20.4.5.6.7 Video Understanding

Chapter Contents (Back)
Video Understanding.

Deep Video Understanding Dataset,
2020, used for workshops, and challenges. WWW Link.
Dataset, Video Understanding.

Brostow, G.J.[Gabriel J.], Fauqueur, J.[Julien], Cipolla, R.[Roberto],
Semantic object classes in video: A high-definition ground truth database,
PRL(30), No. 2, 15 January 2009, pp. 88-97.
Elsevier DOI 0804
Object recognition; Video database; Video understanding; Semantic segmentation; Label propagation BibRef

Aodha, O.M.[Oisin Mac], Brostow, G.J.[Gabriel J.], Pollefeys, M.[Marc],
Segmenting video into classes of algorithm-suitability,
CVPR10(1054-1061).
IEEE DOI 1006
BibRef

Suresha, M., Kuppa, S., Raghukumar, D.S.,
A study on deep learning spatiotemporal models and feature extraction techniques for video understanding,
MultInfoRetr(9), No. 2, June 2020, pp. 81-101.
Springer DOI 2005
BibRef

Kavoosifar, M.R.[Mohammad Reza], Apiletti, D.[Daniele], Baralis, E.[Elena], Garza, P.[Paolo], Huet, B.[Benoit],
Effective video hyperlinking by means of enriched feature sets and monomodal query combinations,
MultInfoRetr(9), No. 3, September 2020, pp. 215-227.
Springer DOI 2008
BibRef

Tang, P.J.[Peng-Jie], Tan, Y.L.[Yun-Lan], Li, J.Z.[Jin-Zhong], Tan, B.[Bin],
Translating video into language by enhancing visual and language representations,
JVCIR(72), 2020, pp. 102875.
Elsevier DOI 2010
Video description, Feature enhancing, CNN, LSTM, Semantic BibRef

Yu, J., Jiang, X., Qin, Z., Zhang, W., Hu, Y., Wu, Q.,
Learning Dual Encoding Model for Adaptive Visual Understanding in Visual Dialogue,
IP(30), 2021, pp. 220-233.
IEEE DOI 2011
Visualization, Semantics, History, Task analysis, Cognition, Feature extraction, Adaptation models, Dual encoding, visual dialogue BibRef

Duan, J.H.[Jin-Hao], Xu, H.[Hua], Lin, X.Z.[Xiao-Zhu], Zhu, S.C.[Shang-Chao], Du, Y.Z.[Yuan-Ze],
Multi-semantic long-range dependencies capturing for efficient video representation learning,
IVC(104), 2020, pp. 103988.
Elsevier DOI 2012
Video representation learning, Long-range dependencies capturing, Video classification BibRef

Tan, H.L.[Hui Li], Zhu, H.Y.[Hong-Yuan], Lim, J.H.[Joo-Hwee], Tan, C.[Cheston],
A comprehensive survey of procedural video datasets,
CVIU(202), 2021, pp. 103107.
Elsevier DOI 2012
Video datasets, depicting series of actions performed in some constrained but non-unique order to achieve some intended high-level goal. BibRef

Lin, J.[Ji], Gan, C.[Chuang], Wang, K.[Kuan], Han, S.[Song],
TSM: Temporal Shift Module for Efficient and Scalable Video Understanding on Edge Devices,
PAMI(44), No. 5, May 2022, pp. 2760-2774.
IEEE DOI 2204
BibRef
Earlier: A1, A2, A4, Only:
TSM: Temporal Shift Module for Efficient Video Understanding,
ICCV19(7082-7092)
IEEE DOI 2004
Code, Video Understanding.
WWW Link. Computational modeling, Convolution, Streaming media, Training, Solid modeling, Temporal shift module, video recognition, network dissection. convolutional neural nets, object detection, video signal processing, video streaming, Real-time systems BibRef

Zhou, W.[Wei], Hou, Y.[Yi], Ouyang, K.W.[Ke-Wei], Zhou, S.L.[Shi-Lin],
Exploring complementary information of self-supervised pretext tasks for unsupervised video pre-training,
IET-CV(16), No. 3, 2022, pp. 255-265.
DOI Link 2204
Both knowledge distillation and self-supervised learning. convolutional neural nets, feature extraction, unsupervised learning, video signal processing, image sequences BibRef

Li, Z.Q.[Zhen-Qiang], Wang, W.M.[Wei-Min], Li, Z.Y.[Zuo-Yue], Huang, Y.F.[Yi-Fei], Sato, Y.[Yoichi],
Spatio-Temporal Perturbations for Video Attribution,
CirSysVideo(32), No. 4, April 2022, pp. 2043-2056.
IEEE DOI 2204
Measurement, Reliability, Task analysis, Spatiotemporal phenomena, Visualization, Heating systems, Perturbation methods, video understanding BibRef

Tao, L.[Li], Wang, X.T.[Xue-Ting], Yamasaki, T.[Toshihiko],
An Improved Inter-Intra Contrastive Learning Framework on Self-Supervised Video Representation,
CirSysVideo(32), No. 8, August 2022, pp. 5266-5280.
IEEE DOI 2208
Task analysis, Learning systems, Data models, Optical imaging, Feature extraction, Representation learning, Optical sensors, spatio-temporal convolution BibRef

Huang, L.[Lang], Zhang, C.[Chao], Zhang, H.Y.[Hong-Yang],
Self-Adaptive Training: Bridging Supervised and Self-Supervised Learning,
PAMI(46), No. 3, March 2024, pp. 1362-1377.
IEEE DOI Code:
WWW Link. 2402
Training, Data models, Noise measurement, Deep learning, Predictive models, Neural networks, Self-supervised learning, robust learning under noise BibRef

Huang, L.[Lang], You, S.[Shan], Zheng, M.K.[Ming-Kai], Wang, F.[Fei], Qian, C.[Chen], Yamasaki, T.[Toshihiko],
Learning Where to Learn in Cross-View Self-Supervised Learning,
CVPR22(14431-14440)
IEEE DOI 2210
Representation learning, Image segmentation, Head, Aggregates, Semantics, Self-supervised learning, Object detection, Self- semi- meta- unsupervised learning BibRef

Hu, Y.[Yaosi], Yin, D.C.[Da-Cheng], Wang, Y.W.[Yu-Wang], Chen, Z.Z.[Zhen-Zhong], Luo, C.[Chong],
Decomposing style, content, and motion for videos,
JVCIR(89), 2022, pp. 103686.
Elsevier DOI 2212
Video decomposition, Video synthesis, Self-supervised learning BibRef

Hong, M.Y.[Ming-Yao], Zhang, X.F.[Xin-Feng], Li, G.R.[Guo-Rong], Huang, Q.M.[Qing-Ming],
Fine-Grained Feature Generation for Generalized Zero-Shot Video Classification,
IP(32), 2023, pp. 1599-1612.
IEEE DOI 2303
Visualization, Semantics, Task analysis, Training, Generative adversarial networks, Feature extraction, Data models, video classification BibRef

Jin, X.[Xin], Feng, R.[Ruoyu], Sun, S.[Simeng], Feng, R.[Runsen], He, T.Y.[Tian-Yu], Chen, Z.B.[Zhi-Bo],
Semantical video coding: Instill static-dynamic clues into structured bitstream for AI tasks,
JVCIR(93), 2023, pp. 103816.
Elsevier DOI 2305
Video coding, Semantically structured bitstream, Intelligent analytics BibRef

Schiappa, M.C.[Madeline C.], Rawat, Y.S.[Yogesh S.], Shah, M.[Mubarak],
Self-Supervised Learning for Videos: A Survey,
Surveys(55), No. 13s, July 2023, pp. xx-yy.
DOI Link 2309
Survey, Video Understanding. Survey, Self-Supervised Learning. video understanding, zero-shot learning, visual-language models, deep learning, multimodal learning BibRef

Yang, X.M.[Xing-Ming], Xiong, S.[Sixuan], Wu, K.W.[Ke-Wei], Shan, D.F.[Dong-Feng], Xie, Z.[Zhao],
Attentive spatial-temporal contrastive learning for self-supervised video representation,
IVC(137), 2023, pp. 104765.
Elsevier DOI 2309
Self-supervised learning, Spatial-temporal feature, Contrastive learning, Spatial-temporal self-attention BibRef

Miao, J.X.[Jia-Xu], Wei, Y.C.[Yun-Chao], Wang, X.H.[Xiao-Han], Yang, Y.[Yi],
Temporal Pixel-Level Semantic Understanding Through the VSPW Dataset,
PAMI(45), No. 9, September 2023, pp. 11297-11308.
IEEE DOI 2309

WWW Link. BibRef

Hu, D.[Di], Wang, Z.[Zheng], Nie, F.P.[Fei-Ping], Wang, R.[Rong], Li, X.L.[Xue-Long],
Self-Supervised Learning for Heterogeneous Audiovisual Scene Analysis,
MultMed(25), 2023, pp. 3534-3545.
IEEE DOI 2310
BibRef

Namitha, K.[Kalakunnath], Geetha, M.[Madathilkulangara], Athi, N.[Narayanan],
An Improved Interaction Estimation and Optimization Method for Surveillance Video Synopsis,
MultMedMag(30), No. 3, July 2023, pp. 25-36.
IEEE DOI 2310
BibRef

Assefa, M.[Maregu], Jiang, W.[Wei], Alemu, K.G.[Kumie Gedamu], Yilma, G.[Getinet], Adhikari, D.[Deepak], Ayalew, M.[Melese], Seid, A.M.[Abegaz Mohammed], Erbad, A.[Aiman],
Actor-Aware Self-Supervised Learning for Semi-Supervised Video Representation Learning,
CirSysVideo(33), No. 11, November 2023, pp. 6679-6692.
IEEE DOI Code:
WWW Link. 2311
BibRef

Hu, Y.F.[Yu-Fan], Gao, J.Y.[Jun-Yu], Xu, C.S.[Chang-Sheng],
Learning Multi-Expert Distribution Calibration for Long-Tailed Video Classification,
MultMed(26), 2024, pp. 555-567.
IEEE DOI 2402
Tail, Head, Calibration, Training, Data models, Task analysis, Visualization, Long-tailed distribution, video classification, multi-expert calibration BibRef

Chen, Z.Y.[Zi-Yu], Wang, H.L.[Han-Li], Chen, C.W.[Chang Wen],
Self-Supervised Video Representation Learning by Serial Restoration With Elastic Complexity,
MultMed(26), 2024, pp. 2235-2248.
IEEE DOI 2402
Task analysis, Feature extraction, Representation learning, Manuals, Spatiotemporal phenomena, Image restoration, nearest neighbor retrieval BibRef

Chen, Z.L.[Zai-Long], Wang, L.[Lei], Wang, P.[Peng], Gao, P.[Peng],
Question-Aware Global-Local Video Understanding Network for Audio-Visual Question Answering,
CirSysVideo(34), No. 5, May 2024, pp. 4109-4119.
IEEE DOI 2405
Feature extraction, Visualization, Task analysis, Question answering (information retrieval), Data mining, Fuses, deep learning BibRef

Cao, H.Z.[Hao-Zhi], Xu, Y.C.[Yue-Cong], Mao, K.Z.[Ke-Zhi], Xie, L.H.[Li-Hua], Yin, J.X.[Jian-Xiong], See, S.[Simon], Xu, Q.W.[Qian-Wen], Yang, J.F.[Jian-Fei],
Self-Supervised Video Representation Learning by Video Incoherence Detection,
Cyber(54), No. 6, June 2024, pp. 3810-3822.
IEEE DOI 2406
Spatiotemporal phenomena, Task analysis, Representation learning, Cognition, Training, Self-supervised learning, Supervised learning, video representation learning BibRef

Zhang, Z.Q.[Zi-Qi], Ma, Z.Y.[Zong-Yang], Yuan, C.F.[Chun-Feng], Chen, Y.X.[Yu-Xin], Wang, P.[Peijin], Qi, Z.A.[Zhong-Ang], Hao, C.L.[Cheng-Lei], Li, B.[Bing], Shan, Y.[Ying], Hu, W.M.[Wei-Ming], Maybank, S.J.[Stephen J.],
Chinese Title Generation for Short Videos: Dataset, Metric and Algorithm,
PAMI(46), No. 7, July 2024, pp. 5192-5208.
IEEE DOI 2406
Videos, Task analysis, Measurement, Semantics, Benchmark testing, Electronic commerce, Annotations, Video and language, text-video retrieval BibRef

Bi, S.[Shuai], Hu, Z.P.[Zheng-Ping], Zhang, H.[Hehao], Di, J.[Jirui], Sun, Z.[Zhe],
Motion-guided spatiotemporal multitask feature discrimination for self-supervised video representation learning,
PR(155), 2024, pp. 110713.
Elsevier DOI 2408
Unsupervised learning, Self-supervised learning, Cross-view learning, Multitask discrimination, Video action understanding BibRef

Li, D.[Dong], Jin, J.D.[Jian-Dong], Zhang, Y.H.[Yu-Hao], Zhong, Y.L.[Yan-Lin], Wu, Y.Y.[Yao-Yang], Chen, L.[Lan], Wang, X.[Xiao], Luo, B.[Bin],
Semantic-aware frame-event fusion based pattern recognition via large vision-language models,
PR(158), 2025, pp. 111080.
Elsevier DOI Code:
WWW Link. 2411
RGB-event fusion, Large vision-language models, Semantic information, Pattern recognition BibRef

Wu, W.H.[Wen-Hao], Wang, X.H.[Xiao-Han], Luo, H.P.[Hai-Peng], Wang, J.D.[Jing-Dong], Yang, Y.[Yi], Ouyang, W.L.[Wan-Li],
Cap4Video++: Enhancing Video Understanding With Auxiliary Captions,
PAMI(47), No. 7, July 2025, pp. 5223-5237.
IEEE DOI 2506
Streams, Computational modeling, Visualization, Training, Semantics, Transformers, Muitimodal learning, text-video retrieval, video understanding BibRef

Verma, D.[Dhruv], Roy, D.[Debaditya], Fernando, B.[Basura],
Effectively Leveraging CLIP for Generating Situational Summaries of Images and Videos,
IJCV(133), No. 8, August 2025, pp. 5302-5325.
Springer DOI Code:
WWW Link. 2508
Summary of the situation or context. BibRef

Song, X.[Xin], Tian, W.[Wang], Zhu, Q.Q.[Qi-Qi], Zhang, X.L.[Xiang-Long],
VideoMamba++: Integrating state space model with dual attention for enhanced video understanding,
IVC(161), 2025, pp. 105609.
Elsevier DOI 2509
Video action recognition, State space model, Dual attention mechanism, Gated convolution BibRef

Li, T.P.[Teng-Peng], Wang, H.[Hanli], Li, Q.[Qinyu], Ni, Z.[Zhangkai],
Vision-Language Relational Transformer for Video-to-Text Generation,
MultMed(27), 2025, pp. 4584-4596.
IEEE DOI 2509
Visualization, Transformers, Feature extraction, Semantics, Oral communication, Accuracy, Generators, Long short term memory, visual relation modeling BibRef


Liu, Z.C.[Zi-Chen], Xu, K.L.[Kun-Lun], Su, B.[Bing], Zou, X.[Xu], Peng, Y.X.[Yu-Xin], Zhou, J.H.[Jia-Huan],
STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding,
CVPR25(13776-13786)
IEEE DOI Code:
WWW Link. 2508
Training, Adaptation models, Costs, Computational modeling, Video sequences, Benchmark testing, Spatiotemporal phenomena, Videos BibRef

Wang, Q.H.[Qiu-Heng], Shi, Y.K.[Yu-Kai], Ou, J.[Jiarong], Chen, R.[Rui], Lin, K.[Ke], Wang, J.H.[Jia-Hao], Jiang, B.[Boyuan], Yang, H.T.[Hao-Tian], Zheng, M.[Mingwu], Tao, X.[Xin], Yang, F.[Fei], Wan, P.F.[Peng-Fei], Zhang, D.[Di],
Koala-36M: A Large-Scale Video Dataset Improving Consistency between Fine-Grained Conditions and Video Content,
CVPR25(8428-8437)
IEEE DOI Code:
WWW Link. 2508
Training, Visualization, Accuracy, Filtering, Pipelines, Refining, Data processing, Probability distribution, Quality assessment, video datasets BibRef

Ho, D.[Darryl], Madden, S.[Samuel],
DejaVid: Encoder-Agnostic Learned Temporal Matching for Video Classification,
CVPR25(24023-24032)
IEEE DOI Code:
WWW Link. 2508
Training, Accuracy, Neural networks, Time series analysis, Transformers, Feeds, Videos BibRef

Manasyan, A.[Anna], Seitzer, M.[Maximilian], Radovic, F.[Filip], Martius, G.[Georg], Zadaianchuk, A.[Andrii],
Temporally Consistent Object-Centric Learning by Contrasting Slots,
CVPR25(5401-5411)
IEEE DOI 2508
Training, Dynamics, Object segmentation, Stability analysis, Question answering (information retrieval), Planning, Synthetic data BibRef

Bigverdi, M.[Mahtab], Luo, Z.[Zelun], Hsieh, C.Y.[Cheng-Yu], Shen, E.[Ethan], Chen, D.P.[Dong-Ping], Shapiro, L.G.[Linda G.], Krishna, R.[Ranjay],
Perception Tokens Enhance Visual Reasoning in Multimodal Language Models,
CVPR25(3836-3845)
IEEE DOI 2508
Training, Ion radiation effects, Visualization, Computational modeling, Depth measurement, Image representation, reasoning BibRef

Ren, Z.W.[Zhong-Wei], Wei, Y.C.[Yun-Chao], Guo, X.[Xun], Zhao, Y.[Yao], Kang, B.[Bingyi], Feng, J.S.[Jia-Shi], Jin, X.J.[Xiao-Jie],
VideoWorld: Exploring Knowledge Learning from Unlabeled Videos,
CVPR25(29029-29039)
IEEE DOI 2508
Training, Visualization, Knowledge acquisition, Computational modeling, Large language models, Videos BibRef

Tang, Y.L.[Yun-Long], Guo, J.J.[Jun-Jia], Hua, H.[Hang], Liang, S.[Susan], Feng, M.Q.[Ming-Qian], Li, X.Y.[Xin-Yang], Mao, R.[Rui], Huang, C.[Chao], Bi, J.[Jing], Zhang, Z.L.[Ze-Liang], Fazli, P.[Pooyan], Xu, C.L.[Chen-Liang],
VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?,
CVPR25(8490-8500)
IEEE DOI Code:
WWW Link. 2508
Visualization, Annotations, Large language models, Computational modeling, Benchmark testing, Cameras, Videos, evaluation benchmark BibRef

Kim, K.[Kangsan], Park, G.[Geon], Lee, Y.[Youngwan], Yeo, W.[Woongyeong], Hwang, S.J.[Sung Ju],
VideoICL: Confidence-based Iterative In-context Learning for Out-of-Distribution Video Understanding,
CVPR25(3295-3305)
IEEE DOI Code:
WWW Link. 2508
Costs, Computational modeling, Refining, Training data, Performance gain, Iterative methods, Faces, Videos BibRef

Huang, Z.P.[Zhen-Peng], Li, X.H.[Xin-Hao], Li, J.Q.[Jia-Qi], Wang, J.[Jing], Zeng, X.Y.[Xiang-Yu], Liang, C.[Cheng], Wu, T.[Tao], Chen, X.[Xi], Li, L.[Liang], Wang, L.M.[Li-Min],
Online Video Understanding: OVBench and VideoChat-Online,
CVPR25(3328-3338)
IEEE DOI 2508
Training, Systematics, Computational modeling, Benchmark testing, Solids, Real-time systems, Spatiotemporal phenomena, Videos, online video understanding BibRef

Liu, B.[Benlin], Dong, Y.H.[Yu-Hao], Wang, Y.Q.[Yi-Qin], Ma, Z.X.[Zi-Xian], Tang, Y.S.[Yan-Song], Tang, L.[Luming], Rao, Y.M.[Yong-Ming], Ma, W.C.[Wei-Chiu], Krishna, R.[Ranjay],
Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model,
CVPR25(3783-3792)
IEEE DOI 2508
Training, Visualization, Solid modeling, Video tracking, Navigation, Computational modeling, Benchmark testing, Cognition, Videos, video understanding BibRef

Zhao, Y.L.[Yi-Lun], Zhang, H.[Haowei], Xie, L.[Lujing], Hu, T.Y.[Tong-Yan], Gan, G.[Guo], Long, Y.[Yitao], Hu, Z.Y.[Zhi-Yuan], Chen, W.Y.[Wei-Yuan], Li, C.H.[Chu-Han], Xu, Z.J.[Zhi-Jian], Wang, C.Y.[Cheng-Ye], Shangguan, Z.Y.[Zi-Yao], Liang, Z.W.[Zhen-Wen], Liu, Y.X.[Yi-Xin], Zhao, C.[Chen], Cohan, A.[Arman],
MMVU: Measuring Expert-Level Multi-Discipline Video Understanding,
CVPR25(8475-8489)
IEEE DOI 2508
Foundation models, Error analysis, Computational modeling, Social sciences, Pipelines, Benchmark testing, Cognition, Videos, Visual perception BibRef

Lv, B.X.[Bai-Xuan], Zha, Y.H.[Yao-Hua], Dai, T.[Tao], Yuerong, X.[Xue], Chen, K.[Ke], Xia, S.T.[Shu-Tao],
Adapting Pre-trained 3D Models for Point Cloud Video Understanding via Cross-frame Spatio-temporal Perception,
CVPR25(12413-12422)
IEEE DOI Code:
WWW Link. 2508
Point cloud compression, Training, Adaptation models, Solid modeling, Computational modeling, Gesture recognition, pre-trained model BibRef

Ashutosh, K.[Kumar], Nagarajan, T.[Tushar], Pavlakos, G.[Georgios], Kitani, K.[Kris], Grauman, K.[Kristen],
ExpertAF: Expert Actionable Feedback from Video,
CVPR25(13582-13594)
IEEE DOI 2508
Training, Measurement, Visualization, Benchmark testing, Artificial intelligence, Videos, Sports, video understanding, expert feedback BibRef

Yang, J.W.[Jian-Wei], Tan, R.[Reuben], Wu, Q.H.[Qian-Hui], Zheng, R.J.[Rui-Jie], Peng, B.L.[Bao-Lin], Liang, Y.[Yongyuan], Gu, Y.[Yu], Cai, M.[Mu], Ye, S.[Seonghyeon], Jang, J.[Joel], Deng, Y.[Yuquan], Gao, J.F.[Jian-Feng],
Magma: A Foundation Model for Multimodal AI Agents,
CVPR25(14203-14214)
IEEE DOI 2508
Visualization, Navigation, Foundation models, Predictive models, Reproducibility of results, Planning, Magma, image and video understanding BibRef

Hu, K.[Kai], Gao, F.[Feng], Nie, X.H.[Xiao-Han], Zhou, P.[Peng], Tran, S.[Son], Neiman, T.[Tal], Wang, L.Y.[Ling-Yun], Shah, M.[Mubarak], Hamid, R.[Raffay], Yin, B.[Bing], Chilimbi, T.[Trishul],
M-LLM Based Video Frame Selection for Efficient Video Understanding,
CVPR25(13702-13712)
IEEE DOI 2508
Visualization, Pain, Annotations, Large language models, Benchmark testing, Question answering (information retrieval), Videos BibRef

Jung, M.[Minjoon], Xiao, J.B.[Jun-Bin], Zhang, B.T.[Byoung-Tak], Yao, A.[Angela],
On the Consistency of Video Large Language Models in Temporal Comprehension,
CVPR25(13713-13722)
IEEE DOI Code:
WWW Link. 2508
Codes, Grounding, Large language models, Robustness, Probes, Tuning, Standards, Videos, video large language models, video understanding BibRef

Li, C.[Chaoyu], Im, E.W.[Eun Woo], Fazli, P.[Pooyan],
VidHalluc: Evaluating Temporal Hallucinations in Multimodal Large Language Models for Video Understanding,
CVPR25(13723-13733)
IEEE DOI Code:
WWW Link. 2508
Visualization, Codes, Large language models, Buildings, Benchmark testing, Cognition, Videos, hallucination, benchmark BibRef

Liu, J.[Jiuming], Han, J.[Jinru], Liu, L.[Lihao], Aviles-Rivero, A.I.[Angelica I.], Jiang, C.[Chaokang], Liu, Z.[Zhe], Wang, H.S.[He-Sheng],
Mamba4D: Efficient 4D Point Cloud Video Understanding with Disentangled Spatial-Temporal State Space Models,
CVPR25(17626-17636)
IEEE DOI Code:
WWW Link. 2508
Point cloud compression, Correlation, Semantic segmentation, Scalability, Video sequences, Memory management, Transformers, Videos BibRef

Das, S.[Sarmistha], Mujavarsheik, B.[Basha], Lyngkhoi, R.E.Z.[R. E. Zera], Saha, S.[Sriparna], Maurya, A.[Alka],
Deciphering the Complaint Aspects: Towards an Aspect-Based Complaint Identification Model with Video Complaint Dataset in Finance,
WACV25(7195-7204)
IEEE DOI 2505
Measurement, Image segmentation, Analytical models, Image resolution, Reviews, Standards organizations, Companies, Image restoration BibRef

Liu, H.[Hong], Nakashima, Y.[Yuta], Babaguchi, N.[Noboru],
Paladin: Understanding Video Intentions in Political Advertisement Videos,
WACV25(8239-8248)
IEEE DOI 2505
Instruments, Computational modeling, Decision making, Psychology, Natural language processing, video understanding, benchmark BibRef

Bae, K.[Kyungho], Ahn, G.[Geo], Kim, Y.[Youngrae], Choi, J.[Jinwoo],
DEVIAS: Learning Disentangled Video Representations of Action and Scene,
ECCV24(LXVIII: 431-448).
Springer DOI 2412
Code:
WWW Link. BibRef

Salehi, M.[Mohammadreza], Dorkenwald, M.[Michael], Thoker, F.M.[Fida Mohammad], Gavves, E.[Efstratios], Snoek, C.G.M.[Cees G. M.], Asano, Y.M.[Yuki M.],
Sigma: Sinkhorn-guided Masked Video Modeling,
ECCV24(XXIV: 293-312).
Springer DOI 2412
Code:
WWW Link. BibRef

Xie, B.Z.[Bin-Zhu], Zhang, S.C.[Si-Cheng], Zhou, Z.[Zitang], Li, B.[Bo], Zhang, Y.H.[Yuan-Han], Hessel, J.[Jack], Yang, J.K.[Jing-Kang], Liu, Z.W.[Zi-Wei],
FUNQA: Towards Surprising Video Comprehension,
ECCV24(I: 39-57).
Springer DOI 2412
BibRef

Choi, M.[Minkyu], Goel, H.[Harsh], Omama, M.[Mohammad], Yang, Y.H.[Yun-Hao], Shah, S.[Sahil], Chinchali, S.[Sandeep],
Towards Neuro-symbolic Video Understanding,
ECCV24(LXXVIII: 220-236).
Springer DOI 2412
BibRef

Fan, Y.[Yue], Ma, X.J.[Xiao-Jian], Wu, R.J.[Ru-Jie], Du, Y.T.[Yun-Tao], Li, J.Q.[Jia-Qi], Gao, Z.[Zhi], Li, Q.[Qing],
Videoagent: A Memory-augmented Multimodal Agent for Video Understanding,
ECCV24(XXII: 75-92).
Springer DOI 2412
BibRef

Wang, S.J.[Shi-Jie], Zhao, Q.[Qi], Do, M.Q.[Minh Quan], Agarwal, N.[Nakul], Lee, K.[Kwonjoon], Sun, C.[Chen],
VAMOS: Versatile Action Models for Video Understanding,
ECCV24(XII: 142-160).
Springer DOI 2412
BibRef

Lebreton, P.[Pierre], Le Callet, P.[Patrick], Birkbeck, N.[Neil], Wang, Y.L.[Yi-Lin], Adsumilli, B.[Balu],
A Dataset for Understanding Open UGC Video Datasets,
ICIP24(165-171)
IEEE DOI Code:
WWW Link. 2411
Training, Open Access, User-generated content, Merging, Training data, Streaming media, Predictive models, UGC video, datasets BibRef

Wu, J.T.[Jian-Tao], Mo, S.T.[Shen-Tong], Atito, S.[Sara], Feng, Z.H.[Zhen-Hua], Kittler, J.V.[Josef V.], Husain, S.S.[Syed Sameed], Awais, M.[Muhammad],
Masked Momentum Contrastive Learning for Semantic Understanding by Observation,
ICIP24(263-269)
IEEE DOI 2411
Visualization, Image segmentation, Thresholding (Imaging), Protocols, Zero-shot learning, Large language models, Semantics, zero-shot segmentation BibRef

Yun, H.[Hoyeoung], Ahn, J.[Jinwoo], Kim, M.[Minseo], Kim, E.S.[Eun-Sol],
Compositional Video Understanding with Spatiotemporal Structure-based Transformers,
CVPR24(18751-18760)
IEEE DOI 2410
Learning systems, Visualization, Semantics, Transformers, Distance measurement BibRef

Papalampidi, P.[Pinelopi], Koppula, S.[Skanda], Pathak, S.[Shreya], Chiu, J.[Justin], Heyward, J.[Joe], Patraucean, V.[Viorica], Shen, J.J.[Jia-Jun], Miech, A.[Antoine], Zisserman, A.[Andrew], Nematzdeh, A.[Aida],
A Simple Recipe for Contrastively Pre-Training Video-First Encoders Beyond 16 Frames,
CVPR24(14386-14397)
IEEE DOI 2410
Training, Visualization, Memory management, Benchmark testing, Encoding BibRef

Wang, A.D.[An-Dong], Wu, B.[Bo], Chen, S.[Sunli], Chen, Z.F.[Zhen-Fang], Guan, H.T.[Hao-Tian], Lee, W.N.[Wei-Ning], Li, L.E.[Li Erran], Gan, C.[Chuang],
SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge,
CVPR24(13384-13394)
IEEE DOI 2410
Visualization, Quality assurance, Reviews, Scalability, Manuals, Benchmark testing, commonsense reasoning BibRef

Zhong, Y.[Yang], Baghel, B.K.[Bhiman Kumar],
Multimodal Understanding of Memes with Fair Explanations,
MULA24(2007-2017)
IEEE DOI 2410
Social networking (online), Computational modeling, Benchmark testing, Cultural differences, Fairness BibRef

Sheng, D.[Dianmo], Chen, D.D.[Dong-Dong], Tan, Z.T.[Zhen-Tao], Liu, Q.[Qiankun], Chu, Q.[Qi], Bao, J.M.[Jian-Min], Gong, T.[Tao], Liu, B.[Bin], Xu, S.W.[Sheng-Wei], Yu, N.H.[Neng-Hai],
Towards More Unified In-Context Visual Understanding,
CVPR24(13362-13372)
IEEE DOI 2410
Visualization, Quantization (signal), Semantic segmentation, Large language models, Pipelines, Transformers, Multitasking BibRef

Ma, F.[Fan], Jin, X.J.[Xiao-Jie], Wang, H.[Heng], Xian, Y.C.[Yu-Chen], Feng, J.S.[Jia-Shi], Yang, Y.[Yi],
Vista-llama: Reducing Hallucination in Video Language Models via Equal Distance to Visual Tokens,
CVPR24(13151-13160)
IEEE DOI Code:
WWW Link. 2410
Visualization, Attention mechanisms, Accuracy, Large language models, Computational modeling, Benchmark testing, Video Understanding BibRef

Tan, C.L.[Chao-Lei], Lai, J.H.[Jian-Huang], Zheng, W.S.[Wei-Shi], Hu, J.F.[Jian-Fang],
Siamese Learning with Joint Alignment and Regression for Weakly-Supervised Video Paragraph Grounding,
CVPR24(13569-13580)
IEEE DOI 2410
Location awareness, Grounding, Annotations, Semantics, Semisupervised learning, Transformers, siamese learning, video understanding BibRef

Jin, P.[Peng], Takanobu, R.[Ryuichi], Zhang, W.[Wancai], Cao, X.C.[Xiao-Chun], Yuan, L.[Li],
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding,
CVPR24(13700-13710)
IEEE DOI Code:
WWW Link. 2410
Bridges, Visualization, Codes, Large language models, Computational modeling, Oral communication, Video Understanding BibRef

Chalk, J.[Jacob], Huh, J.[Jaesung], Kazakos, E.[Evangelos], Zisserman, A.[Andrew], Damen, D.[Dima],
TIM: A Time Interval Machine for Audio-Visual Action Recognition,
CVPR24(18153-18163)
IEEE DOI Code:
WWW Link. 2410
Measurement, Visualization, Adaptation models, Codes, Accuracy, Computational modeling, action recognition, action detection, video understanding BibRef

Wang, J.[Junke], Chen, D.D.[Dong-Dong], Luo, C.[Chong], He, B.[Bo], Yuan, L.[Lu], Wu, Z.X.[Zu-Xuan], Jiang, Y.G.[Yu-Gang],
OmniViD: A Generative Framework for Universal Video Understanding,
CVPR24(18209-18220)
IEEE DOI Code:
WWW Link. 2410
Training, Location awareness, Visualization, Vocabulary, Benchmark testing, Robustness BibRef

Zeng, R.[Runhao], Chen, X.Y.[Xiao-Yong], Liang, J.M.[Jia-Ming], Wu, H.[Huisi], Cao, G.Z.[Guang-Zhong], Guo, Y.[Yong],
Benchmarking the Robustness of Temporal Action Detection Models Against Temporal Corruptions,
CVPR24(18263-18274)
IEEE DOI Code:
WWW Link. 2410
Training, Location awareness, Source coding, Benchmark testing, Feature extraction, Transformers, Temporal Action Detection, Video Understanding BibRef

Peirone, S.A.[Simone Alberto], Pistilli, F.[Francesca], Alliegro, A.[Antonio], Averta, G.[Giuseppe],
A Backpack Full of Skills: Egocentric Video Understanding with Diverse Task Perspectives,
CVPR24(18275-18285)
IEEE DOI 2410
Streaming media, Benchmark testing, Egocentric Vision, Video Understanding BibRef

Nguyen, T.T.[Trong-Thuan], Nguyen, P.[Pha], Luu, K.[Khoa],
HIG: Hierarchical Interlacement Graph Approach to Scene Graph Generation in Video Understanding,
CVPR24(18384-18394)
IEEE DOI 2410
Visualization, Scalability, Computational modeling, Benchmark testing, Task analysis, ASPIRe BibRef

Tores, J.[Julie], Sassatelli, L.[Lucile], Wu, H.Y.[Hui-Yin], Bergman, C.[Clement], Andolfi, L.[Léa], Ecrement, V.[Victor], Precioso, F.[Frédéric], Devars, T.[Thierry], Guaresi, M.[Magali], Julliard, V.[Virginie], Lecossais, S.[Sarah],
Visual Objectification in Films: Towards a New AI Task for Video Interpretation,
CVPR24(10864-10874)
IEEE DOI 2410
Representation learning, Visualization, Codes, Computational modeling, Psychology, Motion pictures, objectification BibRef

Jamal, M.A.[Muhammad Abdullah], Mohareri, O.[Omid],
M33D: Learning 3D priors using Multi-Modal Masked Autoencoders for 2D image and video understanding,
WACV24(2532-2542)
IEEE DOI 2404
Representation learning, Solid modeling, Semantic segmentation, Estimation, Focusing, Algorithms, Machine learning architectures, Biomedical / healthcare / medicine BibRef

Li, K.C.[Kun-Chang], Wang, Y.L.[Ya-Li], He, Y.[Yinan], Li, Y.Z.[Yi-Zhuo], Wang, Y.[Yi], Wang, L.M.[Li-Min], Qiao, Y.[Yu],
UniFormerV2: Unlocking the Potential of Image ViTs for Video Understanding,
ICCV23(1632-1643)
IEEE DOI 2401
BibRef

Zhao, Y.C.[Yu-Cheng], Luo, C.[Chong], Tang, C.X.[Chuan-Xin], Chen, D.D.[Dong-Dong], Codella, N.[Noel], Zha, Z.J.[Zheng-Jun],
Streaming Video Model,
CVPR23(14602-14612)
IEEE DOI 2309

WWW Link. BibRef

Maiya, S.R.[Shishira R], Girish, S.[Sharath], Ehrlich, M.[Max], Wang, H.Y.[Han-Yu], Lee, K.S.[Kwot Sin], Poirson, P.[Patrick], Wu, P.X.[Peng-Xiang], Wang, C.[Chen], Shrivastava, A.[Abhinav],
NIRVANA: Neural Implicit Representations of Videos with Adaptive Networks and Autoregressive Patch-Wise Modeling,
CVPR23(14378-14387)
IEEE DOI 2309
BibRef

Zhang, Y.T.[Yi-Tian], Bai, Y.[Yue], Liu, C.[Chang], Wang, H.[Huan], Li, S.[Sheng], Fu, Y.[Yun],
Frame Flexible Network,
CVPR23(10504-10513)
IEEE DOI 2309

WWW Link. BibRef

Dessalene, E.[Eadom], Maynord, M.[Michael], Fermüller, C.[Cornelia], Aloimonos, Y.F.[Yi-Fannis],
Therbligs in Action: Video Understanding through Motion Primitives,
CVPR23(10618-10626)
IEEE DOI 2309
BibRef

Zhao, Y.[Yue], Misra, I.[Ishan], Krähenbühl, P.[Philipp], Girdhar, R.[Rohit],
Learning Video Representations from Large Language Models,
CVPR23(6586-6597)
IEEE DOI 2309
BibRef

Wang, R.[Rui], Chen, D.D.[Dong-Dong], Wu, Z.X.[Zu-Xuan], Chen, Y.P.[Yin-Peng], Dai, X.[Xiyang], Liu, M.C.[Meng-Chen], Yuan, L.[Lu], Jiang, Y.G.[Yu-Gang],
Masked Video Distillation: Rethinking Masked Feature Modeling for Self-supervised Video Representation Learning,
CVPR23(6312-6322)
IEEE DOI 2309
BibRef

Foo, L.G.[Lin Geng], Gong, J.[Jia], Fan, Z.P.[Zhi-Peng], Liu, J.[Jun],
System-Status-Aware Adaptive Network for Online Streaming Video Understanding,
CVPR23(10514-10523)
IEEE DOI 2309
BibRef

Dong, S.[Sixun], Hu, H.Z.[Hua-Zhang], Lian, D.Z.[Dong-Ze], Luo, W.X.[Wei-Xin], Qian, Y.C.[Yi-Cheng], Gao, S.H.[Sheng-Hua],
Weakly Supervised Video Representation Learning with Unaligned Text for Sequential Videos,
CVPR23(2437-2447)
IEEE DOI 2309
BibRef

Zhang, H.[Heng], Liu, D.[Daqing], Zheng, Q.[Qi], Su, B.[Bing],
Modeling Video as Stochastic Processes for Fine-Grained Video Representation Learning,
CVPR23(2225-2234)
IEEE DOI 2309

WWW Link. BibRef

Kumar, Y.[Yogesh], Mishra, A.[Anand],
Few-Shot Referring Relationships in Videos,
CVPR23(2289-2298)
IEEE DOI 2309
BibRef

Harzig, P.[Philipp], Einfalt, M.[Moritz], Lienhart, R.[Rainer],
Synchronized Audio-Visual Frames with Fractional Positional Encoding for Transformers in Video-to-Text Translation,
ICIP22(2041-2045)
IEEE DOI 2211
Image coding, Video on demand, Art, Transformers, Synchronization, Machine translation, Task analysis, Video-to-text, Transformer, Audio-visual BibRef

Wiles, O.[Olivia], Carreira, J.[João], Barr, I.[Iain], Zisserman, A.[Andrew], Malinowski, M.[Mateusz],
Compressed Vision for Efficient Video Understanding,
ACCV22(VII:679-695).
Springer DOI 2307
BibRef

Rho, D.[Daniel], Cho, J.[Junwoo], Ko, J.H.[Jong Hwan], Park, E.[Eunbyung],
Neural Residual Flow Fields for Efficient Video Representations,
ACCV22(II:458-474).
Springer DOI 2307
BibRef

Tian, F.R.[Feng-Rui], Fan, J.W.[Jia-Wei], Yu, X.[Xie], Du, S.Y.[Shao-Yi], Song, M.[Meina], Zhao, Y.[Yu],
TCVM: Temporal Contrasting Video Montage Framework for Self-Supervised Video Representation Learning,
ACCV22(II:526-542).
Springer DOI 2307
BibRef

Huang, Z.M.[Zhi-Meng], Jia, C.M.[Chuan-Min], Wang, S.S.[Shan-She], Ma, S.W.[Si-Wei],
A Compressive Prior Guided Mask Predictive Coding Approach for Video Analysis,
ACCV22(IV:469-484).
Springer DOI 2307
BibRef

Li, L.[Li], Zhuang, L.S.[Lian-Sheng], Gao, S.H.[Sheng-Hua], Wang, S.[Shafei],
Havit: Hybrid-attention Based Vision Transformer for Video Classification,
ACCV22(IV:502-517).
Springer DOI 2307
BibRef

Zhang, H.L.[Huan-Le], Pirsiavash, H.[Hamed], Liu, X.[Xin],
MASTAF: A Model-Agnostic Spatio-Temporal Attention Fusion Network for Few-shot Video Classification,
WACV23(2507-2516)
IEEE DOI 2302
Computational modeling, Benchmark testing, Transformers, Algorithms: Machine learning architectures, formulations BibRef

Senocak, A.[Arda], Kim, J.[Junsik], Oh, T.H.[Tae-Hyun], Li, D.Z.[Ding-Zeyu], Kweon, I.S.[In So],
Event-Specific Audio-Visual Fusion Layers: A Simple and New Perspective on Video Understanding,
WACV23(2236-2246)
IEEE DOI 2302
Benchmark testing, Multisensory integration, Floods, Task analysis, Algorithms: Vision + language and/or other modalities BibRef

Xia, B.Y.[Bo-Yang], Wu, W.H.[Wen-Hao], Wang, H.R.[Hao-Ran], Su, R.[Rui], He, D.L.[Dong-Liang], Yang, H.[Haosen], Fan, X.R.[Xiao-Ran], Ouyang, W.L.[Wan-Li],
NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition,
ECCV22(XXXIV:705-723).
Springer DOI 2211
BibRef

Xia, B.Y.[Bo-Yang], Wang, Z.H.[Zhi-Hao], Wu, W.H.[Wen-Hao], Wang, H.R.[Hao-Ran], Han, J.G.[Jun-Gong],
Temporal Saliency Query Network for Efficient Video Recognition,
ECCV22(XXXIV:741-759).
Springer DOI 2211
BibRef

Habibian, A.[Amirhossein], Yahia, H.B.[Haitam Ben], Abati, D.[Davide], Gavves, E.[Efstratios], Porikli, F.M.[Fatih M.],
Delta Distillation for Efficient Video Processing,
ECCV22(XXXV:213-229).
Springer DOI 2211
BibRef

Li, Z.Z.[Zi-Zhang], Wang, M.M.[Meng-Meng], Pi, H.J.[Huai-Jin], Xu, K.[Kechun], Mei, J.B.[Jian-Biao], Liu, Y.[Yong],
E-NeRV: Expedite Neural Video Representation with Disentangled Spatial-Temporal Context,
ECCV22(XXXV:267-284).
Springer DOI 2211
BibRef

Kosman, E.[Eitan], di Castro, D.[Dotan],
GraphVid: It only Takes a Few Nodes to Understand a Video,
ECCV22(XXXV:195-212).
Springer DOI 2211
BibRef

Ju, C.[Chen], Han, T.[Tengda], Zheng, K.[Kunhao], Zhang, Y.[Ya], Xie, W.[Weidi],
Prompting Visual-Language Models for Efficient Video Understanding,
ECCV22(XXXV:105-124).
Springer DOI 2211
BibRef

Liang, S.X.[Shu-Xian], Shen, X.[Xu], Huang, J.Q.[Jian-Qiang], Hua, X.S.[Xian-Sheng],
Delving into Details: Synopsis-to-Detail Networks for Video Recognition,
ECCV22(IV:262-278).
Springer DOI 2211
BibRef

Ur Rehman, Y.A.[Yasar Abbas], Gao, Y.[Yan], Shen, J.J.[Jia-Jun], de Gusmão, P.P.B.[Pedro Porto Buarque], Lane, N.[Nicholas],
Federated Self-supervised Learning for Video Understanding,
ECCV22(XXXI:506-522).
Springer DOI 2211
BibRef

Dadashzadeh, A.[Amirhossein], Whone, A.[Alan], Mirmehdi, M.[Majid],
Auxiliary Learning for Self-Supervised Video Representation via Similarity-based Knowledge Distillation,
L3D-IVU22(4230-4239)
IEEE DOI 2210
Representation learning, Knowledge engineering, Training, Predictive models, Data models, Reliability BibRef

Li, Y.[Yi], Vasconcelos, N.M.[Nuno M.],
Improving Video Model Transfer with Dynamic Representation Learning,
CVPR22(19258-19269)
IEEE DOI 2210
Representation learning, Knowledge engineering, Analytical models, Computational modeling, Transfer learning, Video analysis and understanding BibRef

Guo, S.[Sheng], Xiong, Z.H.[Zi-Hua], Zhong, Y.J.[Yu-Jie], Wang, L.M.[Li-Min], Guo, X.B.[Xiao-Bo], Han, B.[Bing], Huang, W.L.[Wei-Lin],
Cross-Architecture Self-supervised Video Representation Learning,
CVPR22(19248-19257)
IEEE DOI 2210
Representation learning, Video sequences, Self-supervised learning, Predictive models, Video analysis and understanding BibRef

Xu, X.Y.[Xin-Yu], Li, Y.L.[Yong-Lu], Lu, C.[Cewu],
Learning to Anticipate Future with Dynamic Context Removal,
CVPR22(12724-12734)
IEEE DOI 2210

WWW Link. Training, Visualization, Schedules, Uncertainty, Benchmark testing, Transformers, Cognition, Visual reasoning, Video analysis and understanding BibRef

Gadre, S.Y.[Samir Yitzhak], Ehsani, K.[Kiana], Song, S.[Shuran], Mottaghi, R.[Roozbeh],
Continuous Scene Representations for Embodied AI,
CVPR22(14829-14839)
IEEE DOI 2210
Training, Representation learning, Visualization, Image analysis, Navigation, Tracking, Robot vision systems, Robot vision, Scene analysis and understanding BibRef

Liang, C.[Chen], Wang, W.G.[Wen-Guan], Zhou, T.F.[Tian-Fei], Yang, Y.[Yi],
Visual Abductive Reasoning,
CVPR22(15544-15554)
IEEE DOI 2210
Visualization, Reactive power, Transformers, Cognition, Task analysis, Vision+language, Video analysis and understanding BibRef

Kinfu, K.A.[Kaleab A.], Vidal, R.[René],
Analysis and Extensions of Adversarial Training for Video Classification,
RoSe22(3415-3424)
IEEE DOI 2210
Training, Noise reduction, Generative adversarial networks, Robustness BibRef

Xiao, F.[Fanyi], Kundu, K.[Kaustav], Tighe, J.[Joseph], Modolo, D.[Davide],
Hierarchical Self-supervised Representation Learning for Movie Understanding,
CVPR22(9717-9726)
IEEE DOI 2210
Representation learning, Measurement, Soft sensors, Semantics, Self-supervised learning, Benchmark testing, Motion pictures, Video analysis and understanding BibRef

Li, L.L.[Liu-Lei], Zhou, T.F.[Tian-Fei], Wang, W.G.[Wen-Guan], Yang, L.[Lu], Li, J.W.[Jian-Wu], Yang, Y.[Yi],
Locality-Aware Inter-and Intra-Video Reconstruction for Self-Supervised Correspondence Learning,
CVPR22(8709-8720)
IEEE DOI 2210
Representation learning, Location awareness, Visualization, Semantics, Reconstruction algorithms, Encoding, grouping and shape analysis BibRef

Jiang, Y.F.[Yi-Fan], Gong, X.Y.[Xin-Yu], Wu, J.[Junru], Shi, H.[Humphrey], Yan, Z.C.[Zhi-Cheng], Wang, Z.Y.[Zhang-Yang],
Auto-X3D: Ultra-Efficient Video Understanding via Finer-Grained Neural Architecture Search,
WACV22(2354-2363)
IEEE DOI 2202
Computational modeling, Search methods, X3D, Benchmark testing, Probabilistic logic, Analysis and Understanding Deep Learning -> Efficient Training and Inference Methods for Networks BibRef

Chen, N.L.[Neng-Lun], Chu, L.[Lei], Pan, H.[Hao], Lu, Y.[Yan], Wang, W.P.[Wen-Ping],
Self-Supervised Image Representation Learning with Geometric Set Consistency,
CVPR22(19270-19280)
IEEE DOI 2210
Image segmentation, Semantics, Training data, Object detection, Image representation, Representation learning, Self- semi- meta- unsupervised learning BibRef

Lin, Y.Z.[Yuan-Ze], Guo, X.[Xun], Lu, Y.[Yan],
Self-Supervised Video Representation Learning with Meta-Contrastive Network,
ICCV21(8219-8229)
IEEE DOI 2203
Training, Representation learning, Multitasking, Task analysis, Transfer/Low-shot/Semi/Unsupervised Learning, Video analysis and understanding BibRef

Guo, X.D.[Xu-Dong], Guo, X.[Xun], Lu, Y.[Yan],
SSAN: Separable Self-Attention Network for Video Representation Learning,
CVPR21(12613-12622)
IEEE DOI 2111
Correlation, Pairwise error probability, Computational modeling, Semantics, Cognition BibRef

Yang, X.T.[Xi-Tong], Fan, H.Q.[Hao-Qi], Torresani, L.[Lorenzo], Davis, L.S.[Larry S.], Wang, H.[Heng],
Beyond Short Clips: End-to-End Video-Level Learning with Collaborative Memories,
CVPR21(7563-7572)
IEEE DOI 2111
Training, Collaboration, Predictive models, Fasteners BibRef

Zhang, C.H.[Chu-Han], Gupta, A.[Ankush], Zisserman, A.[Andrew],
Temporal Query Networks for Fine-grained Video Understanding,
CVPR21(4484-4494)
IEEE DOI 2111
Training, Location awareness, Videos BibRef

Kangaspunta, J.[Juhana], Piergiovanni, A.[AJ], Jonschkowski, R.[Rico], Ryoo, M.[Michael], Angelova, A.[Anelia],
Adaptive Intermediate Representations for Video Understanding,
MULA21(1602-1612)
IEEE DOI 2109
Training, Visualization, Computational modeling, Atmospheric modeling, Motion segmentation, Semantics, Performance gain BibRef

Duan, H.D.[Hao-Dong], Zhao, Y.[Yue], Xiong, Y.J.[Yuan-Jun], Liu, W.T.[Wen-Tao], Lin, D.[Dahua],
Omni-sourced Webly-supervised Learning for Video Recognition,
ECCV20(XV:670-688).
Springer DOI 2011
BibRef

Jha, A., Kumar, A., Pande, S., Banerjee, B., Chaudhuri, S.,
MT-UNET: A Novel U-Net Based Multi-Task Architecture For Visual Scene Understanding,
ICIP20(2191-2195)
IEEE DOI 2011
Task analysis, Decoding, Feature extraction, Semantics, Loss measurement, Image segmentation, Estimation, deep learning BibRef

Diba, A.[Ali], Fayyaz, M.[Mohsen], Sharma, V.[Vivek], Paluri, M.[Manohar], Gall, J.[Jürgen], Stiefelhagen, R.[Rainer], Van Gool, L.J.[Luc J.],
Large Scale Holistic Video Understanding,
ECCV20(V:593-610).
Springer DOI 2011
BibRef

Voigtlaender, P.[Paul], Changpinyo, S.[Soravit], Pont-Tuset, J.[Jordi], Soricut, R.[Radu], Ferrari, V.[Vittorio],
Connecting Vision and Language with Video Localized Narratives,
CVPR23(2461-2471)
IEEE DOI 2309
BibRef

Pont-Tuset, J.[Jordi], Uijlings, J.[Jasper], Changpinyo, S.[Soravit], Soricut, R.[Radu], Ferrari, V.[Vittorio],
Connecting Vision and Language with Localized Narratives,
ECCV20(V:647-664).
Springer DOI 2011
BibRef

Hu, A.[Anthony], Cotter, F.[Fergal], Mohan, N.[Nikhil], Gurau, C.[Corina], Kendall, A.[Alex],
Probabilistic Future Prediction for Video Scene Understanding,
ECCV20(XVI: 767-785).
Springer DOI 2010
BibRef

Mavroudi, E.[Effrosyni], Haro, B.B.[Benjamín Béjar], Vidal, R.[René],
Representation Learning on Visual-Symbolic Graphs for Video Understanding,
ECCV20(XXIX: 71-90).
Springer DOI 2010
BibRef

Sener, F.[Fadime], Singhania, D.[Dipika], Yao, A.[Angela],
Temporal Aggregate Representations for Long-range Video Understanding,
ECCV20(XVI: 154-171).
Springer DOI 2010
BibRef

Tosi, F., Aleotti, F., Ramirez, P.Z., Poggi, M., Salti, S., di Stefano, L., Mattoccia, S.,
Distilled Semantics for Comprehensive Scene Understanding from Videos,
CVPR20(4653-4664)
IEEE DOI 2008
Semantics, Optical imaging, Cameras, Videos, Training, Estimation, BibRef

Piergiovanni, A.J., Angelova, A.[Anelia], Ryoo, M.S.[Michael S.],
Evolving Losses for Unsupervised Video Representation Learning,
CVPR20(130-139)
IEEE DOI 2008
Task analysis, Optical losses, Labeling, Training, Evolutionary computation, Kinetic theory, Loss measurement BibRef

Xiong, Y., Huang, Q., Guo, L., Zhou, H., Zhou, B., Lin, D.,
A Graph-Based Framework to Bridge Movies and Synopses,
ICCV19(4591-4600)
IEEE DOI 2004
Code, Video Understanding.
WWW Link. entertainment, graph theory, video signal processing, graph-based framework, video analytics, movie understanding, BibRef

Kanehira, A.[Atsushi], Takemoto, K.[Kentaro], Inayoshi, S.[Sho], Harada, T.[Tatsuya],
Multimodal Explanations by Predicting Counterfactuality in Videos,
CVPR19(8586-8594).
IEEE DOI 2002
BibRef

Kanehira, A.[Atsushi], Harada, T.[Tatsuya],
Learning to Explain With Complemental Examples,
CVPR19(8595-8603).
IEEE DOI 2002
BibRef

Zhou, L.[Luowei], Kalantidis, Y.[Yannis], Chen, X.L.[Xin-Lei], Corso, J.J.[Jason J.], Rohrbach, M.[Marcus],
Grounded Video Description,
CVPR19(6571-6580).
IEEE DOI 2002
BibRef

Liu, X.Y.[Xing-Yu], Lee, J.Y.[Joon-Young], Jin, H.L.[Hai-Lin],
Learning Video Representations From Correspondence Proposals,
CVPR19(4268-4276).
IEEE DOI 2002
BibRef

Xiong, B.[Bo], Kalantidis, Y.[Yannis], Ghadiyaram, D.[Deepti], Grauman, K.[Kristen],
Less Is More: Learning Highlight Detection From Video Duration,
CVPR19(1258-1267).
IEEE DOI 2002
BibRef

Zhang, D.[Da], Dai, X.[Xiyang], Wang, X.[Xin], Wang, Y.F.[Yuan-Fang], Davis, L.S.[Larry S.],
MAN: Moment Alignment Network for Natural Language Moment Retrieval via Iterative Graph Adjustment,
CVPR19(1247-1257).
IEEE DOI 2002
Key moments in scene. BibRef

Fan, L., Huang, W., Gan, C., Ermon, S., Gong, B., Huang, J.,
End-to-End Learning of Motion Representation for Video Understanding,
CVPR18(6016-6025)
IEEE DOI 1812
Optical imaging, Task analysis, Optical computing, Training, Optical fiber networks, Brightness, Neural networks BibRef

Huang, D., Ramanathan, V., Mahajan, D., Torresani, L., Paluri, M., Fei-Fei, L., Niebles, J.C.,
What Makes a Video a Video: Analyzing Temporal Information in Video Understanding Models and Datasets,
CVPR18(7366-7375)
IEEE DOI 1812
Analytical models, Generators, Kinetic theory, Visualization, Upper bound, Testing, Training BibRef

Mahdisoltani, F.[Farzaneh], Memisevic, R.[Roland], Fleet, D.J.[David J.],
Hierarchical Video Understanding,
WiCV-E18(IV:659-663).
Springer DOI 1905
BibRef

Shin, K.S.[Kwang-Soo], Jeon, J.[Junhyeong], Lee, S.[Seungbin], Lim, B.[Boyoung], Jeong, M.S.[Min-Soo], Nang, J.[Jongho],
Approach for Video Classification with Multi-label on YouTube-8M Dataset,
Large-Scale18(IV:317-324).
Springer DOI 1905
BibRef

Skalic, M.[Miha], Austin, D.[David],
Building A Size Constrained Predictive Models for Video Classification,
Large-Scale18(IV:297-305).
Springer DOI 1905
BibRef

Garg, S.[Shivam],
Learning Video Features for Multi-label Classification,
Large-Scale18(IV:325-337).
Springer DOI 1905
BibRef

Cho, C.[Choongyeun], Antin, B.[Benjamin], Arora, S.[Sanchit], Ashrafi, S.[Shwan], Duan, P.L.[Pei-Lin], Huynh, D.T.[Dang The], James, L.[Lee], Nguyen, H.T.[Hang Tuan], Solgi, M.[Mojtaba], Than, C.V.[Cuong Van],
Large-Scale Video Classification with Feature Space Augmentation Coupled with Learned Label Relations and Ensembling,
Large-Scale18(IV:338-346).
Springer DOI 1905
BibRef

Lin, R.C.[Rong-Cheng], Xiao, J.[Jing], Fan, J.P.[Jian-Ping],
NeXtVLAD: An Efficient Neural Network to Aggregate Frame-Level Features for Large-Scale Video Classification,
Large-Scale18(IV:206-218).
Springer DOI 1905
BibRef

Tang, Y.Y.[Yong-Yi], Zhang, X.[Xing], Wang, J.W.[Jing-Wen], Chen, S.X.[Shao-Xiang], Ma, L.[Lin], Jiang, Y.G.[Yu-Gang],
Non-local NetVLAD Encoding for Video Classification,
Large-Scale18(IV:219-228).
Springer DOI 1905
BibRef

Kmiec, S.[Sebastian], Bae, J.[Juhan], An, R.J.[Rui-Jian],
Learnable Pooling Methods for Video Classification,
Large-Scale18(IV:229-238).
Springer DOI 1905
BibRef

Liu, T.Q.[Tian-Qi], Liu, B.[Bo],
Constrained-Size Tensorflow Models for YouTube-8M Video Understanding Challenge,
Large-Scale18(IV:239-249).
Springer DOI 1905
BibRef

Lee, J.[Joonseok], Natsev, A.P.[Apostol Paul], Reade, W.[Walter], Sukthankar, R.[Rahul], Toderici, G.[George],
The 2nd YouTube-8M Large-Scale Video Understanding Challenge,
Large-Scale18(IV:193-205).
Springer DOI 1905
BibRef

Zolfaghari, M.[Mohammadreza], Singh, K.[Kamaljeet], Brox, T.[Thomas],
ECO: Efficient Convolutional Network for Online Video Understanding,
ECCV18(II: 713-730).
Springer DOI 1810
BibRef

Sah, S., Nguyen, T., Dominguez, M., Such, F.P., Ptucha, R.,
Temporally Steered Gaussian Attention for Video Understanding,
DeepLearn-T17(2208-2216)
IEEE DOI 1709
Computational modeling, Decoding, Semantics, Standards, Streaming media, Training, Visualization BibRef

Jiang, Y.G.[Yu-Gang], Ye, G.[Guangnan], Chang, S.F.[Shih-Fu], Ellis, D.[Daniel], Loui, A.C.[Alexander C.],
Consumer video understanding: a benchmark database and an evaluation of human and machine performance,
ICMR11(29).
DOI Link 1301
BibRef

Yang, Y.[Yang], Liu, J.G.[Jin-Gen], Shah, M.[Mubarak],
Video Scene Understanding Using Multi-scale Analysis,
ICCV09(1669-1676).
IEEE DOI 0909
BibRef

Chapter on Implementations and Applications, Databases, QBIC, Video Analysis, Hardware and Software, Inspection continues in
Long Video Understanding, Long-Form Video Understandint .


Last update:Oct 6, 2025 at 14:07:43