Haralick, R.M.,
Shanmugam, K.,
Dinstein, I.,
Textural Features for Image Classification,
SMC(3), No. 6, November 1973, pp. 610-621.
BibRef
7311
And:
CMetImAly77(141-152).
Co-occurrence Matrix.
Classic cooccurrence matrix computation and use.
BibRef
Haralick, R.M.,
Shanmugam, K.,
Combined Spectral and Spatial Processing of ERTS Imagery Data,
RSE(3), No. 1, 1974, pp. 3-13.
BibRef
7400
Haralick, R.M.,
Dinstein, I.,
A Spatial Clustering Procedure for Multi-Image Data,
CirSys(22), No. 5, May 1975, pp. 440-450.
BibRef
7505
Haralick, R.M.,
A Resolution Preserving Textural Transformation for Images,
CGPR75(51-61).
BibRef
7500
Pressman, N.J.[Norman Jules],
Optical Texture Analysis for Automatic Cytology and Histology:
A Markovian Approach,
Ph.D.EE, October 12, 1976.
UCRL-52155,
BibRef
7610
UCBLLL.
Co-occurrence Matrix.
Texture, Evaluation. Optical texture-spatial variation of gray levels, no general theory,
but a systematic, comparative investigation of quantitative texture
measures; Markovian - gray level transition probabilities
(Haralick
See also Textural Features for Image Classification. );
gradient; granulometric - characterize basic elements
(Galloway -
See also Texture Analysis Using Gray Level Run Lengths. ); transform
(Fourier); using texture of a known region to characterize the
region, not for segmentation; evaluation of step size (optimum) is
necessary for each application.
BibRef
Galloway, M.M.[Mary M.],
Texture Analysis Using Gray Level Run Lengths,
CGIP(4), No. 2, June 1975, pp. 172-179.
Elsevier DOI
BibRef
7506
Davis, L.S.[Larry S.],
Mitiche, A.[Amar],
Edge Detection in Textures,
CGIP(12), No. 1, January 1980, pp. 25-39.
Elsevier DOI
BibRef
8001
Earlier: A2, A1:
Theoretical Analysis of Edge Detection in Textures,
ICPR80(540-547).
Texture segmentation:
See also MITES: A Model Driven, Iterative Texture Segmentation Algorithm.
BibRef
Davis, L.S.[Larry S.],
Johns, S.,
Aggarwal, J.K.,
Texture Analysis Using Generalized Co-Occurrence Matrices,
PAMI(1), No. 3, July 1979, pp. 251-259.
BibRef
7907
Earlier:
PRIP78(313-318).
BibRef
And: A1, A3 only:
PRAI-78(185-189).
BibRef
Davis, L.S.[Larry S.],
Clearman, M.,
Aggarwal, J.K.,
An Empirical Evaluation of Generalized Cooccurrence Matrices,
PAMI(3), No. 2, March 1981, pp. 214-221.
BibRef
8103
Earlier:
A Comparative Texture Classification Study Based on Generalized
Co-occurrence Matrices,
IEEE
Conferenceon Decision Control, Miami, December 12-14, 1979.
BibRef
Davis, L.S.[Larry S.],
Polarograms: A New Tool for Image Texture Analysis,
PR(13), No. 3, 1981, pp. 219-223.
Elsevier DOI
0309
BibRef
Sun, C.J.[Cheng-Jun],
Wee, W.G.[William G.],
Neighboring Gray Level Dependence Matrix for Texture Classification,
CVGIP(23), No. 3, September 1983, pp. 341-352.
Elsevier DOI Easily computed, rotation invatiant, invariant to linear gray level
transformation.
BibRef
8309
Trivedi, M.M.[Mohan M.],
Harlow, C.A.[Charles A.],
Conners, R.W.[Richard W.],
Goh, S.[Semoon],
Object Detection Based on Gray Level Cooccurrence,
CVGIP(28), No. 2, November 1984, pp. 199-219.
Elsevier DOI
Matching, Textures.
BibRef
8411
Harlow, C.A.[Charles A.],
Trivedi, M.M.[Mohan M.], and
Conners, R.W.[Richard W.],
Use of Texture Operators in Image Segmentation,
OptEng(25), No. 11, November 1986, pp. 1200-1206.
BibRef
8611
Gotlieb, C.C.[Calvin C.],
Kreyszig, H.E.[Herbert E.],
Texture Descriptors Based on Co-occurrence Matrices,
CVGIP(51), No. 1, July 1990, pp. 70-86.
Elsevier DOI combination of 6 classifiers.
BibRef
9007
Picard, R.W.,
Elfadel, I.M.,
Structure of the Aura and Co-Occurrence Matrices for the
Gibbs Texture Model,
JMIV(2), 1992, pp. 5-25.
BibRef
9200
Elfadel, I.M.[Ibrahim M.],
Picard, R.W.[Rosalind W.],
Gibbs Random Fields, Cooccurrences, and Texture Modeling,
PAMI(16), No. 1, January 1994, pp. 24-37.
IEEE DOI
BibRef
9401
And:
Vismod-204, 1992.
HTML Version.
BibRef
Picard, R.W.,
Elfadel, I.M.,
Pentland, A.P.,
Markov/Gibbs Texture Modeling: Aura Matrices and Temperature Effects,
CVPR91(371-377).
IEEE DOI
BibRef
9100
And:
Vismod-164, 1991.
HTML Version.
BibRef
Picard, R.W.,
Elfadel, I.M.,
On the Structure of Aura and Co-Occurrence Matrices for the
Gibbs Texture Model,
Vismod-160, 1991.
HTML Version.
BibRef
9100
Elfadel, I.M.,
Picard, R.W.,
New Miscibility Measure Explains the Behavior of
Grayscale Texture Synthesized By Gibbs Random Fields,
Vismod-159, 1991.
HTML Version.
BibRef
9100
Elfadel, I.M.[Ibrahim M.],
Yuille, A.L.,
Mean-Field Phase Transistions and Correlation Functions for
Gibbs Random Fields,
JMIV(3), 1993, pp. 167-186.
BibRef
9300
Picard, R.W.,
Structured Patterns From Random Fields,
Vismod200, 1992.
HTML Version.
BibRef
9200
And:
Random Field Texture Coding,
Vismod-185, 1992.
HTML Version.
BibRef
Earlier:
Gibbs Random Fields: Temperature and Parameter Analysis,
Vismod177, 1992.
HTML Version.
BibRef
Picard, R.W.,
Pentland, A.P.,
Markov/Gibbs Image Modeling: Temperature and Texture,
Vismod-175, 1991.
HTML Version.
BibRef
9100
Park, D.J.[Deok J.],
Nam, K.M.[Kwon M.],
Park, R.H.[Rae-Hong],
Edge-Detection in Noisy Images Based on the Cooccurrence Matrix,
PR(27), No. 6, June 1994, pp. 765-775.
Elsevier DOI
BibRef
9406
Hong, T.H.,
Dyer, C.R.,
Rosenfeld, A.,
Texture Classification Using Gray Level Co-Occurrence Based
on Edge Maxima,
SMC(10), 1980, pp. 158-163.
BibRef
8000
And: A2, A1, A3:
UMD-CS-TR-738, March 1979 See also TR 759, 779, 763.
BibRef
Hong, T.H.,
Dyer, C.R.,
Rosenfeld, A.,
Texture Primitive Extraction Using an Edge-Based Approach,
SMC(10), 1980, pp. 659-675.
BibRef
8000
Hong, T.H.,
Wu, A.Y.,
Rosenfeld, A.,
Feature Value Smoothing as an Aid in Texture Analysis,
SMC(10), 1980, pp. 519-524.
BibRef
8000
Cohn-Sfetou, S.[Sorin],
Topics on Generalized Convolution and Fourier Transforms:
Theory and Applications in Digital Signal Processing and System Theory,
Ph.D.Thesis (EE), McMaster Univ., Hamilton, Ontario, 1976.
Convolution; transform on quadratic and multiplicative
abelian groups, Walsh functions.
BibRef
7600
Shirvaikar, M.V.[Mukul V.],
Trivedi, M.M.[Mohan M.],
Image Clutter Characterization for Object Detection in
High Clutter Images,
OptEng(31), No. 12, December 1992, pp. 2628-2639.
Target Recognition.
BibRef
9212
Earlier:
Studies in Robust Approaches to Object Detection in
High Clutter Background,
SPIE(1468), Applications of AI IX, Orlando, April 1991, pp. 52-59.
BibRef
Shirvaikar, M.V.[Mukul V.],
Trivedi, M.M.[Mohan M.],
A Novel Unsupervised Multiresolution Texture Segmentation Approach,
SPIE(2223), Characterization and Propagation of
Sources and Backgrounds IV, Orlando, FL, April 6-7, 1994.
Gray level cooccurrence computations.
BibRef
9404
Copeland, A.C.,
Trivedi, M.M.,
Texture Perception in Humans and Computers:
Models and Psychophysical Experiments,
SPIE(2742), 1996, pp. 436-446.
BibRef
9600
Trivedi, M.M.,
Shirvaikar, M.V.,
Quantitative Characterization of Image Clutter:
Problems, Progress, and Promises,
SPIE(1967), Characterization, Propagation, and Simulation of
Sources and Backgrounds, Orlando, FL, April 12-13, 1993.
BibRef
9304
Harlow, C.A.,
Trivedi, M.M.,
Conners, R.W.,
Texture Operators in Segmentation,
SPIE(548), Applications of Artificial Intelligence II, Arlington, VA,
April 1985, pp. 10-18.
Cooccurrence operators for aerial image segmentation.
BibRef
8504
Muhamad, A.K.[Anwar K.],
Deravi, F.[Farzin],
Neural Networks for the Classification of Image Texture,
EngAAI(7), No. 4, 1994, pp. 381-393.
Neural Networks.
BibRef
9400
Oja, E.,
Valkealahti, K.,
Cooccurrence Map: Quantizing Multidimensional Texture Histograms,
PRL(17), No. 7, June 10 1996, pp. 723-730.
9607
BibRef
Oja, E.[Erkki],
Valkealahit, K.[Kimmo],
Reduced Multidimensional Histograms in Color Texture Description,
ICPR98(Vol II: 1057-1061).
IEEE DOI
9808
BibRef
Valkealahti, K.[Kimmo],
Oja, E.[Erkki],
Reduced Multidimensional Texture Histograms,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Kovalev, V.A.,
Petrou, M.,
Multidimensional Cooccurrence Matrices for Object Recognition
and Matching,
GMIP(58), No. 3, May 1996, pp. 187-197.
9606
BibRef
Petrou, M.,
Mohanna, F.,
Kovalev, V.A.,
3D non-linear invisible boundary detection filters,
3DPVT04(970-978).
IEEE DOI
0412
Huiman distinguish up to second order statistics.
But tumors may not differ in second order.
MRI analysis.
BibRef
Petrou, M.,
Kovalev, V.A.,
Reichenbach, J.R.,
Three-Dimensional Nonlinear Invisible Boundary Detection,
IP(15), No. 10, October 2006, pp. 3020-3032.
IEEE DOI
0609
BibRef
Ramana, K.V.,
Ramamoorthy, B.,
Statistical-Methods to Compare the Texture Features
of Machined Surfaces,
PR(29), No. 9, September 1996, pp. 1447-1459.
Elsevier DOI
Machined Surfaces.
Co-occurrence Matrix.
Run Length Code.
BibRef
9609
Parkkinen, J.,
Selkainaho, K.,
Oja, E.,
Detecting Texture Periodicity from the Cooccurrence Matrix,
PRL(11), 1990, pp. 43-50.
BibRef
9000
Valkealahti, K.[Kimmo],
Oja, E.[Erkki],
Reduced Multidimensional Cooccurrence Histograms in
Texture Classification,
PAMI(20), No. 1, January 1998, pp. 90-94.
IEEE DOI
9803
BibRef
Valkealahti, K.,
Oja, E.,
Texture Classification with Single and
Multiresolution Cooccurrence Maps,
PRAI(12), No. 4, June 1998, pp. 437-452.
9808
BibRef
Tang, X.,
Texture Information in Run-length Matrices,
IP(7), No. 11, November 1998, pp. 1602-1609.
IEEE DOI
BibRef
9811
Lee, J.C.M.[John Chung-Mong],
Pong, T.C.[Ting-Chuen],
Esterline, A.[Albert],
Enhancing Object Recognition Using Regency and Cooccurrence Heuristics,
PR(31), No. 9, September 1998, pp. 1319-1336.
Elsevier DOI
9808
BibRef
Soh, L.K.,
Tsatsoulis, C.,
Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence
Matrices,
GeoRS(37), No. 2, March 1999, pp. 780.
IEEE Top Reference.
BibRef
9903
Soh, L.K.,
Tsatsoulis, C.,
Gineris, D.,
Bertoia, C.,
ARKTOS: An Intelligent System for SAR Sea Ice Image Classification,
GeoRS(42), No. 1, January 2004, pp. 229-248.
IEEE Abstract.
0402
BibRef
Carr, J.R.,
Pellon de Miranda, F.,
The Semivariogram in Comparison to the Co-Occurrence Matrix for
Classification of Image Texture,
GeoRS(36), No. 6, November 1998, pp. 1945.
IEEE Top Reference.
BibRef
9811
Chetverikov, D.[Dmitry],
Texture analysis using feature-based pairwise interaction maps,
PR(32), No. 3, March 1999, pp. 487-502.
Elsevier DOI
BibRef
9903
Earlier:
Texture analysis using pairwise interaction maps,
CIAP97(I: 95-102).
Springer DOI
9709
BibRef
Earlier:
Structural Filtering with Texture Feature Based Interaction Maps:
Fast Algorithms and Applications,
ICPR96(II: 795-799).
IEEE DOI
9608
(Hungarian Academy of Sciences, H)
BibRef
Gimel'farb, G.L.[Georgy L.],
Modeling image textures by Gibbs random fields,
PRL(20), No. 11-13, November 1999, pp. 1123-1132.
0001
BibRef
Gimel'farb, G.L.[Georgy L.],
Image Textures and Gibbs Random Fields,
KluwerSeptember 1999, ISBN
0-7923-5961-5.
WWW Link.
BibRef
9909
Gimel'farb, G.L.,
Non-Markov Gibbs Texture Model with
Multiple Pairwise Pixel Interactions,
ICPR96(II: 591-595).
IEEE DOI
9608
(V.M. Glushkov Institute of Cybernetics, UKR)
See also Texture Modelling with Nested High-Order Markov-Gibbs Random Fields.
BibRef
Gimel'farb, G.L.[Georgy L.],
Texture Modelling and Segmenting by Multiple Pairwise
Pixel Interactions,
ICIP96(III: 133-136).
IEEE DOI
BibRef
9600
Gimel'farb, G.L.,
Gibbs Models for Bayesian Simulation and Segmentation of
Piecewise-Uniform Textures,
ICPR96(II: 760-764).
IEEE DOI
9608
(V.M. Glushkov Institute of Cybernetics, UKR)
BibRef
Lafarge, F.,
Gimel'farb, G.L.,
Texture Representation by Geometric Objects using a Jump-Diffusion
Process,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Montiel, E.[Eugenia],
Aguado, A.S.[Alberto S.],
Nixon, M.S.[Mark S.],
Texture classification via conditional histograms,
PRL(26), No. 11, August 2005, pp. 1740-1751.
Elsevier DOI
0506
BibRef
Hammouche, K.,
Diaf, M.,
Postaire, J.G.,
A clustering method based on multidimensional texture analysis,
PR(39), No. 7, July 2006, pp. 1265-1277.
Elsevier DOI
0606
Cluster analysis; Texture; Co-occurrence matrices; Feature selection
BibRef
Vadivel, A.,
Sural, S.[Shamik],
Majumdar, A.K.,
An Integrated Color and Intensity Co-occurrence Matrix,
PRL(28), No. 8, 1 June 2007, pp. 974-983.
Elsevier DOI
0704
Co-occurrence matrix; HSV color space; ICICM; Image retrieval
BibRef
Gelzinis, A.,
Verikas, A.,
Bacauskiene, M.,
Increasing the discrimination power of the co-occurrence matrix-based
features,
PR(40), No. 9, September 2007, pp. 2367-2372.
Elsevier DOI
0705
Image texture; Co-occurrence matrix; Support vector machine
BibRef
Mirowski, P.W.[Piotr W.],
Tetzlaff, D.M.[Daniel M.],
Retrieving scale from quasi-stationary images,
PRL(29), No. 6, 15 April 2008, pp. 754-767.
Elsevier DOI
0803
Multi-scale; Rotation-guided; Texture characterization;
Gray-Level Co-occurrence matrices; Quasi-stationary images
BibRef
Partio, M.[Mari],
Cramariuc, B.[Bogdan],
Gabbouj, M.[Moncef],
An Ordinal Co-occurrence Matrix Framework for Texture Retrieval,
JIVP(2007), 2007, pp. xx-yy.
DOI Link
0804
BibRef
Chalumeau, T.,
da Fontoura Costa, L.[Luciano],
Laligant, O.,
Meriaudeau, F.,
Complex networks:
Application for Texture Characterization and Classification,
ELCVIA(7), No. 3, 2008, pp. xx-yy.
DOI Link
0909
Networks of single pixels.
BibRef
Lategahn, H.,
Gross, S.,
Stehle, T.,
Aach, T.,
Texture Classification by Modeling Joint Distributions of Local
Patterns With Gaussian Mixtures,
IP(19), No. 6, June 2010, pp. 1548-1557.
IEEE DOI
1006
BibRef
Asha, V.,
Bhajantri, N.U.,
Nagabhushan, P.,
GLCM-based chi-square histogram distance for automatic detection of
defects on patterned textures,
IJCVR(2), No. 4, 2011, pp. 302-313.
DOI Link
1202
BibRef
Gupta, M.[Mousumi],
Bhaskar, D.[Debasish],
Bera, R.[Rabindranath],
Biswas, S.[Sambhunath],
Target detection of ISAR data by principal component transform on
co-occurrence matrix,
PRL(33), No. 13, 1 October 2012, pp. 1682-1688.
Elsevier DOI
1208
ISAR; Target; Co-occurrence matrix; PCT; Covariance; Surveillence
BibRef
Tsai, F.[Fuan],
Lai, J.S.[Jhe-Syuan],
Feature Extraction of Hyperspectral Image Cubes Using
Three-Dimensional Gray-Level Cooccurrence,
GeoRS(51), No. 6, 2013, pp. 3504-3513.
IEEE DOI
1307
feature extraction; 3D gray level cooccurrence; volumetric data set;
BibRef
Song, T.C.[Tie-Cheng],
Xu, L.F.[Lin-Feng],
Huang, C.[Chao],
Luo, B.[Bing],
Texture Representation via Joint Statistics of Local Quantized Patterns,
IEICE(E97-D), No. 1, January 2013, pp. 155-159.
WWW Link.
1402
BibRef
Song, T.C.[Tie-Cheng],
Li, H.L.[Hong-Liang],
Meng, F.M.[Fan-Man],
Wu, Q.B.[Qing-Bo],
Luo, B.[Bing],
Exploring space-frequency co-occurrences via local quantized patterns
for texture representation,
PR(48), No. 8, 2015, pp. 2621-2632.
Elsevier DOI
1505
Texture classification
BibRef
Wang, H.X.[Hong-Xing],
Yuan, J.S.[Jun-Song],
Wu, Y.[Ying],
Context-Aware Discovery of Visual Co-Occurrence Patterns,
IP(23), No. 4, April 2014, pp. 1805-1819.
IEEE DOI
1404
feature extraction
BibRef
Bianconi, F.[Francesco],
Fernández, A.[Antonio],
Rotation invariant co-occurrence features based on digital circles
and discrete Fourier transform,
PRL(48), No. 1, 2014, pp. 34-41.
Elsevier DOI
1410
Texture classification
BibRef
Huang, X.[Xin],
Liu, X.B.[Xiao-Bo],
Zhang, L.P.[Liang-Pei],
A Multichannel Gray Level Co-Occurrence Matrix for
Multi/Hyperspectral Image Texture Representation,
RS(6), No. 9, 2014, pp. 8424-8445.
DOI Link
1410
BibRef
Verma, M.[Manisha],
Raman, B.[Balasubramanian],
Center symmetric local binary co-occurrence pattern for texture, face
and bio-medical image retrieval,
JVCIR(32), No. 1, 2015, pp. 224-236.
Elsevier DOI
1511
Content based image retrieval
BibRef
Qi, X.[Xianbiao],
Shen, L.L.[Lin-Lin],
Zhao, G.Y.[Guo-Ying],
Li, Q.Q.[Qing-Quan],
Pietikäinen, M.[Matti],
Globally rotation invariant multi-scale co-occurrence local binary
pattern,
IVC(43), No. 1, 2015, pp. 16-26.
Elsevier DOI
1512
Multi-scale co-occurrence LBP
BibRef
Xia, G.S.[Gui-Song],
Liu, G.[Gang],
Bai, X.,
Zhang, L.P.[Liang-Pei],
Texture Characterization Using Shape Co-Occurrence Patterns,
IP(26), No. 10, October 2017, pp. 5005-5018.
IEEE DOI
1708
Analytical models, Feature extraction, Image coding, Level set,
Shape, Tools, Transforms, Fisher coding, Texture analysis,
co-occurrence patterns, geometrical aspects, tree of shapes
BibRef
Liu, G.[Gang],
Xia, G.S.[Gui-Song],
Yang, W.[Wen],
Zhang, L.P.[Liang-Pei],
Texture Analysis with Shape Co-occurrence Patterns,
ICPR14(1627-1632)
IEEE DOI
1412
Analytical models
BibRef
Ji, L.P.[Lu-Ping],
Ren, Y.[Yan],
Pu, X.R.[Xiao-Rong],
Liu, G.S.[Gui-Song],
Median local ternary patterns optimized with rotation-invariant
uniform-three mapping for noisy texture classification,
PR(79), 2018, pp. 387-401.
Elsevier DOI
1804
Noisy texture classification, Median local ternary pattern,
Rotation-invariant uniform-three mapping, Multi-scale joint distribution
BibRef
di Ruberto, C.[Cecilia],
Putzu, L.[Lorenzo],
Rodriguez, G.[Giuseppe],
Fast and accurate computation of orthogonal moments for texture
analysis,
PR(83), 2018, pp. 498-510.
Elsevier DOI
1808
BibRef
Earlier: A2, A1, Only:
Rotation Invariant Co-occurrence Matrix Features,
CIAP17(I:391-401).
Springer DOI
1711
Texture descriptor, Moment, Local binary pattern,
Co-occurrence matrix, Classification
BibRef
Khaldi, B.[Belal],
Aiadi, O.[Oussama],
Kherfi, M.L.[Mohammed Lamine],
Combining colour and grey-level co-occurrence matrix features:
A comparative study,
IET-IPR(13), No. 9, 18 July 2019, pp. 1401-1410.
DOI Link
1907
BibRef
Chen, G.B.[Guo-Bin],
Jiang, Z.Y.[Zhi-Yong],
Kamruzzaman, M.M.,
Radar remote sensing image retrieval algorithm based on improved
Sobel operator,
JVCIR(71), 2020, pp. 102720.
Elsevier DOI
2009
Radar image retrieval, Blocking histogram, Sobel operator,
Gray level co-occurrence matrix (GLCCM)
BibRef
Li, G.L.[Guang-Lin],
Li, B.[Bin],
Tan, S.Q.[Shun-Quan],
Qiu, G.P.[Guo-Ping],
Learning Deep Co-Occurrence Features,
CirSysVideo(33), No. 4, April 2023, pp. 1610-1623.
IEEE DOI
2304
Standards, Convolutional neural networks, Feature extraction,
Computational modeling, Histograms, Pulse modulation, image classification
BibRef
Hayashi, H.[Hideaki],
Uchida, S.[Seiichi],
A Trainable Multiplication Layer for Auto-correlation and Co-occurrence
Extraction,
ACCV18(II:414-430).
Springer DOI
1906
BibRef
Hong, H.[Huichao],
Pan, S.[Shuwan],
Zheng, L.X.[Li-Xin],
A fast calculation method for gray-level co-occurrence matrix base on
GPU,
ICIVC17(1063-1067)
IEEE DOI
1708
Biomedical imaging, Feature extraction,
Graphics processing units, Image resolution, Parallel processing,
CUDA, GPU, gray-level co-occurrence matrix, parallel computing
BibRef
Ren, H.Y.[Hao-Yu],
Li, Z.N.[Ze-Nian],
Object Detection Using Generalization and Efficiency Balanced
Co-Occurrence Features,
ICCV15(46-54)
IEEE DOI
1602
Boosting
See also Gender Recognition Using Complexity-Aware Local Features.
See also Age Estimation Based on Complexity-Aware Features.
BibRef
Ledoux, A.[Audrey],
Losson, O.[Olivier],
Macaire, L.[Ludovic],
Texture classification with fuzzy color co-occurrence matrices,
ICIP15(1429-1433)
IEEE DOI
1512
Co-occurrence matrices; Color image; Fuzzy set; Texture classification
BibRef
Zou, Q.[Qin],
Qi, X.B.[Xian-Biao],
Li, Q.Q.[Qing-Quan],
Wang, S.[Song],
Discriminative regional color co-occurrence descriptor,
ICIP15(696-700)
IEEE DOI
1512
co-occurrence feature
BibRef
Mensink, T.[Thomas],
Gavves, E.[Efstratios],
Snoek, C.G.M.[Cees G.M.],
COSTA: Co-Occurrence Statistics for Zero-Shot Classification,
CVPR14(2441-2448)
IEEE DOI
1409
BibRef
Alaoui, M.T.[Mohammed Talibi],
Sbihi, A.[Abderrahmane],
Texture Classification Based on Co-occurrence Matrix and
Neuro-Morphological Approach,
CIAP13(II:510-521).
Springer DOI
1309
BibRef
Nosaka, R.[Ryusuke],
Suryanto, C.H.[Chendra Hadi],
Fukui, K.[Kazuhiro],
Rotation Invariant Co-occurrence among Adjacent LBPs,
CVLBP12(I:15-25).
Springer DOI
1304
BibRef
Qi, X.B.[Xian-Biao],
Xiao, R.[Rong],
Li, C.,
Qiao, Y.,
Guo, J.[Jun],
Tang, X.,
Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern,
PAMI(36), No. 11, November 2014, pp. 2199-2213.
IEEE DOI
1410
Encoding
BibRef
Qi, X.B.[Xian-Biao],
Xiao, R.[Rong],
Guo, J.[Jun],
Zhang, L.[Lei],
Pairwise Rotation Invariant Co-Occurrence Local Binary Pattern [Conf],
ECCV12(VI: 158-171).
Springer DOI
1210
BibRef
Morioka, N.[Nobuyuki],
Satoh, S.[Shin'ichi],
Compact correlation coding for visual object categorization,
ICCV11(1639-1646).
IEEE DOI
1201
Spatial relations between local features.
BibRef
Costianes, P.J.[Peter J.],
Plock, J.B.[Joseph B.],
Gray-level co-occurrence matrices as features in edge enhanced images,
AIPR10(1-6).
IEEE DOI
1010
BibRef
Zhang, R.[Rui],
Yin, B.L.[Bao-Lin],
Zhao, Q.[Qiyang],
Yang, B.[Bin],
An efficient color image classification method using gradient magnitude
based angle cooccurrence matrix,
ICIP10(1073-1076).
IEEE DOI
1009
BibRef
Fujiwara, T.[Takayuki],
Koshimizu, H.[Hiroyasu],
Hashimoto, M.[Manabu],
Application of Co-Occurrence Frequency Image,
MVA09(126-).
PDF File.
0905
BibRef
Ito, S.[Satoshi],
Kubota, S.[Susumu],
Object Classification Using Heterogeneous Co-Occurrence Features,
ECCV10(II: 209-222).
Springer DOI
1009
BibRef
And:
ECCV10(V: 701-714).
Springer DOI
1009
BibRef
Ni, B.B.[Bing-Bing],
Yan, S.C.[Shui-Cheng],
Kassim, A.A.[Ashraf A.],
Contextualizing histogram,
CVPR09(1682-1689).
IEEE DOI
0906
Incorporate context into histogram analysis.
Co-occurrence features.
BibRef
Cheong, M.,
Loke, K.S.,
An approach to texture-based image recognition by deconstructing
multispectral co-occurrence matrices using Tchebichef orthogonal
polynomials,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Porebski, A.[Alice],
Vandenbroucke, N.[Nicolas],
Macaire, L.[Ludovic],
Haralick feature extraction from LBP images for color texture
classification,
IPTA08(1-8).
IEEE DOI
0811
BibRef
Patel, M.B.[Mehul B.],
Rodriguez, J.J.[Jeffrey J.],
Gmitro, A.F.[Arthur F.],
Effect of gray-level re-quantization on co-occurrence based texture
analysis,
ICIP08(585-588).
IEEE DOI
0810
BibRef
de O. Bastos, L.,
Liatsis, P.,
Conci, A.,
Automatic texture segmentation based on k-means clustering and
efficient calculation of co-occurrence features,
WSSIP08(141-144).
IEEE DOI
0806
BibRef
Winter, M.,
Bischof, H.,
Binary Co-occurrences of Weak Descriptors,
BMVC07(xx-yy).
PDF File.
0709
BibRef
Tsai, F.[Fuan],
Chang, C.K.[Chun-Kai],
Rau, J.Y.[Jian-Yeo],
Lin, T.H.[Tang-Huang],
Liu, G.R.[Gin-Ron],
3D Computation of Gray Level Co-occurrence in Hyperspectral Image Cubes,
EMMCVPR07(429-440).
Springer DOI
0708
BibRef
Tahir, M.A.,
Bouridane, A.,
Kurugollu, F.,
Amira, A.,
Accelerating the Computation of GLCM and Haralick Texture Features on
Reconfigurable Hardware,
ICIP04(V: 2857-2860).
IEEE DOI
0505
BibRef
Partio, M.,
Cramariuc, B.,
Gabbouj, M.,
Block-based Ordinal Co-occurrence Matrices for Texture Similarity
Evaluation,
ICIP05(I: 517-520).
IEEE DOI
0512
BibRef
Earlier:
Texture similarity evaluation using ordinal co-occurrence,
ICIP04(III: 1537-1540).
IEEE DOI
0505
BibRef
Schwartz, W.R.,
Pedrini, H.,
Textured Image Segmentation Based on Spatial Dependence using a Markov
Random Field Model,
ICIP06(2449-2452).
IEEE DOI
0610
BibRef
Earlier:
Texture classification based on spatial dependence features using
co-occurrence matrices and markov random fields,
ICIP04(I: 239-242).
IEEE DOI
0505
BibRef
Zwiggelaar, R.,
Texture based segmentation:
Automatic Selection of Co-occurrence Matrices,
ICPR04(I: 588-591).
IEEE DOI
0409
BibRef
Hao, P.W.[Peng-Wei],
Shi, Q.Q.[Qi-Qyun],
Chen, Y.[Ying],
Co-histogram and its application in remote sensing image compression
evaluation,
ICIP03(III: 177-180).
IEEE DOI
0312
BibRef
Metzler, V.,
Palm, C.,
Lehmann, T.,
Aach, T.,
Texture Classification of Graylevel Images by Multiscale
Cross-cooccurrence Matrices,
ICPR00(Vol II: 549-552).
IEEE DOI
0009
BibRef
Andersen, J.D.,
Hansen, K.,
Analysis of Image Structure by Generalized Co-occurrence Matrices,
SCIA99(Image Analysis).
BibRef
9900
Ojala, T.,
Pietikäinen, M.,
Kyllönen, J.,
Gray Level Cooccurrence Histograms via Learning Vector Quantization,
SCIA99(Neural Nets).
BibRef
9900
Svalbe, I.D.[Imants D.],
Evans, C.J.[Carolyn J.],
Localisation of Image Features Using Measures of
Rank Distribution,
ICPR98(Vol I: 189-191).
IEEE DOI
9808
BibRef
Hofmann, T.,
Puzicha, J.,
Mixture models for co-occurrence and histogram data,
ICPR98(Vol I: 192-194).
IEEE DOI
0403
BibRef
Bello, F.,
Kitney, R.I.,
Co-Occurrence Based Texture Analysis Using Irregular Tessellations,
ICPR96(II: 780-784).
IEEE DOI
9608
(Imperial College of Science, UK)
BibRef
Lohmann, G.,
Co-occurrence-based analysis and synthesis of textures,
ICPR94(A:449-453).
IEEE DOI
9410
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Structural Methods for Texture Description .