22.2.2.4 Water Use Analysis, Water Stress

Chapter Contents (Back)
Water Use. Water Stress.

Taghvaeian, S., Chávez, J., Hansen, N.,
Infrared Thermometry to Estimate Crop Water Stress Index and Water Use of Irrigated Maize in Northeastern Colorado,
RS(4), No. 11, November 2012, pp. 3619-3637.
DOI Link 1211
BibRef

Taghvaeian, S.[Saleh], Chávez, J.L.[José L.], Hattendorf, M.J.[Mary J.], Crookston, M.A.[Mark A.],
Optical and Thermal Remote Sensing of Turfgrass Quality, Water Stress, and Water Use under Different Soil and Irrigation Treatments,
RS(5), No. 5, 2013, pp. 2327-2347.
DOI Link 1307
BibRef

Ullah, S.[Saleem], Skidmore, A.K.[Andrew K.], Ramoelo, A.[Abel], Groen, T.A.[Thomas A.], Naeem, M.[Mohammad], Ali, A.[Asad],
Retrieval of leaf water content spanning the visible to thermal infrared spectra,
PandRS(93), No. 1, 2014, pp. 56-64.
Elsevier DOI 1407
Water stress BibRef

Traore, A.K.[Abdoul Khadre], Ciais, P.[Philippe], Vuichard, N.[Nicolas], MacBean, N.[Natasha], Dardel, C.[Cecile], Poulter, B.[Benjamin], Piao, S.[Shilong], Fisher, J.B.[Joshua B.], Viovy, N.[Nicolas], Jung, M.[Martin], Myneni, R.[Ranga],
1982-2010 Trends of Light Use Efficiency and Inherent Water Use Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2 Concentrations,
RS(6), No. 9, 2014, pp. 8923-8944.
DOI Link 1410
BibRef

Torrion, J.A.[Jessica A.], Maas, S.J.[Stephan J.], Guo, W.X.[Wen-Xuan], Bordovsky, J.P.[James P.], Cranmer, A.M.[Andy M.],
A Three-Dimensional Index for Characterizing Crop Water Stress,
RS(6), No. 5, 2014, pp. 4025-4042.
DOI Link 1407
BibRef

Zhang, L.[Li], Tian, J.[Jing], He, H.L.[Hong-Lin], Ren, X.L.[Xiao-Li], Sun, X.M.[Xiao-Min], Yu, G.[Guirui], Lu, Q.Q.[Qian-Qian], Lv, L.[Linyu],
Evaluation of Water Use Efficiency Derived from MODIS Products against Eddy Variance Measurements in China,
RS(7), No. 9, 2015, pp. 11183.
DOI Link 1511
BibRef

Tang, X.G.[Xu-Guang], Li, H.P.[Heng-Peng], Griffis, T.J.[Tim J.], Xu, X.B.[Xi-Bao], Ding, Z.[Zhi], Liu, G.H.[Gui-Hua],
Tracking Ecosystem Water Use Efficiency of Cropland by Exclusive Use of MODIS EVI Data,
RS(7), No. 9, 2015, pp. 11016.
DOI Link 1511
BibRef

Ni, Z.Y.[Zhuo-Ya], Liu, Z.G.[Zhi-Gang], Huo, H.Y.[Hong-Yuan], Li, Z.L.[Zhao-Liang], Nerry, F.[Françoise], Wang, Q.S.[Qing-Shan], Li, X.[Xiaowen],
Early Water Stress Detection Using Leaf-Level Measurements of Chlorophyll Fluorescence and Temperature Data,
RS(7), No. 3, 2015, pp. 3232-3249.
DOI Link 1504
BibRef

Navarro, A.[Ana], Rolim, J.[João], Miguel, I.[Irina], Catalão, J.[João], Silva, J.[Joel], Painho, M.[Marco], Vekerdy, Z.[Zoltán],
Crop Monitoring Based on SPOT-5 Take-5 and Sentinel-1A Data for the Estimation of Crop Water Requirements,
RS(8), No. 6, 2016, pp. 525.
DOI Link 1608
BibRef

Buitrago, M.F.[Maria F.], Groen, T.A.[Thomas A.], Hecker, C.A.[Christoph A.], Skidmore, A.K.[Andrew K.],
Changes in thermal infrared spectra of plants caused by temperature and water stress,
PandRS(111), No. 1, 2016, pp. 22-31.
Elsevier DOI 1601
Spectral emissivity BibRef

Abdi, A.M.[Abdulhakim M.], Boke-Olén, N.[Niklas], Tenenbaum, D.E.[David E.], Tagesson, T.[Torbern], Cappelaere, B.[Bernard], Ardö, J.[Jonas],
Evaluating Water Controls on Vegetation Growth in the Semi-Arid Sahel Using Field and Earth Observation Data,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Tang, X.G.[Xu-Guang], Ma, M.G.[Ming-Guo], Ding, Z.[Zhi], Xu, X.B.[Xi-Bao], Yao, L.[Li], Huang, X.J.[Xiao-Juan], Gu, Q.[Qing], Song, L.S.[Li-Sheng],
Remotely Monitoring Ecosystem Water Use Efficiency of Grassland and Cropland in China's Arid and Semi-Arid Regions with MODIS Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Duchemin, B.[Benoit], Fieuzal, R.[Rémy], Rivera, M.A.[Miguel Augustin], Ezzahar, J.[Jamal], Jarlan, L.[Lionel], Rodriguez, J.C.[Julio César], Hagolle, O.[Olivier], Watts, C.[Christopher],
Impact of Sowing Date on Yield and Water Use Efficiency of Wheat Analyzed through Spatial Modeling and FORMOSAT-2 Images,
RS(7), No. 5, 2015, pp. 5951-5979.
DOI Link 1506
BibRef

Khand, K.[Kul], Taghvaeian, S.[Saleh], Hassan-Esfahani, L.[Leila],
Mapping Annual Riparian Water Use Based on the Single-Satellite-Scene Approach,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Lu, X.L.[Xiao-Liang], Liu, Z.[Zhunqiao], Zhou, Y.[Yuyu], Liu, Y.L.[Ya-Ling], Tang, J.[Jianwu],
Performance of Solar-Induced Chlorophyll Fluorescence in Estimating Water-Use Efficiency in a Temperate Forest,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Thorp, K.R.[Kelly R.], Thompson, A.L.[Alison L.], Harders, S.J.[Sara J.], French, A.N.[Andrew N.], Ward, R.W.[Richard W.],
High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Anderson, M.[Martha], Gao, F.[Feng], Knipper, K.[Kyle], Hain, C.[Christopher], Dulaney, W.[Wayne], Baldocchi, D.[Dennis], Eichelmann, E.[Elke], Hemes, K.[Kyle], Yang, Y.[Yun], Medellin-Azuara, J.[Josue], Kustas, W.[William],
Field-Scale Assessment of Land and Water Use Change over the California Delta Using Remote Sensing,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Moyano, M.C.[Maria C.], Garcia, M.[Monica], Palacios-Orueta, A.[Alicia], Tornos, L.[Lucia], Fisher, J.B.[Joshua B.], Fernández, N.[Néstor], Recuero, L.[Laura], Juana, L.[Luis],
Vegetation Water Use Based on a Thermal and Optical Remote Sensing Model in the Mediterranean Region of Doñana,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Senay, G.B.[Gabriel B.], Schauer, M.[Matthew], Velpuri, N.M.[Naga M.], Singh, R.K.[Ramesh K.], Kagone, S.[Stefanie], Friedrichs, M.[MacKenzie], Litvak, M.E.[Marcy E.], Douglas-Mankin, K.R.[Kyle R.],
Long-Term (1986-2015) Crop Water Use Characterization over the Upper Rio Grande Basin of United States and Mexico Using Landsat-Based Evapotranspiration,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Ahmadi, B.[Behzad], Ahmadalipour, A.[Ali], Tootle, G.[Glenn], Moradkhani, H.[Hamid],
Remote Sensing of Water Use Efficiency and Terrestrial Drought Recovery across the Contiguous United States,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Du, X.Z.[Xiao-Zheng], Zhao, X.[Xiang], Zhou, T.[Tao], Jiang, B.[Bo], Xu, P.[Peipei], Wu, D.H.[Dong-Hai], Tang, B.J.[Bi-Jian],
Effects of Climate Factors and Human Activities on the Ecosystem Water Use Efficiency throughout Northern China,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Xie, Y.H.[Yan-Hua], Lark, T.J.[Tyler J.], Brown, J.F.[Jesslyn F.], Gibbs, H.K.[Holly K.],
Mapping irrigated cropland extent across the conterminous United States at 30?m resolution using a semi-automatic training approach on Google Earth Engine,
PandRS(155), 2019, pp. 136-149.
Elsevier DOI 1908
Irrigation agriculture, Landsat, Automatic classification, Water use, Conterminous United States, Google Earth Engine BibRef

Schauer, M.[Matthew], Senay, G.B.[Gabriel B.],
Characterizing Crop Water Use Dynamics in the Central Valley of California Using Landsat-Derived Evapotranspiration,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Knipper, K.R.[Kyle R.], Kustas, W.P.[William P.], Anderson, M.C.[Martha C.], Alsina, M.M.[Maria Mar], Hain, C.R.[Christopher R.], Alfieri, J.G.[Joseph G.], Prueger, J.H.[John H.], Gao, F.[Feng], McKee, L.G.[Lynn G.], Sanchez, L.A.[Luis A.],
Using High-Spatiotemporal Thermal Satellite ET Retrievals for Operational Water Use and Stress Monitoring in a California Vineyard,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Osco, L.P.[Lucas Prado], Ramos, A.P.M.[Ana Paula Marques], Moriya, É.A.S.[Érika Akemi Saito], Bavaresco, L.G.[Lorrayne Guimarães], de Lima, B.C.[Bruna Coelho], Estrabis, N.[Nayara], Pereira, D.R.[Danilo Roberto], Creste, J.E.[José Eduardo], Júnior, J.M.[José Marcato], Gonçalves, W.N.[Wesley Nunes], Imai, N.N.[Nilton Nobuhiro], Li, J.[Jonathan], Liesenberg, V.[Veraldo], de Araújo, F.F.[Fábio Fernando],
Modeling Hyperspectral Response of Water-Stress Induced Lettuce Plants Using Artificial Neural Networks,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Gerhards, M.[Max], Schlerf, M.[Martin], Mallick, K.[Kaniska], Udelhoven, T.[Thomas],
Challenges and Future Perspectives of Multi-/Hyperspectral Thermal Infrared Remote Sensing for Crop Water-Stress Detection: A Review,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Zhao, J.X.[Jing-Xue], Xu, T.[Tongren], Xiao, J.F.[Jing-Feng], Liu, S.M.[Shao-Min], Mao, K.[Kebiao], Song, L.S.[Li-Sheng], Yao, Y.J.[Yun-Jun], He, X.L.[Xin-Lei], Feng, H.[Huaize],
Responses of Water Use Efficiency to Drought in Southwest China,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Santos, A.B.[Ana Beatriz], Costa, M.H.[Marcos Heil], Mantovani, E.C.[Everardo Chartuni], Boninsenha, I.[Igor], Castro, M.[Marina],
A Remote Sensing Diagnosis of Water Use and Water Stress in a Region with Intense Irrigation Growth in Brazil,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Tolomio, M.[Massimo], Casa, R.[Raffaele],
Dynamic Crop Models and Remote Sensing Irrigation Decision Support Systems: A Review of Water Stress Concepts for Improved Estimation of Water Requirements,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Paloschi, R.A.[Rennan A.], Ramos, D.M.[Desirée Marques], Ventura, D.J.[Dione J.], Souza, R.[Rodolfo], Souza, E.[Eduardo], Morellato, L.P.C.[Leonor Patrícia Cerdeira], Nóbrega, R.L.B.[Rodolfo L. B.], Coutinho, Í.A.C.[Ítalo Antônio Cotta], Verhoef, A.[Anne], Körting, T.S.[Thales Sehn], de Simone Borma, L.[Laura],
Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow Measurements,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Chandel, A.K.[Abhilash K.], Khot, L.R.[Lav R.], Molaei, B.[Behnaz], Peters, R.T.[R. Troy], Stöckle, C.O.[Claudio O.], Jacoby, P.W.[Pete W.],
High-Resolution Spatiotemporal Water Use Mapping of Surface and Direct-Root-Zone Drip-Irrigated Grapevines Using UAS-Based Thermal and Multispectral Remote Sensing,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Rasmussen, S.[Shaundra], Warziniack, T.[Travis], Neel, A.[Abbye], O'Neil-Dunne, J.[Jarlath], McHale, M.[Melissa],
When Small Is Not Beautiful: The Unexpected Impacts of Trees and Parcel Size on Metered Water-Use in a Semi-Arid City,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Kaplan, G.[Gregoriy], Fine, L.[Lior], Lukyanov, V.[Victor], Manivasagam, V.S., Malachy, N.[Nitzan], Tanny, J.[Josef], Rozenstein, O.[Offer],
Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VENµS Imagery,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Kharrou, M.H.[Mohamed Hakim], Simonneaux, V.[Vincent], Er-Raki, S.[Salah], Le Page, M.[Michel], Khabba, S.[Saïd], Chehbouni, A.[Abdelghani],
Assessing Irrigation Water Use with Remote Sensing-Based Soil Water Balance at an Irrigation Scheme Level in a Semi-Arid Region of Morocco,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Zhang, Y.C.[Yang-Chengsi], Du, J.Q.[Jia-Qiang], Guo, L.[Long], Sheng, Z.[Zhilu], Wu, J.H.[Jin-Hua], Zhang, J.[Jing],
Water Conservation Estimation Based on Time Series NDVI in the Yellow River Basin,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Luo, B.[Biao], Zhang, F.[Fan], Liu, X.[Xiao], Pan, Q.[Qi], Guo, P.[Ping],
Managing Agricultural Water Considering Water Allocation Priority Based on Remote Sensing Data,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Lillo-Saavedra, M.[Mario], Gavilán, V.[Viviana], García-Pedrero, A.[Angel], Gonzalo-Martín, C.[Consuelo], de la Hoz, F.[Felipe], Somos-Valenzuela, M.[Marcelo], Rivera, D.[Diego],
Ex Post Analysis of Water Supply Demand in an Agricultural Basin by Multi-Source Data Integration,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Zhou, J.J.[Jing-Jing], Zhang, Y.H.[Ya-Hao], Han, Z.M.[Ze-Min], Liu, X.Y.[Xiao-Yang], Jian, Y.F.[Yong-Feng], Hu, C.G.[Chun-Gen], Dian, Y.Y.[Yuan-Yong],
Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Cai, W.[Wanyuan], Ullah, S.[Sana], Yan, L.[Lei], Lin, Y.[Yi],
Remote Sensing of Ecosystem Water Use Efficiency: A Review of Direct and Indirect Estimation Methods,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Masri, B.E.[Bassil El], Stinchcomb, G.E.[Gary E.], Cetin, H.[Haluk], Ferguson, B.[Benedict], Kim, S.L.[Sora L.], Xiao, J.F.[Jing-Feng], Fisher, J.B.[Joshua B.],
Linking Remotely Sensed Carbon and Water Use Efficiencies with In Situ Soil Properties,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Chan, C.[Catherine], Nelson, P.R.[Peter R.], Hayes, D.J.[Daniel J.], Zhang, Y.J.[Yong-Jiang], Hall, B.[Bruce],
Predicting Water Stress in Wild Blueberry Fields Using Airborne Visible and Near Infrared Imaging Spectroscopy,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Almeida, B.[Bruna], Cabral, P.[Pedro],
Water Yield Modelling, Sensitivity Analysis and Validation: A Study for Portugal,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Kim, J.S.[Jae Sung], Kisekka, I.[Isaya],
FARMs: A Geospatial Crop Modeling and Agricultural Water Management System,
IJGI(10), No. 8, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Qiu, L.J.[Lin-Jing], Chen, Y.T.[Yu-Ting], Wu, Y.P.[Yi-Ping], Xue, Q.Y.[Qing-Yue], Shi, Z.Y.[Zhao-Yang], Lei, X.H.[Xiao-Hui], Liao, W.H.[Wei-Hong], Zhao, F.[Fubo], Wang, W.[Wenke],
The Water Availability on the Chinese Loess Plateau since the Implementation of the Grain for Green Project as Indicated by the Evaporative Stress Index,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Ahmad, U.[Uzair], Alvino, A.[Arturo], Marino, S.[Stefano],
A Review of Crop Water Stress Assessment Using Remote Sensing,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Brom, J.[Jakub], Duffková, R.[Renata], Haberle, J.[Jan], Zajícek, A.[Antonín], Nedbal, V.[Václav], Bernasová, T.[Tereza], Krováková, K.[Katerina],
Identification of Infiltration Features and Hydraulic Properties of Soils Based on Crop Water Stress Derived from Remotely Sensed Data,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Joshi, R.C.[Rakesh Chandra], Ryu, D.[Dongryeol], Sheridan, G.J.[Gary J.], Lane, P.N.J.[Patrick N. J.],
Modeling Vegetation Water Stress over the Forest from Space: Temperature Vegetation Water Stress Index (TVWSI),
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Hao, X.M.[Xing-Ming], Zhang, J.J.[Jing-Jing], Fan, X.[Xue], Hao, H.C.[Hai-Chao], Li, Y.H.[Yuan-Hang],
Quantifying Soil Moisture Impacts on Water Use Efficiency in Terrestrial Ecosystems of China,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef


Amoo, O.T., Nakin, M.D.V., Abayomi, A., Ojugbele, H.O., Salami, A.W.,
System Dynamics Approach for Evaluating Existing and Future Water Allocation Planning Among Conflicting Users,
SmartCityApp20(45-51).
DOI Link 2012
BibRef

Sheffield, K., Abuzar, M., Whitfield, D., Mcallister, A., O'Connell, M.,
Riparian Vegetation Status and Rates of Water Use From Satellite Data,
ISPRS12(XXXIX-B8:351-356).
DOI Link 1209
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
LAI, Leaf Area Index, Land Cover Analysis .


Last update:Dec 7, 2021 at 16:42:42