Stronghill, J.P.[James P.], and
Rosenfeld, A.,
A Region Coloring Technique for Scene Analysis,
CACM(16), No. 4, April 1973, pp. 237-246.
Segmentation, Region Growing.
Segmentation, Texture. Grow regions up to edges. Does a texture based segmentation.
BibRef
7304
Nakagawa, Y., and
Rosenfeld, A.,
Edge/Border Coincidence as an Aid in Edge Extraction,
SMC(8), 1978, pp. 899-901.
BibRef
7800
Broder, A., and
Rosenfeld, A.,
Gradient Magnitude as an Aid in Color Pixel Classification,
SMC(11), 1981, pp. 248-249.
BibRef
8100
Milgram, D.L.[David L.],
Herman, M.[Martin],
Clustering Edge Values for Threshold Selection,
CGIP(10), No. 3, July 1979, pp. 272-280.
Elsevier DOI
Segmentation, 2-D Histogram.
Segmentation, Histogram. Compute histograms of edge information in addition to the
intensity (2-D histograms).
BibRef
7907
Milgram, D.L.[David L.],
Constructing Trees for Region Description,
CGIP(11), No. 1, September 1979, pp. 88-99.
Elsevier DOI
BibRef
7909
Milgram, D.L.[David L.],
Region Extraction Using Convergent Evidence,
CGIP(11), No. 1, September 1979, pp. 1-12.
Elsevier DOI
BibRef
7909
And:
DARPA77(58-64).
BibRef
And:
Progress Report of Segmentation Using Convergent Evidence,
DARPAO77(104-108).
Segmentation, 2-D Histogram.
Segmentation, Histogram.
BibRef
Milgram, D.L.,
Segmentation Using Convergent Evidence,
PRAI-78(73-77).
BibRef
7800
Milgram, D.L.,
Edge Point Linking Using Convergent Evidence,
DARPAN78(85-91).
BibRef
7800
Milgram, D.L., and
Rosenfeld, A.,
Tisdale, W.,
Final Report,
UMDMarch 31, 1978.
Superslice.
Segmentation. Image models, preprocessing - median
filter - histogram transforming - edge detection; threshold selection; noise
cleaning and labeling; superslice and hyperslice recursive region segmentation;
feature extraction; reg. classify result; dynamic environment; hardware.
BibRef
7803
Kawai, S.[Satoru],
A Boundary Curve Criterion,
CGIP(11), No. 3, November 1979, pp. 281-289.
Elsevier DOI
BibRef
7911
Lemkin, P.[Peter],
The Boundary Trace Transform: An Edge and Region Enhancement Transform,
CGIP(9), No. 2, February 1979, pp. 150-165.
Elsevier DOI
BibRef
7902
Perkins, W.A.,
Area Segmentation of Images Using Edge Points,
PAMI(2), No. 1, January 1980, pp. 8-15.
BibRef
8001
Earlier:
Region Segmentation of Images by Expansion and Contraction
of Edge Points,
IJCAI79(699-701).
Generate thinned edge image; expand each edge pixel; extract the
remaining regions - delete small regions; shrink the edges back and
add these pixels to the regions; eliminate small edge regions;
problem when gaps are large.
BibRef
Lattuati, V.,
Lemoine, D.,
Closed Contour Extraction Applied to Meteorological Pictures,
PR(15), No. 3, 1982, pp. 145-152.
Elsevier DOI
0309
BibRef
Zamperoni, P.,
Contour Tracing of Grey-Scale Images Based on 2-D Histograms,
PR(15), No. 3, 1982, pp. 161-165.
Elsevier DOI
BibRef
8200
Lavin, P.,
Restoration of a Feature Closed Class of Two-Dimensional Images,
PAMI(5), No. 1, January 1983, pp. 14-24.
BibRef
8301
O'Gorman, L., and
Sanderson, A.C.,
The Wedge Filter Technique for Convex Boundary Estimation,
PAMI(7), No. 3, May 1985, pp. 326-332.
BibRef
8505
Stansfield, S.A.[Sharon A.],
ANGY: A Rule-Based Expert System for Automatic Segmentation of
Coronary Vessels from Digital Subtracted Angiograms,
PAMI(8), No. 3, March 1986, pp. 188-199.
BibRef
8603
Earlier:
Angy: A Rule-Based Expert System for Identifying and
Isolating Coronary Vessels in Digital Angiograms,
CAIA84(606-609).
Segmentation, Rule-Based. Combines edge (simplified Canny) and a bad region segmentation (thresholds in
squares which are then merged), using an OPS5 rule-based system. Lots of
problems, probably more interesting from the OPS5 viewpoint than the
segmentation viewpoint.
BibRef
Nair, H.[Hemraj],
Reconstruction of Planar Boundaries from Incomplete Information,
CVGIP(39), No. 3, September 1987, pp. 383-387.
Elsevier DOI
BibRef
8709
Liou, S.P.,
Chiu, A.H., and
Jain, R.C.,
A Parallel Technique for Signal-Level Perceptual Organization,
PAMI(13), No. 4, April 1991, pp. 317-325.
IEEE DOI
Perceptual Grouping.
Segmentation, Region Growing.
Single parallel step, not iterative.
Uses what they call signal-level perceptual organization involving
partioning and identification of regions. Combine the results of edge
detection and region growing ideas. They apply this to range and
intensity data.
See also Approach to Three-Dimensional Image Segmentation, An.
BibRef
9104
Haddon, J.F., and
Boyce, J.F.,
Image Segmentation by Unifying Region and Boundary Information,
PAMI(12), No. 10, October 1990, pp. 929-948.
IEEE DOI
Segmentation, Texture. Using cooccurrence matrices,
classify a pixel into interior or boundary points. Minimize the
entropy of the local information based on conditional probabilities.
This generates homogeneous regions and an edge map. The paper has a
good set of references for texture based image segmentation.
BibRef
9010
Haddon, J.F.,
Boyce, J.F.,
Texture Segmentation and Region Classification by Orthogonal
Decomposition of Cooccurrence Matrices,
ICPR92(I:692-695).
IEEE DOI
BibRef
9200
Haddon, J.F.[John F.],
Generalised threshold selection for edge detection,
PR(21), No. 3, 1988, pp. 195-203.
Elsevier DOI
0309
BibRef
Dudani, S.A.,
Region Extraction Using Boundary Following,
PRAI-76(216-232).
BibRef
7600
Hertz, L.[Lois], and
Schafer, R.W.[Ronald W.],
Multilevel Thresholding Using Edge Matching,
CVGIP(44), No. 3, December 1988, pp. 279-295.
Elsevier DOI Find varying thresholds by keying on edge locations.
BibRef
8812
Hertz, L.[Lois], and
Schafer, R.W.[Ronald W.],
Measurement of Edge Coincidence in Image Thresholdings,
JVCIR(4), 1993, pp. 149-156.
BibRef
9300
Hertz, L.[Lois], and
Schafer, R.W.[Ronald W.],
Postprocessing of Thresholded Images to Maximize Edge Coincidence,
JVCIR(6), No. 2, June 1995, pp. 178-188.
BibRef
9506
Colchester, A.C.F.,
Ritchings, R.T.,
Kodikara, N.D.,
Image Segmentation Using Maximum Gradient Profiles Orthogonal to Edges,
IVC(8), No. 3, August 1990, pp. 211-217.
Elsevier DOI
BibRef
9008
Griffin, L.D.[Lewis D.],
Colchester, A.C.F.[Alan C.F.],
Superficial and deep structure in linear diffusion scale space:
isophotes, critical points and separatrices,
IVC(13), No. 7, September 1995, pp. 543-557.
Elsevier DOI
0401
BibRef
Earlier:
Roell, S.A.[Stefan A.],
Studholme, C.[Colin],
Hierarchical Segmentation Satisfying Constraints,
BMVC94(135-144).
PDF File.
See also Feature-Based Image Analysis.
BibRef
Griffin, L.D.,
Robinson, G.P.,
Colchester, A.C.F.,
Multiscale Hierarchical segmentation,
BMVC93(xx).
PDF File.
9309
(Guys Hospital).
BibRef
Colchester, A.C.F.,
Robinson, G.P.,
Griffin, L.D.,
A unified approach to the segmentation of grey-level and dot-pattern
images,
ICPR92(III:319-322).
IEEE DOI
9208
BibRef
Griffin, L.D.,
Colchester, A.C.F.,
Robinson, G.P.,
Scale and Segmentation of Grey-Level Images
Using Maximum Gradient Paths,
IVC(10), No. 6, July-August 1992, pp. 389-402.
Elsevier DOI
BibRef
9207
Chu, C.C., and
Aggarwal, J.K.,
The Integration of Image Segmentation Maps
Using Region and Edge Information,
PAMI(15), No. 12, December 1993, pp. 1241-1252.
IEEE DOI
BibRef
9312
Earlier:
The Integration of Region and Edge-Based Segmentation,
ICCV90(117-120).
IEEE DOI
BibRef
Mital, D.P.,
Teoh, E.K.,
Lim, A.W.T.,
A Hybrid Method Towards the Segmentation of Range Images for 3-D
Object Recognition,
PRAI(8), 1994, pp. 969-995.
BibRef
9400
Lim, A.W.T.,
Teoh, E.K.,
Mital, D.P.,
A Hybrid Method for Range Image Segmentation,
JMIV(4), 1994, pp. 69-80.
BibRef
9400
Kaveti, S.[Satish],
Teoh, E.K.[Eam Khwang],
Wang, H.[Han],
Second-Order Implicit Polynomials for Segmentation of Range Images,
PR(29), No. 6, June 1996, pp. 937-949.
Elsevier DOI
9606
BibRef
Earlier:
Robust representation and recognition of free-form objects,
ICIP96(III: 587-590).
IEEE DOI
9610
BibRef
Le Moigne, J.,
Tilton, J.C.,
Refining Image Segmentation by Integration of Edge and Region Data,
GeoRS(33), No. 3, May 1995, pp. 605-615.
IEEE Top Reference.
BibRef
9505
Lerner, B.T.[Bao T.],
Campbell, W.J.[William J.], and
Le Moigne, J.[Jacqueline],
Image Segmentation by Integration of Edge and Region Data:
The Influence of Edge Detection Algorithms,
ARPA94(II:1541-1545).
BibRef
9400
Gambotto, J.P.,
A New Approach to Combining Region Growing and Edge Detection,
PRL(14), 1993, pp. 869-875.
BibRef
9300
Jumarie, G.,
Contour Detection by Using Information Theory of
Deterministic Functions,
PRL(12), 1991, pp. 25-29.
BibRef
9100
Gamba, P.[Paolo],
Lodola, R.[Roberto],
Mecocci, A.[Alessandro],
Scene Interpretation by Fusion of Segment and Region Information,
IVC(15), No. 7, July 1997, pp. 499-509.
Elsevier DOI
9708
BibRef
Cho, K.J.,
Meer, P.,
Image Segmentation from Consensus Information,
CVIU(68), No. 1, October 1997, pp. 72-89.
DOI Link
HTML Version.
9710
BibRef
Izquierdo, E.,
Ghanbari, M.,
Nonlinear Gaussian filtering approach for object segmentation,
VISP(146), No. 3, 1999, pp. 137.
BibRef
9900
Ma, W.Y.,
Manjunath, B.S.,
EdgeFlow: A Technique for Boundary Detection and Image Segmentation,
IP(9), No. 8, August 2000, pp. 1375-1388.
IEEE DOI
0008
BibRef
Earlier:
Edge Flow: A Framework of Boundary Detection and Image Segmentation,
CVPR97(744-749).
IEEE DOI
PDF File.
9704
Color and texture; EF: "flow" like description of edge values.
BibRef
Iannizzotto, G.,
Vita, L.,
Fast and Accurate Edge-Based Segmentation with No Contour Smoothing in
2-D Real Images,
IP(9), No. 7, July 2000, pp. 1232-1237.
IEEE DOI
0006
BibRef
Earlier:
A fast, accurate method to segment and retrieve object contours in real
images,
ICIP96(I: 841-843).
IEEE DOI
9610
BibRef
Chung, D.H.,
Sapiro, G.,
On the Level Lines and Geometry of Vector-Valued Images,
SPLetters(7), No. 9, September 2000, pp. 241-243.
IEEE Top Reference.
0008
BibRef
Ida, T.[Takashi],
Sambonsugi, Y.[Yoko],
Self-Affine Mapping System and Its Application to Object Contour
Extraction,
IP(9), No. 11, November 2000, pp. 1926-1936.
IEEE DOI
0011
BibRef
Earlier:
Self-affine Mapping System for Object Contour Extraction,
ICIP99(III:250-254).
IEEE DOI
BibRef
Chang, C.Y.[Chuan-Yu],
Chung, P.C.[Pau-Choo],
Medical image segmentation using a contextual-constraint-based
Hopfield neural cube,
IVC(19), No. 9-10, August 2001, pp. 669-678.
Elsevier DOI
0108
BibRef
Sang, N.[Nong],
Zhang, T.X.[Tian-Xu],
Segmentation of FLIR images by Hopfield neural network with edge
constraint,
PR(34), No. 4, April 2001, pp. 811-821.
Elsevier DOI
0101
BibRef
Yan, C.X.[Cheng-Xin],
Sang, N.[Nong],
Zhang, T.X.[Tian-Xu],
Local entropy-based transition region extraction and thresholding,
PRL(24), No. 16, December 2003, pp. 2935-2941.
Elsevier DOI
0310
BibRef
Tang, Q.L.[Qi-Ling],
Sang, N.[Nong],
Zhang, T.X.[Tian-Xu],
Contour detection based on contextual influences,
IVC(25), No. 8, 1 August 2007, pp. 1282-1290.
Elsevier DOI
0706
Contour detection; Contextual influences; Visual mechanisms; Suppression;
Enhancement
BibRef
Bhalerao, A.H.,
Wilson, R.,
Unsupervised image segmentation combining region and boundary
estimation,
IVC(19), No. 6, April 2001, pp. 353-368.
Elsevier DOI
0105
BibRef
Bhalerao, A.H.,
Wilson, R.,
Affine Invariant Image Segmentation,
BMVC04(xx-yy).
HTML Version.
0508
BibRef
Brejl, M.,
Sonka, M.,
Object localization and border detection criteria design in edge-based
image segmentation: automated learning from examples,
MedImg(19), No. 10, October 2000, pp. 973-985.
IEEE Top Reference.
0110
BibRef
Shiffman, S.,
Rubin, G.D.,
Napel, S.,
Medical image segmentation using analysis of isolable-contour maps,
MedImg(19), No. 11, November 2000, pp. 1064-1074.
IEEE Top Reference.
0110
BibRef
Kermad, C.D.[Chafik Djalal],
Chehdi, K.[Kacem],
Automatic image segmentation system through iterative edge-region
co-operation,
IVC(20), No. 8, June 2002, pp. 541-555.
Elsevier DOI
0206
BibRef
Muñoz, X.,
Freixenet, J.,
Cufí, X.,
Martí, J.,
Strategies for image segmentation combining region and boundary
information,
PRL(24), No. 1-3, January 2003, pp. 375-392.
Elsevier DOI
0211
BibRef
Earlier: A1, A4, A3, A2:
Unsupervised active regions for multiresolution image segmentation,
ICPR02(II: 905-908).
IEEE DOI
0211
BibRef
Bosch, A.,
Muñoz, X.[Xavier],
Freixenet, J.[Jordi],
Segmentation and description of natural outdoor scenes,
IVC(25), No. 5, 1 May 2007, pp. 727-740.
Elsevier DOI
0703
Image understanding; Object classification; Object segmentation
BibRef
Freixenet, J.[Jordi],
Muñoz, X.[Xavier],
Martí, J.[Joan],
Lladó, X.[Xavier],
Colour Texture Segmentation by Region-Boundary Cooperation,
ECCV04(Vol II: 250-261).
Springer DOI
0405
BibRef
Muñoz, X.,
Freixenet, J.,
Cufí, X.,
Martí, J.,
Active regions for colour texture segmentation integrating region and
boundary information,
ICIP03(III: 453-456).
IEEE DOI
0312
BibRef
Earlier: A1, A2, A4, A3:
Active Regions for Unsupervised Texture Segmentation Integrating Region
and Boundary Information,
Texture02(95-98).
0207
BibRef
Cufí, X.,
Muñoz, X.,
Freixenet, J.,
Martí, J.,
A Concurrent Region Growing Algorithm Guided by Circumscribed Contours,
ICPR00(Vol I: 432-435).
IEEE DOI
0009
BibRef
Earlier: A2, A1, A3, A4:
A New Approach to Segmentation Based on Fusing Circumscribed Contours,
Region Growing and Clustering,
ICIP00(Vol I: 800-803).
IEEE DOI
0008
BibRef
Wagman, A.[Adam],
Bachelder, I.A.[Ivan A.],
Method for finding contours in an image of an object,
US_Patent6,941,016, Sep 6, 2005
WWW Link.
BibRef
0509
Ma, L.[Lei],
Zhang, X.P.[Xiao-Ping],
Si, J.,
Abousleman, G.P.,
Bidirectional Labeling and Registration Scheme for Grayscale Image
Segmentation,
IP(14), No. 12, December 2005, pp. 2073-2081.
IEEE DOI
0512
BibRef
Earlier:
Bi-directional gradient labeling and registration for gray-scale image
segmentation,
ICIP03(I: 365-368).
IEEE DOI
0312
BibRef
Prasad, L.[Lakshman],
Skourikhine, A.N.[Alexei N.],
Vectorized image segmentation via trixel agglomeration,
PR(39), No. 4, April 2006, pp. 501-514.
Elsevier DOI
0604
Delaunay triangulation; Vectorization; Perceptual grouping;
Polygonal decomposition; Region and boundary duality
BibRef
Tu, Z.W.[Zhuo-Wen],
Zhu, S.C.[Song-Chun],
Parsing Images into Regions, Curves, and Curve Groups,
IJCV(69), No. 2, August 2006, pp. 223-249.
Springer DOI
0606
BibRef
Earlier:
Parsing Images into Region and Curve Processes,
ECCV02(III: 393 ff.).
Springer DOI
0205
Layered representation with both region and curve models.
BibRef
Pednekar, A.S.[Amol S.],
Kakadiaris, I.A.[Ioannis A.],
Image Segmentation Based on Fuzzy Connectedness Using Dynamic Weights,
IP(15), No. 6, June 2006, pp. 1555-1562.
IEEE DOI
0606
Capture both homogenity and nearness to value.
BibRef
Chittajallu, D.R.,
Shah, S.K.,
Kakadiaris, I.A.,
A shape-driven MRF model for the segmentation of organs in medical
images,
CVPR10(3233-3240).
IEEE DOI
1006
BibRef
Brunner, G.[Gerd],
Chittajallu, D.R.[Deepak R.],
Kurkure, U.[Uday],
Kakadiaris, I.A.[Ioannis A.],
Patch-cuts: A Graph-based Image Segmentation Method Using Patch
Features and Spatial Relations,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Chittajallu, D.R.,
Brunner, G.,
Kurkure, U.,
Yalamanchili, R.P.,
Kakadiaris, I.A.,
Fuzzy-Cuts:
A knowledge-driven graph-based method for medical image segmentation,
CVPR09(715-722).
IEEE DOI
0906
BibRef
Roh, M.C.[Myung-Cheol],
Kim, T.Y.[Tae-Yong],
Park, J.[Jihun],
Lee, S.W.[Seong-Whan],
Accurate object contour tracking based on boundary edge selection,
PR(40), No. 3, March 2007, pp. 931-943.
Elsevier DOI
0611
Object contour tracking; Boundary edge selection; Optical flow;
Contour normal direction; Multi-level edge map
BibRef
Park, J.[Jihun],
Kim, T.Y.[Tae-Yong],
Park, S.[Sunghun],
LOD Canny Edge Based Boundary Edge Selection for Human Body Tracking,
ICIAR04(II: 528-535).
Springer DOI
0409
BibRef
Kim, T.Y.[Tae-Yong],
Park, J.[Jihun],
Lee, S.W.[Seong-Whan],
Object Boundary Edge Selection for Accurate Contour Tracking Using
Multi-level Canny Edges,
ICIAR04(II: 536-543).
Springer DOI
0409
BibRef
And:
Object boundary edge selection using normal direction derivatives of a
contour in a complex scene,
ICPR04(IV: 755-758).
IEEE DOI
0409
BibRef
Wang, J.H.,
Chang, F.C.,
Su, F.W.,
Image segmentation via self-organising fusion,
VISP(153), No. 5, October 2006, pp. 657-665.
DOI Link
0702
BibRef
Marot, J.,
Bourennane, S.,
Propagator method for an application to contour estimation,
PRL(28), No. 12, 1 September 2007, pp. 1556-1562.
Elsevier DOI
0707
Contour estimation; Distorted contours; High resolution methods; Algebra
BibRef
He, L.[Lei],
Peng, Z.G.[Zhi-Gang],
Everding, B.[Bryan],
Wang, X.[Xun],
Han, C.Y.[Chia Y.],
Weiss, K.L.[Kenneth L.],
Wee, W.G.[William G.],
A comparative study of deformable contour methods on medical image
segmentation,
IVC(26), No. 2, 1 February 2008, pp. 141-163.
Elsevier DOI
0711
Survey, Snakes. Medical image segmentation; Deformable contour method; Snake;
Level set; Comparative study
BibRef
Liu, T.W.[Tang-Wei],
Zhou, H.Y.[Hui-Yu],
Lin, F.Q.[Fa-Quan],
Pang, Y.S.[Yu-Sheng],
Wu, J.[Ji],
Improving image segmentation by gradient vector flow and mean shift,
PRL(29), No. 1, 1 January 2008, pp. 90-95.
Elsevier DOI
0711
Segmentation; Gradient vector flow; Mean shift; Snake
BibRef
Zhou, H.Y.[Hui-Yu],
Li, X.L.[Xue-Long],
Schaefer, G.[Gerald],
Celebi, M.E.[M. Emre],
Miller, P.[Paul],
Mean shift based gradient vector flow for image segmentation,
CVIU(117), No. 9, 2013, pp. 1004-1016.
Elsevier DOI
1307
Image segmentation
BibRef
Yang, X.L.[Xu-Lei],
Song, Q.[Qing],
Wang, Y.[Yue],
Cao, A.Z.[Ai-Ze],
Wu, Y.L.[Yi-Lei],
A Modified Deterministic Annealing Algorithm for Robust Image
Segmentation,
JMIV(30), No. 3, March 2008, pp. 308-324.
Springer DOI
0802
BibRef
Awad, M.W.,
Chehdi, K.[Kacem],
Nasri, A.,
Multi-component image segmentation using a hybrid dynamic genetic
algorithm and fuzzy C-means,
IET-IPR(3), No. 2, April 2009, pp. 52-62.
DOI Link
0905
BibRef
Awad, M.M.[Mohamad M.],
Chehdi, K.[Kacem],
Satellite image segmentation using hybrid variable genetic algorithm,
IJIST(19), No. 3, September 2009, pp. 199-207.
DOI Link
0909
BibRef
Wang, W.[Wei],
Chung, C.K.R.[Chi-Kit Ronald],
Image Segmentation With Complementary Use Of Edge And Region
Information,
IJIG(11), No. 4, October 2011, pp. 549-570.
DOI Link
1201
BibRef
Earlier:
Image Segmentation That Optimizes Global Homogeneity in a Variational
Framework,
ISVC07(II: 52-61).
Springer DOI
0711
BibRef
Earlier:
Image Segmentation That Merges Together Boundary and Region Information,
ACCV06(I:226-235).
Springer DOI
0601
BibRef
Earlier:
The Multiplicative Path Toward Prior-Shape Guided Active Contour for
Object Detection,
ISVC07(II: 539-548).
Springer DOI
0711
BibRef
Earlier:
Image segmentation via brittle fracture mechanics,
ICIP04(II: 909-912).
IEEE DOI
0505
BibRef
Mora, M.[Marco],
Córdova-Lepe, F.[Fernando],
Del-Valle, R.[Rodrigo],
A non-Newtonian gradient for contour detection in images with
multiplicative noise,
PRL(33), No. 10, 15 July 2012, pp. 1245-1256.
Elsevier DOI
1205
Non-Newtonian gradient; Multiplicative gradient; Contour detection;
Multiplicative noise
BibRef
Chen, F.[Fei],
Yu, H.M.[Hui-Min],
Hu, R.[Roland],
Shape Sparse Representation for Joint Object Classification and
Segmentation,
IP(22), No. 3, March 2013, pp. 992-1004.
IEEE DOI
1302
BibRef
Yao, J.C.[Jin-Cao],
Yu, H.M.[Hui-Min],
Hu, R.[Roland],
Implicit kernel sparse shape representation: a sparse-neighbors-based
objection segmentation framework,
JOSA-A(34), No. 1, January 2017, pp. 27-38.
DOI Link
1701
Digital image processing; Image analysis
BibRef
Yao, J.C.[Jin-Cao],
Yu, H.M.[Hui-Min],
Hu, R.[Roland],
A new sparse representation-based object segmentation framework,
VC(33), No. 2, February 2017, pp. 179-192.
WWW Link.
1702
BibRef
Chen, F.[Fei],
Yu, H.M.[Hui-Min],
Hu, R.[Roland],
Zeng, X.[Xunxun],
Deep Learning Shape Priors for Object Segmentation,
CVPR13(1870-1877)
IEEE DOI
1309
Boltzmann machine
BibRef
Zhang, W.J.[Wen Juan],
Feng, X.C.[Xiang Chu],
Han, Y.[Yu],
A novel image segmentation model with an edge weighting function,
SIViP(8), No. 1, January 2014, pp. 121-132.
WWW Link.
1402
BibRef
Han, Y.[Yu],
Wang, W.W.[Wei-Wei],
Feng, X.C.[Xiang-Chu],
A new fast multiphase image segmentation algorithm based on nonconvex
regularizer,
PR(45), No. 1, 2012, pp. 363-372.
Elsevier DOI
1410
Image segmentation
BibRef
Paxman, R.G.[Richard G.],
Carrara, D.A.[David A.],
Walker, P.D.[Paul D.],
Davidenko, N.[Nicolas],
Silhouette estimation,
JOSA-A(31), No. 7, July 2014, pp. 1636-1644.
DOI Link
1407
Deconvolution. Restoration beyound the diffraction limit.
BibRef
Boukerroui, D.[Djamal],
Efficient numerical schemes for gradient vector flow,
PR(45), No. 1, 2012, pp. 626-636.
Elsevier DOI
1410
BibRef
Earlier:
ICIP09(4057-4060).
IEEE DOI
0911
Active contours
BibRef
Liu, J.[Jing],
Li, P.J.[Pei-Jun],
Wang, X.[Xue],
A new segmentation method for very high resolution imagery using
spectral and morphological information,
PandRS(101), No. 1, 2015, pp. 145-162.
Elsevier DOI
1503
Very high resolution image
BibRef
Liu, J.[Jing],
Li, P.J.[Pei-Jun],
Zhang, J.[Jun],
Guo, J.C.[Jian-Cong],
Very high resolution Image Segmentation by combined spectral and
structural information,
CVRS12(24-29).
IEEE DOI
1302
BibRef
Chen, B.[Bo],
Qiu, F.[Fang],
Wu, B.F.[Bing-Fang],
Du, H.Y.[Hong-Yue],
Image Segmentation Based on Constrained Spectral Variance Difference
and Edge Penalty,
RS(7), No. 5, 2015, pp. 5980-6004.
DOI Link
1506
BibRef
Gong, M.L.[Mei-Ling],
Lan, J.H.[Jin-Hui],
Yang, C.L.[Chang-Lin],
Wu, H.T.[Hong-Tao],
Zhi, T.[Tao],
Adaptive image segmentation algorithm under the constraint of edge
posterior probability,
IET-CV(11), No. 8, December 2017, pp. 702-709.
DOI Link
1712
BibRef
Zhang, W.H.[Wei-Hang],
Wang, X.[Xue],
You, W.[Wei],
Chen, J.F.[Jun-Feng],
Dai, P.[Peng],
Zhang, P.B.[Peng-Bo],
RESLS: Region and Edge Synergetic Level Set Framework for Image
Segmentation,
IP(29), No. 1, 2020, pp. 57-71.
IEEE DOI
1910
image segmentation, optimisation, set theory,
hybrid level set models, region information, edge-based model, hybrid models
BibRef
Zhang, W.H.[Wei-Hang],
Li, H.Q.[Hui-Qi],
Image Segmentation With Adaptive Edge-Region Collaborated Level-Set
Method,
SPLetters(31), 2024, pp. 2105-2109.
IEEE DOI
2408
Image edge detection, Adaptation models, Entropy, Computational modeling,
Image segmentation, Iterative methods, level-set models
BibRef
Meng, Y.[Yanda],
Zhang, H.R.[Hong-Run],
Zhao, Y.T.[Yi-Tian],
Yang, X.Y.[Xiao-Yun],
Qiao, Y.H.[Yi-Hong],
MacCormick, I.J.C.[Ian J. C.],
Huang, X.W.[Xiao-Wei],
Zheng, Y.L.[Ya-Lin],
Graph-Based Region and Boundary Aggregation for Biomedical Image
Segmentation,
MedImg(41), No. 3, March 2022, pp. 690-701.
IEEE DOI
2203
Image segmentation, Feature extraction, Cognition, Task analysis,
Semantics, Optical imaging, Optical computing, Region-boundary, segmentation
BibRef
Yu, L.T.[Le-Tian],
Mei, H.Y.[Hai-Yang],
Dong, W.[Wen],
Wei, Z.Q.[Zi-Qi],
Zhu, L.[Li],
Wang, Y.X.[Yu-Xin],
Yang, X.[Xin],
Progressive Glass Segmentation,
IP(31), No. 2022, pp. 2920-2933.
IEEE DOI
2204
Glass, Feature extraction, Image segmentation, Semantics,
Task analysis, Bridges, Aggregates, Glass segmentation,
deep neural network
BibRef
Zhang, Y.H.[Yu-Hang],
Tian, S.[Shishun],
Liao, M.[Muxin],
Hua, G.G.[Guo-Guang],
Zou, W.B.[Wen-Bin],
Xu, C.[Chen],
Learning Shape-Invariant Representation for Generalizable Semantic
Segmentation,
IP(32), 2023, pp. 5031-5045.
IEEE DOI
2310
BibRef
Huang, W.[Wei],
Zhao, Y.H.[Yu-Hao],
Sun, L.[Le],
Gao, L.[Lu],
Chen, Y.[Yuwen],
A Novel Adaptive Edge Aggregation and Multiscale Feature Interaction
Detector for Object Detection in Remote Sensing Images,
RS(15), No. 21, 2023, pp. 5200.
DOI Link
2311
BibRef
Liu, A.[Anran],
Huang, X.S.[Xiang-Sheng],
Li, T.[Tong],
Ma, P.C.[Peng-Cheng],
Co-Net: A Collaborative Region-Contour-Driven Network for
Fine-to-Finer Medical Image Segmentation,
WACV22(1706-1715)
IEEE DOI
2202
Image segmentation, Satellite broadcasting, Redundancy,
Collaboration, Process control, Feature extraction, Robustness,
Vision for Graphics
BibRef
Borse, S.[Shubhankar],
Wang, Y.[Ying],
Zhang, Y.Z.[Yi-Zhe],
Porikli, F.M.[Fatih M.],
InverseForm: A Loss Function for Structured Boundary-Aware
Segmentation,
CVPR21(5897-5907)
IEEE DOI
2111
Training, Computational modeling, Semantics,
Computer architecture, Benchmark testing, Pattern recognition
BibRef
Meng, Y.[Yanda],
Meng, W.[Wei],
Gao, D.X.[Dong-Xu],
Zhao, Y.T.[Yi-Tian],
Yang, X.Y.[Xiao-Yun],
Huang, X.W.[Xiao-Wei],
Zheng, Y.L.[Ya-Lin],
Regression of Instance Boundary by Aggregated CNN and GCN,
ECCV20(VIII:190-207).
Springer DOI
2011
BibRef
Wan, J.,
Liu, Y.,
Wei, D.,
Bai, X.,
Xu, Y.,
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image
Segmentation,
CVPR20(9250-9259)
IEEE DOI
2008
Image segmentation, Robustness, Task analysis, Transforms, Merging,
Image color analysis, Semantics
BibRef
Wilhelm, T.,
Wöhler, C.,
Boundary aware image segmentation with unsupervised mixture models,
ICIP17(3325-3329)
IEEE DOI
1803
BibRef
And:
On the suitability of different probability distributions for the
task of image segmentation,
IVCNZ17(1-6)
IEEE DOI
1902
Computational modeling, Image edge detection, Image segmentation,
Markov processes, Mixture models, Semantics, Task analysis, Bayesian,
Unsupervised.
Gaussian distribution, Gaussian processes,
learning (artificial intelligence), Correlation.
BibRef
Bertasius, G.[Gedas],
Torresani, L.[Lorenzo],
Yu, S.X.,
Shi, J.B.[Jian-Bo],
Convolutional Random Walk Networks for Semantic Image Segmentation,
CVPR17(6137-6145)
IEEE DOI
1711
BibRef
Earlier: A1, A4, A2, Only:
Semantic Segmentation with Boundary Neural Fields,
CVPR16(3602-3610)
IEEE DOI
1612
BibRef
Earlier: A1, A4, A2, Only:
High-for-Low and Low-for-High: Efficient Boundary Detection from Deep
Object Features and Its Applications to High-Level Vision,
ICCV15(504-512)
IEEE DOI
1602
BibRef
Earlier: A1, A4, A2, Only:
DeepEdge:
A multi-scale bifurcated deep network for top-down contour detection,
CVPR15(4380-4389)
IEEE DOI
1510
Adaptation models, Complexity theory, Image segmentation,
Predictive models, Semantics, Standards, Training.
Convolutional codes.
BibRef
Krishnan, G.S.S.[G. Sai Sundara],
Vijaya, N.,
Algorithm on tracing the boundary of medical images using abstract
cellular complex,
IMVIP12(141-144).
IEEE DOI
1302
BibRef
Nishigaki, M.[Morimichi],
Fermuller, C.[Cornelia],
DeMenthon, D.[Daniel],
The image torque operator: A new tool for mid-level vision,
CVPR12(502-509).
IEEE DOI
1208
BibRef
Jain, V.[Viren],
Bollmann, B.[Benjamin],
Richardson, M.[Mark],
Berger, D.R.[Daniel R.],
Helmstaedter, M.N.[Moritz N.],
Briggman, K.L.[Kevin L.],
Denk, W.[Winfried],
Bowden, J.B.[Jared B.],
Mendenhall, J.M.[John M.],
Abraham, W.C.[Wickliffe C.],
Harris, K.M.[Kristen M.],
Kasthuri, N.[Narayanan],
Hayworth, K.J.[Ken J.],
Schalek, R.[Richard],
Tapia, J.C.[Juan Carlos],
Lichtman, J.W.[Jeff W.],
Seung, H.S.[H. Sebastian],
Boundary Learning by Optimization with Topological Constraints,
CVPR10(2488-2495).
IEEE DOI
1006
Learning applied to object boundary detection. Train based on segmentation
dataset information.
BibRef
Yuan, J.H.[Jin-Hui],
Li, J.M.[Jian-Min],
Zhang, B.[Bo],
Scene understanding with discriminative structured prediction,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Prasad, M.[Mukta],
Knopp, J.[Jan],
Van Gool, L.J.[Luc J.],
Class-specific 3D localization using constellations of object parts,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Prasad, M.[Mukta],
Fitzgibbon, A.W.[Andrew W.],
Zisserman, A.[Andrew],
Van Gool, L.J.[Luc J.],
Finding Nemo: Deformable object class modelling using curve matching,
CVPR10(1720-1727).
IEEE DOI
1006
BibRef
Prasad, M.[Mukta],
Zisserman, A.[Andrew],
Fitzgibbon, A.W.[Andrew W.],
Kumar, M.P.[M. Pawan],
Torr, P.H.S.,
Learning Class-Specific Edges for Object Detection and Segmentation,
ICCVGIP06(94-105).
Springer DOI
0612
BibRef
Chen, T.[Terrence],
Huang, T.S.[Thomas S.],
Boundary correction for total variation regularized L^1 function with
applications to image decomposition and segmentation,
ICPR06(II: 316-319).
IEEE DOI
0609
BibRef
Dollar, P.[Piotr],
Tu, Z.W.[Zhuo-Wen],
Belongie, S.J.[Serge J.],
Supervised Learning of Edges and Object Boundaries,
CVPR06(II: 1964-1971).
IEEE DOI
0606
See also Robust Object Tracking with Online Multiple Instance Learning.
BibRef
Dollar, P.[Piotr],
Welinder, P.[Peter],
Perona, P.[Pietro],
Cascaded pose regression,
CVPR10(1078-1085).
IEEE DOI
1006
2D pose. Sequential refinement.
BibRef
Lange, T.[Tilman],
Buhmann, J.M.[Joachim M.],
Regularized Data Fusion Improves Image Segmentation,
DAGM07(234-243).
Springer DOI
0709
BibRef
Rabinovich, A.[Andrew],
Belongie, S.J.[Serge J.],
Lange, T.[Tilman],
Buhmann, J.M.[Joachim M.],
Model Order Selection and Cue Combination for Image Segmentation,
CVPR06(I: 1130-1137).
IEEE DOI
0606
BibRef
Braun, M.L.[Mikio L.],
Lange, T.[Tilman],
Buhmann, J.M.[Joachim M.],
Model Selection in Kernel Methods Based on a Spectral Analysis of Label
Information,
DAGM06(344-353).
Springer DOI
0610
BibRef
Roth, V.[Volker],
Lange, T.[Tilman],
Adaptive Feature Selection in Image Segmentation,
DAGM04(9).
Springer DOI
0505
Award, GCPR, HM.
BibRef
Oh, J.T.[Jun-Taek],
Kwak, H.W.[Hyun-Wook],
Sohn, Y.H.[Young-Ho],
Kim, W.H.[Wook-Hyun],
Multi-level Thresholding Using Entropy-Based Weighted FCM Algorithm in
Color Image,
ISVC05(437-444).
Springer DOI
0512
(FCM: Fuzzy C-Means)
BibRef
Hafiane, A.[Adel],
Zavidovique, B.[Bertrand],
Chaudhuri, S.,
A Modified FCM with Optimal Peano Scans for Image Segmentation,
ICIP05(III: 840-843).
IEEE DOI
0512
BibRef
Hafiane, A.[Adel],
Zavidovique, B.[Bertrand],
FCM with Spatial and Multiresolution Constraints for Image Segmentation,
ICIAR05(17-23).
Springer DOI
0509
BibRef
Seetharaman, G.,
Bouchafa, S.,
Zavidovique, B.,
Concurrent edge/region detection from a Peano scan,
CIAP01(125-130).
IEEE DOI
0210
BibRef
Erdem, E.[Erkut],
Tari, S.[Sibel],
Vese, L.A.[Luminita A.],
Segmentation using the edge strength function as a shape prior within a
local deformation model,
ICIP09(2989-2992).
IEEE DOI
0911
BibRef
Erdem, E.[Erkut],
Erdem, A.[Aykut],
Tari, S.[Sibel],
Edge Strength Functions as Shape Priors in Image Segmentation,
EMMCVPR05(490-502).
Springer DOI
0601
BibRef
Huang, X.F.[Xiao-Fei],
Image segmentation by cooperative optimization,
ICIP04(II: 945-948).
IEEE DOI
0505
BibRef
Hontani, H.[Hidekata],
Suzuki, Y.[Yu],
Giga, Y.[Yoshikazu],
Giga, M.H.[Mi-Ho],
Deguchi, K.[Koichiro],
A Scale-Space Analysis of a Contour Figure Using a Crystalline Flow,
ScaleSpace05(155-166).
Springer DOI
0505
BibRef
Fong, C.K.[Chi-Keung],
Cham, W.K.[Wai-Keun],
Edge model based segmentation,
ICPR04(III: 618-621).
IEEE DOI
0409
BibRef
Ecabert, O.,
Thiran, J.P.,
Variational image segmentation by unifying region and boundary
information,
ICPR02(II: 885-888).
IEEE DOI
0211
BibRef
Lin, Y.[Yao],
Jie, T.[Tian],
Image segmentation via fuzzy Connectedness Computation and Edge
Detection in Medical application,
SCIA01(P-W3A).
0206
BibRef
Sappa, A.D.,
Bevilacqua, V.,
Devy, M.,
Improving a Genetic Algorithm Segmentation by Means of a Fast Edge
Detection Technique,
ICIP01(I: 754-757).
IEEE DOI
0108
BibRef
Nielsen, C.F.[Casper F.],
Passmore, P.J.[Peter J.],
Achieving Accurate Colour Image Segmentation in 2D and 3D with LVQ
Classifiers and Partial ACSR,
WACV00(72-78).
IEEE DOI
0010
Color segmentation, but getting the central object.
BibRef
Nielsen, C.F.[Casper F.],
Passmore, P.J.[Peter J.],
A Solution to the Problem of Segmentation Near Edges Using Adaptable
Class-specific Representation,
ICPR00(Vol I: 436-440).
IEEE DOI
0009
Finding better boundaries for regions.
BibRef
Yoshinaga, Y.[Yukiyasu],
Kobatake, H.[Hidefumi],
Fukushima, S.[Shigehiro],
The Detection and Feature Extraction Method of Curvilinear Convex
Regions with Weak Contrast Using a Gradient Vector Distribution Model,
ICIP99(II:715-719).
IEEE DOI
BibRef
9900
Ishikawa, H.[Hiroshi],
Geiger, D.[Davi],
Segmentation by Grouping Junctions,
CVPR98(125-131).
IEEE DOI Find junctions, trace around a boundary to generate a region
connecting the junctions.
BibRef
9800
Qian, Y.T.[Yun-Tao],
Zhao, R.C.[Rong-Chun],
Image Segmentation Based on Combination of the Global
and Local Information,
ICIP97(I: 204-207).
IEEE DOI
9710
BibRef
Buvry, M.[Max],
Senard, J., and
Krey, C.,
Hierarchical Region Detection Based on Gradient Image,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Fuchs, C.[Claudia],
Förstner, W.[Wolfgang],
Polymorphic Grouping for Image Segmentation,
ICCV95(175-182).
IEEE DOI
HTML Version.
Application, Houses. Combine regions, line segments and points (junction) for segmentation.
BibRef
9500
Bellet, F.,
Salotti, M.,
Garbay, C.,
Low Level Vision as the Opportunist Scheduling of
Incremental Edge and Region Detection Processes,
ICPR94(A:517-519).
IEEE DOI
BibRef
9400
Salotti, M.,
Garbay, C.,
A new paradigm for segmentation,
ICPR92(III:611-614).
IEEE DOI
9208
BibRef
Li, B.,
Ma, S.D.,
On the Relation Between Region and Contour Representation,
ICPR94(A:352-355).
IEEE DOI
BibRef
9400
Falah, R.K.[R. Kara],
Bolon, P.,
Cocquerez, J.P.[Jean-Pierre],
A region-region and region-edge cooperative approach of image
segmentation,
ICIP94(III: 470-474).
IEEE DOI
9411
BibRef
Benois, J.,
Barba, D.,
Image segmentation by region-contour cooperation for image coding,
ICPR92(III:331-334).
IEEE DOI
9208
BibRef
Barba, D.,
Bertrand, J.F.,
Automatic Region Construction by Edge Detection and Contour Following
in Image Segmentation,
ICPR86(681-683).
BibRef
8600
Yu, X.H.[Xiao-Han],
Yla-Jaaski, J.,
Huttunen, O.,
Vehkomaki, T.,
Sipila, O.,
Katila, T.,
Image segmentation combining region growing and edge detection,
ICPR92(III:481-484).
IEEE DOI
9208
BibRef
Hwang, J.J.,
Lee, C.C.,
Hall, E.L.,
Segmentation of Solid Objects Using Global and
Local Edge Coincidence,
PRIP79(114-121).
BibRef
7900
Hall, E.L.,
Hwang, J.J.,
Object Location in Computed Tomography Images Using Global
Local Segmentation,
PRIP79(344-352).
BibRef
7900
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Active Contours, Snakes or Deformable Curves .