Freund, Y.,
Schapire, R.E.,
A decision-theoretic generalization of on-line learning and
an application to boosting,
JCSSI(55), No. 1, 1997, pp. 119-139.
BibRef
9700
Schapire, R.E.,
Singer, Y.,
Improved boosting algorithms using confidence-rated predictions,
MachLearn(37), No. 3, December 1999, pp. 297-336.
DOI Link Improvements where hypotheses may assign confidences to each of
their predictions.
BibRef
9912
Frossyniotis, D.,
Likas, A.C.,
Stafylopatis, A.,
A clustering method based on boosting,
PRL(25), No. 6, 19 April 2004, pp. 641-654.
Elsevier DOI
0405
At each boosting iteration, a new training set is created using
weighted random sampling from the original dataset. Then apply
clustering.
BibRef
Tao, Q.[Qing],
Wu, G.W.[Gao-Wei],
Wang, J.[Jue],
A generalized S-K algorithm for learning [nu]-SVM classifiers,
PRL(25), No. 10, 16 July 2004, pp. 1165-1171.
Elsevier DOI
0407
BibRef
Tao, Q.[Qing],
Wu, G.W.[Gao-Wei],
Wang, J.[Jue],
A new maximum margin algorithm for one-class problems and its boosting
implementation,
PR(38), No. 7, July 2005, pp. 1071-1077.
Elsevier DOI
0505
BibRef
Tao, Q.[Qing],
Wu, G.W.[Gao-Wei],
Wang, J.[Jue],
A general soft method for learning SVM classifiers with L1-norm penalty,
PR(41), No. 3, March 2008, pp. 939-948.
Elsevier DOI
0711
Support vector machines; Classification; [nu]-SVMs; Nearest points;
Gilbert's algorithms; Schlesinger-Kozinec's algorithms;
Mitchell-Dem'yanov-Malozemov's algorithms; Soft convex hulls
BibRef
Chen, S.,
Wang, X.X.,
Harris, C.J.,
Experiments With Repeating Weighted Boosting Search for Optimization in
Signal Processing Applications,
SMC-B(35), No. 4, August 2005, pp. 682-693.
IEEE DOI
0508
BibRef
Yin, X.C.[Xu-Cheng],
Liu, C.P.[Chang-Ping],
Han, Z.[Zhi],
Feature combination using boosting,
PRL(26), No. 14, 15 October 2005, pp. 2195-2205.
Elsevier DOI
0510
BibRef
Nishii, R.,
Eguchi, S.,
Supervised image classification by contextual AdaBoost based on
posteriors in neighborhoods,
GeoRS(43), No. 11, November 2005, pp. 2547-2554.
IEEE DOI
0512
BibRef
Kawaguchi, S.,
Nishii, R.,
Hyperspectral Image Classification by Bootstrap AdaBoost With Random
Decision Stumps,
GeoRS(45), No. 11, November 2007, pp. 3845-3851.
IEEE DOI
0709
BibRef
Opelt, A.[Andreas],
Pinz, A.[Axel],
Fussenegger, M.[Michael],
Auer, P.[Peter],
Generic Object Recognition with Boosting,
PAMI(28), No. 3, March 2006, pp. 416-431.
IEEE DOI
0602
BibRef
Earlier: A1, A3, A2, A4:
Weak Hypotheses and Boosting for Generic Object Detection and
Recognition,
ECCV04(Vol II: 71-84).
Springer DOI
0405
Extract local regions, use local descriptors. Use boosting on the feature
vectors.
Use boosting to combine features. This allows for using diverse features.
Weekly supervised.
BibRef
Opelt, A.[Andreas],
Pinz, A.[Axel],
Object Localization with Boosting and Weak Supervision for Generic
Object Recognition,
SCIA05(862-871).
Springer DOI
0506
BibRef
Fussenegger, M.,
Opelt, A.,
Pinz, A.,
Auer, P.,
Object recognition using segmentation for feature detection,
ICPR04(III: 41-44).
IEEE DOI
0409
BibRef
Fussenegger, M.[Michael],
Opelt, A.[Andreas],
Pinz, A.[Axel],
Object localization/segmentation using generic shape priors,
ICPR06(IV: 41-44).
IEEE DOI
0609
BibRef
Opelt, A.[Andreas],
Pinz, A.[Axel],
Zisserman, A.[Andrew],
Learning an Alphabet of Shape and Appearance for Multi-Class Object
Detection,
IJCV(80), No. 1, October 2008, pp. xx-yy.
Springer DOI
0809
BibRef
Earlier:
Incremental learning of object detectors using a visual shape alphabet,
CVPR06(I: 3-10).
IEEE DOI
0606
Award, CVPR, HM.
BibRef
And:
A Boundary-Fragment-Model for Object Detection,
ECCV06(II: 575-588).
Springer DOI
0608
BibRef
Wang, X.[Xiao],
Wang, H.[Han],
Classification by evolutionary ensembles,
PR(39), No. 4, April 2006, pp. 595-607.
Elsevier DOI
0604
Multiple classifier system; Genetic algorithms;
Evolutionary learning; Classifier combination; AdaBoost; Bagging
BibRef
McDonald, R.A.[Ross A.],
The mean subjective utility score, a novel metric for cost-sensitive
classifier evaluation,
PRL(27), No. 13, 1 October 2006, pp. 1472-1477.
Elsevier DOI
0606
Misclassification costs are not all equal.
Cost-sensitivity; Cost matrix; Utility; Decision theory; Boosting
BibRef
Sun, Y.J.[Yi-Jun],
Todorovic, S.[Sinisa],
Li, J.[Jian],
Unifying multi-class AdaBoost algorithms with binary base learners
under the margin framework,
PRL(28), No. 5, 1 April 2007, pp. 631-643.
Elsevier DOI
0703
AdaBoost; Margin theory; Multi-class classification problem
BibRef
Le, D.D.[Duy-Dinh],
Satoh, S.[Shin'ichi],
Ent-Boost: Boosting Using Entropy Measures for Robust Object Detection,
PRL(28), No. 9, 1 July 2007, pp. 1083-1090.
Elsevier DOI
0704
BibRef
Earlier:
ICPR06(II: 602-605).
IEEE DOI
0609
Real AdaBoost; Information theory; Entropy;
Minimum description length principle (MDLP); Variable discretization;
Object detection
BibRef
Pham, T.V.[Thang V.],
Smeulders, A.W.M.[Arnold W.M.],
Quadratic boosting,
PR(41), No. 1, January 2008, pp. 331-341.
Elsevier DOI
0710
BibRef
Earlier:
Metric tree partitioning and Taylor approximation for fast support
vector classification,
ICPR06(IV: 132-135).
IEEE DOI
0609
AdaBoost; Boosting algorithm; Coordinate descent; Generalization error;
Object detection; Quadratic boosting; Randomized relabeling; VC-dimension
BibRef
Verschae, R.[Rodrigo],
Ruiz-del-Solar, J.[Javier],
Correa, M.[Mauricio],
A unified learning framework for object detection and classification
using nested cascades of boosted classifiers,
MVA(19), No. 2, March 2008, pp. 85-103.
Springer DOI
0802
BibRef
Rodriguez, J.J.[Juan J.],
Maudes, J.[Jesus],
Boosting recombined weak classifiers,
PRL(29), No. 8, 1 June 2008, pp. 1049-1059.
Elsevier DOI
0804
Boosting; Classifier ensembles; Decision stumps
BibRef
Zhang, C.X.[Chun-Xia],
Zhang, J.S.[Jiang-She],
RotBoost: A technique for combining Rotation Forest and AdaBoost,
PRL(29), No. 10, 15 July 2008, pp. 1524-1536.
Elsevier DOI
0711
Ensemble method; Base learning algorithm; AdaBoost; Rotation Forest;
Bagging; MultiBoost
BibRef
Furst, L.[Luka],
Fidler, S.[Sanja],
Leonardis, A.[Ales],
Selecting features for object detection using an Adaboost-compatible
evaluation function,
PRL(29), No. 11, 1 August 2008, pp. 1603-1612.
Elsevier DOI
0804
Feature selection; AdaBoost; Object detection
BibRef
Fleuret, F.[Francois],
Multi-layer boosting for pattern recognition,
PRL(30), No. 3, 1 February 2009, pp. 237-241.
Elsevier DOI
0804
Boosting; Multi-layer perceptron; Functional gradient descent;
Convolutional network
BibRef
Šochman, J.[Jan],
Matas, J.G.[Jirí G.],
Learning Fast Emulators of Binary Decision Processes,
IJCV(83), No. 2, June 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Earlier:
Learning a Fast Emulator of a Binary Decision Process,
ACCV07(II: 236-245).
Springer DOI
0711
BibRef
Earlier:
WaldBoost: Learning for Time Constrained Sequential Detection,
CVPR05(II: 150-156).
IEEE DOI
0507
BibRef
Earlier:
Inter-stage feature propagation in cascade building with adaboost,
ICPR04(I: 236-239).
IEEE DOI
0409
BibRef
Lu, Y.J.[Yi-Juan],
Tian, Q.[Qi],
Discriminant Subspace Analysis: An Adaptive Approach for Image
Classification,
MultMed(11), No. 7, November 2009, pp. 1289-1300.
IEEE DOI
0911
BibRef
Lu, Y.J.[Yi-Juan],
Tian, Q.[Qi],
Huan, T.S.[Thomas S.],
Interactive Boosting for Image Classification,
MCAM07(315-324).
Springer DOI
0706
BibRef
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Tang, Q.L.[Qi-Ling],
On selection and combination of weak learners in AdaBoost,
PRL(31), No. 9, 1 July 2010, pp. 991-1001.
Elsevier DOI
1004
Adaboost algorithm; Distance related criterion; Kernel-based perceptron
BibRef
Chen, K.T.[Kuan-Ting],
Lin, K.H.[Kuan-Hung],
Kuo, Y.H.[Yin-Hsi],
Wu, Y.L.[Yi-Lun],
Hsu, W.H.[Winston H.],
Boosting image object retrieval and indexing by automatically
discovered pseudo-objects,
JVCIR(21), No. 8, November 2010, pp. 815-825.
Elsevier DOI
1011
Image retrieval; Object retrieval; Pseudo-object; Visual word; Local
feature; Bundle feature; Indexing; Large-scale
BibRef
Lin, K.H.[Kuan-Hung],
Chen, K.T.[Kuan-Ting],
Hsu, W.H.[Winston H.],
Lee, C.J.[Chun-Jen],
Li, T.H.[Tien-Hsu],
Boosting object retrieval by estimating pseudo-objects,
ICIP09(785-788).
IEEE DOI
0911
BibRef
Shen, C.H.[Chun-Hua],
Li, H.X.[Han-Xi],
On the Dual Formulation of Boosting Algorithms,
PAMI(32), No. 12, December 2010, pp. 2216-2231.
IEEE DOI
1011
BibRef
Earlier: A2, A1:
Boosting the Minimum Margin: LPBoost vs. AdaBoost,
DICTA08(533-539).
IEEE DOI
0812
BibRef
Shen, C.H.[Chun-Hua],
Wang, P.[Peng],
Li, H.X.[Han-Xi],
LACBoost and FisherBoost: Optimally Building Cascade Classifiers,
ECCV10(II: 608-621).
Springer DOI
1009
BibRef
Chen, S.[Shi],
Wang, J.Q.[Jin-Qiao],
Ouyang, Y.[Yi],
Wang, B.[Bo],
Xu, C.S.[Chang-Sheng],
Lu, H.Q.[Han-Qing],
Boosting part-sense multi-feature learners toward effective object
detection,
CVIU(115), No. 3, March 2011, pp. 364-374.
Elsevier DOI
1103
AdaBoost; Object detection; Multi-feature learners; L1-regularized
gradient boosting
BibRef
Wang, P.[Peng],
Shen, C.H.[Chun-Hua],
Barnes, N.M.[Nick M.],
Zheng, H.[Hong],
Ren, Z.[Zhang],
Asymmetric Totally-Corrective Boosting for Real-Time Object Detection,
ACCV10(I: 176-188).
Springer DOI
1011
BibRef
Hao, Z.H.[Zhi-Hui],
Shen, C.H.[Chun-Hua],
Barnes, N.M.[Nick M.],
Wang, B.[Bo],
Totally-Corrective Multi-class Boosting,
ACCV10(IV: 269-280).
Springer DOI
1011
BibRef
Shen, C.H.[Chun-Hua],
Hao, Z.H.[Zhi-Hui],
A direct formulation for totally-corrective multi-class boosting,
CVPR11(2585-2592).
IEEE DOI
1106
BibRef
Zhou, J.[Jun],
Fu, Z.Y.[Zhou-Yu],
Robles-Kelly, A.[Antonio],
Structured learning approach to image descriptor combination,
IET-CV(5), No. 2, 2011, pp. 134-142.
DOI Link
1103
BibRef
Earlier:
Learning the Optimal Transformation of Salient Features for Image
Classification,
DICTA09(125-131).
IEEE DOI
0912
Combine descriptors.
BibRef
Fu, Z.Y.[Zhou-Yu],
Caelli, T.M.[Terry M.],
Liu, N.J.[Nian-Jun],
Robles-Kelly, A.[Antonio],
Boosted Band Ratio Feature Selection for Hyperspectral Image
Classification,
ICPR06(I: 1059-1062).
IEEE DOI
0609
BibRef
Zhang, K.[Ke],
Jin, H.D.[Hui-Dong],
Fu, Z.Y.[Zhou-Yu],
Liu, N.J.[Nian-Jun],
Optimal Learning High-Order Markov Random Fields Priors of Colour Image,
ACCV07(I: 482-491).
Springer DOI
0711
BibRef
Landesa-Vázquez, I.[Iago],
Alba-Castro, J.L.[José Luis],
Shedding light on the asymmetric learning capability of AdaBoost,
PRL(33), No. 3, 1 February 2012, pp. 247-255.
Elsevier DOI
1201
AdaBoost; Asymmetry; Boosting; Classification; Cost
BibRef
Shen, C.H.[Chun-Hua],
Wang, P.[Peng],
Shen, F.M.[Fu-Min],
Wang, H.Z.[Han-Zi],
U_Boost: Boosting with the Universum,
PAMI(34), No. 4, April 2012, pp. 825-832.
IEEE DOI
1203
BibRef
Ribeiro, P.C.[Pedro Canotilho],
Moreno, P.[Plinio],
Santos-Victor, J.[José],
Introducing fuzzy decision stumps in boosting through the notion of
neighbourhood,
IET-CV(6), No. 3, 2012, pp. 214-223.
DOI Link
1205
BibRef
Earlier: A2, A1, A3:
Feature Set Search Space for FuzzyBoost Learning,
IbPRIA11(248-255).
Springer DOI
1106
See also Feature Selection for Tracker-Less Human Activity Recognition.
BibRef
Cao, J.J.[Jing-Jing],
Kwong, S.[Sam],
Wang, R.[Ran],
A noise-detection based AdaBoost algorithm for mislabeled data,
PR(45), No. 12, December 2012, pp. 4451-4465.
Elsevier DOI
1208
Pattern recognition; Ensemble learning; AdaBoost; k-NN; EM
BibRef
Saberian, M.J.[Mohammad J.],
Vasconcelos, N.M.[Nuno M.],
Learning Optimal Embedded Cascades,
PAMI(34), No. 10, October 2012, pp. 2005-2018.
IEEE DOI
1208
BibRef
Earlier:
Boosting algorithms for simultaneous feature extraction and selection,
CVPR12(2448-2455).
IEEE DOI
1208
BibRef
Saberian, M.J.[Mohammad J.],
Masnadi-Shirazi, H.[Hamed],
Vasconcelos, N.M.[Nuno M.],
TaylorBoost:
First and second-order boosting algorithms with explicit margin control,
CVPR11(2929-2934).
IEEE DOI
1106
BibRef
Moghimi, M.[Mohammad],
Belongie, S.J.[Serge J.],
Saberian, M.J.[Mohammad J.],
Yang, J.[Jian],
Vasconcelos, N.M.[Nuno M.],
Li, L.J.[Li-Jia],
Boosted Convolutional Neural Networks,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Zheng, W.[Wei],
Liang, L.[Luhong],
Chang, H.[Hong],
Heng, C.K.[Cher-Keng],
Shan, S.G.[Shi-Guang],
Chen, X.L.[Xi-Lin],
Boosted translation-tolerable classifiers for fast object detection,
IVC(30), No. 8, August 2012, pp. 480-491.
Elsevier DOI
1209
Object detection; Boosting; Maximal Translation-Tolerable Region
(MTTR); Granularity-Adaptively-Tunable (GAT)
BibRef
Shen, C.H.[Chun-Hua],
Wang, P.[Peng],
Paisitkriangkrai, S.[Sakrapee],
van den Hengel, A.J.[Anton J.],
Training Effective Node Classifiers for Cascade Classification,
IJCV(103), No. 3, July 2013, pp. 326-347.
Springer DOI
1306
BibRef
Paisitkriangkrai, S.[Sakrapee],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Asymmetric Pruning for Learning Cascade Detectors,
MultMed(16), No. 5, August 2014, pp. 1254-1267.
IEEE DOI
1410
face recognition
BibRef
Paisitkriangkrai, S.[Sakrapee],
Wu, L.[Lin],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Structured learning of metric ensembles with application to person
re-identification,
CVIU(156), No. 1, 2017, pp. 51-65.
Elsevier DOI
1702
BibRef
Earlier: A1, A3, A4, Only:
Learning to rank in person re-identification with metric ensembles,
CVPR15(1846-1855)
IEEE DOI
1510
Person re-identification
BibRef
Shen, C.H.[Chun-Hua],
Lin, G.S.[Guo-Sheng],
van den Hengel, A.J.[Anton J.],
StructBoost:
Boosting Methods for Predicting Structured Output Variables,
PAMI(36), No. 10, October 2014, pp. 2089-2103.
IEEE DOI
1410
computer vision
BibRef
Shi, Q.F.[Qin-Feng],
Reid, M.,
Caetano, T.S.[Tibério S.],
van den Hengel, A.J.[Anton J.],
Wang, Z.,
A Hybrid Loss for Multiclass and Structured Prediction,
PAMI(37), No. 1, January 2015, pp. 2-12.
IEEE DOI
1412
FCC
BibRef
Lin, G.S.[Guo-Sheng],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Suter, D.[David],
Fast Training of Effective Multi-class Boosting Using Coordinate
Descent Optimization,
ACCV12(II:782-795).
Springer DOI
1304
BibRef
Liu, X.[Xi],
Shi, Z.P.[Zhi-Ping],
Shi, Z.Z.[Zhong-Zhi],
A co-boost framework for learning object categories from Google Images
with 1st and 2nd order features,
VC(30), No. 1, January 2014, pp. 5-17.
WWW Link.
1402
BibRef
Earlier:
Filter object categories using CoBoost with 1st and 2nd order features,
ICIP09(309-312).
IEEE DOI
0911
BibRef
Fernández-Baldera, A.[Antonio],
Baumela, L.[Luis],
Multi-class boosting with asymmetric binary weak-learners,
PR(47), No. 5, 2014, pp. 2080-2090.
Elsevier DOI
1402
AdaBoost
BibRef
Tanha, J.[Jafar],
van Someren, M.[Maarten],
Afsarmanesh, H.[Hamideh],
Boosting for multiclass semi-supervised learning,
PRL(37), No. 1, 2014, pp. 63-77.
Elsevier DOI
1402
Semi-supervised learning
BibRef
Wu, S.,
Nagahashi, H.,
Parameterized AdaBoost:
Introducing a Parameter to Speed Up the Training of Real AdaBoost,
SPLetters(21), No. 6, June 2014, pp. 687-691.
IEEE DOI
1404
Indexes
BibRef
Xu, J.S.[Jing-Song],
Wu, Q.A.[Qi-Ang],
Zhang, J.[Jian],
Tang, Z.M.[Zhen-Min],
Exploiting Universum data in AdaBoost using gradient descent,
IVC(32), No. 8, 2014, pp. 550-557.
Elsevier DOI
1407
AdaBoost
BibRef
Zhang, L.,
Gao, Y.,
Hong, C.,
Feng, Y.,
Zhu, J.,
Cai, D.,
Feature Correlation Hypergraph: Exploiting High-order Potentials for
Multimodal Recognition,
Cyber(44), No. 8, August 2014, pp. 1408-1419.
IEEE DOI
1407
Boosting
BibRef
Tokarczyk, P.,
Wegner, J.D.,
Walk, S.,
Schindler, K.,
Features, Color Spaces, and Boosting:
New Insights on Semantic Classification of Remote Sensing Images,
GeoRS(53), No. 1, January 2015, pp. 280-295.
IEEE DOI
1410
feature extraction
BibRef
Nie, Q.F.[Qing-Feng],
Jin, L.[Lizuo],
Fei, S.[Shumin],
Probability estimation for multi-class classification using AdaBoost,
PR(47), No. 12, 2014, pp. 3931-3940.
Elsevier DOI
1410
AdaBoost
BibRef
Yu, Z.W.[Zhi-Wen],
Li, L.[Le],
Liu, J.M.[Ji-Ming],
Han, G.Q.[Guo-Qiang],
Hybrid Adaptive Classifier Ensemble,
Cyber(45), No. 2, February 2015, pp. 177-190.
IEEE DOI
1502
biology computing
BibRef
Li, L.[Le],
Yu, Z.W.[Zhi-Wen],
Liu, J.M.[Ji-Ming],
You, J.[Jane],
Wong, H.S.[Hau-San],
Han, G.Q.[Guo-Qiang],
Multi-view Based AdaBoost Classifier Ensemble for Class Prediction
from Gene Expression Profiles,
ICPR14(178-183)
IEEE DOI
1412
Accuracy
BibRef
Zhang, Z.M.[Zi-Ming],
Torr, P.H.S.[Philip H. S.],
Object Proposal Generation Using Two-Stage Cascade SVMs,
PAMI(38), No. 1, January 2016, pp. 102-115.
IEEE DOI
1601
Calibration
BibRef
Zhang, Z.M.[Zi-Ming],
Warrell, J.[Jonathan],
Torr, P.H.S.[Philip H. S.],
Proposal generation for object detection using cascaded ranking SVMs,
CVPR11(1497-1504).
IEEE DOI
1106
BibRef
Warrell, J.[Jonathan],
Torr, P.H.S.[Philip H. S.],
Multiple-Instance Learning with Structured Bag Models,
EMMCVPR11(369-384).
Springer DOI
1107
BibRef
Warrell, J.[Jonathan],
Torr, P.H.S.[Philip H.S.],
Prince, S.J.D.[Simon J.D.],
Styp-boost: A Bilinear Boosting Algorithm for Learning
Style-parameterized Classifiers,
BMVC10(xx-yy).
HTML Version.
1009
BibRef
Ahachad, A.[Anas],
Álvarez-Pérez, L.[Lorena],
Figueiras-Vidal, A.R.[Aníbal R.],
Boosting ensembles with controlled emphasis intensity,
PRL(88), No. 1, 2017, pp. 1-5.
Elsevier DOI
1703
Boosting
BibRef
Yin, H.B.[Hai-Bo],
Yang, J.A.[Jun-An],
Wang, W.[Wei],
Liu, H.[Hui],
Set-Based Boosting for Instance-Level Transfer on Multi-Classification,
IEICE(E100-D), No. 5, May 2017, pp. 1079-1086.
WWW Link.
1705
BibRef
Hajimirsadeghi, H.[Hossein],
Mori, G.[Greg],
Multi-Instance Classification by Max-Margin Training of
Cardinality-Based Markov Networks,
PAMI(39), No. 9, September 2017, pp. 1839-1852.
IEEE DOI
1708
Approximation algorithms, Feature extraction,
Inference algorithms, Markov random fields, Standards,
Support vector machines, Training, Markov network,
Multiple instance learning, cardinality models, conditional,
random, field
BibRef
Hajimirsadeghi, H.[Hossein],
Mori, G.[Greg],
Learning Ensembles of Potential Functions for Structured Prediction
with Latent Variables,
ICCV15(4059-4067)
IEEE DOI
1602
BibRef
And:
Multiple instance real boosting with aggregation functions,
ICPR12(2706-2710).
WWW Link.
1302
Boosting
BibRef
Li, F.F.[Feng-Fu],
Qiao, H.[Hong],
Zhang, B.[Bo],
Discriminatively boosted image clustering with fully convolutional
auto-encoders,
PR(83), 2018, pp. 161-173.
Elsevier DOI
1808
Image clustering, Fully convolutional auto-encoder,
Representation learning, Discriminatively boosted clustering
BibRef
Sabzevari, M.[Maryam],
Martínez-Muñoz, G.[Gonzalo],
Suárez, A.[Alberto],
Vote-boosting ensembles,
PR(83), 2018, pp. 119-133.
Elsevier DOI
1808
Ensemble learning, Boosting, Uncertainty-based emphasis, Robust classification
BibRef
Ding, C.[Chen],
Li, Y.[Yu],
Wen, Y.[Yue],
Zheng, M.M.[Meng-Meng],
Zhang, L.[Lei],
Wei, W.[Wei],
Zhang, Y.N.[Yan-Ning],
Boosting Few-Shot Hyperspectral Image Classification Using
Pseudo-Label Learning,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhou, F.[Fei],
Wei, W.[Wei],
Zhang, L.[Lei],
Zhang, Y.N.[Yan-Ning],
Learning to Class-Adaptively Manipulate Embeddings for Few-Shot
Learning,
CirSysVideo(33), No. 9, September 2023, pp. 5062-5075.
IEEE DOI
2310
BibRef
Ding, C.[Chen],
Zheng, M.M.[Meng-Meng],
Chen, F.X.[Fei-Xiong],
Zhang, Y.K.[Yuan-Kun],
Zhuang, X.[Xusi],
Fan, E.[Enquan],
Wen, D.[Dushi],
Zhang, L.[Lei],
Wei, W.[Wei],
Zhang, Y.N.[Yan-Ning],
Hyperspectral Image Classification Promotion Using Clustering
Inspired Active Learning,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Wei, W.[Wei],
Xu, S.Z.[Song-Zheng],
Zhang, L.[Lei],
Zhang, J.Y.[Jin-Yang],
Zhang, Y.N.[Yan-Ning],
Boosting Hyperspectral Image Classification With Unsupervised Feature
Learning,
GeoRS(60), 2022, pp. 1-15.
IEEE DOI
2112
Feature extraction, Task analysis, Noise measurement, Data mining,
Training, Support vector machines, Hyperspectral imaging,
semisupervised learning
BibRef
Wang, Y.C.[Yun-Cheng],
Ge, X.[Xiou],
Wang, B.[Bin],
Kuo, C.C.J.[C.C. Jay],
KGBoost: A classification-based knowledge base completion method with
negative sampling,
PRL(157), 2022, pp. 104-111.
Elsevier DOI
2205
Knowledge base completion, Negative sampling,
Binary classification, XGBoost Classifiers
BibRef
Patel, A.M.[Alpesh M.],
Suthar, A.[Anil],
AdaBoosted Extra Trees Classifier for Object-Based Multispectral Image
Classification of Urban Fringe Area,
IJIG(22), No. 3 2022, pp. 2140006.
DOI Link
2206
BibRef
Sigrist, F.[Fabio],
Latent Gaussian Model Boosting,
PAMI(45), No. 2, February 2023, pp. 1894-1905.
IEEE DOI
2301
Predictive models, Data models, Boosting, Machine learning, Analytical models,
Splines (mathematics), Spatial databases, gaussian processes
BibRef
Zhao, C.M.[Chang-Ming],
Wu, D.R.[Dong-Rui],
Huang, J.[Jian],
Yuan, Y.[Ye],
Zhang, H.T.[Hai-Tao],
Peng, R.M.[Rui-Min],
Shi, Z.H.[Zhen-Hua],
BoostTree and BoostForest for Ensemble Learning,
PAMI(45), No. 7, July 2023, pp. 8110-8126.
IEEE DOI
2306
Boosting, Bagging, Regression tree analysis, Biological system modeling,
Predictive models, Ensemble learning, ensemble learning
BibRef
Chen, Y.H.[Yu-Hao],
Tan, X.[Xin],
Zhao, B.[Borui],
Chen, Z.W.[Zhao-Wei],
Song, R.J.[Ren-Jie],
Liang, J.J.[Jia-Jun],
Lu, X.Q.[Xue-Quan],
Boosting Semi-Supervised Learning by Exploiting All Unlabeled Data,
CVPR23(7548-7557)
IEEE DOI
2309
BibRef
Qiu, B.[Benliu],
Li, H.L.[Hong-Liang],
Wen, H.T.[Hai-Tao],
Qiu, H.Q.[He-Qian],
Wang, L.X.[Lan-Xiao],
Meng, F.M.[Fan-Man],
Wu, Q.B.[Qing-Bo],
Pan, L.[Lili],
CafeBoost: Causal Feature Boost to Eliminate Task-Induced Bias for
Class Incremental Learning,
CVPR23(16016-16025)
IEEE DOI
2309
BibRef
Zeng, Q.J.[Qing-Jie],
Xie, Y.T.[Yu-Tong],
Lu, Z.[Zilin],
Xia, Y.[Yong],
PEFAT: Boosting Semi-Supervised Medical Image Classification via
Pseudo-Loss Estimation and Feature Adversarial Training,
CVPR23(15671-15680)
IEEE DOI
2309
BibRef
Zhang, Z.D.[Zhao-Di],
Xue, Z.Y.[Zhi-Yi],
Chen, Y.[Yang],
Liu, S.[Si],
Zhang, Y.L.[Yue-Ling],
Liu, J.[Jing],
Zhang, M.[Min],
Boosting Verified Training for Robust Image Classifications via
Abstraction,
CVPR23(16251-16260)
IEEE DOI
2309
BibRef
Ali, H.A.[Hanae Aoulad],
Mohamed, C.[Chrayah],
Abdelhamid, B.[Bouzidi],
Ourdani, N.[Nabil],
El Alami, T.[Taha],
A Comparative Evaluation use Bagging and Boosting Ensemble
Classifiers,
ISCV22(1-6)
IEEE DOI
2208
Education, Predictive models, Boosting,
Prediction algorithms, Internet, Time factors, Classification,
Machine learning
BibRef
Gabidolla, M.[Magzhan],
Carreira-Perpiñán, M.Á.[Miguel Á.],
Pushing the Envelope of Gradient Boosting Forests via
Globally-Optimized Oblique Trees,
CVPR22(285-294)
IEEE DOI
2210
Computational modeling, Forestry, Boosting, Linear programming,
Partitioning algorithms, Machine learning,
Statistical methods
BibRef
Zharmagambetov, A.[Arman],
Gabidolla, M.[Magzhan],
Carreira-Perpiñán, M.Á.[Miguel Á.],
Improved Multiclass Adaboost for Image Classification:
The Role of Tree Optimization,
ICIP21(424-428)
IEEE DOI
2201
Training, Image recognition, Scalability,
Signal processing algorithms, Signal processing, Boosting,
tree optimization
BibRef
Qiu, Z.F.[Zhao-Fan],
Yao, T.[Ting],
Ngo, C.W.[Chong-Wah],
Zhang, X.P.[Xiao-Ping],
Wu, D.[Dong],
Mei, T.[Tao],
Boosting Video Representation Learning with Multi-Faceted Integration,
CVPR21(14025-14034)
IEEE DOI
2111
Training, Aggregates,
Semantics, Feature extraction, Boosting
BibRef
Chen, Y.Y.[Ying-Yi],
Shen, X.[Xi],
Hu, S.X.[Shell Xu],
Suykens, J.A.K.[Johan A. K.],
Boosting Co-teaching with Compression Regularization for Label Noise,
LLID21(2682-2686)
IEEE DOI
2109
Adaptation models, Image coding,
Neural networks, Data compression, Information retrieval
BibRef
Singh, P.,
Mazumder, P.,
Namboodiri, V.P.,
Accuracy Booster: Performance Boosting using Feature Map
Re-calibration,
WACV20(873-882)
IEEE DOI
2006
Complexity theory, Convolution, Computational modeling,
Task analysis, Memory management, Boosting
BibRef
Antunes, J.[João],
Bernardino, A.[Alexandre],
Smailagic, A.[Asim],
Siewiorek, D.[Daniel],
Weighted Multisource Tradaboost,
IbPRIA19(I:194-205).
Springer DOI
1910
BibRef
Meijer, D.W.J.,
Tax, D.M.J.,
Regularizing AdaBoost with validation sets of increasing size,
ICPR16(192-197)
IEEE DOI
1705
Bars, Iterative methods, Neural networks, Noise measurement,
Standards, Training, Training data, AdaBoost, Ensemble learning,
Regularization, Supervised, learning
BibRef
Allende-Cid, H.[Héctor],
Acuña, D.[Diego],
Allende, H.[Héctor],
Subsampling the Concurrent AdaBoost Algorithm:
An Efficient Approach for Large Datasets,
CIARP16(318-325).
Springer DOI
1703
BibRef
Lahiri, A.,
Biswas, P.K.,
A scalable model for knowledge sharing based supervised learning
using AdaBoost,
ICAPR15(1-6)
IEEE DOI
1511
digital simulation
BibRef
Lahiri, A.[Avisek],
Biswas, P.K.[Prabir Kumar],
A New Framework for Multiclass Classification Using Multiview Assisted
Adaptive Boosting,
ACCV14(III: 128-143).
Springer DOI
1504
BibRef
Wang, Y.T.[Yu-Ting],
Gu, Y.F.[Yan-Feng],
Gao, G.M.[Guo-Ming],
Wang, Q.W.[Qing-Wang],
Hyperspectral image classification with multiple kernel Boosting
algorithm,
ICIP14(5047-5051)
IEEE DOI
1502
Boosting
BibRef
Wang, S.X.[Shi-Xun],
Pan, P.[Peng],
Lu, Y.S.[Yan-Sheng],
Jiang, S.[Sheng],
Multiclass Boosting Framework for Multimodal Data Analysis,
MMMod15(II: 560-571).
Springer DOI
1501
BibRef
Hall, D.[David],
Perona, P.[Pietro],
From Categories to Individuals in Real Time:
A Unified Boosting Approach,
CVPR14(176-183)
IEEE DOI
1409
BibRef
Lin, G.S.[Guo-Sheng],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Approximate constraint generation for efficient structured boosting,
ICIP13(4287-4291)
IEEE DOI
1402
BibRef
Wang, S.[Sheng],
Wu, Q.A.[Qi-Ang],
He, X.J.[Xiang-Jian],
Xu, M.[Min],
On splitting dataset: Boosting Locally Adaptive Regression Kernels for
car localization,
ICARCV12(1154-1159).
IEEE DOI
1304
BibRef
Chen, J.X.[Ji-Xu],
Liu, X.M.[Xiao-Ming],
Lyu, S.W.[Si-Wei],
Boosting with Side Information,
ACCV12(I:563-577).
Springer DOI
1304
BibRef
Li, C.L.[Cheng-Liang],
Wang, Z.S.[Zhong-Sheng],
Bu, S.H.[Shu-Hui],
Liu, Z.B.[Zhen-Bao],
Semi-supervised adaptive parzen Gentleboost algorithm for fault
diagnosis,
ICPR12(2290-2293).
WWW Link.
1302
BibRef
Abouelenien, M.[Mohamed],
Yuan, X.H.[Xiao-Hui],
SampleBoost: Improving boosting performance by destabilizing weak
learners based on weighted error analysis,
ICPR12(585-588).
WWW Link.
1302
BibRef
Ormeño, P.[Pablo],
Ramírez, F.[Felipe],
Valle, C.[Carlos],
Allende-Cid, H.[Héctor],
Allende, H.[Héctor],
Robust Asymmetric Adaboost,
CIARP12(519-526).
Springer DOI
1209
BibRef
Merjildo, D.A.F.[Diego Alonso Fernández],
Ling, L.L.[Lee Luan],
Enhancing the Performance of Adaboost Algorithms by Introducing a
Frequency Counting Factor for Weight Distribution Updating,
CIARP12(527-534).
Springer DOI
1209
BibRef
Borji, A.[Ali],
Boosting bottom-up and top-down visual features for saliency estimation,
CVPR12(438-445).
IEEE DOI
1208
BibRef
Paisitkriangkrai, S.[Sakrapee],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Sharing features in multi-class boosting via group sparsity,
CVPR12(2128-2135).
IEEE DOI
1208
BibRef
Wang, T.[Tao],
He, X.M.[Xu-Ming],
Shen, C.H.[Chun-Hua],
Barnes, N.M.,
Laplacian Margin Distribution Boosting for Learning from Sparsely
Labeled Data,
DICTA11(209-216).
IEEE DOI
1205
BibRef
Zheng, S.F.[Song-Feng],
Labeling Image Patches by Boosting based Median Classifier,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Bi, J.[Jinbo],
Wu, D.[Dijia],
Lu, L.[Le],
Liu, M.Z.[Mei-Zhu],
Tao, Y.[Yimo],
Wolf, M.[Matthias],
AdaBoost on low-rank PSD matrices for metric learning,
CVPR11(2617-2624).
IEEE DOI
1106
BibRef
Ehlers, A.[Arne],
Baumann, F.[Florian],
Rosenhahn, B.[Bodo],
Boosted Fractal Integral Paths for Object Detection,
ISVC14(II: 458-470).
Springer DOI
1501
BibRef
And:
Exploiting Object Characteristics Using Custom Features for
Boosting-Based Classification,
SCIA13(420-431).
Springer DOI
1311
BibRef
Ehlers, A.[Arne],
Baumann, F.[Florian],
Spindler, R.[Ralf],
Glasmacher, B.[Birgit],
Rosenhahn, B.[Bodo],
PCA Enhanced Training Data for Adaboost,
CAIP11(I: 410-419).
Springer DOI
1109
BibRef
Baumann, F.[Florian],
Ernst, K.[Katharina],
Ehlers, A.[Arne],
Rosenhahn, B.[Bodo],
Symmetry Enhanced Adaboost,
ISVC10(I: 286-295).
Springer DOI
1011
BibRef
Jin, X.B.[Xiao-Bo],
Hou, X.W.[Xin-Wen],
Liu, C.L.[Cheng-Lin],
Multi-class AdaBoost with Hypothesis Margin,
ICPR10(65-68).
IEEE DOI
1008
BibRef
Sternig, S.[Sabine],
Godec, M.[Martin],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
TransientBoost: On-line boosting with transient data,
OLCV10(22-27).
IEEE DOI
1006
BibRef
Goto, Y.[Yuhi],
Yamauchi, Y.[Yuji],
Fujiyoshi, H.[Hironobu],
CS-HOG: Color similarity-based HOG,
FCV13(266-271).
IEEE DOI
1304
BibRef
Yamauchi, Y.[Yuji],
Matsushima, C.[Chika],
Yamashita, T.[Takayoshi],
Fujiyoshi, H.[Hironobu],
Relational HOG feature with wild-card for object detection,
VS11(1785-1792).
IEEE DOI
1201
BibRef
Pelossof, R.[Raphael],
Jones, M.[Michael],
Vovsha, I.[Ilia],
Rudin, C.[Cynthia],
Online coordinate boosting,
Learning09(1354-1361).
IEEE DOI
0910
BibRef
Babenko, B.[Boris],
Yang, M.H.[Ming-Hsuan],
Belongie, S.J.[Serge J.],
A family of online boosting algorithms,
Learning09(1346-1353).
IEEE DOI
0910
BibRef
Ji, Y.[Yi],
Idrissi, K.[Khalid],
Baskurt, A.[Atilla],
Object categorization using boosting within Hierarchical Bayesian model,
ICIP09(317-320).
IEEE DOI
0911
BibRef
Mahmood, A.[Arif],
Khan, S.[Sohaib],
Early terminating algorithms for Adaboost based detectors,
ICIP09(1209-1212).
IEEE DOI
0911
BibRef
Venkataraman, V.[Vijay],
Porikli, F.M.[Fatih M.],
RelCom: Relational combinatorics features for rapid object detection,
OTCBVS10(23-30).
IEEE DOI
1006
Simple features.
BibRef
Hussein, M.[Mohamed],
Porikli, F.M.[Fatih M.],
Davis, L.S.[Larry S.],
Object detection via boosted deformable features,
ICIP09(1445-1448).
IEEE DOI
0911
BibRef
Allende-Cid, H.[Héctor],
Mendoza, J.[Jorge],
Allende, H.[Héctor],
Canessa, E.[Enrique],
Semi-supervised Robust Alternating AdaBoost,
CIARP09(579-586).
Springer DOI
0911
BibRef
Zaidi, N.A.[Nayyar A.],
Suter, D.[David],
Confidence rated boosting algorithm for generic object detection,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Object Detection Using a Cascade of Classifiers,
DICTA08(600-605).
IEEE DOI
0812
BibRef
Jiang, Y.[Yan],
Ding, X.Q.[Xiao-Qing],
Bhattacharyya boosting,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Seiffert, C.[Chris],
Khoshgoftaar, T.M.[Taghi M.],
van Hulse, J.[Jason],
Napolitano, A.[Amri],
RUSBoost: Improving classification performance when training data is
skewed,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Wang, S.J.[Shi-Jun],
Zhang, C.S.[Chang-Shui],
Collaborative learning by boosting in distributed environments,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Wang, Z.J.[Zhan-Jun],
Fang, C.[Chi],
Ding, X.Q.[Xiao-Qing],
Asymmetric Real Adaboost,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chouaib, H.[Hassan],
Cloppet, F.[Florence],
Vincent, N.[Nicole],
Fast Feature Selection for Handwritten Digit Recognition,
FHR12(485-490).
IEEE DOI
1302
BibRef
Chouaib, H.[Hassan],
Vincent, N.[Nicole],
Cloppet, F.[Florence],
Tabbone, S.A.[Salvatore A.],
Generic Feature Selection and Document Processing,
ICDAR09(356-360).
IEEE DOI
0907
BibRef
Chouaib, H.,
Terrades, O.R.[O. Ramos],
Tabbone, S.A.,
Cloppet, F.,
Vincent, N.,
Feature selection combining genetic algorithm and Adaboost classifiers,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jiang, Y.[Yan],
Ding, X.Q.[Xiao-Qing],
Partially Corrective AdaBoost,
SSPR08(469-478).
Springer DOI
0812
BibRef
Balntas, V.[Vassileios],
Riba, E.[Edgar],
Ponsa, D.[Daniel],
Mikolajczyk, K.[Krystian],
Learning local feature descriptors with triplets and shallow
convolutional neural networks,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Kalal, Z.[Zdenek],
Matas, J.G.[Jiri G.],
Mikolajczyk, K.[Krystian],
P-N learning:
Bootstrapping binary classifiers by structural constraints,
CVPR10(49-56).
IEEE DOI
1006
BibRef
Earlier:
Online learning of robust object detectors during unstable tracking,
Learning09(1417-1424).
IEEE DOI
0910
BibRef
Earlier:
Weighted Sampling for Large-Scale Boosting,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Pham, M.T.[Minh-Tri],
Hoang, V.D.D.[Viet-Dung D.],
Cham, T.J.[Tat-Jen],
Detection with multi-exit asymmetric boosting,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Parag, T.[Toufiq],
Elgammal, A.M.[Ahmed M.],
Higher Order Markov Networks for Model Estimation,
ISVC11(I: 246-258).
Springer DOI
1109
BibRef
Parag, T.[Toufiq],
Elgammal, A.M.[Ahmed M.],
Supervised hypergraph labeling,
CVPR11(2289-2296).
IEEE DOI
1106
BibRef
Parag, T.[Toufiq],
Elgammal, A.M.[Ahmed M.],
A voting approach to learn affinity matrix for robust clustering,
ICIP09(2409-2412).
IEEE DOI
0911
BibRef
Parag, T.[Toufiq],
Porikli, F.M.[Fatih M.],
Elgammal, A.M.[Ahmed M.],
Boosting adaptive linear weak classifiers for online learning and
tracking,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Corso, J.J.[Jason J.],
Discriminative modeling by Boosting on Multilevel Aggregates,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Leistner, C.[Christian],
Saffari, A.[Amir],
Bischof, H.[Horst],
MIForests: Multiple-Instance Learning with Randomized Trees,
ECCV10(VI: 29-42).
Springer DOI
1009
BibRef
Zeisl, B.[Bernhard],
Leistner, C.[Christian],
Saffari, A.[Amir],
Bischof, H.[Horst],
On-line semi-supervised multiple-instance boosting,
CVPR10(1879-1879).
IEEE DOI
1006
See also Learning Features for Tracking.
See also On-Line Multi-view Forests for Tracking.
See also On-line Hough Forests.
BibRef
Leistner, C.[Christian],
Saffari, A.[Amir],
Roth, P.M.[Peter M.],
Bischof, H.[Horst],
On robustness of on-line boosting: a competitive study,
Learning09(1362-1369).
IEEE DOI
0910
BibRef
Saffari, A.[Amir],
Bischof, H.[Horst],
Boosting for Model-Based Data Clustering,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Allende-Cid, H.[Héctor],
Salas, R.[Rodrigo],
Allende, H.[Héctor],
Ñanculef, R.[Ricardo],
Robust Alternating AdaBoost,
CIARP07(427-436).
Springer DOI
0711
BibRef
Jin, Y.X.[Yu-Xin],
Tao, L.M.[Lin-Mi],
Xu, G.Y.[Guang-You],
Peng, Y.X.[Yu-Xin],
A Theoretical Approach to Construct Highly Discriminative Features with
Application in AdaBoost,
ACCV07(I: 748-757).
Springer DOI
0711
BibRef
Vella, F.[Filippo],
Lee, C.H.[Chin-Hui],
Gaglio, S.[Salvatore],
Boosting of Maximal Figure of Merit Classifiers for Automatic Image
Annotation,
ICIP07(II: 217-220).
IEEE DOI
0709
BibRef
Peng, S.W.[Shao-Wu],
Lin, L.[Liang],
Porway, J.[Jake],
Sang, N.[Nong],
Zhu, S.C.[Song-Chun],
Object Category Recognition Using Generative Template Boosting,
EMMCVPR07(198-212).
Springer DOI
0708
BibRef
Liu, W.[Wei],
Chang, S.F.[Shih-Fu],
Robust multi-class transductive learning with graphs,
CVPR09(381-388).
IEEE DOI
0906
BibRef
Jiang, W.[Wei],
Chang, S.F.[Shih-Fu],
Jebara, T.[Tony],
Loui, A.C.[Alexander C.],
Semantic Concept Classification by Joint Semi-supervised Learning of
Feature Subspaces and Support Vector Machines,
ECCV08(IV: 270-283).
Springer DOI
0810
See also Video concept detection by audio-visual grouplets.
BibRef
Jiang, W.[Wei],
Zavesky, E.[Eric],
Chang, S.F.[Shih-Fu],
Loui, A.C.[Alex C.],
Cross-domain learning methods for high-level visual concept
classification,
ICIP08(161-164).
IEEE DOI
0810
BibRef
Jiang, W.[Wei],
Chang, S.F.[Shih-Fu],
Loui, A.C.[Alexander C.],
Kernel Sharing With Joint Boosting For Multi-Class Concept Detection,
SLAM07(1-8).
IEEE DOI
0706
BibRef
Zhou, S.H.K.[Shao-Hua Kevin],
Zhou, J.H.[Jing-Hao],
Comaniciu, D.[Dorin],
A boosting regression approach to medical anatomy detection,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Pham, M.T.[Minh-Tri],
Cham, T.J.[Tat-Jen],
Online Learning Asymmetric Boosted Classifiers for Object Detection,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Uray, M.,
Skocaj, D.,
Roth, P.M.,
Bischof, H.,
Leonardis, A.,
Incremental LDA Learning by Combining Reconstructive and Discriminative
Approaches,
BMVC07(xx-yy).
PDF File.
0709
See also On-line boosting-based car detection from aerial images.
BibRef
Renno, J.P.[John-Paul],
Makris, D.[Dimitrios],
Jones, G.A.[Graeme A.],
Object Classification in Visual Surveillance Using Adaboost,
VS07(1-8).
IEEE DOI
0706
BibRef
Kong, H.[Hui],
Teoh, E.K.[Eam Khwang],
Coupling Adaboost and Random Subspace for Diversified Fisher Linear
Discriminant,
ICARCV06(1-5).
IEEE DOI
0612
BibRef
Ghorayeb, H.[Hicham],
Steux, B.[Bruno],
Laurgeau, C.[Claude],
Boosted Algorithms for Visual Object Detection on Graphics Processing
Units,
ACCV06(II:254-263).
Springer DOI
0601
BibRef
Etyngier, P.[Patrick],
Paragios, N.[Nikos],
Keriven, R.[Renaud],
Genc, Y.[Yakup],
Audibert, J.Y.[Jean-Yves],
Radon space and Adaboost for Pose Estimation,
ICPR06(I: 421-424).
IEEE DOI
0609
BibRef
Avidan, S.[Shai],
SpatialBoost: Adding Spatial Reasoning to AdaBoost,
ECCV06(IV: 386-396).
Springer DOI
0608
BibRef
Hao, W.[Wei],
Luo, J.B.[Jie-Bo],
Generalized Multiclass AdaBoost and Its Applications to Multimedia
Classification,
SLAM06(113).
IEEE DOI
0609
Extend AdaBoost from 2 classes to many.
See also Mining Compositional Features From GPS and Visual Cues for Event Recognition in Photo Collections.
BibRef
Deng, W.H.[Wei-Hong],
Hu, J.[Jiani],
Guo, J.[Jun],
Ada-Boost Algorithm, Classification, Naïve-,
ICPR06(II: 699-702).
IEEE DOI
0609
Robust Fisher Linear Discriminant for dimensionality reduction
BibRef
Li, W.L.[Wei-Liang],
Gao, X.[Xiang],
Zhu, Y.[Ying],
Ramesh, V.[Visvanathan],
Boult, T.E.[Terrance E.],
On the Small Sample Performance of Boosted Classifiers,
CVPR05(II: 574-581).
IEEE DOI
0507
BibRef
Lyu, S.W.[Si-Wei],
Infomax Boosting,
CVPR05(I: 533-538).
IEEE DOI
0507
BibRef
Bar-Hillel, A.[Aharon],
Hertz, T.[Tomer],
Weinshall, D.[Daphna],
Object Class Recognition by Boosting a Part-Based Model,
CVPR05(I: 702-709).
IEEE DOI
0507
BibRef
Huang, X.S.[Xiang-Sheng],
Li, S.Z.[Stan Z.],
Wang, Y.S.[Yang-Sheng],
Jensen-Shannon Boosting Learning for Object Recognition,
CVPR05(II: 144-149).
IEEE DOI
0507
BibRef
Wolf, L.B.[Lior B.],
Martin, I.[Ian],
Robust Boosting for Learning from Few Examples,
CVPR05(I: 359-364).
IEEE DOI
0507
BibRef
Tu, Z.W.[Zhuo-Wen],
Learning Generative Models via Discriminative Approaches,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Earlier:
Probabilistic Boosting-Tree: Learning Discriminative Models for
Classification, Recognition, and Clustering,
ICCV05(II: 1589-1596).
IEEE DOI
0510
BibRef
Skarbek, W.[Wladyslaw],
Kucharski, K.[Krzysztof],
Image Object Localization by AdaBoost Classifier,
ICIAR04(I: 511-518).
Springer DOI
0409
BibRef
Howe, N.R.[Nicholas R.],
Ricketson, A.[Amanda],
Improving the Boosted Correlogram,
ICIAR04(I: 803-810).
Springer DOI
0409
BibRef
He, J.R.[Jing-Rui],
Li, M.J.[Ming-Jing],
Zhang, H.J.[Hong-Jiang],
Zhang, C.S.[Chang-Shui],
W-boost and its application to web image classification,
ICPR04(I: 148-151).
IEEE DOI
0409
BibRef
Jiang, J.L.,
Loe, K.F.[Kia-Fock],
S-AdaBoost and Pattern Detection in Complex Environment,
CVPR03(I: 413-418).
IEEE DOI
0307
divide and conquer principle.
Eliminate outliers.
BibRef
Pavlovic, V.,
Model-based motion clustering using boosted mixture modeling,
CVPR04(I: 811-818).
IEEE DOI
0408
BibRef
Liu, C.[Ce],
Shum, H.Y.[Hueng-Yeung],
Kullback-Leibler boosting,
CVPR03(I: 587-594).
IEEE DOI
0307
BibRef
Pavlov, D.,
Mao, J.,
Dom, B.,
Scaling-up Support Vector Machines Using Boosting Algorithm,
ICPR00(Vol II: 219-222).
IEEE DOI
0009
BibRef
Eibl, G.,
Pfeiffer, K.,
How to Make AdaBoost.M1 Work for Weak Base Classifiers by
Changing Only One Line of the Code,
Conference13th European Conference on Machine Learning, 2002, pp. 72-83.
BibRef
0200
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Structural, Syntactic Methods for Image Analysis .