using Contextual Information and Multi-level
Features,
MMMod18(I:166-177).
Springer DOI
1802
BibRef
Zheng, Q.[Qi],
Chen, J.[Jun],
Jiang, J.J.[Jun-Jun],
Hu, R.M.[Rui-Min],
Reinforcing Pedestrian Parsing on Small Scale Dataset,
MMMod18(I:417-427).
Springer DOI
1802
BibRef
Jiang, H.,
Grauman, K.[Kristen],
Detangling People: Individuating Multiple Close People and Their Body
Parts via Region Assembly,
CVPR17(3435-3443)
IEEE DOI
1711
Detectors, Image segmentation, Legged locomotion, Optimization,
Proposals, Semantics, Torso
BibRef
Gong, K.,
Liang, X.,
Zhang, D.,
Shen, X.,
Lin, L.,
Look into Person: Self-Supervised Structure-Sensitive Learning and a
New Benchmark for Human Parsing,
CVPR17(6757-6765)
IEEE DOI
1711
Benchmark testing, Image segmentation, Lips, Neural networks,
Semantics, Servers, Training
BibRef
Shi, L.[Liu],
Liu, J.H.[Jia-Hang],
Wang, Y.H.[Yi-Hao],
A universal pedestrian's foot-point and head-point recognition with
improved motion detection algorithm,
ICIVC17(281-287)
IEEE DOI
1708
Brightness, Feature extraction, Image color analysis, Lighting,
Matrix decomposition, Motion detection, Motion segmentation,
foot-point, head-point, motion detection, video, surveillance
BibRef
Zhao, Y.[Yun],
Yuan, Z.J.[Ze-Jian],
Chen, D.P.[Da-Peng],
Lyu, J.[Jie],
Liu, T.[Tie],
Fast Pedestrian Detection via Random Projection Features with Shape
Prior,
WACV17(962-970)
IEEE DOI
1609
Decision trees, Feature extraction, Image color analysis, Shape,
Testing, Training, Vegetation
BibRef
Yamashita, T.,
Fukui, H.,
Yamauchi, Y.,
Fujiyoshi, H.,
Pedestrian and part position detection using a regression-based
multiple task deep convolutional neural network,
ICPR16(3500-3505)
IEEE DOI
1705
Cameras, Estimation, Feature extraction, Head, Legged locomotion,
Neural networks, Training
BibRef
Popa, A.I.[Alin-Ionut],
Sminchisescu, C.[Cristian],
Parametric Image Segmentation of Humans with Structural Shape Priors,
ACCV16(II: 68-83).
Springer DOI
1704
BibRef
Xia, F.T.[Fang-Ting],
Wang, P.[Peng],
Chen, L.C.[Liang-Chieh],
Yuille, A.L.[Alan L.],
Zoom Better to See Clearer:
Human and Object Parsing with Hierarchical Auto-Zoom Net,
ECCV16(V: 648-663).
Springer DOI
1611
BibRef
Chen, Q.,
Jiang, W.,
Zhao, Y.,
Zhao, Z.,
Part-based deep network for pedestrian detection in surveillance
videos,
VCIP15(1-4)
IEEE DOI
1605
Airports
BibRef
Zheng, Y.[Ying],
Yao, H.X.[Hong-Xun],
Sun, X.S.[Xiao-Shuai],
Zhao, S.C.[Si-Cheng],
Distinctive action sketch,
ICIP15(576-580)
IEEE DOI
1512
Action Sketch; Objective-ness; Sketchability; Spatio-Temporal Consistency
BibRef
Mao, X.J.[Xiao-Jiao],
Zhao, J.Y.[Jiu-Yang],
Yang, Y.B.[Yu-Bin],
Li, N.[Ning],
Enhanced deformable part model for pedestrian detection via joint
state inference,
ICIP15(941-945)
IEEE DOI
1512
Pedestrian detection
BibRef
Chen, X.J.[Xian-Jie],
Yuille, A.L.[Alan L.],
Parsing occluded people by flexible compositions,
CVPR15(3945-3954)
IEEE DOI
1510
BibRef
Liu, S.[Si],
Liang, X.D.[Xiao-Dan],
Liu, L.Q.[Luo-Qi],
Shen, X.H.[Xiao-Hui],
Yang, J.C.[Jian-Chao],
Xu, C.S.[Chang-Sheng],
Lin, L.[Liang],
Cao, X.C.[Xiao-Chun],
Yan, S.C.[Shui-Cheng],
Matching-CNN meets KNN: Quasi-parametric human parsing,
CVPR15(1419-1427)
IEEE DOI
1510
BibRef
Kim, H.K.[Hak Kyoung],
Kim, Y.H.[Yong-Hyun],
Kim, D.J.[Dai-Jin],
Adaptive Deformation Handling for Pedestrian Detection,
WACV15(156-161)
IEEE DOI
1503
Boosting
BibRef
Shaukat, A.[Affan],
Gilbert, A.[Andrew],
Windridge, D.[David],
Bowden, R.[Richard],
Meeting in the Middle: A top-down and bottom-up approach to detect
pedestrians,
ICPR12(874-877).
WWW Link.
1302
BibRef
Schiel, J.,
Green, R.,
Adaptive human silhouette extraction with chromatic distortion and
contour tracking,
IVCNZ13(288-292)
IEEE DOI
1402
computer vision
BibRef
Zweng, A.[Andreas],
Kampel, M.[Martin],
Performance evaluation of an improved relational feature model for
pedestrian detection,
PETS13(53-60)
IEEE DOI
1411
BibRef
And:
Introducing a Inter-frame Relational Feature Model for Pedestrian
Detection,
SCIA13(225-235).
Springer DOI
1311
BibRef
Earlier:
Improved Relational Feature Model for People Detection Using Histogram
Similarity Functions,
AVSS12(422-427).
IEEE DOI
1211
BibRef
Earlier:
Introducing Confidence Maps to Increase the Performance of Person
Detectors,
ISVC11(II: 446-455).
Springer DOI
1109
BibRef
Earlier:
Unexpected Human Behavior Recognition in Image Sequences Using Multiple
Features,
ICPR10(368-371).
IEEE DOI
1008
correlation methods
See also Introducing a Statistical Behavior Model into Camera-Based Fall Detection.
BibRef
Yao, C.[Cong],
Bai, X.[Xiang],
Liu, W.Y.[Wen-Yu],
Latecki, L.J.[Longin Jan],
Human Detection Using Learned Part Alphabet and Pose Dictionary,
ECCV14(V: 251-266).
Springer DOI
1408
BibRef
Zhu, Y.[Yu],
Chen, W.B.[Wen-Bin],
Guo, G.D.[Guo-Dong],
Fusing Spatiotemporal Features and Joints for 3D Action Recognition,
HAU3D13(486-491)
IEEE DOI
1309
3D action recognition;Human action recognition;fusion
BibRef
Wang, M.[Meng],
Zhang, Z.X.[Zhao-Xiang],
Wang, Y.H.[Yun-Hong],
Efficient Human Parsing Based on Sketch Representation,
ACCV12(I:396-407).
Springer DOI
1304
BibRef
Liang, J.X.[Ji-Xiang],
Ye, Q.X.[Qi-Xiang],
Chen, J.[Jie],
Jiao, J.B.[Jian-Bin],
Evaluation of local feature descriptors and their combination for
pedestrian representation,
ICPR12(2496-2499).
WWW Link.
1302
BibRef
Gao, W.[Wen],
Chen, X.G.[Xiao-Gang],
Ye, Q.X.[Qi-Xiang],
Jiao, J.B.[Jian-Bin],
Pedestrian detection via part-based topology model,
ICIP12(445-448).
IEEE DOI
1302
BibRef
Jacques, J.C.S.[Julio C.S.],
Jung, C.R.[Claudio R.],
Musse, S.R.[Soraia R.],
Head-shoulder human contour estimation in still images,
ICIP14(278-282)
IEEE DOI
1502
Computational modeling
BibRef
Jacques, J.C.S.[Julio C.S.],
Dihl, L.L.[Leandro L.],
Jung, C.R.[Claudio R.],
Musse, S.R.[Soraia R.],
Self-occlusion and 3D pose estimation in still images,
ICIP13(2539-2543)
IEEE DOI
1402
3D pose estimation
BibRef
Jacques Junior, J.C.S.[Julio C. S.],
Jung, C.R.[Claudio R.],
Musse, S.R.[Soraia R.],
Skeleton-based human segmentation in still images,
ICIP12(141-144).
IEEE DOI
1302
BibRef
Kohlschütter, T.[Tomáš],
Herout, P.[Pavel],
Automatic Human Body Parts Detection in a 2d Anthropometric System,
ISVC12(II: 536-544).
Springer DOI
1209
BibRef
Rao, S.[Supriya],
Pramod, N.C.,
Paturu, C.K.[Chaitanya Krishna],
People detection in image and video data,
VNBA08(85-92).
DOI Link
1208
Combines a generative model with a discriminative model.
BibRef
Rothrock, B.[Brandon],
Zhu, S.C.[Song-Chun],
Human parsing using stochastic and-or grammars and rich appearances,
SIG11(640-647).
IEEE DOI
1201
BibRef
Cao, S.[Song],
Duan, G.Q.[Gen-Quan],
Hai-Zhou, A.I.,
Fast human detection using Node-Combined Part Detector,
ICIP11(3589-3592).
IEEE DOI
1201
BibRef
Li, K.C.[Ke-Chun],
Su, H.R.[Hong-Ren],
Lai, S.H.[Shang-Hong],
Pedestrian Image Segmentation via Shape-Prior Constrained Random Walks,
PSIVT11(II: 215-226).
Springer DOI
1111
BibRef
Pishchulin, L.[Leonid],
Jain, A.[Arjun],
Wojek, C.[Christian],
Thormaehlen, T.[Thorsten],
Schiele, B.[Bernt],
In Good Shape: Robust People Detection based on Appearance and Shape,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Anwer, R.M.[Rao Muhammad],
Vázquez, D.[David],
López, A.M.[Antonio M.],
Color Contribution to Part-Based Person Detection in Different Types of
Scenarios,
CAIP11(II: 463-470).
Springer DOI
1109
BibRef
And:
Opponent Colors for Human Detection,
IbPRIA11(363-370).
Springer DOI
1106
BibRef
Bo, Y.H.[Yi-Hang],
Fowlkes, C.C.[Charless C.],
Shape-based pedestrian parsing,
CVPR11(2265-2272).
IEEE DOI
1106
BibRef
Tang, S.P.[Shao-Peng],
Goto, S.[Satoshi],
Multi scale block histogram of template feature for pedestrian
detection,
ICIP10(3493-3496).
IEEE DOI
1009
BibRef
Huang, Y.Z.[Yong-Zhen],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
A Heuristic Deformable Pedestrian Detection Method,
ACCV10(II: 542-553).
Springer DOI
1011
BibRef
Ando, H.[Hiroaki],
Fujiyoshi, H.[Hironobu],
Human-Area Segmentation by Selecting Similar Silhouette Images Based on
Weak-Classifier Response,
ICPR10(3444-3447).
IEEE DOI
1008
BibRef
John, G.S.[Gladis S.],
West, G.A.W.[Geoff A. W.],
Lazarescu, M.[Mihai],
Part Based Recognition of Pedestrians Using Multiple Features and
Random Forests,
DICTA10(363-368).
IEEE DOI
1012
BibRef
Wang, S.[Sheng],
Du, R.[Ruo],
Wu, Q.A.[Qi-Ang],
He, X.J.[Xiang-Jian],
Adaptive Stick-Like Features for Human Detection Based on Multi-scale
Feature Fusion Scheme,
DICTA10(375-380).
IEEE DOI
1012
BibRef
Bar-Hillel, A.[Aharon],
Levi, D.[Dan],
Krupka, E.[Eyal],
Goldberg, C.[Chen],
Part-Based Feature Synthesis for Human Detection,
ECCV10(IV: 127-142).
Springer DOI
1009
BibRef
Chen, Y.T.[Yu-Ting],
Chen, C.S.[Chu-Song],
Hung, Y.P.[Yi-Ping],
Chang, K.Y.[Kuang-Yu],
Multi-class multi-instance boosting for part-based human detection,
VS09(1177-1184).
IEEE DOI
0910
BibRef
Nguyen, D.T.[Duc Thanh],
Li, W.Q.[Wan-Qing],
Ogunbona, P.[Philip],
A novel template matching method for human detection,
ICIP09(2549-2552).
IEEE DOI
0911
BibRef
And:
A part-based template matching method for multi-view human detection,
IVCNZ09(357-362).
IEEE DOI
0911
BibRef
Zhou, C.H.[Chen-Hui],
Tang, L.[Liang],
Wang, S.J.[Sheng-Jin],
Ding, X.Q.[Xiao-Qing],
Human Detection Based on Fusion of Histograms of Oriented Gradients and
Main Partial Features,
CISP09(1-5).
IEEE DOI
0910
BibRef
Barnard, M.[Mark],
Heikkilä, J.[Janne],
On Bin Configuration of Shape Context Descriptors in Human Silhouette
Classification,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Zhao, S.L.[San-Lung],
Lee, H.J.[Hsi-Jian],
Human Silhouette Extraction based on HMM,
ICPR06(II: 994-997).
IEEE DOI
0609
BibRef
Ahn, J.H.[Jung-Ho],
Byun, H.R.[Hye-Ran],
Human Silhouette Extraction Method Using Region Based Background
Subtraction,
MIRAGE07(412-420).
Springer DOI
0703
BibRef
Mikolajczyk, K.[Krystian],
Schmid, C.[Cordelia],
Zisserman, A.[Andrew],
Human Detection Based on a Probabilistic Assembly of Robust Part
Detectors,
ECCV04(Vol I: 69-82).
Springer DOI
0405
BibRef
Lee, L.,
Dalley, G.,
Tieu, K.,
Learning pedestrian models for silhouette refinement,
ICCV03(663-670).
IEEE DOI
0311
BibRef
Ballerini, L.[Lucia],
Multiple Genetic Snakes for People Segmentation in Video Sequences,
SCIA03(275-282).
Springer DOI
0310
BibRef
Leo, M.,
Spagnolo, P.,
Attolico, G.,
Distante, A.,
Shape Based People Detection for Visual Surveillance Systems,
AVBPA03(285-293).
Springer DOI
0310
BibRef
Yamada, M.,
Ebihara, K.,
Ohya, J.,
New Robust Real-Time Method for Extracting Human Silhouettes from Color
Images,
AFGR98(528-533).
IEEE DOI
BibRef
9800
Ronfard, R.,
Schmid, C.,
Triggs, B.,
Learning to Parse Pictures of People,
ECCV02(IV: 700 ff.).
Springer DOI
0205
BibRef
Stauffer, C.[Chris],
Antone, M.,
Translation Templates for Object Matching Across Predictable Pose
Variation,
BMVC06(III:219).
PDF File.
0609
BibRef
Stauffer, C.,
Grimson, W.E.L.,
Similarity Templates for Detection and Recognition,
CVPR01(I:221-228).
IEEE DOI
0110
How to represent pedestrians, region based
BibRef
Kinzel, W.,
Pedestrian Recognition by Modelling their Shapes and Movements,
IAP-III1994, pp. 547-554.
BibRef
9400
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Pedestrian Attributes, Pedestrian Descriptions .