12.3.1.9 Matching, Descriptions Using Moments

Chapter Contents (Back)
Moments. Moment Invariants. Moment Matching. Matching, Moments.

Hu, M.K.,
Pattern Recognition by Moment Invariants,
PIRE(49), 1961, p. 1428. BibRef 6100

Hu, M.K.,
Visual Pattern Recognition by Moment Invariants,
IT(8), No. 2, February 1962, pp. 179-187. BibRef 6202 CMetImAly77(113-121). The Fundamental Theorem of Moment Invariants. For more modern and better formulation:
See also n-Dimensional Moment Invariants and Conceptual Mathematical Theory of Recognition n-Dimensional Solids. BibRef

Alt, F.L.[Franz L.],
Digital Pattern Recognition by Moments,
JACM(9), No. 2, April 1962, pp. 240-258. BibRef 6204
And: OCR62(153-179). BibRef

Doyle, W.,
Operations Useful for Similarity-Invariant Pattern Recognition,
JACM(9), No. 2, April 1962, pp. 259-267. BibRef 6204

Giuliano, V.E., Jones, P.E., Kimball, G.E., Meyer, R.F., and Stein, B.A.,
Automatic Pattern Recognition by a Gestalt Method,
InfoControl(4), 1961, pp. 332-345. BibRef 6100

Meyer, R.F., Giuliano, V.E., Jones, P.E.,
Analytic Approximation and Translation Invariance in Character Recognition,
OCR62(181-195). BibRef 6200

Udagawa, K., Toriwaki, J., and Sugino, K.,
Normalization and Recognition of Two-Dimensional Patterns with Linear Distortion by Moments,
Electr. Commun.(47), Japan, 1964, pp. 34-46. BibRef 6400

Smith, F.W., and Wright, M.H.,
Automatic Ship Photo Interpretation by the Method of Moments,
TC(20), No. 9, September 1971, pp. 1089-1095. BibRef 7109

Richard, C.W., and Hemani, H.,
Identification of Three Dimensional Objects Using Fourier Descriptors of the Boundary Curve,
SMC(4), No. 4, 1974, pp. 371-378. BibRef 7400

Dudani, S.A., Breeding, K.J., and McGhee, R.B.,
Aircraft Identification by Moment Invariants,
TC(26), No. 1, January 1977, pp. 39-46. Recognize Aircraft. Matching, Moments. Recognition based on the global shape features. Early contour paper that used moments for recognition. BibRef 7701

Dirilten, H., and Newman, T.G.,
Pattern Matching Under Affine Transformations,
TC(26), 1977, pp. 314-317. BibRef 7700

Wong, R.Y., and Hall, E.L.,
Scene Matching with Invariant Moments,
CGIP(8), No. 1, 1978, pp. 16-24. BibRef 7800

Maitra, S.,
Moment Invariants,
PIEEE(67), 1979, pp. 697-699. BibRef 7900

Sadjadi, F.A., and Hall, E.L.,
Three-Dimensional Moment Invariants,
PAMI(2), No. 2, 1980, pp. 127-136. BibRef 8000
Earlier:
Object Recognition by Three Dimensional Moment Invariants,
PRIP79(327-336). Moments. A generalization to 3-D of
See also Visual Pattern Recognition by Moment Invariants. BibRef

Sadjadi, F.A., Hall, E.L.,
Numerical Computations of Moment Invariants for Scene Analysis,
PRIP78(181-187). BibRef 7800

Samu, T.I.[Tayib I.], Sadjadi, F.A.[Firooz A.], Hall, E.L.[Ernest L.],
Three-Dimensional Moment Invariants for Automated Target Recognition,
SPIE(2756), 1996, pp. 230-237. BibRef 9600

Teague, M.R.,
Image Analysis via the General Theory of Moments,
JOSA(70), No. 8, August 1980, pp. 920-930. BibRef 8008

Mérö, L.[László],
An Algorithm for Scale- and Rotation-Invariant Recognition of Two-Dimensional Objects,
CGIP(15), No. 3, March 1981, pp. 279-287.
Elsevier DOI lines with models. Boundary lines then interior. BibRef 8103

Peli, T.,
An Algorithm for Recognition and Localization of Roatated and Scaled Objects,
PIEEE(69), 1981, pp. 483-485. BibRef 8100

Wiejak, J.S.,
Moment Invariants in Theory and Practice,
IVC(1), No. 2, May 1983, pp. 79-83.
Elsevier DOI Moments from the boundary. BibRef 8305

Boyce, J.F., Hossack, W.J.,
Moment Invariants for Pattern Recognition,
PRL(1), 1983, pp. 451-456. BibRef 8300

Abu-Mostafa, Y.S., and Psaltis, D.,
Recognitive Aspects of Moment Invariants,
PAMI(6), No. 6, November 1984, pp. 698-706. BibRef 8411

Abu-Mostafa, Y.S., and Psaltis, D.,
Image Normalization by Complex Moments,
PAMI(7), No. 1, January 1985, pp. 46-55. Using moments to transform planar images to standard view. BibRef 8501

Bamieh, B., de Figueiredo, R.J.P.,
A General Moment-Invariants/Attributed-Graph Method for Three-Dimensional Object Recognition from a Single Image,
RA(2), 1986, pp. 31-41. BibRef 8600

Reddi, S.S.,
Radial and Angular Moment Invariants for Image Identification,
PAMI(3), No. 2, March 1981, pp. 240-242. More general moment invariants than given by 20 years earlier by M.K. Hu(
See also Visual Pattern Recognition by Moment Invariants. ). BibRef 8103

Gupta, L., Srinath, M.D.,
Contour Sequence Moments For The Classification Of Closed Planar Shapes,
PR(20), No. 3, 1987, pp. 267-272.
Elsevier DOI Moments from countour sequences. BibRef 8700

Reiss, T.H.,
The Revised Fundamental Theorem of Moment Invariants,
PAMI(13), No. 8, August 1991, pp. 830-834.
IEEE DOI BibRef 9108

Reeves, A.P., Prokop, R.J., Andrews, S.E., and Kuhl, F.P.,
Three-Dimensional Shape Analysis Using Moments and Fourier Descriptors,
PAMI(10), No. 6, November 1988, pp. 937-943.
IEEE DOI BibRef 8811
Earlier: ICPR84(447-450). Fourier Descriptors. Combination of both Fourier descriptors and moments.
See also Identification of Three-Dimensional Objects Using Range Information. BibRef

Reeves, A.P., and Wittner, B.S.,
Shape Analysis of Three Dimensional Objects Using the Method of Moments,
CVPR83(20-26). BibRef 8300

Reeves, A.P., and Rostampour, A.,
Shape Analysis of Segmented Objects Using Moments,
PRIP81(171-174). BibRef 8100

Prokop, R.J.[Richard J.], Reeves, A.P.[Anthony P.],
A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition,
GMIP(54), No. 5, September 1992, pp. 438-460. Survey, Moments. BibRef 9209

Faber, T.L., and Stokely, E.M.,
Orientation of 3-D Structures in Medical Images,
PAMI(10), No. 5, September 1988, pp. 626-633.
IEEE DOI Moments. BibRef 8809

Chou, C.H.[Chun-Hsien], Chen, Y.C.[Yung-Chang],
Moment-Preserving Pattern Matching,
PR(23), No. 5, 1990, pp. 461-474.
Elsevier DOI Template matching. moment preserving quantization. BibRef 9000

Belkasim, S.O., Shridhar, M., Ahmadi, M.,
Pattern Recognition With Moment Invariants: A Comparative Study and New Results,
PR(24), No. 12, 1991, pp. 1117-1138.
Elsevier DOI Zernike and pseudo Zernike moment invariants. BibRef 9100

Li, Y.J.[Ya-Jun],
Reforming the Theory of Invariant Moments for Pattern Recognition,
PR(25), No. 7, July 1992, pp. 723-730.
Elsevier DOI BibRef 9207

Markandey, V., de Figueiredo, R.J.P.,
Robot Sensing Techniques Based on High-Dimensional Moment Invariants and Tensors,
RA(8), No. 2, April 1992, pp. 186-195. Higher dimensional application of
See also Visual Pattern Recognition by Moment Invariants. BibRef 9204

Wen, W.[Wei], Lozzi, A.[Andrei],
Recognition and Inspection of Two-Dimensional Industrial Parts Using Subpolygons,
PR(25), No. 12, December 1992, pp. 1427-1434.
Elsevier DOI Imperfect or occluded. Polygons, subpolygons. BibRef 9212

Wen, W.[Wei], Lozzi, A.[Andrei],
Recognition and Inspection of Manufactured Parts Using Line Moments of Their Boundaries,
PR(26), No. 10, October 1993, pp. 1461-1471.
Elsevier DOI BibRef 9310
Earlier:
Transformation Independent Recognition of 2-D Industrial Parts,
ICPR92(I:680-683).
IEEE DOI BibRef

Li, B., Shen, J.,
Range-Image-Based Calculation of Three-Dimensional Convex Object Moments,
RA(9), 1993, pp. 484-490. BibRef 9300

Chen, C.C.[Chaur-Chin],
Improved Moment Invariants For Shape Discrimination,
PR(26), No. 5, May 1993, pp. 683-686.
Elsevier DOI BibRef 9305

Tsirikolias, K., Mertzios, B.G.,
Statistical Pattern Recognition Using Efficient Two-Dimensional Moments with Applications to Character Recognition,
PR(26), No. 6, June 1993, pp. 877-882.
Elsevier DOI BibRef 9306

Sheng, Y.L.[Yun-Long], and Shen, L.X.[Li-Xin],
Orthogonal Fourier-Mellin moments for invariant pattern recognition,
JOSA-A(11), No. 6, June 1994, pp. 1748-1757. BibRef 9406

Wallin, A., Kubler, O.,
Complete Sets of Complex Zernike Moment Invariants and the Role of the Pseudoinvariants,
PAMI(17), No. 11, November 1995, pp. 1106-1110.
IEEE DOI BibRef 9511

Bhattacharya, D.[Debasish], Sinha, S.[Satyabroto],
Invariance of Stereo Images via the Theory of Complex Moments,
PR(30), No. 9, September 1997, pp. 1373-1386.
Elsevier DOI 9708
BibRef

Liao, S.X.[Simon X.], Pawlak, M.[Miroslaw],
On the Accuracy of Zernike Moments for Image Analysis,
PAMI(20), No. 12, December 1998, pp. 1358-1364.
IEEE DOI Limit in precision due to circular domain. Analysis for discretization errors and reconstructive power.
See also On Digital Approximation of Moment Descriptors. BibRef 9812

Liao, S.X.[Simon X.], Pawlak, M.[Miroslaw],
On Image-Analysis By Moments,
PAMI(18), No. 3, March 1996, pp. 254-266.
IEEE DOI BibRef 9603
Earlier: A2, A1:
On Image Analysis via Orthogonal Moments,
VI92(253-258). May 1992. BibRef
And:
On Image Analysis by Orthogonal Moments,
ICPR92(III:549-552).
IEEE DOI Using moments for reconstruction of image data, such as characters. BibRef

Liao, S.X.[Simon X.],
Image Analysis by Moments,
Ph.D.Thesis, University of Manitoba, 1993. BibRef 9300

Flusser, J.[Jan], Suk, T.[Tomáš], Saic, S.,
Recognition of Blurred Images by the Method of Moments,
IP(5), No. 3, March 1996, pp. 533-538.
IEEE DOI
See also Pattern Recognition by Affine Moment Invariants. BibRef 9603

Flusser, J.[Jan], Boldys, J.[Jiri], Zitová, B.[Barbara],
Moment forms invariant to rotation and blur in arbitrary number of dimensions,
PAMI(25), No. 2, February 2003, pp. 234-246.
IEEE DOI 0301

See also Pattern Recognition by Affine Moment Invariants. BibRef

Flusser, J., Suk, T., Boldys, J., Zitova, B.,
Projection Operators and Moment Invariants to Image Blurring,
PAMI(37), No. 4, April 2015, pp. 786-802.
IEEE DOI 1503
Apertures BibRef

Boldyš, J.[Jirí], Flusser, J.[Jan],
Extension of Moment Features' Invariance to Blur,
JMIV(32), No. 3, November 2008, pp. xx-yy.
Springer DOI 0810
BibRef

Zita, A.[Aleš], Flusser, J.[Jan], Suk, T.[Tomáš], Kotera, J.[Jan],
Feature Selection on Affine Moment Invariants in Relation to Known Dependencies,
CAIP17(II: 285-295).
Springer DOI 1708
BibRef

Rothe, I.[Irene], Süsse, H.[Herbert], Voss, K.[Klaus],
The Method of Normalization to Determine Invariants,
PAMI(18), No. 4, April 1996, pp. 366-376.
IEEE DOI 9605
Fourier Descriptors. Moments. BibRef

Süsse, H.[Herbert], Voss, K.[Klaus], Rothe, I.[Irene],
Invariant standard positions of ordered sets of points,
CAIP95(9-16).
Springer DOI 9509
BibRef

Brochard, J., Coutin, L., Leard, M.,
Modeling of Rigid Objects by Bidimensional Moments: Applications to the Estimation of 3D Rotations,
PR(29), No. 6, June 1996, pp. 889-902.
Elsevier DOI 9606
BibRef

Mhidra, H., Brochard, J., Leard, M.,
AR Models and Bidimensional Discrete Moments Applied to Texture Modelling and Recognition,
PR(26), No. 5, May 1993, pp. 721-726.
Elsevier DOI BibRef 9305

Galvez, J.M., Canton, M.,
Normalization and Shape Recognition of Three-Dimensional Objects by 3D Moments,
PR(26), No. 5, May 1993, pp. 667-681.
Elsevier DOI BibRef 9305

Mukundan, R., Ramakrishnan, K.R.,
An Iterative Solution for Object Pose Parameters Using Image Moments,
PRL(17), No. 12, October 25 1996, pp. 1279-1284. 9612
BibRef

Stern, A., Kopeika, N.S.,
Analytical Method to Calculate Optical Transfer-Functions for Image Motion and Vibrations Using Moments,
JOSA-A(14), No. 2, February 1997, pp. 388-396. 9702
BibRef

Mukundan, R., Malik, N.K., Ramakrishnan, K.R.,
Attitude Estimation Using Moment Invariants,
PRL(14), 1993, pp. 199-205. BibRef 9300

Grace, A.E., Spann, M.,
A Comparison Between Fourier-Mellin Descriptors and Moment Based Features for Invariant Object Recognition Using Neural Networks,
PRL(12), 1991, pp. 635-643. BibRef 9100

Wohn, K., Wu, J.,
Estimating the Finite Displacement Using Moments,
PRL(11), 1990, pp. 371-378. BibRef 9000

Zhu, M., Hasani, S., Bhattarai, S., Singh, H.,
Pattern Recognition with Moment Invariants on a Machine Vision System,
PRL(9), 1989, pp. 175-180. BibRef 8900

Gruber, M.[Matthias], Hsu, K.Y.[Ken-Yuh],
Moment-Based Image Normalization with High Noise-Tolerance,
PAMI(19), No. 2, February 1997, pp. 136-139.
IEEE DOI 9703
Analysis of effects of non-zero mean noise. Reduce sensitivity by using fractional moments and negative moments. BibRef

Zhao, D.M.[Dong-Ming], Chen, J.[Jie],
Affine Curve Moment Invariants for Shape-Recognition,
PR(30), No. 6, June 1997, pp. 895-901.
Elsevier DOI 9706
Extend affine invariants from region to curve. Affine deformed objects. BibRef

Slater, D.A., Healey, G.,
Modeling the Sensitivity of Moment Invariants in a Recognition System,
JOSA-A(15), No. 5, May 1998, pp. 1068-1076. 9805
BibRef

Salama, G.I.M.[Gouda I.M.], Abbott, A.L.[A. Lynn],
Moment Invariants and Quantization Effects,
CVPR98(157-163).
IEEE DOI BibRef 9800

Mamistvalov, A.G.[Alexander G.],
n-Dimensional Moment Invariants and Conceptual Mathematical Theory of Recognition n-Dimensional Solids,
PAMI(20), No. 8, August 1998, pp. 819-831.
IEEE DOI Discusses corrections to the standard reference on Moments:
See also Visual Pattern Recognition by Moment Invariants. Explores the errors in this and the other derived papers. BibRef 9808

Schweitzer, H., Straach, J.,
Utilizing Moment Invariants and Grobner Bases to Reason About Shapes,
CompIntel(14), No. 4, November 1998, pp. 461-474. 9810
BibRef

Chim, Y.C., Kassim, A.A., Ibrahim, Y.,
Character recognition using statistical moments,
IVC(17), No. 3/4, March 1999, pp. 299-307.
Elsevier DOI Characters using moments. BibRef 9903

Balslev, I.,
Noise tolerance of moment invariants in pattern recognition,
PRL(19), No. 13, November 1998, pp. 1183-1189. BibRef 9811

Pei, S.C., Horng, J.H.,
A Moment-Based Approach for Deskewing Rotationally Symmetric Shapes,
IP(8), No. 12, December 1999, pp. 1831-1834.
IEEE DOI 9912
BibRef
Earlier: ICPR96(I: 248-252).
IEEE DOI 9608
(National Taiwan Univ., ROC) BibRef

Flusser, J.[Jan],
On the independence of rotation moment invariants,
PR(33), No. 9, September 2000, pp. 1405-1410.
Elsevier DOI 0005
products of moment pairs. BibRef

Flusser, J.[Jan],
On the inverse problem of rotation moment invariants,
PR(35), No. 12, December 2002, pp. 3015-3017.
Elsevier DOI 0209
Moments from a basis of all moment invariants. BibRef

Palaniappan, R., Raveendran, P., Omatu, S.,
Neural Network Classification of Symmetrical and Nonsymmetrical Images Using New Moments with High Noise Tolerance,
PRAI(13), No. 8, December 1999, pp. 1233. 0005
BibRef

Palaniappan, R., Raveendran, P., Omatu, S.,
New Invariant Moments for Non-Uniformly Scaled Images,
PAA(3), No. 2, 2000, pp. 78-87. 0010
BibRef

Kan, C.[Chao], Srinath, M.D.[Mandyam D.],
Invariant character recognition with Zernike and orthogonal Fourier-Mellin moments,
PR(35), No. 1, January 2002, pp. 143-154.
Elsevier DOI 0111
Orthogonal Fourier–Mellin moments work better. BibRef

Chong, C.W.[Chee-Way], Raveendran, P., Mukundan, R.,
Translation and scale invariants of Legendre moments,
PR(37), No. 1, January 2004, pp. 119-129.
Elsevier DOI 0311
Alternate to get invariant Legendre moments. Apply to characters. BibRef

Candocia, F.M.[Frank M.],
Moment relations and blur invariant conditions for finite-extent signals in one, two and N-dimensions,
PRL(25), No. 4, March 2004, pp. 437-447.
Elsevier DOI 0402
Evaluation of features.
See also Degraded Image-Analysis: An Invariant Approach. BibRef

Mindru, F.[Florica], Tuytelaars, T.[Tinne], Van Gool, L.J.[Luc J.], Moons, T.[Theo],
Moment invariants for recognition under changing viewpoint and illumination,
CVIU(94), No. 1-3, April-June 2004, pp. 3-27.
Elsevier DOI 0405
BibRef
Earlier: A1, A3, A4, Only:
Model estimation for photometric changes of outdoor planar color surfaces caused by changes in illumination and viewpoint,
ICPR02(I: 620-623).
IEEE DOI 0211
Overview of invariants for deformations and changes. BibRef

Gope, C., Kehtarnavaz, N., Hillman, G., Würsig, B.,
An affine invariant curve matching method for photo-identification of marine mammals,
PR(38), No. 1, January 2005, pp. 125-132.
Elsevier DOI 0410
BibRef

Gope, C., Kehtarnavaz, N.,
Affine invariant comparison of point-sets using convex hulls and hausdorff distances,
PR(40), No. 1, January 2007, pp. 309-320.
Elsevier DOI 0611
Affine invariant; Convex hull; Hausdorff distance; Point-pattern comparison; Shape matching BibRef

Kehtarnavaz, N., Peddigari, V., Chandan, C., Syed, W., Hillman, G., Wursig, B.,
Photo-Identification of Humpback and Gray Whales using Affine Moment Invariants,
SCIA03(109-116).
Springer DOI 0310
BibRef

Liu, J.[Jin], Zhang, T.X.[Tian-Xu],
Matching and normalization of affine deformed image from regular moments,
PRL(25), No. 14, 15 October 2004, pp. 1619-1631.
Elsevier DOI 0410

See also Fast algorithm for generation of moment invariants. BibRef

Kamila, N.K., Mahapatra, S., Nanda, S.,
Retracted Paper: Invariance image analysis using modified Zernike moments,
PRL(26), No. 6, 1 May 2005, pp. 747-753.
Elsevier DOI 0501
BibRef
And: Retraction: PRL(28), No. 13, 1 October 2007, pp. 1852.
Elsevier DOI 0709
Retracted. Do not reference. See instead: "Invariance analysis of improved Zernike moments", Y. Bin, P. Jia-Xiong, Journal of Optics A: Pure and Applied Optics 4 (2002) 606-614. BibRef

Rodtook, A.[Annupan], Makhanov, S.S.[Stanislav S.],
Numerical experiments on the accuracy of rotation moments invariants,
IVC(23), No. 6, 1 June 2005, pp. 577-586.
Elsevier DOI 0505
Impact of rotation and scaling. BibRef

Liu, J.[Jin], Zhang, T.X.[Tian-Xu],
Recognition of the blurred image by complex moment invariants,
PRL(26), No. 8, June 2005, pp. 1128-1138.
Elsevier DOI 0506
BibRef
Earlier: A2, A1:
Blurred image recognition based on complex moment invariants,
ICIP04(III: 2131-2134).
IEEE DOI 0505
BibRef

Ghorbel, F., Derrode, S., Mezhoud, R., Bannour, T., Dhahbi, S.,
Image reconstruction from a complete set of similarity invariants extracted from complex moments,
PRL(27), No. 12, September 2006, pp. 1361-1369.
Elsevier DOI 0606
Complex moments; Reconstruction; Similarity invariants BibRef

Cerjan, C.[Charles],
Zernike-Bessel representation and its application to Hankel transforms,
JOSA-A(24), No. 6, June 2007, pp. 1609-1616.
WWW Link. 0801
BibRef

Tzimiropoulos, G., Mitianoudis, N., Stathaki, T.,
A Unifying Approach to Moment-Based Shape Orientation and Symmetry Classification,
IP(18), No. 1, January 2009, pp. 125-139.
IEEE DOI 0812
BibRef

Zhang, F.[Feng], Liu, S.Q.[Shang-Qian], Wang, D.B.[Da-Bao], Guan, W.[Wei],
Aircraft recognition in infrared image using wavelet moment invariants,
IVC(27), No. 4, 3 March 2009, pp. 313-318.
Elsevier DOI 0804
Wavelet moment invariants; Image recognition; Moment invariants; Rotation invariant BibRef

Li, S., Lee, M.C., Pun, C.M.,
Complex Zernike Moments Features for Shape-Based Image Retrieval,
SMC-A(39), No. 1, January 2009, pp. 227-237.
IEEE DOI 0901
BibRef

Pun, C.M.[Chi-Man], Lin, C.[Cong],
Robust Region Descriptors for Shape Classification,
CGiV16(269-272)
IEEE DOI 1608
image classification BibRef

Pun, C.M.[Chi-Man], Lin, C.[Cong],
Geometric Invariant Shape Classification Using Hidden Markov Model,
DICTA10(406-410).
IEEE DOI 1012
BibRef

Revaud, J.[Jérôme], Lavoué, G.[Guillaume], Baskurt, A.[Atilla],
Improving Zernike Moments Comparison for Optimal Similarity and Rotation Angle Retrieval,
PAMI(31), No. 4, April 2009, pp. 627-636.
IEEE DOI 0903
Include Phase information in addition to the usual magnitude. Apply to 3d recognition of line drawings. BibRef

Goh, H.A.[Hock-Ann], Chong, C.W.[Chee-Way], Besar, R.[Rosli], Abas, F.S.[Fazly Salleh], Sim, K.S.[Kok-Swee],
Translation and Scale Invariants of Hahn Moments,
IJIG(9), No. 2, April 2009, pp. 271-285. 0905
BibRef

Zunic, J.[Jovisa], Hirota, K.[Kaoru], Rosin, P.L.[Paul L.],
A Hu moment invariant as a shape circularity measure,
PR(43), No. 1, January 2010, pp. 47-57.
Elsevier DOI 0909
Shape; Circularity measure; Moments; Hu moment invariants; Image processing BibRef

Rosin, P.L.[Paul L.],
Shape Description by Bending Invariant Moments,
CAIP11(I: 253-260).
Springer DOI 1109
BibRef

Yap, P.T.[Pew-Thian], Jiang, X.D.[Xu-Dong], Kot, A.C.[Alex Chichung],
Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation,
PAMI(32), No. 7, July 2010, pp. 1259-1270.
IEEE DOI 1006
BibRef
Earlier:
Boosted complex moments for discriminant rotation invariant object recognition,
ICPR08(1-4).
IEEE DOI 0812
Computation is more stable than moments. BibRef

Guo, L.Q.[Li-Qiang], Zhu, M.[Ming],
Quaternion Fourier-Mellin moments for color images,
PR(44), No. 2, February 2011, pp. 187-195.
Elsevier DOI 1011
Quaternion; Quaternion Fourier-Mellin moments; Moment invariant; Color image registration BibRef

Yang, B.[Bo], Li, G.X.[Geng-Xiang], Zhang, H.L.[Hui-Long], Dai, M.[Mo],
Rotation and translation invariants of Gaussian-Hermite moments,
PRL(32), No. 9, 1 July 2011, pp. 1283-1298.
Elsevier DOI 1101
Orthogonal polynomials; Gaussian-Hermite moments; Moment invariants; Rotation and translation invariants BibRef

Yang, B.[Bo], Flusser, J.[Jan], Suk, T.[Tomáš],
3D rotation invariants of Gaussian-Hermite moments,
PRL(54), No. 1, 2015, pp. 18-26.
Elsevier DOI 1502
Rotation invariants BibRef

Yang, B.[Bo], Dai, M.[Mo],
Image reconstruction from continuous Gaussian-Hermite moments implemented by discrete algorithm,
PR(45), No. 4, 2012, pp. 1602-1616.
Elsevier DOI 1410
Orthogonal polynomials BibRef

Singh, C.[Chandan], Walia, E.[Ekta], Mittal, N.[Neerja],
Rotation invariant complex Zernike moments features and their applications to human face and character recognition,
IET-CV(5), No. 5, 2011, pp. 255-265.
DOI Link 1110
BibRef

Singh, C.[Chandan], Walia, E.[Ekta], Mittal, N.[Neerja],
Robust two-stage face recognition approach using global and local features,
VC(27), No. 11, November 2011, pp. 1085-1098.
WWW Link. 1210
BibRef

Singh, C.[Chandan], Mittal, N.[Neerja], Walia, E.[Ekta],
Complementary feature sets for optimal face recognition,
JIVP(2014), No. 1, 2014, pp. 35.
DOI Link 1407
BibRef

Xiao, B.[Bin], Ma, J.F.[Jian-Feng], Cui, J.T.[Jiang-Tao],
Radial Tchebichef moment invariants for image recognition,
JVCIR(23), No. 2, February 2012, pp. 381-386.
Elsevier DOI 1201
BibRef
Earlier:
Invariant Image Recognition Using Radial Jacobi Moment Invariants,
ICIG11(280-285).
IEEE DOI 1109
Radial Tchebichef moments; Images reconstruction; Image recognition; Invariant moments; Orthogonal moments; Polar coordinate; Complex moments; Orthogonal Fourier-Mellin moments BibRef

Xiao, B.[Bin], Wang, G.Y.[Guo-Yin],
Generic radial orthogonal moment invariants for invariant image recognition,
JVCIR(24), No. 7, 2013, pp. 1002-1008.
Elsevier DOI 1309
Radial orthogonal moments BibRef

Xiao, B.[Bin], Ma, J.F.[Jian-Feng], Cui, J.T.[Jiang-Tao],
Combined blur, translation, scale and rotation invariant image recognition by Radon and pseudo-Fourier-Mellin transforms,
PR(45), No. 1, 2012, pp. 314-321.
Elsevier DOI 1410
Blur invariants BibRef

Crespo, J.B.F.P.[Joao B.F.P.], Aguiar, P.M.Q.[Pedro M.Q.],
Revisiting Complex Moments for 2-D Shape Representation and Image Normalization,
IP(20), No. 10, October 2011, pp. 2896-2911.
IEEE DOI 1110
BibRef
Earlier:
The 2D orientation is unique through principal moments analysis,
ICIP10(1845-1848).
IEEE DOI 1009
BibRef

Crespo, J.F.P.[Joăo F.P.], Lopes, G.A.S.[Gustavo A.S.], Aguiar, P.M.Q.[Pedro M.Q.],
Principal moments for efficient representation of 2D shape,
ICIP09(1085-1088).
IEEE DOI 0911
BibRef

Minhas, R.[Rashid], Mohammed, A.A.[Abdul Adeel], Wu, Q.M.J.[Q.M. Jonathan],
Incremental Learning in Human Action Recognition Based on Snippets,
CirSysVideo(22), No. 11, November 2012, pp. 1529-1541.
IEEE DOI 1211
BibRef
Earlier:
A Generic Moment Invariants Based Supervised Learning Framework for Classification Using Partial Object Information,
CRV09(45-52).
IEEE DOI 0905
BibRef

Zhang, H.[Hui], Wu, Q.M.J.[Q.M. Jonathan],
Pattern recognition by affine Legendre moment invariants,
ICIP11(797-800).
IEEE DOI 1201
BibRef

Kalinic, H.[Hrvoje], Loncaric, S.[Sven], Bijnens, B.[Bart],
Absolute joint moments: a novel image similarity measure,
JIVP(2013), No. 1, 2013, pp. 24.
DOI Link 1305
BibRef

Gong, M.[Ming], Li, H.[Hua], Cao, W.G.[Wei-Guo],
Moment invariants to affine transformation of colours,
PRL(34), No. 11, 1 August 2013, pp. 1240-1251.
Elsevier DOI 1306
Colour; Moment invariants; Affine transformation; Pattern recognition; Image retrieval BibRef

Li, Y.N.[Yue Nan],
Quaternion Polar Harmonic Transforms for Color Images,
SPLetters(20), No. 8, 2013, pp. 803-806.
IEEE DOI 1307
algebra
See also Two-Dimensional Polar Harmonic Transforms for Invariant Image Representation. BibRef

Dominguez, S.,
Image analysis by moment invariants using a set of step-like basis functions,
PRL(34), No. 16, 2013, pp. 2065-2070.
Elsevier DOI 1310
Moment invariants BibRef

Bujack, R.[Roxana], Hlawitschka, M.[Mario], Scheuermann, G.[Gerik], Hitzer, E.[Eckhard],
Customized TRS invariants for 2D vector fields via moment normalization,
PRL(46), No. 1, 2014, pp. 46-59.
Elsevier DOI 1407
Moment invariant BibRef

Mousavi, B.S.[B. Somayeh], Soleymani, F.[Fazlollah], Razmjooy, N.[Navid],
Semantic image classification by genetic algorithm using optimised fuzzy system based on Zernike moments,
SIViP(8), No. 5, July 2014, pp. 831-842.
Springer DOI 1407
BibRef

Hmimid, A.[Abdeslam], Sayyouri, M.[Mhamed], Qjidaa, H.[Hassan],
Fast computation of separable two-dimensional discrete invariant moments for image classification,
PR(48), No. 2, 2015, pp. 509-521.
Elsevier DOI 1411
BibRef
Earlier: A2, A1, A3:
Image Classification Using Separable Discrete Moments of Charlier-Tchebichef,
ICISP14(441-449).
Springer DOI 1406
Bivariate discrete orthogonal polynomials BibRef

Xiao, B.[Bin], Wang, G.Y.[Guo-Yin], Li, W.S.[Wei-Sheng],
Radial shifted Legendre moments for image analysis and invariant image recognition,
IVC(32), No. 12, 2014, pp. 994-1006.
Elsevier DOI 1412
Orthogonal moments BibRef

Kang, T.K.[Tae-Koo], Choi, I.H.[In-Hwan], Lim, M.T.[Myo-Taeg],
MDGHM-SURF: A robust local image descriptor based on modified discrete Gaussian-Hermite moment,
PR(48), No. 3, 2015, pp. 670-684.
Elsevier DOI 1412
Modified discrete Gaussian-Hermite moment BibRef

Wang, Y.[Yuan_Bin], Wang, X.[Xing_Wei], Zhang, B.[Bin], Wang, Y.[Ying],
Projective Invariants of D-moments of 2D Grayscale Images,
JMIV(51), No. 2, February 2015, pp. 248-259.
Springer DOI 1503
BibRef

Diao, L.H.[Lu-Hong], Peng, J.[Juan], Dong, J.L.[Jun-Liang], Kong, F.[Fanyu],
Moment invariants under similarity transformation,
PR(48), No. 11, 2015, pp. 3641-3651.
Elsevier DOI 1506
Moment invariants BibRef

Wang, X.[Xuan], Yang, T.F.[Teng-Fei], Guo, F.X.[Fang-Xia],
Image analysis by circularly semi-orthogonal moments,
PR(49), No. 1, 2016, pp. 226-236.
Elsevier DOI 1511
Orthogonal moments BibRef

Cheng, H.N.[Huai-Ning], Chung, S.M.[Soon M.],
Orthogonal moment-based descriptors for pose shape query on 3D point cloud patches,
PR(52), No. 1, 2016, pp. 397-409.
Elsevier DOI 1601
3D shape descriptor BibRef

Žunic, J.[Joviša], Hirota, K.[Kaoru], Dukic, D.[Dragan], Aktas, M.A.[Mehmet Ali],
On a 3D analogue of the first Hu moment invariant and a family of shape ellipsoidness measures,
MVA(27), No. 1, January 2016, pp. 129-144.
Springer DOI 1601
BibRef

Žunic, J.[Joviša], Žunic, D.[Dragiša],
Shape Interpretation of Second-Order Moment Invariants,
JMIV(56), No. 1, September 2016, pp. 125-136.
WWW Link. 1605
BibRef

Žunic, J.[Joviša], Rosin, P.L.[Paul L.], Ilic, V.[Vladimir],
Disconnectedness: A new moment invariant for multi-component shapes,
PR(78), 2018, pp. 91-102.
Elsevier DOI 1804
Shape, Multi-component shapes, Moments, Moment invariants BibRef

Batioua, I.[Imad], Benouini, R.[Rachid], Zenkouar, K.[Khalid], Zahi, A.[Azeddine], Hakim, E.[El_Fadili],
3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials,
PR(71), No. 1, 2017, pp. 264-277.
Elsevier DOI 1707
3D, image, analysis BibRef

Bahaoui, Z.[Zaineb], El Fadili, H.[Hakim], Zenkouar, K.[Khalid], Zarghili, A.[Arsalane],
Exact Zernike and pseudo-Zernike moments image reconstruction based on circular overlapping blocks and Chamfer distance,
SIViP(11), No. 7, October 2017, pp. 1313-1320.
Springer DOI 1708
BibRef

Bahaoui, Z.[Zaineb], Zenkouar, K.[Khalid], El Fadili, H.[Hakim], Qjidaa, H.[Hassan], Zarghili, A.[Arsalane],
Blocking artifact removal using partial overlapping based on exact Legendre moments computation,
RealTimeIP(14), No. 2, February 2018, pp. 433-451.
Springer DOI 1804
BibRef

Gong, M.[Ming], Hao, Y.[You], Mo, H.L.[Han-Lin], Li, H.[Hua],
Naturally combined shape-color moment invariants under affine transformations,
CVIU(162), No. 1, 2017, pp. 46-56.
Elsevier DOI 1710
Invariants BibRef

Khan, M.A.U.[Mohammad A. U.], Khan, T.M.[Tariq M.],
Calibrating second-moment matrix for better shape adaptation with bias term from directional filter bank,
SIViP(11), No. 8, November 2017, pp. 1453-1460.
WWW Link. 1710
BibRef

Yang, B.[Bo], Kostková, J.[Jitka], Flusser, J.[Jan], Suk, T.[Tomáš], Bujack, R.[Roxana],
Rotation invariants of vector fields from orthogonal moments,
PR(74), No. 1, 2018, pp. 110-121.
Elsevier DOI 1711
BibRef
And:
Recognition of patterns in vector fields by Gaussian-hermite invariants,
ICIP17(2359-2363)
IEEE DOI 1803
Automation, Numerical models, Numerical stability, Pattern recognition, Visualization, total rotation. Vector field BibRef

Kostková, J.[Jitka], Flusser, J.[Jan],
On the Null-Space of the Shape-Color Moment Invariants,
CAIP19(I:402-408).
Springer DOI 1909
BibRef

Khare, M.[Manish], Prakash, O.[Om], Srivastava, R.K.[Rajneesh Kumar],
Combining Zernike moment and complex wavelet transform for human object classification,
IJCVR(8), No. 2, 2018, pp. 140-167.
DOI Link 1806
BibRef

Dalton, L.A.[Lori A.],
Joint asymptotic normality of granulometric moments under multiple structuring elements,
PRL(111), 2018, pp. 80-86.
Elsevier DOI 1808
Granulometry, Mathematical morphology, Random sets, Image processing BibRef

Yang, J.W.[Jian-Wei], Zhang, L.[Liang], Tang, Y.Y.[Yuan Yan],
Mellin polar coordinate moment and its affine invariance,
PR(85), 2019, pp. 37-49.
Elsevier DOI 1810
Mellin polar coordinate moment, Mellin transform, Repeated integral, Affine moment invariants, Affine transform BibRef

Benouini, R.[Rachid], Batioua, I.[Imad], Zenkouar, K.[Khalid], Zahi, A.[Azeddine], Najah, S.[Said], Qjidaa, H.[Hassan],
Fractional-order orthogonal Chebyshev Moments and Moment Invariants for image representation and pattern recognition,
PR(86), 2019, pp. 332-343.
Elsevier DOI 1811
Fractional-order orthogonal moments, Fractional-order Chebyshev polynomials, Moment invariants, Fast and accurate computation BibRef

Hosny, K.M.[Khalid M.], Khedr, Y.M.[Yasmeen M.], Khedr, W.I.[Walid I.], Mohamed, E.R.[Ehab R.],
Robust image hashing using exact Gaussian-Hermite moments,
IET-IPR(12), No. 12, December 2018, pp. 2178-2185.
DOI Link 1812
BibRef

Diao, L.H.[Lu-Hong], Zhang, Z.M.[Zhen-Meng], Liu, Y.J.[Yu-Jie], Nan, D.[Dong],
Necessary Condition of Affine Moment Invariants,
JMIV(61), No. 5, June 2019, pp. 602-606.
Springer DOI 1906
BibRef

Wu, G.[Gang], Xu, L.[Linmin],
Shape description and recognition by implicit Chebyshev moments,
PRL(128), 2019, pp. 137-145.
Elsevier DOI 1912
Chebyshev polynomial, Chebyshev moment, Implicit Chebyshev moment, Shape representation BibRef

Kaur, P.[Parminder], Pannu, H.S.[Husanbir Singh], Malhi, A.K.[Avleen Kaur],
Comprehensive Study of Continuous Orthogonal Moments: A Systematic Review,
Surveys(52), No. 4, September 2019, pp. Article No 67.
DOI Link 1912
Survey, Moments. BibRef

Bolourchi, P.[Pouya], Moradi, M.[Masoud], Demirel, H.[Hasan], Uysal, S.[Sener],
Improved SAR target recognition by selecting moment methods based on Fisher score,
SIViP(14), No. 1, February 2020, pp. 39-47.
Springer DOI 2001
BibRef

Karmouni, H.[Hicham], Jahid, T.[Tarik], Sayyouri, M.[Mhamed], El Alami, R.[Rachid], Qjidaa, H.[Hassan],
Fast 3D image reconstruction by cuboids and 3D Charlier's moments,
RealTimeIP(17), No. 4, August 2020, pp. 949-965.
Springer DOI 2007
3-D Moments. BibRef

Bedratyuk, L.[Leonid],
2D Geometric Moment Invariants from the Point of View of the Classical Invariant Theory,
JMIV(62), No. 8, October 2020, pp. xx-yy.
WWW Link. 2009
BibRef

Ren, C.X.[Chuan-Xian], Ge, P.F.[Peng-Fei], Dai, D.Q.[Dao-Qing], Yan, H.[Hong],
Learning Kernel for Conditional Moment-Matching Discrepancy-Based Image Classification,
Cyber(51), No. 4, April 2021, pp. 2006-2018.
IEEE DOI 2103
Kernel, Task analysis, Training, Learning systems, Prediction algorithms, Computational modeling, supervised learning BibRef

Mo, H.L.[Han-Lin], Hao, H.X.[Hong-Xiang], Li, H.[Hua],
Geometric moment invariants to spatial transform and N-fold symmetric blur,
PR(115), 2021, pp. 107887.
Elsevier DOI 2104
Blurred image, Blur invariants, Moment invariants, Spatial transform, -fold symmetry, Object recognition, Template matching BibRef

Benouini, R.[Rachid], Batioua, I.[Imad], Zenkouar, K.[Khalid], Najah, S.[Said],
Fractional-order generalized Laguerre moments and moment invariants for grey-scale image analysis,
IET-IPR(15), No. 2, 2021, pp. 523-541.
DOI Link 2106
BibRef

Li, Z.W.[Zhen-Wei], Li, B.Z.[Bing-Zhao], Qi, M.[Min],
Two-dimensional quaternion linear canonical series for color images,
SP:IC(101), 2022, pp. 116574.
Elsevier DOI 2201
Linear canonical transform, 2-D quaternion linear canonical series, Image reconstruction BibRef

Yang, B.[Bo], Shi, X.J.[Xiao-Juan], Chen, X.F.[Xiao-Feng],
Image Analysis by Fractional-Order Gaussian-Hermite Moments,
IP(31), 2022, pp. 2488-2502.
IEEE DOI 2204
Image reconstruction, Image recognition, Feature extraction, Chebyshev approximation, Quaternions, Face recognition, Transforms, region-of-interest feature extraction BibRef

Flusser, J.[Jan], Suk, T.[Tomáš], Bedratyuk, L.[Leonid], Karella, T.[Tomáš],
3d Non-separable Moment Invariants,
CAIP23(I:295-305).
Springer DOI 2312
BibRef


Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.,
Moment Matching for Multi-Source Domain Adaptation,
ICCV19(1406-1415)
IEEE DOI 2004
Code, Moments.
WWW Link. learning (artificial intelligence), neural nets, object recognition, multisource UDA, moment matching, Data models BibRef

Kouw, W.[Wouter], Loog, M.[Marco],
Effects of sampling skewness of the importance-weighted risk estimator on model selection.,
ICPR18(1468-1473)
IEEE DOI 1812
Standards, Histograms, Training, Convergence, Probability distribution, Kernel, Gaussian distribution BibRef

Benouini, R., Batioua, I., Bahaoui, Z., Zenkouar, K., Qjidaa, H.,
Efficient image classification by using improved dual Hahn Moment Invariants,
ISCV18(1-7)
IEEE DOI 1807
feature extraction, image classification, polynomials, shape recognition, dual Hahn polynomials BibRef

Mallahi, M.E., Zouhri, A., El-Mekkaoui, J., Qjidaa, H.,
Radial Meixner moments for rotational invariant pattern recognition,
ISCV17(1-6)
IEEE DOI 1710
Complexity theory, Image reconstruction, Numerical stability, Pattern recognition, radial Meixner moment, reconstruction, error BibRef

Moujahid, D., Elharrouss, O., Tairi, H.,
Image Analysis Using Disc-Harmonic Moments and Their RST Invariants in Pattern Recognition,
CGiV16(150-155)
IEEE DOI 1608
data analysis BibRef

El Mallahi, M., Mesbah, A., Qjidaa, H., Zenkouar, K., El Fadili, H.,
Translation and scale invariants of three-dimensional Tchebichef moments,
ISCV15(1-5)
IEEE DOI 1506
image classification BibRef

Wei, X.[Xue], Phung, S.L.[Son Lam], Bouzerdoum, A.[Abdesselam], Bermak, A.,
Invariant image recognition under projective deformations: An image normalization approach,
VCIP15(1-4)
IEEE DOI 1605
Benchmark testing BibRef

Wei, X.[Xue], Phung, S.L.[Son Lam], Bouzerdoum, A.[Abdesselam],
Affine-invariant scene categorization,
ICIP14(1031-1035)
IEEE DOI 1502
Computer vision BibRef

Garcia-Ordas, M.T.[Maria Teresa], Alegre, E.[Enrique], Gonzalez-Castro, V.[Victor], Garcia-Ordas, D.[Diego],
aZIBO: A New Descriptor Based in Shape Moments and Rotational Invariant Features,
ICPR14(2395-2400)
IEEE DOI 1412
absolute Zernike moments with Invariant Boundary Orientation. BibRef

Camacho-Bello, C., Báez-Rojas, J.J.,
Angle Estimation Using Hahn Moments for Image Analysis,
CIARP14(127-134).
Springer DOI 1411
BibRef

Zhang, R.L.[Ru-Liang], Wang, L.[Lin],
An image matching evolutionary algorithm based on Hu invariant moments,
IASP11(113-117).
IEEE DOI 1112
BibRef

Mukundan, R.[Ramakrishnan],
A New Set of Normalized Geometric Moments Based on Schlick's Approximation,
ISVC07(II: 205-213).
Springer DOI 0711
BibRef

Liu, H.M.[Hong-Mei], Rui, W.[Wei], Huang, J.W.[Ji-Wu],
Binary Image Authentication using Zernike Moments,
ICIP07(I: 385-388).
IEEE DOI 0709
BibRef

Lange, M.[Mikhail], Ganebnykh, S.[Sergey], Lange, A.[Andrey],
Moment-Based Pattern Representation Using Shape and Grayscale Features,
IbPRIA07(I: 523-530).
Springer DOI 0706
BibRef

Maaoui, C., Laurent, H., Rosenberger, C.,
2D Color Shape Recognition Using Zernike Moments,
ICIP05(III: 976-979).
IEEE DOI 0512
BibRef

Ruberto, C., Morgera, A.,
A Comparison of 2-D Moment-Based Description Techniques,
CIAP05(212-219).
Springer DOI 0509
BibRef

Martinez, J., Thomas, F.,
On the reconstruction of an image from its moments,
ICIP03(I: 217-220).
IEEE DOI 0312
BibRef

Poupon, F.[Fabrice], Mangin, J.F.[Jean-Francois], Frouin, V.[Vincent], and Magnin, I.[Isabelle],
3d Multi-Object Deformable Template Based on Moment Invariants,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Horikawa, Y.,
Pattern Recognition with Invariance to Similarity Transformations Based on the Third-Order Correlation,
ICPR96(II: 200-204).
IEEE DOI 9608
(Australian National Univ., AUS) BibRef

Burns, J.B.[J. Brian],
Method and apparatus for recognition of objects via position and orientation consensus of local image encoding,
US_Patent5,828,769, Oct 27, 1998
WWW Link. BibRef 9810
Earlier:
Recognition via Consensus of Local Moments of Brightness and Orientation,
CVPR96(891-898).
IEEE DOI Tracking. BibRef

Cheatham, L., Cassasent, D., and Fetterly, D.,
Distortion Invariant Recognition Using a Moment Feature Space,
CVPR83(171-174). BibRef 8300

Lucas, D.,
Moment Techniques in Picture Analysis,
CVPR83(178-187). BibRef 8300

Lambert, G.[Georg], Gao, H.[Hua],
Line moments and invariants for real time processing of vectorized contour data,
CIAP95(347-352).
Springer DOI 9509
BibRef

Lambert, G., Noll, J.,
Discrimination Properties of Invariants Using the Line Moments of Vectorized Contours,
ICPR96(II: 735-739).
IEEE DOI 9608
(Darmstadt Univ. of Techn., D) BibRef

Ghosal, S., Mehrotra, R.,
Zernike moment-based feature detectors,
ICIP94(I: 934-938).
IEEE DOI 9411
BibRef

Guo, X.[Xuan],
Three dimensional moment invariants under rigid transformation,
CAIP93(518-522).
Springer DOI 9309
BibRef

Ngan, K.N., Kang, S.B.,
Fuzzy quaternion approach to object recognition incorporating Zernike moment invariants,
ICPR90(I: 288-290).
IEEE DOI 9006
BibRef

Fogel, S.V., de Figueiredo, R.J.P.,
A Method for Construction of Complete Invariant Systems of Features for Scene Analysis,
ICPR80(1223-1227). BibRef 8000

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Moment Computation, Computation of Moments .


Last update:Aug 28, 2024 at 16:02:19