van Veen, F.[Fjodor],
A mostly complete chart of Neural Networks,
Online
WWW Link.
2002
The Online link goes to Andrew Tch with explaination of each.
The main reference is to the creator of the chart.
BibRef
Deep Learning Tool Kit for Medical Imaging,
2017.
WWW Link.
Code, Neural Networks. Neural networks toolkit written in python, on top of Tensorflow. Its
modular architecture was developed to enable fast prototyping and
ensure reproducibility in image analysis applications, with a
particular focus on medical imaging.
Minsky, M.L.[Marvin L.],
Papert, S.,
Perceptrons: An Introduction to Computational Geometry,
MIT PressCambridge, MA, 1969.
Whey they do not work.
BibRef
6900
Minsky, M.L.[Marvin L.],
Selfridge, O.G.,
Learning in Random Nets,
IT60(335).
BibRef
6000
Dewdney, A.K.,
Computer Recreations,
SciAmer(250), Month missing -- 1984, pp. 22-34.
Perceptrons. Discussion of Perceptrons.
BibRef
8400
Linsker, R.,
Self-organization in a perceptual network,
TC(21), 1988, pp. 105-117.
0907
BibRef
Pao, Y.H.,
Neural Net Computing for Pattern Recognition,
HPRCV97(Chapter I:4).
(Case Western Reserve Univ.)
BibRef
9700
Haykin, S.,
Neural Networks: A Comprehensive Introduction,
Prentice Hall1999.
BibRef
9900
Skrzypek, J.,
Karplus, W., (Eds.)
Special Issue-Neural Networks in Vision and Pattern Recognition,
PRAI(6), No. 1, April 1992, pp. 1-208.
BibRef
9204
Bischof, H.[Horst],
Pinz, A.[Axel],
Artificial Versus Real Neural Networks,
BBS(15), No. 4, 1992, pp. 712.
BibRef
9200
Guyun, I.,
Wang, P.S.P., (Eds.)
Special Issue on Advances in Pattern Recognition Using Neural Networks,
PRAI(8), No. 4, August 1993, pp. 645-963.
BibRef
9308
Drucker, H.,
Schapire, R.,
Simard, P.Y.,
Boosting Performance in Neural Networks,
PRAI(7), 1993, pp. 705-719.
BibRef
9300
Musavi, M.T.,
Chan, K.H.,
Hummels, D.M.,
Kalantri, K.,
On The Generalization Ability Of Neural Network Classifiers,
PAMI(16), No. 6, June 1994, pp. 659-663.
IEEE DOI
BibRef
9406
Marshall, J.A.,
Adaptive Perceptual Pattern-Recognition by Self-Organizing Neural Networks:
Context, Uncertainty, Multiplicity, and Scale,
NeurNet(8), No. 3, 1995, pp. 335-362.
BibRef
9500
Sethi, I.K.,
Special Section on Artificial Neural Networks for Machine Vision,
MVA(8), No. 5, 1995, pp. 261-261.
Springer DOI
BibRef
9500
Wang, S.S.,
Lin, W.G.,
A New Self-Organizing Neural Model for Invariant Pattern-Recognition,
PR(29), No. 4, April 1996, pp. 677-687.
Elsevier DOI
BibRef
9604
Heikkonen, J.,
Bulsari, A.,
Special Issue on Neural Networks for Computer Vision Applications,
PRL(17), No. 4, April 4 1996, pp. 317-318.
9605
BibRef
Simes, E.D.,
Uebel, L.F.,
Augusto, D.,
Barone, C.,
Hardware Implementation of RAM Neural Networks,
PRL(17), No. 4, April 4 1996, pp. 421-429.
9605
BibRef
Bertin, E.,
Bischof, H.,
Bertolino, P.,
Voronoi Pyramids Controlled by Hopfield Neural Networks,
CVIU(63), No. 3, May 1996, pp. 462-475.
DOI Link
9606
BibRef
Earlier: A2, A1, A3:
Voronoi pyramids and Hopfield networks,
ICPR94(C:330-333).
IEEE DOI
9410
BibRef
Sethi, I.K.,
Yoo, J.H.,
Symbolic Mapping of Neurons in Feedforward Networks,
PRL(17), No. 10, September 2 1996, pp. 1035-1046.
Connectionist.
BibRef
9609
Chellappa, R.,
Fukushima, K.,
Katsaggelos, B.K.,
Kung, S.Y.,
Le Cun, Y.L.,
Nasrabadi, N.M.,
Poggio, T.A.,
Applications of Artificial Neural Networks to Image Processing,
IP(7), No. 8, August 1998, pp. 1093-1096.
IEEE DOI
9808
BibRef
Benediktsson, J.A.,
Sveinsson, J.R.,
Ersoy, O.K.,
Swain, P.H.,
Parallel Consensual Neural Networks,
TNN(8), No. 1, January 1997, pp. 54-64.
9701
BibRef
Mazza, C.,
Neural-Net Inference and Content-Addressable Memory,
TNN(8), No. 1, January 1997, pp. 133-140.
9701
BibRef
Atkinson, P.M.,
Tatnall, A.R.L.,
Neural Networks in Remote Sensing: Introduction,
JRS(18), No. 4, March 10 1997, pp. 699-709.
9703
BibRef
Wang, L.F.[Li-Feng],
Cheng, H.D.,
Discretizing Continuous Neural Networks Using a
Polarization Learning Rule,
PR(30), No. 2, February 1997, pp. 253-260.
Elsevier DOI
9704
BibRef
Willshaw, D.,
Hallam, J.,
Gingell, S.,
Lau, S.L.,
Marr Theory of the Neocortex as a Self-Organizing Neural-Network,
NeurComp(9), No. 4, May 15 1997, pp. 911-936.
9706
BibRef
Abdel-Wahhab, O.[Osama],
Sid-Ahmed, M.A.,
A New Scheme for Training Feedforward Neural Networks,
PR(30), No. 3, March 1997, pp. 519-524.
Elsevier DOI
9705
BibRef
Pandya, A.S.[Abhijit S.],
Macy, R.B.[Robert B.],
Pattern Recognition with Neural Networks in C++,
CRC PressBoca Raton, FL. 1996.
Code, Neural Networks. ISBN 0-8493-9462-7.
Complete code for the various algorithms.
BibRef
9600
Frasconi, P.,
Gori, M.,
Soda, G.,
Links Between LVQ and Backpropagation,
PRL(18), No. 4, April 1997, pp. 303-310.
9708
BibRef
Hoekstra, A.,
Duin, R.P.W.,
Investigating Redundancy in Feedforward Neural Classifiers,
PRL(18), No. 11-13, November 1997, pp. 1293-1300.
9806
BibRef
de Ridder, D.,
Duin, R.P.W.,
Sammons Mapping Using Neural Networks: A Comparison,
PRL(18), No. 11-13, November 1997, pp. 1307-1316.
9806
See also nonlinear mapping for data structure analysis, A.
BibRef
Yan, H.,
Gupta, M.M.,
Special Section on Neural Networks and Fuzzy Logic for
Imaging Applications,
JEI(6), No. 3, July 1997, pp. 270-271.
9807
BibRef
Wilson, C.L.,
Blue, J.L.,
Omidvar, O.M.,
Neurodynamics of Learning and Network Performance,
JEI(6), No. 3, July 1997, pp. 379-385.
9807
BibRef
Wang, S.D.,
Hsu, T.C.,
Perceptron-Perceptron Net,
PRL(19), No. 7, May 1998, pp. 559-568.
9808
BibRef
Verikas, A.[Antanas],
Lipnickas, A.[Arunas],
Malmqvist, K.[Kerstin],
Bacauskiene, M.[Marija],
Gelzinis, A.[Adas],
Soft combination of neural classifiers: A comparative study,
PRL(20), No. 4, April 1999, pp. 429-444.
BibRef
9904
Signahl, M.[Mikael], and
Verikas, A.[Antanas],
Fuzzy Combination Schemes for Neural Networks,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Verikas, A.,
Bacauskiene, M.,
Feature selection with neural networks,
PRL(23), No. 11, September 2002, pp. 1323-1335.
Elsevier DOI
0206
BibRef
Bacauskiene, M.,
Verikas, A.,
Selecting salient features for classification based on neural network
committees,
PRL(25), No. 16, December 2004, pp. 1879-1891.
Elsevier DOI
0411
BibRef
de Ridder, D.,
Duin, R.P.W.,
Verbeek, P.W.,
van Vliet, L.J.,
The Applicability of Neural Networks to Non-linear Image Processing,
PAA(2), No. 2, 1999, pp. 111-128.
BibRef
9900
de Ridder, D.,
Duin, R.P.W.,
Verbeek, P.W.,
van Vliet, L.J.,
A Weight Set Decorrelating Algorithm for Neural Network Interpretation
and Symmetry Breaking,
SCIA99(Neural Nets).
BibRef
9900
Duin, R.P.W.[Robert P. W.],
de Ridder, D.[Dick],
Neural network experiences between perceptrons and support vectors,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Kraaijveld, M.A.,
Duin, R.P.W.,
The effective capacity of multilayer feedforward network classifiers,
ICPR94(B:99-103).
IEEE DOI
9410
BibRef
Schmidt, W.F.,
Kraaijveld, M.A.,
Duin, R.P.W.,
Feedforward neural networks with random weights,
ICPR92(II:1-4).
IEEE DOI
9208
BibRef
Foody, G.M.[Giles M.],
The significance of border training patterns in classification by a
feedforward neural network using back propagation learning,
JRS(20), No. 18, December 1999, pp. 3549.
BibRef
9912
Asari, K.V.[K. Vijayan],
Eswaran, C.,
Bidirectional multiple-valued neural network for pattern recognition
and associative recall,
IJIST(11), No. 2, 2000, pp. 125-129.
0008
BibRef
Wang, B.Y.[Bao-Yun],
He, Z.Y.[Zhen-Ya],
Can the classification capability of network be further improved by
using quadratic sigmoidal neurons?,
PR(33), No. 8, August 2000, pp. 1395-1399.
Elsevier DOI
0005
BibRef
Hungenahally, S., and
Bhattacharya, P.,
A Computational Approach to the Emulation of
Visual Neural Architectures,
KBES(2), No. 3, 1998, pp. 185-193.
BibRef
9800
Micheli-Tzanakou, E.[Evangelia],
Supervised and Unsupervised Pattern Recognition: Feature Extraction
and Computational Intelligence,
CRC PressJanuary 2000, ISBN 0-8493-2278-2.
Review of current work.
BibRef
0001
Chandra Kumar, P.,
Saratchandran, P.,
Sundararajan, N.,
Minimal radial basis function neural networks for nonlinear channel
equalisation,
VISP(147), No. 5, October 2000, pp. 428-435.
0101
BibRef
Li, M.B.,
Huang, G.B.,
Saratchandran, P.,
Sundararajan, N.,
Complex-valued growing and pruning RBF neural networks for
communication channel equalisation,
VISP(153), No. 4, August 2006, pp. 411-418.
DOI Link
0705
BibRef
Zhang, G.P.,
Neural networks for classification: a survey,
SMC-C(30), No. 4, November 2000, pp. 451-462.
IEEE Top Reference.
0104
Survey, Neural Networks.
BibRef
Murino, V.,
Vernazza, G.,
Artificial Neural Networks for Image Analysis and Computer Vision,
IVC(19), No. 9-10, August 2001, pp. 583-584.
Elsevier DOI
0108
Special Issue introduction.
BibRef
Raudys, S.J.[Sarunas J.],
Statistical and Neural Classifiers: An Integrated Approach to Design,
Springer-VerlagNew York, 2001.
ISBN 1-85233-297-2.
BibRef
0100
Egmont-Petersen, M.,
de Ridder, D.,
Handels, H.,
Image processing with neural networks: A Review,
PR(35), No. 10, October 2002, pp. 2279-2301.
Elsevier DOI
0206
Survey, Neural Networks. 200 applications.
BibRef
Ripley, B.D.,
Pattern Recognition and Neural Networks,
Cambridge University Press1996.
BibRef
9600
Ripley, B.D.,
Spatial Statistics,
Wiley1981, New York.
BibRef
8100
Behnke, S.,
Hierarchical neural networks for image interpretation,
Springer2003, ISBN 3540407227.
PDF File.
BibRef
0300
Sussner, P.[Peter],
Graña, M.[Manuel],
Guest Editorial: Special Issue on Morphological Neural Networks,
JMIV(19), No. 2, September 2003, pp. 79-80.
DOI Link
0308
BibRef
Foresti, G.L.,
Dolso, T.,
An Adaptive High-Order Neural Tree for Pattern Recognition,
SMC-B(34), No. 2, April 2004, pp. 988-996.
IEEE Abstract.
0404
BibRef
Foresti, G.L.,
Christian, M.,
Snidaro, L.,
Adaptive high order neural trees for pattern recognition,
ICPR02(II: 877-880).
IEEE DOI
0211
BibRef
Rani, A.[Asha],
Foresti, G.L.[Gian Luca],
Micheloni, C.[Christian],
A neural tree for classification using convex objective function,
PRL(68, Part 1), No. 1, 2015, pp. 41-47.
Elsevier DOI
1512
Neural tree
BibRef
Oh, K.S.[Kyoung-Su],
Jung, K.C.[Kee-Chul],
GPU implementation of neural networks,
PR(37), No. 6, June 2004, pp. 1311-1314.
Elsevier DOI
0405
Graphics Processing Unit implementation of NN.
BibRef
Wang, Z.B.[Zhao-Bin],
Ma, Y.[Yide],
Cheng, F.Y.[Fei-Yan],
Yang, L.Z.[Li-Zhen],
Review of pulse-coupled neural networks,
IVC(28), No. 1, Januray 2010, pp. 5-13.
Elsevier DOI
1001
Pulse-coupled neural networks (PCNN); Image processing; Artificial
neural network
BibRef
Ma, Y.[Yide],
Liu, L.[Li],
Zhan, K.[Kun],
Wu, Y.Q.[Yong-Qing],
Pulse-coupled neural networks and one-class support vector machines for
geometry invariant texture retrieval,
IVC(28), No. 11, November 2010, pp. 1524-1529.
Elsevier DOI
1008
Pulse-coupled neural network (PCNN); Intersecting cortical model
(ICM); Texture retrieval; Support vector machine (SVM); Feature
extraction
BibRef
Bengio, S.[Samy],
Deng, L.[Li],
Larochelle, H.[Hugo],
Lee, H.L.[Hong-Lak],
Salakhutdinov, R.[Ruslan],
Guest Editors' Introduction:
Special Section on Learning Deep Architectures,
PAMI(35), No. 8, 2013, pp. 1795-1797.
IEEE DOI
1307
Computer architecture; Data mining; Data models; Learning systems;
Neural networks; Signal processing algorithms;
Special issues and sections
BibRef
Bhattacharyya, S.[Siddhartha],
Maulik, U.[Ujjwal],
Soft Computing for Image and Multimedia Data Processing,
Zhang, Y.N.[Yu-Nong],
Yin, Y.H.[Yong-Hua],
Guo, D.S.[Dong-Sheng],
Yu, X.T.[Xiao-Tian],
Xiao, L.[Lin],
Cross-validation based weights and structure determination of
Chebyshev-polynomial neural networks for pattern classification,
PR(47), No. 10, 2014, pp. 3414-3428.
Elsevier DOI
1406
Cross validation
BibRef
Ranzato, M.[Marc'Aurelio],
Hinton, G.E.[Geoffrey E.],
Le Cun, Y.L.[Yann L.],
Guest Editorial: Deep Learning,
IJCV(113), No. 1, May 2015, pp. 1-2.
Springer DOI
1506
BibRef
Romero, A.[Adriana],
Radeva, P.,
Gatta, C.[Carlo],
Meta-Parameter Free Unsupervised Sparse Feature Learning,
PAMI(37), No. 8, August 2015, pp. 1716-1722.
IEEE DOI
1507
Encoding
BibRef
Romero, A.[Adriana],
Gatta, C.[Carlo],
Do We Really Need All These Neurons?,
IbPRIA13(460-467).
Springer DOI
1307
Restricted Boltzmann Machines (RBMs) are generative neural networks.
BibRef
van der Velde, F.[Frank],
Computation and dissipative dynamical systems in neural networks for
classification,
PRL(64), No. 1, 2015, pp. 44-52.
Elsevier DOI
1509
Classification
BibRef
Miyajima, R.,
Deep Learning Triggers a New Era in Industrial Robotics,
MultMedMag(24), No. 4, October 2017, pp. 91-96.
IEEE DOI
1712
Cameras, Games, Industrial engineering, Intelligent systems,
Machine learning, Pervasive computing, Service robots,
software engineering
BibRef
Lucas, A.,
Iliadis, M.,
Molina, R.,
Katsaggelos, A.K.,
Using Deep Neural Networks for Inverse Problems in Imaging:
Beyond Analytical Methods,
SPMag(35), No. 1, January 2018, pp. 20-36.
IEEE DOI
1801
Analytical models, Biological neural networks,
Image reconstruction, Inverse problems, Machine learning,
Visual systems
BibRef
Gu, J.X.[Jiu-Xiang],
Wang, Z.H.[Zhen-Hua],
Kuen, J.[Jason],
Ma, L.Y.[Lian-Yang],
Shahroudy, A.[Amir],
Shuai, B.[Bing],
Liu, T.[Ting],
Wang, X.X.[Xing-Xing],
Wang, G.[Gang],
Cai, J.F.[Jian-Fei],
Chen, T.H.[Tsu-Han],
Recent advances in convolutional neural networks,
PR(77), 2018, pp. 354-377.
Elsevier DOI
1802
Convolutional neural network, Deep learning
BibRef
Yang, L.P.[Li-Ping],
MacEachren, A.M.[Alan M.],
Mitra, P.[Prasenjit],
Onorati, T.[Teresa],
Visually-Enabled Active Deep Learning for (Geo) Text and Image
Classification: A Review,
IJGI(7), No. 2, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Edwards, C.[Chris],
Deep Learning Hunts for Signals Among the Noise,
CACM(61), No. 6, June 2018, pp. 13-14.
DOI Link
1806
Trained neural networks can be tricked to focus on patterns in images
that are barely noticeable by humans.
BibRef
Deng, B.L.,
Li, G.,
Han, S.,
Shi, L.,
Xie, Y.,
Model Compression and Hardware Acceleration for Neural Networks:
A Comprehensive Survey,
PIEEE(108), No. 4, April 2020, pp. 485-532.
IEEE DOI
2004
Compact neural network, data quantization,
neural network acceleration, neural network compression,
tensor decomposition
BibRef
Que, Q.C.[Qi-Chao],
Belkin, M.[Mikhail],
Back to the Future: Radial Basis Function Network Revisited,
PAMI(42), No. 8, August 2020, pp. 1856-1867.
IEEE DOI
2007
Kernel, Radial basis function networks, Training, Standards,
Loss measurement, Training data, Supervised learning,
k-means
BibRef
Parhi, R.,
Nowak, R.D.,
The Role of Neural Network Activation Functions,
SPLetters(27), 2020, pp. 1779-1783.
IEEE DOI
2010
Splines (mathematics), Training, Biological neural networks,
Green's function methods, Inverse problems,
inverse problems
BibRef
Pretorius, A.[Arnu],
van Biljon, E.[Elan],
van Niekerk, B.[Benjamin],
Eloff, R.[Ryan],
Reynard, M.[Matthew],
James, S.[Steve],
Rosman, B.[Benjamin],
Kamper, H.[Herman],
Kroon, S.[Steve],
If dropout limits trainable depth, does critical initialisation still
matter? A large-scale statistical analysis on ReLU networks,
PRL(138), 2020, pp. 95-105.
Elsevier DOI
2010
Neural networks, Critical initialisation, Signal propagation,
Randomised control trial
BibRef
Lin, R.[Ruiyuan],
You, S.[Suya],
Rao, R.[Raghuveer],
Kuo, C.C.J.[C.C. Jay],
On Relationship of Multilayer Perceptrons and Piecewise Polynomial
Approximators,
SPLetters(28), 2021, pp. 1813-1817.
IEEE DOI
2109
Neurons, Multilayer perceptrons, Tools,
Piecewise linear approximation, Biological neural networks,
piecewise polynomial approximation
BibRef
Guo, Y.[Yiwen],
Chen, L.[Long],
Chen, Y.R.[Yu-Rong],
Zhang, C.S.[Chang-Shui],
On Connections Between Regularizations for Improving DNN Robustness,
PAMI(43), No. 12, December 2021, pp. 4469-4476.
IEEE DOI
2112
Robustness, Jacobian matrices, Training data, Perturbation methods,
Neural networks, Computational modeling, Task analysis,
network property
BibRef
Audibert, J.[Julien],
Michiardi, P.[Pietro],
Guyard, F.[Frédéric],
Marti, S.[Sébastien],
Zuluaga, M.A.[Maria A.],
Do deep neural networks contribute to multivariate time series
anomaly detection?,
PR(132), 2022, pp. 108945.
Elsevier DOI
2209
Anomaly detection, Multivariate time series, Neural networks
BibRef
Zhao, S.[Shuai],
Zhou, L.[Liguang],
Wang, W.X.[Wen-Xiao],
Cai, D.[Deng],
Lam, T.L.[Tin Lun],
Xu, Y.S.[Yang-Sheng],
Toward Better Accuracy-Efficiency Trade-Offs: Divide and Co-Training,
IP(31), 2022, pp. 5869-5880.
IEEE DOI
2209
More networks (ensemble) is better than wider network.
Training, Neural networks, Convolution, Costs,
Tin, Kernel, Image classification, divide networks, co-training,
deep networks ensemble
BibRef
Han, Y.Z.[Yi-Zeng],
Huang, G.[Gao],
Song, S.[Shiji],
Yang, L.[Le],
Wang, H.H.[Hong-Hui],
Wang, Y.L.[Yu-Lin],
Dynamic Neural Networks: A Survey,
PAMI(44), No. 11, November 2022, pp. 7436-7456.
IEEE DOI
2210
Computational modeling, Adaptation models, Adaptive systems,
Routing, Deep learning, Training, Dynamic networks,
convolutional neural networks
BibRef
Peng, W.[Wei],
Varanka, T.[Tuomas],
Mostafa, A.[Abdelrahman],
Shi, H.[Henglin],
Zhao, G.Y.[Guo-Ying],
Hyperbolic Deep Neural Networks: A Survey,
PAMI(44), No. 12, December 2022, pp. 10023-10044.
IEEE DOI
2212
Mathematical models, Manifolds, Numerical models, Deep learning,
Task analysis, Geometry, Computational modeling, Lorentz model
BibRef
Sangalli, M.[Mateus],
Blusseau, S.[Samy],
Velasco-Forero, S.[Santiago],
Angúlo, J.[Jesus],
Differential Invariants for SE(2)-Equivariant Networks,
ICIP22(2216-2220)
IEEE DOI
2211
Manifolds, Knowledge engineering, Adaptation models,
Neural networks, Equivariant Neural Networks, Image Classification
BibRef
Höfer, T.[Timon],
Zell, A.[Andreas],
Automatic Adjustment of Fourier Embedding Parametrizations for
Implicit Neural Representations,
ICPR22(2307-2313)
IEEE DOI
2212
Multilayer perceptrons, Iterative methods, Task analysis
BibRef
Benbarka, N.[Nuri],
Höfer, T.[Timon],
Riaz, H.U.M.[Hamd Ul-Moqeet],
Zell, A.[Andreas],
Seeing Implicit Neural Representations as Fourier Series,
WACV22(2283-2292)
IEEE DOI
2202
Training, Interpolation,
Neural networks, Lattices, Multilayer perceptrons, Fourier series,
3D Computer Vision Implict neural representation
BibRef
Melodia, L.[Luciano],
Lenz, R.[Richard],
Estimate of the Neural Network Dimension Using Algebraic Topology and
Lie Theory,
IMTA20(15-29).
Springer DOI
2103
BibRef
He, K.,
Girshick, R.,
Dollar, P.,
Rethinking ImageNet Pre-Training,
ICCV19(4917-4926)
IEEE DOI
2004
convolutional neural nets, image segmentation,
iterative methods, learning (artificial intelligence), Object detection
BibRef
Postels, J.[Janis],
Ferroni, F.[Francesco],
Coskun, H.[Huseyin],
Navab, N.[Nassir],
Tombari, F.[Federico],
Sampling-Free Epistemic Uncertainty Estimation Using Approximated
Variance Propagation,
ICCV19(2931-2940)
IEEE DOI
2004
image segmentation, Monte Carlo methods, neural nets,
sampling methods, deep neural networks, Real-time systems
BibRef
Zamora Esquivel, J.[Julio],
Cruz Vargas, J.A.[Jesus Adan],
Lopez-Meyer, P.[Paulo],
Fractional Adaptation of Activation Functions In Neural Networks,
ICPR21(7544-7550)
IEEE DOI
2105
Training, Backpropagation, Network topology, Neurons,
Radial basis function networks, Manuals, Topology
BibRef
Zamora Esquivel, J.,
Cruz Vargas, A.,
Camacho Perez, R.,
Lopez Meyer, P.,
Cordourier, H.,
Tickoo, O.,
Adaptive Activation Functions Using Fractional Calculus,
NeruArch19(2006-2013)
IEEE DOI
2004
calculus, mathematical programming, multilayer perceptrons,
radial basis function networks, RBF networks,
fractional calculus
BibRef
Majtner, T.[Tomáš],
Nadimi, E.S.[Esmaeil S.],
Comparison of Deep Learning-Based Recognition Techniques for Medical
and Biomedical Images,
CAIP19(I:492-504).
Springer DOI
1909
BibRef
Stockdill, A.,
Neshatian, K.,
Simulating neuromorphic reservoir computing:
Abstract feed-forward hardware models,
IVCNZ17(1-7)
IEEE DOI
1902
feedforward neural nets, learning (artificial intelligence),
memristors, neural chips, neural net architecture,
Neurons
BibRef
Cahill-Lane, J.,
Mills, S.,
Of mice, men, and machines: Real and artificial deep networks for
vision,
IVCNZ17(1-6)
IEEE DOI
1902
medical image processing, neural nets, mice, men,
artificial deep networks, artificial neural networks,
Optical sensors
BibRef
Jacob, B.,
Kligys, S.,
Chen, B.,
Zhu, M.,
Tang, M.,
Howard, A.,
Adam, H.,
Kalenichenko, D.,
Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference,
CVPR18(2704-2713)
IEEE DOI
1812
Quantization (signal), Training, Arrays, Computational modeling,
Hardware, Neural networks
BibRef
Park, E.[Eunhyeok],
Yoo, S.[Sungjoo],
Vajda, P.[Peter],
Value-Aware Quantization for Training and Inference of Neural Networks,
ECCV18(II: 608-624).
Springer DOI
1810
BibRef
Banerjee, S.[Samik],
Bhattacharjee, P.[Prateep],
Das, S.[Sukhendu],
Performance of Deep Learning Algorithms vs. Shallow Models, in Extreme
Conditions - Some Empirical Studies,
PReMI17(565-574).
Springer DOI
1711
BibRef
Handa, A.[Ankur],
Bloesch, M.[Michael],
Patraucean, V.[Viorica],
Stent, S.[Simon],
McCormac, J.[John],
Davison, A.[Andrew],
gvnn: Neural Network Library for Geometric Computer Vision,
DeepLearn16(III: 67-82).
Springer DOI
1611
Code, Neural Networks.
BibRef
Nguyen, A.[Anh],
Clune, J.[Jeff],
Bengio, Y.[Yoshua],
Dosovitskiy, A.[Alexey],
Yosinski, J.[Jason],
Plug & Play Generative Networks:
Conditional Iterative Generation of Images in Latent Space,
CVPR17(3510-3520)
IEEE DOI
1711
Feature extraction, Generators, Image resolution, Neurons, Plugs,
Probabilistic logic, Training
BibRef
Nguyen, A.[Anh],
Yosinski, J.[Jason],
Clune, J.[Jeff],
Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images,
CVPR15(427-436)
IEEE DOI
1510
BibRef
Ben Othman, I.[Ibtissem],
Ghorbel, F.[Faouzi],
Stability evaluation of neural and Bayesian classifiers:
A new insight,
ICIP14(4314-4317)
IEEE DOI
1502
Artificial neural networks
BibRef
Wu, F.[Fuke],
Hu, S.G.[Shi-Geng],
Robust stability with general decay rate for stochastic neural networks
with unbounded time-varying delays,
ICARCV12(753-758).
IEEE DOI
1304
BibRef
Karan, S.,
Majumder, D.D.,
Cognitive Quantum Number: The Logic for Nano Scale Information
Processing in Minds and Machines,
NCVPRIPG11(183-186).
IEEE DOI
1205
BibRef
Madani, K.[Kurosh],
Artificial Neural Networks Based Image Processing and Pattern Recognition:
From Concepts to Real-World Applications,
IPTA08(1-9).
IEEE DOI
0811
BibRef
Besdok, E.[Erkan],
Neurovision with Resilient Neural Networks,
Visual07(438-444).
Springer DOI
0706
BibRef
Giraudo, M.T.[Maria Teresa],
Sacerdote, L.[Laura],
Sicco, A.[Alessandro],
Ghost Stochastic Resonance for a Neuron with a Pair of Periodic Inputs,
BVAI07(398-407).
Springer DOI
0710
BibRef
Zanetti, B.,
Noriakilde, A.,
Saito, J.H.,
A Framework for Neural Networks Simulation and Visualization:
Neocognitron Case,
ICIP05(III: 485-488).
IEEE DOI
0512
BibRef
Banarer, V.[Vladimir],
Perwass, C.[Christian],
Sommer, G.[Gerald],
Design of a Multilayered Feed-Forward Neural Network Using Hypersphere
Neurons,
CAIP03(571-578).
Springer DOI
0311
BibRef
Silvestre, M.R.,
Ling, L.L.[Lee Luan],
Optimization of neural classifiers based on Bayesian decision
boundaries and idle neurons pruning,
ICPR02(III: 387-390).
IEEE DOI
0211
BibRef
Li, Y.L.[Yan-Lai],
Wang, K.Q.[Kuan-Quan],
Zhang, D.,
Step acceleration based training algorithm for feedforward neural
networks,
ICPR02(II: 84-87).
IEEE DOI
0211
BibRef
Toh, K.A.[Kar-Ann],
Mao, K.Z.,
A global transformation approach to RBF neural network learning,
ICPR02(II: 96-99).
IEEE DOI
0211
BibRef
Grim, J.,
Pudil, P.,
Somol, P.,
Boosting in probabilistic neural networks,
ICPR02(II: 136-139).
IEEE DOI
0211
BibRef
Cardot, H.,
Lezoray, O.,
Graph of neural networks for pattern recognition,
ICPR02(II: 873-876).
IEEE DOI
0211
BibRef
Feiden, D.,
Tetzlaff, R.,
Iterative Annealing: a New Efficient Optimization Method for Cellular
Neural Networks,
ICIP01(I: 549-552).
IEEE DOI
0108
BibRef
di Bona, S.,
Salvetti, O.,
An Efficient Method to Map a Regular Mesh Into a 3d Neural Network,
ICIP01(I: 529-532).
IEEE DOI
0108
BibRef
Wang, G.Y.[Guo-Yin],
Triple- or Multiple-Valued Logical Rule Generation from Neural Network,
ICPR98(ATP1).
9808
BibRef
Eigenmann, R.,
Nossek, J.A.,
Modification of Hard-Limiting Multilayer Neural Networks for
Confidence Evaluation,
ICDAR97(1087-1091).
IEEE DOI
9708
BibRef
Earlier:
Constructive and Robust Combination of Perceptrons,
ICPR96(IV: 195-199).
IEEE DOI
9608
(Technical Univ. of Munich, D)
BibRef
Utschick, W.,
Nossek, J.A.,
Bayesian Adaptation of Hidden Layers in
Boolean Feedforward Neural Networks,
ICPR96(IV: 229-233).
IEEE DOI
9608
(Technical Univ. of Munich, D)
BibRef
Lampinen, J.[Jouko], and
Selonen, A.[Arto],
Using Background Knowledge in Multilayer Perceptron Learning,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Sardo, L.,
Kittler, J.V.[Josef V.],
Model Complexity Validation for PDF Estimation Using Gaussian Mixtures,
ICPR98(Vol I: 195-197).
IEEE DOI
9808
BibRef
Earlier:
Minimum Complexity PDF Estimation for Correlated Data,
ICPR96(II: 750-754).
IEEE DOI
9608
BibRef
And:
Complexity analysis of RBF networks for Pattern Recognition,
CVPR96(574-579).
IEEE DOI (Univ. of Surrey, UK)
BibRef
Paik, J.H.[Jong-Hyun],
Cho, S.B.[Sung-Bae],
Lee, K.Y.[Kwan-Yong],
Lee, Y.B.[Yill-Byung],
Multiple Recognizers System Using Two Stage Combinations,
ICPR96(IV: 581-585).
IEEE DOI
9608
(Yonsei Univ., KOR)
BibRef
Ritter, G.,
Sussner, P.,
An Introduction to Morphological Neural Networks,
ICPR96(IV: 709-717).
IEEE DOI
9608
(Univ. of Florida, USA)
BibRef
Kuncheva, L.I.[Ludmila I.],
Hadjitodorov, S.,
An RBF Network with Tunable Function Shape,
ICPR96(IV: 645-649).
IEEE DOI
9608
(Imperial College of Science, UK)
BibRef
Bayro-Corrochano, E.,
Buchholz, S.,
Sommer, G.,
A New Self-Organizing Neural Network Using Geometric Algebra,
ICPR96(IV: 555-559).
IEEE DOI
9608
(Christian Albrechts Univ., D)
BibRef
Stoyanov, I.,
An Improved Backpropagation Neural Network Learning,
ICPR96(IV: 586-588).
IEEE DOI
9608
(Bulgarian Academy of Sciences, BG)
BibRef
Wang, S.,
Zhu, X.,
Jin, Y.,
Multiple Experts Recognition System Based on Neural Network,
ICPR96(IV: 452-456).
IEEE DOI
9608
(Tshinghua Univ., PRC)
BibRef
Vriesenga, M.,
Sklansky, J.,
Neural Modeling of Piecewise Linear Classifiers,
ICPR96(IV: 281-285).
IEEE DOI
9608
(Univ. of California, Irvine, USA)
BibRef
Hamamoto, Y.,
Mitani, Y.,
Ishihara, H.,
Hase, T.,
Tomita, S.,
Evaluation of an Anti-Regularization Technique in Neural Networks,
ICPR96(IV: 205-208).
IEEE DOI
9608
(Yamaguchi Univ., J)
BibRef
Chen, C.H.,
Jozwik, A.,
On the Small-Sample Behavior of the Class-Sensitive Neural Network,
ICPR96(IV: 209-213).
IEEE DOI
9608
(Univ. of Massachusetts, USA)
BibRef
Bachelder, I.A.[Ivan A.],
Gove, A.N.[Alan N.],
Seibert, M.C.[Michael C.], and
Waxman, A.M.[Allen M.],
From Learning Objects to Learning Environments:
Biological and Computational Neural Systems,
ARPA94(II:871-883).
BibRef
9400
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Networks Combinations and Evaluations .