Biggio, B.[Battista],
Roli, F.[Fabio],
Wild Patterns: Ten Years After the Rise of Adversarial Machine
Learning,
PR(84), 2018, pp. 317-331.
Elsevier DOI
1809
Award, Pattern Recognition. Adversarial machine learning, Evasion attacks,
Poisoning attacks, Adversarial examples, Secure learning, Deep learning
BibRef
Croce, F.[Francesco],
Rauber, J.[Jonas],
Hein, M.[Matthias],
Scaling up the Randomized Gradient-Free Adversarial Attack Reveals
Overestimation of Robustness Using Established Attacks,
IJCV(128), No. 4, April 2020, pp. 1028-1046.
Springer DOI
2004
BibRef
Earlier: A1, A3, Only:
A Randomized Gradient-Free Attack on ReLU Networks,
GCPR18(215-227).
Springer DOI
1905
Award, GCPR, HM.
BibRef
Aberdam, A.[Aviad],
Golts, A.[Alona],
Elad, M.[Michael],
Ada-LISTA: Learned Solvers Adaptive to Varying Models,
PAMI(44), No. 12, December 2022, pp. 9222-9235.
IEEE DOI
2212
Dictionaries, Adaptation models, Training, Convergence, Encoding,
Sparse matrices, Numerical models, Sparse coding, learned solvers,
deep learning modeling
BibRef
Ozbulak, U.[Utku],
Gasparyan, M.[Manvel],
de Neve, W.[Wesley],
van Messem, A.[Arnout],
Perturbation analysis of gradient-based adversarial attacks,
PRL(135), 2020, pp. 313-320.
Elsevier DOI
2006
Adversarial attacks, Adversarial examples, Deep learning, Perturbation analysis
BibRef
Wan, S.[Sheng],
Wu, T.Y.[Tung-Yu],
Hsu, H.W.[Heng-Wei],
Wong, W.H.[Wing Hung],
Lee, C.Y.[Chen-Yi],
Feature Consistency Training With JPEG Compressed Images,
CirSysVideo(30), No. 12, December 2020, pp. 4769-4780.
IEEE DOI
2012
Deep neural networks are vulnerable to JPEG compression artifacts.
Image coding, Distortion, Training, Transform coding, Robustness,
Quantization (signal), Feature extraction, Compression artifacts,
classification robustness
BibRef
Che, Z.,
Borji, A.,
Zhai, G.,
Ling, S.,
Li, J.,
Tian, Y.,
Guo, G.,
Le Callet, P.,
Adversarial Attack Against Deep Saliency Models Powered by
Non-Redundant Priors,
IP(30), 2021, pp. 1973-1988.
IEEE DOI
2101
Computational modeling, Perturbation methods, Redundancy,
Task analysis, Visualization, Robustness, Neural networks,
gradient estimation
BibRef
Xu, Y.,
Du, B.,
Zhang, L.,
Assessing the Threat of Adversarial Examples on Deep Neural Networks
for Remote Sensing Scene Classification: Attacks and Defenses,
GeoRS(59), No. 2, February 2021, pp. 1604-1617.
IEEE DOI
2101
Remote sensing, Neural networks, Deep learning,
Perturbation methods, Feature extraction, Task analysis,
scene classification
BibRef
Xiao, Y.[Yatie],
Pun, C.M.[Chi-Man],
Liu, B.[Bo],
Fooling deep neural detection networks with adaptive object-oriented
adversarial perturbation,
PR(115), 2021, pp. 107903.
Elsevier DOI
2104
Object detection, Adversarial attack, Adaptive object-oriented perturbation
BibRef
Yamanaka, K.[Koichiro],
Takahashi, K.[Keita],
Fujii, T.[Toshiaki],
Matsumoto, R.[Ryuraroh],
Simultaneous Attack on CNN-Based Monocular Depth Estimation and Optical
Flow Estimation,
IEICE(E104-D), No. 5, May 2021, pp. 785-788.
WWW Link.
2105
BibRef
Lin, H.Y.[Hsiao-Ying],
Biggio, B.[Battista],
Adversarial Machine Learning: Attacks From Laboratories to the Real
World,
Computer(54), No. 5, May 2021, pp. 56-60.
IEEE DOI
2106
Adversarial machine learning, Data models, Training data,
Biological system modeling
BibRef
Wang, B.[Bo],
Zhao, M.[Mengnan],
Wang, W.[Wei],
Wei, F.[Fei],
Qin, Z.[Zhan],
Ren, K.[Kui],
Are You Confident That You Have Successfully Generated Adversarial
Examples?,
CirSysVideo(31), No. 6, June 2021, pp. 2089-2099.
IEEE DOI
2106
Perturbation methods, Iterative methods, Computational modeling,
Neural networks, Security, Training, Robustness,
buffer
BibRef
Tang, S.L.[San-Li],
Huang, X.L.[Xiao-Lin],
Chen, M.J.[Ming-Jian],
Sun, C.J.[Cheng-Jin],
Yang, J.[Jie],
Adversarial Attack Type I: Cheat Classifiers by Significant Changes,
PAMI(43), No. 3, March 2021, pp. 1100-1109.
IEEE DOI
2102
Neural networks, Training, Aerospace electronics,
Toy manufacturing industry, Sun, Face recognition, Task analysis,
supervised variational autoencoder
BibRef
Wang, L.[Lin],
Yoon, K.J.[Kuk-Jin],
PSAT-GAN: Efficient Adversarial Attacks Against Holistic Scene
Understanding,
IP(30), 2021, pp. 7541-7553.
IEEE DOI
2109
Task analysis, Perturbation methods, Visualization, Pipelines,
Autonomous vehicles, Semantics, Generative adversarial networks,
generative model
BibRef
Mohamad-Nezami, O.[Omid],
Chaturvedi, A.[Akshay],
Dras, M.[Mark],
Garain, U.[Utpal],
Pick-Object-Attack:
Type-specific adversarial attack for object detection,
CVIU(211), 2021, pp. 103257.
Elsevier DOI
2110
Adversarial attack, Faster R-CNN, Deep learning,
Image captioning
BibRef
Qin, C.[Chuan],
Wu, L.[Liang],
Zhang, X.P.[Xin-Peng],
Feng, G.R.[Guo-Rui],
Efficient Non-Targeted Attack for Deep Hashing Based Image Retrieval,
SPLetters(28), 2021, pp. 1893-1897.
IEEE DOI
2110
Codes, Perturbation methods, Hamming distance, Image retrieval,
Training, Feature extraction, Databases, Adversarial example,
image retrieval
BibRef
Du, C.[Chuan],
Zhang, L.[Lei],
Adversarial Attack for SAR Target Recognition Based on
UNet-Generative Adversarial Network,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, H.J.[Hong-Jun],
Li, G.B.[Guan-Bin],
Liu, X.B.[Xiao-Bai],
Lin, L.[Liang],
A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning,
PAMI(44), No. 4, April 2022, pp. 1725-1737.
IEEE DOI
2203
Training, Monte Carlo methods, Space exploration, Robustness,
Markov processes, Cats, Iterative methods, Adversarial example,
robustness and safety of machine learning
BibRef
Chen, S.[Sizhe],
He, Z.B.[Zheng-Bao],
Sun, C.J.[Cheng-Jin],
Yang, J.[Jie],
Huang, X.L.[Xiao-Lin],
Universal Adversarial Attack on Attention and the Resulting Dataset
DAmageNet,
PAMI(44), No. 4, April 2022, pp. 2188-2197.
IEEE DOI
2203
Heating systems, Training, Neural networks, Perturbation methods,
Semantics, Visualization, Error analysis, Adversarial attack, DAmageNet
BibRef
Kim, J.[Jinsub],
On Optimality of Deterministic Rules in Adversarial Bayesian
Detection,
SPLetters(29), 2022, pp. 757-761.
IEEE DOI
2204
Bayes methods, Games, Zirconium, Markov processes, Detectors,
Uncertainty, Training data, Adversarial Bayesian detection,
input data falsification
BibRef
Sun, X.X.[Xu-Xiang],
Cheng, G.[Gong],
Pei, L.[Lei],
Han, J.W.[Jun-Wei],
Query-efficient decision-based attack via sampling distribution
reshaping,
PR(129), 2022, pp. 108728.
Elsevier DOI
2206
Adversarial examples, Decision-based attack,
Image classification, Normal vector estimation, Distribution reshaping
BibRef
Chen, S.M.[Shan-Mou],
Zhang, Q.Q.[Qiang-Qiang],
Lin, D.Y.[Dong-Yuan],
Wang, S.Y.[Shi-Yuan],
A Class of Nonlinear Kalman Filters Under a Generalized Measurement
Model With False Data Injection Attacks,
SPLetters(29), 2022, pp. 1187-1191.
IEEE DOI
2206
Additives, Kalman filters, Data models, Noise measurement,
Time measurement, Numerical models, Loss measurement, Cyber attack,
nonlinear Kalman filtering
BibRef
Chen, M.[Mantun],
Wang, Y.J.[Yong-Jun],
Zhu, X.T.[Xia-Tian],
Few-shot Website Fingerprinting attack with Meta-Bias Learning,
PR(130), 2022, pp. 108739.
Elsevier DOI
2206
User privacy, Internet anonymity, Data traffic,
Website fingerprinting, Deep learning, Neural network, Parameter factorization
BibRef
Zhang, Z.[Zheng],
Wang, X.G.[Xun-Guang],
Lu, G.M.[Guang-Ming],
Shen, F.M.[Fu-Min],
Zhu, L.[Lei],
Targeted Attack of Deep Hashing Via Prototype-Supervised Adversarial
Networks,
MultMed(24), 2022, pp. 3392-3404.
IEEE DOI
2207
Semantics, Prototypes, Generators, Optimization, Cats, Binary codes,
Task analysis, Adversarial example, targeted attack, deep hashing,
generative adversarial network
BibRef
Wang, T.S.[Tian-Shi],
Zhu, L.[Lei],
Zhang, Z.[Zheng],
Zhang, H.X.[Hua-Xiang],
Han, J.W.[Jun-Wei],
Targeted Adversarial Attack Against Deep Cross-Modal Hashing
Retrieval,
CirSysVideo(33), No. 10, October 2023, pp. 6159-6172.
IEEE DOI Code:
WWW Link.
2310
BibRef
Wang, X.G.[Xun-Guang],
Zhang, Z.[Zheng],
Wu, B.Y.[Bao-Yuan],
Shen, F.M.[Fu-Min],
Lu, G.M.[Guang-Ming],
Prototype-supervised Adversarial Network for Targeted Attack of Deep
Hashing,
CVPR21(16352-16361)
IEEE DOI
2111
Knowledge engineering, Codes, Hamming distance,
Semantics, Image retrieval, Prototypes
BibRef
He, Z.[Ziwen],
Wang, W.[Wei],
Dong, J.[Jing],
Tan, T.N.[Tie-Niu],
Revisiting ensemble adversarial attack,
SP:IC(107), 2022, pp. 116747.
Elsevier DOI
2208
Adversarial attack, Ensemble strategies,
Gradient-based methods, Deep neural networks, Image classification
BibRef
Akhtar, N.[Naveed],
Jalwana, M.A.A.K.[Mohammad A. A. K.],
Bennamoun, M.[Mohammed],
Mian, A.[Ajmal],
Attack to Fool and Explain Deep Networks,
PAMI(44), No. 10, October 2022, pp. 5980-5995.
IEEE DOI
2209
Perturbation methods, Computational modeling, Visualization,
Predictive models, Data models, Tools, Task analysis,
explainable AI
BibRef
Ma, K.[Ke],
Xu, Q.Q.[Qian-Qian],
Zeng, J.S.[Jin-Shan],
Cao, X.C.[Xiao-Chun],
Huang, Q.M.[Qing-Ming],
Poisoning Attack Against Estimating From Pairwise Comparisons,
PAMI(44), No. 10, October 2022, pp. 6393-6408.
IEEE DOI
2209
Optimization, Heuristic algorithms, Sports, Voting, Uncertainty, Games,
Data models, Adversarial learning, poisoning attack,
distributionally robust optimization
BibRef
Deng, Y.P.[Ying-Peng],
Karam, L.J.[Lina J.],
Frequency-Tuned Universal Adversarial Attacks on Texture Recognition,
IP(31), 2022, pp. 5856-5868.
IEEE DOI
2209
Perturbation methods, Frequency-domain analysis, Training,
Feature extraction, Image recognition, Generators,
just-noticeable difference (JND)
BibRef
Giulivi, L.[Loris],
Jere, M.[Malhar],
Rossi, L.[Loris],
Koushanfar, F.[Farinaz],
Ciocarlie, G.[Gabriela],
Hitaj, B.[Briland],
Boracchi, G.[Giacomo],
Adversarial scratches: Deployable attacks to CNN classifiers,
PR(133), 2023, pp. 108985.
Elsevier DOI
2210
Adversarial perturbations, Adversarial attacks, Deep learning,
Convolutional neural networks, Bézier curves
BibRef
Lin, X.X.[Xi-Xun],
Zhou, C.[Chuan],
Wu, J.[Jia],
Yang, H.[Hong],
Wang, H.B.[Hai-Bo],
Cao, Y.[Yanan],
Wang, B.[Bin],
Exploratory Adversarial Attacks on Graph Neural Networks for
Semi-Supervised Node Classification,
PR(133), 2023, pp. 109042.
Elsevier DOI
2210
Gradient-based attacks, Maximal gradient,
Graph neural networks, Semi-supervised node classification
BibRef
Zhao, C.L.[Cheng-Long],
Ni, B.B.[Bing-Bing],
Mei, S.B.[Shi-Bin],
Explore Adversarial Attack via Black Box Variational Inference,
SPLetters(29), 2022, pp. 2088-2092.
IEEE DOI
2211
Monte Carlo methods, Computational modeling,
Probability distribution, Gaussian distribution, Bayes methods,
Bayesian inference
BibRef
Bai, T.[Tao],
Wang, H.[Hao],
Wen, B.[Bihan],
Targeted Universal Adversarial Examples for Remote Sensing,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, Y.C.[Yi-Chuang],
Zhang, Y.[Yu],
Qi, J.H.[Jia-Hao],
Bin, K.C.[Kang-Cheng],
Wen, H.[Hao],
Tong, X.Q.[Xun-Qian],
Zhong, P.[Ping],
Adversarial Patch Attack on Multi-Scale Object Detection for UAV
Remote Sensing Images,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Agarwal, A.[Akshay],
Ratha, N.[Nalini],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Crafting Adversarial Perturbations via Transformed Image Component
Swapping,
IP(31), 2022, pp. 7338-7349.
IEEE DOI
2212
Perturbation methods, Databases, Hybrid fiber coaxial cables,
Training, Kernel, Image resolution, Additives, Image components, wavelet
BibRef
Kazemi, E.[Ehsan],
Kerdreux, T.[Thomas],
Wang, L.Q.[Li-Qiang],
Minimally Distorted Structured Adversarial Attacks,
IJCV(131), No. 1, January 2023, pp. 160-176.
Springer DOI
2301
BibRef
Yuan, H.J.[Hao-Jie],
Chu, Q.[Qi],
Zhu, F.[Feng],
Zhao, R.[Rui],
Liu, B.[Bin],
Yu, N.H.[Neng-Hai],
AutoMA: Towards Automatic Model Augmentation for Transferable
Adversarial Attacks,
MultMed(25), 2023, pp. 203-213.
IEEE DOI
2301
Transforms, Computational modeling, Training, Perturbation methods, Distortion,
Data models, Image color analysis, Adversarial attack, transferability
BibRef
Wei, X.X.[Xing-Xing],
Guo, Y.[Ying],
Yu, J.[Jie],
Adversarial Sticker: A Stealthy Attack Method in the Physical World,
PAMI(45), No. 3, March 2023, pp. 2711-2725.
IEEE DOI
2302
Face recognition, Perturbation methods, Task analysis,
Image retrieval, Image recognition, Adaptation models, TV,
physical world
BibRef
Guo, Y.[Yiwen],
Li, Q.Z.[Qi-Zhang],
Zuo, W.M.[Wang-Meng],
Chen, H.[Hao],
An Intermediate-Level Attack Framework on the Basis of Linear
Regression,
PAMI(45), No. 3, March 2023, pp. 2726-2735.
IEEE DOI
2302
Linear regression, Computer science, Computational modeling,
Support vector machines, Feature extraction, Symbols, robustness
BibRef
Qin, C.[Chuan],
Gao, S.Y.[Sheng-Yan],
Zhang, X.P.[Xin-Peng],
Feng, G.R.[Guo-Rui],
CADW: CGAN-Based Attack on Deep Robust Image Watermarking,
MultMedMag(30), No. 1, January 2023, pp. 28-35.
IEEE DOI
2305
Watermarking, Copyright protection, Generators, Robustness,
Data models, Visualization, Generative adversarial networks,
Deep Learning
BibRef
Lin, G.Y.[Geng-You],
Pan, Z.S.[Zhi-Song],
Zhou, X.Y.[Xing-Yu],
Duan, Y.[Yexin],
Bai, W.[Wei],
Zhan, D.[Dazhi],
Zhu, L.[Leqian],
Zhao, G.[Gaoqiang],
Li, T.[Tao],
Boosting Adversarial Transferability with Shallow-Feature Attack on
SAR Images,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Sun, X.X.[Xu-Xiang],
Cheng, G.[Gong],
Li, H.[Hongda],
Pei, L.[Lei],
Han, J.W.[Jun-Wei],
On Single-Model Transferable Targeted Attacks:
A Closer Look at Decision-Level Optimization,
IP(32), 2023, pp. 2972-2984.
IEEE DOI
2306
Optimization, Adversarial machine learning, Closed box, Sun,
Measurement, Linear programming, Tuning, Adversarial attacks,
balanced logit loss
BibRef
Pan, J.H.[Jian-Hong],
Foo, L.G.[Lin Geng],
Zheng, Q.C.[Qi-Chen],
Fan, Z.P.[Zhi-Peng],
Rahmani, H.[Hossein],
Ke, Q.H.[Qiu-Hong],
Liu, J.[Jun],
GradMDM: Adversarial Attack on Dynamic Networks,
PAMI(45), No. 9, September 2023, pp. 11374-11381.
IEEE DOI
2309
BibRef
Earlier: A1, A3, A4, A5, A6, A7, Only:
GradAuto: Energy-Oriented Attack on Dynamic Neural Networks,
ECCV22(IV:637-653).
Springer DOI
2211
BibRef
Bai, J.W.[Jia-Wang],
Wu, B.Y.[Bao-Yuan],
Li, Z.F.[Zhi-Feng],
Xia, S.T.[Shu-Tao],
Versatile Weight Attack via Flipping Limited Bits,
PAMI(45), No. 11, November 2023, pp. 13653-13665.
IEEE DOI
2310
BibRef
Zhang, S.H.[Shi-Hui],
Zuo, D.X.[Dong-Xu],
Yang, Y.L.[Yong-Liang],
Zhang, X.W.[Xiao-Wei],
A Transferable Adversarial Belief Attack With Salient Region
Perturbation Restriction,
MultMed(25), 2023, pp. 4296-4306.
IEEE DOI
2310
BibRef
Liang, X.Y.[Xiao-Yu],
Qian, Y.[Yaguan],
Huang, J.C.[Jian-Chang],
Ling, X.[Xiang],
Wang, B.[Bin],
Wu, C.M.[Chun-Ming],
Swaileh, W.[Wassim],
Towards desirable decision boundary by Moderate-Margin Adversarial
Training,
PRL(173), 2023, pp. 30-37.
Elsevier DOI
2310
Adversarial training, Adversarial attack, Trade-off, Decision boundary
BibRef
Zheng, S.J.[Shi-Jun],
Liu, W.Q.[Wei-Quan],
Shen, S.Q.[Si-Qi],
Zang, Y.[Yu],
Wen, C.[Chenglu],
Cheng, M.[Ming],
Wang, C.[Cheng],
Adaptive local adversarial attacks on 3D point clouds,
PR(144), 2023, pp. 109825.
Elsevier DOI
2310
Point clouds, Adversarial attack, Salient regions, Adversarial examples
BibRef
Li, Y.[Yang],
Pan, Q.[Quan],
Feng, Z.W.[Zhao-Wen],
Cambria, E.[Erik],
Few pixels attacks with generative model,
PR(144), 2023, pp. 109849.
Elsevier DOI
2310
Neural network vulnerability, Adversarial attack,
Few pixels attacks, Generative attack
BibRef
Xiao, Y.[Yatie],
Zhou, J.Z.[Ji-Zhe],
Chen, K.Y.[Kong-Yang],
Liu, Z.B.[Zhen-Bang],
Revisiting the transferability of adversarial examples via
source-agnostic adversarial feature inducing method,
PR(144), 2023, pp. 109828.
Elsevier DOI
2310
Adversarial attack, Transferability, Feature inducing, Diversity
BibRef
Mao, Z.S.[Zhong-Shu],
Lu, Y.Q.[Yi-Qin],
Cheng, Z.[Zhe],
Shen, X.[Xiong],
Enhancing transferability of adversarial examples with pixel-level
scale variation,
SP:IC(118), 2023, pp. 117020.
Elsevier DOI
2310
Adversarial example, Transferability, Black box,
Input transformation, Pixel level
BibRef
Sun, J.L.[Jia-Liang],
Yao, W.[Wen],
Jiang, T.[Tingsong],
Chen, X.Q.[Xiao-Qian],
Efficient search of comprehensively robust neural architectures via
multi-fidelity evaluation,
PR(146), 2024, pp. 110038.
Elsevier DOI
2311
Model robustness, Adversarial attacks,
Neural architecture search, Surrogate model
BibRef
Mumcu, F.[Furkan],
Yilmaz, Y.[Yasin],
Sequential architecture-agnostic black-box attack design and analysis,
PR(147), 2024, pp. 110066.
Elsevier DOI
2312
Adversarial machine learning, Black-box attacks,
Transferability of attacks, Vision transformers, Sequential hypothesis testing
BibRef
Chen, T.[Tong],
Ma, Z.[Zhan],
Toward Robust Neural Image Compression: Adversarial Attack and Model
Finetuning,
CirSysVideo(33), No. 12, December 2023, pp. 7842-7856.
IEEE DOI Code:
WWW Link.
2312
BibRef
Wan, C.[Chen],
Huang, F.[Fangjun],
Zhao, X.F.[Xian-Feng],
Average Gradient-Based Adversarial Attack,
MultMed(25), 2023, pp. 9572-9585.
IEEE DOI
2312
BibRef
Akers, M.[Matthew],
Barton, A.[Armon],
Forming Adversarial Example Attacks Against Deep Neural Networks With
Reinforcement Learning,
Computer(57), No. 1, January 2024, pp. 88-99.
IEEE DOI
2401
BibRef
Wang, D.H.[Dong-Hua],
Yao, W.[Wen],
Jiang, T.[Tingsong],
Chen, X.Q.[Xiao-Qian],
Improving Transferability of Universal Adversarial Perturbation With
Feature Disruption,
IP(33), 2024, pp. 722-737.
IEEE DOI
2402
Training, Perturbation methods, Closed box, Task analysis, Glass box,
Data models, Linear programming,
transferability of UAP
BibRef
Wei, X.X.[Xing-Xing],
Zhao, S.[Shiji],
Boosting Adversarial Transferability With Learnable Patch-Wise Masks,
MultMed(26), 2024, pp. 3778-3787.
IEEE DOI
2402
Perturbation methods, Adaptation models, Visualization, Training,
Predictive models, Iterative methods, Statistics, DNNs,
Adversarial Transferability
BibRef
Li, J.[Jing],
Wei, X.M.[Xiao-Meng],
Research on efficient detection network method for remote sensing
images based on self attention mechanism,
IVC(142), 2024, pp. 104884.
Elsevier DOI
2402
Remote sensing images, Image detection,
Faster R-CNN, Self attention mechanism, End-to-end
BibRef
Wei, X.X.[Xing-Xing],
Huang, Y.[Yao],
Sun, Y.T.[Yi-Tong],
Yu, J.[Jie],
Unified Adversarial Patch for Visible-Infrared Cross-Modal Attacks in
the Physical World,
PAMI(46), No. 4, April 2024, pp. 2348-2363.
IEEE DOI
2403
BibRef
Earlier:
Unified Adversarial Patch for Cross-modal Attacks in the Physical
World,
ICCV23(4422-4431)
IEEE DOI
2401
Shape, Detectors, Pedestrians, Task analysis, Deformation,
Infrared sensors, Object detection, Adversarial examples, visible-infrared
BibRef
Ran, Y.[Yu],
Wang, W.J.[Wei-Jia],
Li, M.J.[Ming-Jie],
Li, L.C.[Lin-Cheng],
Wang, Y.G.[Yuan-Gen],
Li, J.[Jin],
Cross-Shaped Adversarial Patch Attack,
CirSysVideo(34), No. 4, April 2024, pp. 2289-2303.
IEEE DOI
2404
Closed box, Perturbation methods, Glass box, Shape,
Image segmentation, Computational modeling, Predictive models,
cross-shaped patch
BibRef
Liu, T.F.[Tai-Feng],
Yang, C.[Chao],
Liu, X.J.[Xin-Jing],
Han, R.D.[Rui-Dong],
Ma, J.F.[Jian-Feng],
RPAU: Fooling the Eyes of UAVs via Physical Adversarial Patches,
ITS(25), No. 3, March 2024, pp. 2586-2598.
IEEE DOI
2405
Autonomous aerial vehicles, Navigation, Security, Perturbation methods,
Target tracking, Deep learning, Cameras, adversarial attack
BibRef
Yuan, Z.[Zheng],
Zhang, J.[Jie],
Jiang, Z.Y.[Zhao-Yan],
Li, L.L.[Liang-Liang],
Shan, S.G.[Shi-Guang],
Adaptive Perturbation for Adversarial Attack,
PAMI(46), No. 8, August 2024, pp. 5663-5676.
IEEE DOI
2407
Perturbation methods, Iterative methods, Adaptation models,
Generators, Closed box, Security, Training, Adversarial attack,
adaptive perturbation
BibRef
Tao, A.[An],
Duan, Y.[Yueqi],
Wang, Y.Q.[Ying-Qi],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Dynamics-Aware Adversarial Attack of Adaptive Neural Networks,
CirSysVideo(34), No. 7, July 2024, pp. 5505-5518.
IEEE DOI Code:
WWW Link.
2407
Adaptive systems, Neural networks,
Convolution, Network architecture, Point cloud compression, Lead,
leaded gradient method
BibRef
Li, X.[Xin],
Zhu, G.P.[Guo-Pu],
Wang, S.[Shen],
Zhou, Y.C.[Yi-Cong],
Zhang, X.P.[Xin-Peng],
Deep Reverse Attack on SIFT Features With a Coarse-to-Fine GAN Model,
CirSysVideo(34), No. 7, July 2024, pp. 6391-6402.
IEEE DOI Code:
WWW Link.
2407
Image reconstruction, Generative adversarial networks,
Feature extraction, Generators,
generative adversarial network (GAN)
BibRef
Liu, J.W.[Jia-Wei],
Gong, X.[Xun],
Wang, T.T.[Ting-Ting],
Hu, Y.F.[Yun-Feng],
Chen, H.[Hong],
A proxy-data-based hierarchical adversarial patch generation method,
CVIU(246), 2024, pp. 104066.
Elsevier DOI
2408
Adversarial patch, Data privacy, Physical adversarial attack, Proxy dataset
BibRef
Dubinski, J.[Jan],
Kowalczuk, A.[Antoni],
Pawlak, S.[Stanislaw],
Rokita, P.[Przemyslaw],
Trzcinski, T.[Tomasz],
Morawiecki, P.[Pawel],
Towards More Realistic Membership Inference Attacks on Large
Diffusion Models,
WACV24(4848-4857)
IEEE DOI
2404
Training, Privacy, Data privacy, Computational modeling, Closed box,
Reliability, Algorithms, Explainable, fair, accountable,
ethical computer vision
BibRef
Cohen, G.[Gilad],
Giryes, R.[Raja],
Membership Inference Attack Using Self Influence Functions,
WACV24(4880-4889)
IEEE DOI Code:
WWW Link.
2404
Training, Differential privacy, Estimation, Computer architecture,
Machine learning, Predictive models, Data augmentation, Algorithms,
ethical computer vision
BibRef
Ledda, E.[Emanuele],
Angioni, D.[Daniele],
Piras, G.[Giorgio],
Fumera, G.[Giorgio],
Biggio, B.[Battista],
Roli, F.[Fabio],
Adversarial Attacks Against Uncertainty Quantification,
Uncertainty23(4601-4610)
IEEE DOI
2401
BibRef
Tal, O.B.[Ofir Bar],
Haviv, A.[Adi],
Bermano, A.H.[Amit H.],
OMG-Attack: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks,
AROW23(3698-3708)
IEEE DOI
2401
BibRef
Ambati, R.[Rahul],
Akhtar, N.[Naveed],
Mian, A.[Ajmal],
Rawat, Y.S.[Yogesh S.],
PRAT: PRofiling Adversarial aTtacks,
AROW23(3669-3678)
IEEE DOI Code:
WWW Link.
2401
BibRef
Ko, M.[Myeongseob],
Jin, M.[Ming],
Wang, C.G.[Chen-Guang],
Jia, R.[Ruoxi],
Practical Membership Inference Attacks Against Large-Scale
Multi-Modal Models: A Pilot Study,
ICCV23(4848-4858)
IEEE DOI Code:
WWW Link.
2401
BibRef
Dong, J.S.[Jian-Shuo],
Qiu, H.[Han],
Li, Y.M.[Yi-Ming],
Zhang, T.W.[Tian-Wei],
Li, Y.J.[Yuan-Jie],
Lai, Z.[Zeqi],
Zhang, C.[Chao],
Xia, S.T.[Shu-Tao],
One-bit Flip is All You Need: When Bit-flip Attack Meets Model
Training,
ICCV23(4665-4675)
IEEE DOI Code:
WWW Link.
2401
BibRef
Ma, W.S.[Wen-Shuo],
Li, Y.D.[Yi-Dong],
Jia, X.F.[Xiao-Feng],
Xu, W.[Wei],
Transferable Adversarial Attack for Both Vision Transformers and
Convolutional Networks via Momentum Integrated Gradients,
ICCV23(4607-4616)
IEEE DOI
2401
BibRef
Chen, X.Q.[Xin-Quan],
Gao, X.T.[Xi-Tong],
Zhao, J.J.[Juan-Juan],
Ye, K.J.[Ke-Jiang],
Xu, C.Z.[Cheng-Zhong],
AdvDiffuser: Natural Adversarial Example Synthesis with Diffusion
Models,
ICCV23(4539-4549)
IEEE DOI
2401
BibRef
Zhou, T.[Tao],
Ye, Q.[Qi],
Luo, W.H.[Wen-Han],
Zhang, K.[Kaihao],
Shi, Z.G.[Zhi-Guo],
Chen, J.M.[Ji-Ming],
F&F Attack: Adversarial Attack against Multiple Object Trackers
by Inducing False Negatives and False Positives,
ICCV23(4550-4560)
IEEE DOI
2401
BibRef
Qian, Y.[Yaguan],
He, S.[Shuke],
Zhao, C.Y.[Chen-Yu],
Sha, J.Q.[Jia-Qiang],
Wang, W.[Wei],
Wang, B.[Bin],
LEA2: A Lightweight Ensemble Adversarial Attack via Non-overlapping
Vulnerable Frequency Regions,
ICCV23(4487-4498)
IEEE DOI
2401
BibRef
Maho, T.[Thibault],
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Furon, T.[Teddy],
How to choose your best allies for a transferable attack?,
ICCV23(4519-4528)
IEEE DOI
2401
BibRef
Wang, D.H.[Dong-Hua],
Yao, W.[Wen],
Jiang, T.[Tingsong],
Li, C.[Chao],
Chen, X.Q.[Xiao-Qian],
RFLA:
A Stealthy Reflected Light Adversarial Attack in the Physical World,
ICCV23(4432-4442)
IEEE DOI
2401
BibRef
Zhou, Z.Q.[Zi-Qi],
Hu, S.[Shengshan],
Zhao, R.Z.[Rui-Zhi],
Wang, Q.[Qian],
Zhang, L.Y.[Leo Yu],
Hou, J.H.[Jun-Hui],
Jin, H.[Hai],
Downstream-agnostic Adversarial Examples,
ICCV23(4322-4332)
IEEE DOI Code:
WWW Link.
2401
BibRef
Kim, H.S.[Hee-Seon],
Son, M.J.[Min-Ji],
Kim, M.[Minbeom],
Kwon, M.J.[Myung-Joon],
Kim, C.[Changick],
Breaking Temporal Consistency: Generating Video Universal Adversarial
Perturbations Using Image Models,
ICCV23(4302-4311)
IEEE DOI
2401
BibRef
Stolik, T.[Tomer],
Lang, I.[Itai],
Avidan, S.[Shai],
SAGA: Spectral Adversarial Geometric Attack on 3D Meshes,
ICCV23(4261-4271)
IEEE DOI
2401
BibRef
Zeng, H.[Hui],
Zhang, T.[Tong],
Chen, B.W.[Bi-Wei],
Peng, A.[Anjie],
Enhancing Targeted Transferability Via Suppressing High-Confidence
Labels,
ICIP23(3309-3313)
IEEE DOI Code:
WWW Link.
2312
BibRef
Kim, Y.[Yoonji],
Cho, S.J.[Seung-Ju],
Byun, J.[Junyoung],
Kwon, M.J.[Myung-Joon],
Kim, C.[Changick],
Improving Adversarial Transferability Via Feature Translation,
ICIP23(3359-3363)
IEEE DOI
2312
BibRef
Coscia, P.[Pasquale],
Genovese, A.[Angelo],
Scotti, F.[Fabio],
Piuri, V.[Vincenzo],
Adversarial Defect Synthesis for Industrial Products in Low Data
Regime,
ICIP23(1360-1364)
IEEE DOI
2312
BibRef
Lin, Z.[Zhi],
Peng, A.[Anjie],
Zeng, H.[Hui],
Wu, K.J.[Kai-Jun],
Yu, W.X.[Wen-Xin],
An Enhanced Neuron Attribution-Based Attack Via Pixel Dropping,
ICIP23(3439-3443)
IEEE DOI
2312
BibRef
Ma, M.Z.[Ming-Zhi],
Zheng, W.J.[Wei-Jie],
Lv, W.L.[Wan-Li],
Ren, L.[Lu],
Su, H.[Hang],
Yin, Z.X.[Zhao-Xia],
Multi-Label Adversarial Attack Based on Label Correlation,
ICIP23(2050-2054)
IEEE DOI
2312
BibRef
Wu, T.[Tao],
Luo, T.[Tie],
Wunsch, D.C.[Donald C.],
GNP Attack: Transferable Adversarial Examples Via Gradient Norm
Penalty,
ICIP23(3110-3114)
IEEE DOI
2312
BibRef
Sha, Z.[Zeyang],
He, X.L.[Xin-Lei],
Yu, N.[Ning],
Backes, M.[Michael],
Zhang, Y.[Yang],
Can't Steal? Cont-Steal! Contrastive Stealing Attacks Against Image
Encoders,
CVPR23(16373-16383)
IEEE DOI
2309
BibRef
Feng, W.W.[Wei-Wei],
Xu, N.[Nanqing],
Zhang, T.Z.[Tian-Zhu],
Zhang, Y.D.[Yong-Dong],
Dynamic Generative Targeted Attacks with Pattern Injection,
CVPR23(16404-16414)
IEEE DOI
2309
BibRef
Takahashi, H.[Hideaki],
Liu, J.J.[Jing-Jing],
Liu, Y.[Yang],
Breaching FedMD: Image Recovery via Paired-Logits Inversion Attack,
CVPR23(12198-12207)
IEEE DOI
2309
BibRef
Wei, Z.P.[Zhi-Peng],
Chen, J.J.[Jing-Jing],
Wu, Z.[Zuxuan],
Jiang, Y.G.[Yu-Gang],
Enhancing the Self-Universality for Transferable Targeted Attacks,
CVPR23(12281-12290)
IEEE DOI
2309
BibRef
Chen, W.X.[Wei-Xin],
Song, D.[Dawn],
Li, B.[Bo],
TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets,
CVPR23(4035-4044)
IEEE DOI
2309
BibRef
Zhuang, H.M.[Hao-Min],
Zhang, Y.H.[Yi-Hua],
Liu, S.[Sijia],
A Pilot Study of Query-Free Adversarial Attack against Stable
Diffusion,
AML23(2385-2392)
IEEE DOI
2309
BibRef
Brown, D.[Davis],
Kvinge, H.[Henry],
Making Corgis Important for Honeycomb Classification:
Adversarial Attacks on Concept-based Explainability Tools,
TAG-PRA23(620-627)
IEEE DOI
2309
BibRef
Shukla, N.[Nitish],
Banerjee, S.[Sudipta],
Generating Adversarial Attacks in the Latent Space,
GCV23(730-739)
IEEE DOI
2309
BibRef
Zhang, L.[Lili],
Wang, X.D.[Xiao-Dong],
Advfilter: Adversarial Example Generated by Perturbing Optical Path,
ACCVWS22(33-44).
Springer DOI
2307
BibRef
Koren, T.[Tom],
Talker, L.[Lior],
Dinerstein, M.[Michael],
Vitek, R.[Ran],
Consistent Semantic Attacks on Optical Flow,
ACCV22(VII:501-517).
Springer DOI
2307
BibRef
Wu, H.[Hao],
Wang, J.[Jinwei],
Zhang, J.W.[Jia-Wei],
Luo, X.Y.[Xiang-Yang],
Ma, B.[Bin],
Improving the Transferability of Adversarial Attacks Through Both Front
and Rear Vector Method,
IWDW22(83-97).
Springer DOI
2307
BibRef
Waseda, F.[Futa],
Nishikawa, S.[Sosuke],
Le, T.N.[Trung-Nghia],
Nguyen, H.H.[Huy H.],
Echizen, I.[Isao],
Closer Look at the Transferability of Adversarial Examples:
How They Fool Different Models Differently,
WACV23(1360-1368)
IEEE DOI
2302
Deep learning, Analytical models, Perturbation methods,
Neural networks, Predictive models,
ethical computer vision
BibRef
Aich, A.[Abhishek],
Li, S.[Shasha],
Song, C.[Chengyu],
Asif, M.S.[M. Salman],
Krishnamurthy, S.V.[Srikanth V.],
Roy-Chowdhury, A.K.[Amit K.],
Leveraging Local Patch Differences in Multi-Object Scenes for
Generative Adversarial Attacks,
WACV23(1308-1318)
IEEE DOI
2302
Perturbation methods, Computational modeling, Closed box,
Generators, Convolutional neural networks, Glass box,
adversarial attack and defense methods
BibRef
Shapira, A.[Avishag],
Zolfi, A.[Alon],
Demetrio, L.[Luca],
Biggio, B.[Battista],
Shabtai, A.[Asaf],
Phantom Sponges: Exploiting Non-Maximum Suppression to Attack Deep
Object Detectors,
WACV23(4560-4569)
IEEE DOI
2302
Perturbation methods, Pipelines, Phantoms, Detectors,
Object detection, Predictive models, Prediction algorithms,
adversarial attack and defense methods
BibRef
Tan, H.X.[Han-Xiao],
Kotthaus, H.[Helena],
Explainability-Aware One Point Attack for Point Cloud Neural Networks,
WACV23(4570-4579)
IEEE DOI
2302
Point cloud compression, Codes, Filtering, Computer network reliability,
Neural networks, Robustness, ethical computer vision
BibRef
Chen, C.C.[Chun-Chun],
Zhu, W.J.[Wen-Jie],
Peng, B.[Bo],
Lu, H.J.[Hui-Juan],
Towards Robust Community Detection via Extreme Adversarial Attacks,
ICPR22(2231-2237)
IEEE DOI
2212
Training, Perturbation methods, Image edge detection,
Heuristic algorithms, Complex networks, Robustness
BibRef
Tavallali, P.[Pooya],
Behzadan, V.[Vahid],
Alizadeh, A.[Azar],
Ranganath, A.[Aditya],
Singhal, M.[Mukesh],
Adversarial Label-Poisoning Attacks and Defense for General
Multi-Class Models Based on Synthetic Reduced Nearest Neighbor,
ICIP22(3717-3722)
IEEE DOI
2211
Training, Resistance, Analytical models,
Machine learning algorithms, Clustering algorithms, Machine Learning
BibRef
Lin, Z.[Zhi],
Peng, A.[Anjie],
Wei, R.[Rong],
Yu, W.X.[Wen-Xin],
Zeng, H.[Hui],
An Enhanced Transferable Adversarial Attack of Scale-Invariant
Methods,
ICIP22(3788-3792)
IEEE DOI
2211
Convolution, Convolutional neural networks,
convolution neural network, adversarial examples, transferability
BibRef
Ran, Y.[Yu],
Wang, Y.G.[Yuan-Gen],
Sign-OPT+: An Improved Sign Optimization Adversarial Attack,
ICIP22(461-465)
IEEE DOI
2211
Backtracking, Costs, Codes, Training data, Data models,
Complexity theory, adversarial example, binary search
BibRef
Wang, D.[Dan],
Lin, J.[Jiayu],
Wang, Y.G.[Yuan-Gen],
Query-Efficient Adversarial Attack Based On Latin Hypercube Sampling,
ICIP22(546-550)
IEEE DOI
2211
Codes, Barium, Estimation, Benchmark testing, Hypercubes,
adversarial attacks, boundary attacks, Latin Hypercube Sampling,
query efficiency
BibRef
Aneja, S.[Shivangi],
Markhasin, L.[Lev],
Nießner, M.[Matthias],
TAFIM: Targeted Adversarial Attacks Against Facial Image Manipulations,
ECCV22(XIV:58-75).
Springer DOI
2211
BibRef
Long, Y.Y.[Yu-Yang],
Zhang, Q.L.[Qi-Long],
Zeng, B.[Boheng],
Gao, L.L.[Lian-Li],
Liu, X.L.[Xiang-Long],
Zhang, J.[Jian],
Song, J.K.[Jing-Kuan],
Frequency Domain Model Augmentation for Adversarial Attack,
ECCV22(IV:549-566).
Springer DOI
2211
BibRef
Yuan, Z.[Zheng],
Zhang, J.[Jie],
Shan, S.G.[Shi-Guang],
Adaptive Image Transformations for Transfer-Based Adversarial Attack,
ECCV22(V:1-17).
Springer DOI
2211
BibRef
Cao, Y.L.[Yu-Long],
Xiao, C.W.[Chao-Wei],
Anandkumar, A.[Anima],
Xu, D.[Danfei],
Pavone, M.[Marco],
AdvDO: Realistic Adversarial Attacks for Trajectory Prediction,
ECCV22(V:36-52).
Springer DOI
2211
BibRef
Bai, J.W.[Jia-Wang],
Gao, K.F.[Kuo-Feng],
Gong, D.H.[Di-Hong],
Xia, S.T.[Shu-Tao],
Li, Z.F.[Zhi-Feng],
Liu, W.[Wei],
Hardly Perceptible Trojan Attack Against Neural Networks with Bit Flips,
ECCV22(V:104-121).
Springer DOI
2211
BibRef
Liu, G.[Ganlin],
Huang, X.W.[Xiao-Wei],
Yi, X.P.[Xin-Ping],
Adversarial Label Poisoning Attack on Graph Neural Networks via Label
Propagation,
ECCV22(V:227-243).
Springer DOI
2211
BibRef
Byun, J.[Junyoung],
Shim, K.[Kyujin],
Go, H.[Hyojun],
Kim, C.[Changick],
Hidden Conditional Adversarial Attacks,
ICIP22(1306-1310)
IEEE DOI
2211
Deep learning, Neural networks, Inspection, Controllability, Safety,
Reliability, Adversarial attack, Hidden condition
BibRef
Son, M.J.[Min-Ji],
Kwon, M.J.[Myung-Joon],
Kim, H.S.[Hee-Seon],
Byun, J.[Junyoung],
Cho, S.[Seungju],
Kim, C.[Changick],
Adaptive Warping Network for Transferable Adversarial Attacks,
ICIP22(3056-3060)
IEEE DOI
2211
Deep learning, Adaptation models, Adaptive systems,
Perturbation methods, Neural networks, Search problems, Warping
BibRef
Cao, X.Y.[Xiao-Yu],
Gong, N.Z.Q.[Neil Zhen-Qiang],
MPAF: Model Poisoning Attacks to Federated Learning based on Fake
Clients,
FedVision22(3395-3403)
IEEE DOI
2210
Training, Computational modeling, Production,
Collaborative work, Pattern recognition
BibRef
Xu, Q.L.[Qiu-Ling],
Tao, G.H.[Guan-Hong],
Zhang, X.Y.[Xiang-Yu],
Bounded Adversarial Attack on Deep Content Features,
CVPR22(15182-15191)
IEEE DOI
2210
Ethics, Neurons, Gaussian distribution,
Regulation, Pattern recognition, Adversarial attack and defense,
Representation learning
BibRef
Luo, C.[Cheng],
Lin, Q.L.[Qin-Liang],
Xie, W.C.[Wei-Cheng],
Wu, B.Z.[Bi-Zhu],
Xie, J.H.[Jin-Heng],
Shen, L.L.[Lin-Lin],
Frequency-driven Imperceptible Adversarial Attack on Semantic
Similarity,
CVPR22(15294-15303)
IEEE DOI
2210
Representation learning, Measurement, Visualization,
Perturbation methods, Semantics,
Self- semi- meta- unsupervised learning
BibRef
Suryanto, N.[Naufal],
Kim, Y.[Yongsu],
Kang, H.[Hyoeun],
Larasati, H.T.[Harashta Tatimma],
Yun, Y.Y.[Young-Yeo],
Le, T.T.H.[Thi-Thu-Huong],
Yang, H.[Hunmin],
Oh, S.Y.[Se-Yoon],
Kim, H.[Howon],
DTA: Physical Camouflage Attacks using Differentiable Transformation
Network,
CVPR22(15284-15293)
IEEE DOI
2210
Solid modeling, Object detection, Rendering (computer graphics),
Pattern recognition, Engines, Adversarial attack and defense, retrieval
BibRef
Zhong, Y.Q.[Yi-Qi],
Liu, X.M.[Xian-Ming],
Zhai, D.[Deming],
Jiang, J.J.[Jun-Jun],
Ji, X.Y.[Xiang-Yang],
Shadows can be Dangerous: Stealthy and Effective Physical-world
Adversarial Attack by Natural Phenomenon,
CVPR22(15324-15333)
IEEE DOI
2210
Printing, Laser theory, Codes, Perturbation methods, Machine vision,
Machine learning, Adversarial attack and defense, retrieval
BibRef
Tong, A.C.H.[Adrien Chan-Hon],
Symmetric adversarial poisoning against deep learning,
IPTA20(1-5)
IEEE DOI
2206
Support vector machines, Training, Deep learning,
Perturbation methods, Image processing, Training data, Tools, deep learning
BibRef
Li, Y.M.[Yi-Ming],
Wen, C.C.[Cong-Cong],
Juefei-Xu, F.[Felix],
Feng, C.[Chen],
Fooling LiDAR Perception via Adversarial Trajectory Perturbation,
ICCV21(7878-7887)
IEEE DOI
2203
Point cloud compression, Wireless communication,
Wireless sensor networks, Laser radar, Perturbation methods,
Vision for robotics and autonomous vehicles
BibRef
Wang, X.S.[Xiao-Sen],
He, X.R.[Xuan-Ran],
Wang, J.D.[Jing-Dong],
He, K.[Kun],
Admix: Enhancing the Transferability of Adversarial Attacks,
ICCV21(16138-16147)
IEEE DOI
2203
Deep learning, Codes, Neural networks,
Adversarial machine learning, Task analysis, Standards,
Recognition and classification
BibRef
Chen, S.[Si],
Kahla, M.[Mostafa],
Jia, R.[Ruoxi],
Qi, G.J.[Guo-Jun],
Knowledge-Enriched Distributional Model Inversion Attacks,
ICCV21(16158-16167)
IEEE DOI
2203
Training, Deep learning, Privacy, Codes, Computational modeling,
Neural networks, Adversarial learning, Motion and tracking
BibRef
Zhou, M.[Mo],
Wang, L.[Le],
Niu, Z.X.[Zhen-Xing],
Zhang, Q.L.[Qi-Lin],
Xu, Y.H.[Ying-Hui],
Zheng, N.N.[Nan-Ning],
Hua, G.[Gang],
Practical Relative Order Attack in Deep Ranking,
ICCV21(16393-16402)
IEEE DOI
2203
Measurement, Deep learning, Correlation, Perturbation methods,
Neural networks, Interference, Adversarial learning, Fairness,
Image and video retrieval
BibRef
Shafran, A.[Avital],
Peleg, S.[Shmuel],
Hoshen, Y.[Yedid],
Membership Inference Attacks are Easier on Difficult Problems,
ICCV21(14800-14809)
IEEE DOI
2203
Training, Image segmentation, Uncertainty, Semantics,
Neural networks, Benchmark testing, Data models, Fairness,
grouping and shape
BibRef
Naseer, M.[Muzammal],
Khan, S.[Salman],
Hayat, M.[Munawar],
Khan, F.S.[Fahad Shahbaz],
Porikli, F.M.[Fatih M.],
On Generating Transferable Targeted Perturbations,
ICCV21(7688-7697)
IEEE DOI
2203
Codes, Perturbation methods, Computational modeling, Transformers,
Linear programming, Generators, Adversarial learning,
Recognition and classification
BibRef
Chen, H.[Huili],
Fu, C.[Cheng],
Zhao, J.[Jishen],
Koushanfar, F.[Farinaz],
ProFlip: Targeted Trojan Attack with Progressive Bit Flips,
ICCV21(7698-7707)
IEEE DOI
2203
Training, Runtime, Neurons, Neural networks, Random access memory,
Predictive models, Laser modes, Adversarial learning,
Optimization and learning methods
BibRef
Rony, J.[Jérôme],
Granger, E.[Eric],
Pedersoli, M.[Marco],
Ayed, I.B.[Ismail Ben],
Augmented Lagrangian Adversarial Attacks,
ICCV21(7718-7727)
IEEE DOI
2203
Computational modeling, Computational efficiency,
Computational complexity, Adversarial learning,
Optimization and learning methods
BibRef
Yuan, Z.[Zheng],
Zhang, J.[Jie],
Jia, Y.[Yunpei],
Tan, C.[Chuanqi],
Xue, T.[Tao],
Shan, S.G.[Shi-Guang],
Meta Gradient Adversarial Attack,
ICCV21(7728-7737)
IEEE DOI
2203
Philosophical considerations,
Task analysis, Adversarial learning,
BibRef
Park, G.Y.[Geon Yeong],
Lee, S.W.[Sang Wan],
Reliably fast adversarial training via latent adversarial
perturbation,
ICCV21(7738-7747)
IEEE DOI
2203
Training, Costs, Perturbation methods, Linearity, Minimization,
Computational efficiency, Adversarial learning, Recognition and classification
BibRef
Tu, J.[James],
Wang, T.[Tsunhsuan],
Wang, J.K.[Jing-Kang],
Manivasagam, S.[Sivabalan],
Ren, M.[Mengye],
Urtasun, R.[Raquel],
Adversarial Attacks On Multi-Agent Communication,
ICCV21(7748-7757)
IEEE DOI
2203
Deep learning, Fault tolerance, Protocols, Computational modeling,
Neural networks, Fault tolerant systems, Robustness,
Vision for robotics and autonomous vehicles
BibRef
Feng, W.W.[Wei-Wei],
Wu, B.Y.[Bao-Yuan],
Zhang, T.Z.[Tian-Zhu],
Zhang, Y.[Yong],
Zhang, Y.D.[Yong-Dong],
Meta-Attack: Class-agnostic and Model-agnostic Physical Adversarial
Attack,
ICCV21(7767-7776)
IEEE DOI
2203
Training, Deep learning, Image color analysis, Shape,
Computational modeling, Neural networks, Adversarial learning,
BibRef
Kim, J.Y.[Jae-Yeon],
Hua, B.S.[Binh-Son],
Nguyen, D.T.[Duc Thanh],
Yeung, S.K.[Sai-Kit],
Minimal Adversarial Examples for Deep Learning on 3D Point Clouds,
ICCV21(7777-7786)
IEEE DOI
2203
Point cloud compression, Deep learning, Image color analysis,
Perturbation methods, Semantics, Adversarial learning,
Recognition and classification
BibRef
Stutz, D.[David],
Hein, M.[Matthias],
Schiele, B.[Bernt],
Relating Adversarially Robust Generalization to Flat Minima,
ICCV21(7787-7797)
IEEE DOI
2203
Training, Correlation, Perturbation methods,
Computational modeling, Robustness, Loss measurement,
Optimization and learning methods
BibRef
Li, C.[Chao],
Gao, S.Q.[Shang-Qian],
Deng, C.[Cheng],
Liu, W.[Wei],
Huang, H.[Heng],
Adversarial Attack on Deep Cross-Modal Hamming Retrieval,
ICCV21(2198-2207)
IEEE DOI
2203
Learning systems, Knowledge engineering, Deep learning,
Correlation, Perturbation methods, Neural networks,
Vision + other modalities
BibRef
Duan, R.J.[Ran-Jie],
Chen, Y.F.[Yue-Feng],
Niu, D.[Dantong],
Yang, Y.[Yun],
Qin, A.K.,
He, Y.[Yuan],
AdvDrop: Adversarial Attack to DNNs by Dropping Information,
ICCV21(7486-7495)
IEEE DOI
2203
Deep learning, Visualization, Neural networks, Robustness,
Visual perception, Adversarial learning,
BibRef
Hwang, J.[Jaehui],
Kim, J.H.[Jun-Hyuk],
Choi, J.H.[Jun-Ho],
Lee, J.S.[Jong-Seok],
Just One Moment: Structural Vulnerability of Deep Action Recognition
against One Frame Attack,
ICCV21(7648-7656)
IEEE DOI
2203
Analytical models, Perturbation methods, Task analysis,
Adversarial learning, Action and behavior recognition
BibRef
Moayeri, M.[Mazda],
Feizi, S.[Soheil],
Sample Efficient Detection and Classification of Adversarial Attacks
via Self-Supervised Embeddings,
ICCV21(7657-7666)
IEEE DOI
2203
Training, Adaptation models, Toxicology, Costs, Perturbation methods,
Computational modeling, Adversarial learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Wang, Z.B.[Zhi-Bo],
Guo, H.C.[Heng-Chang],
Zhang, Z.F.[Zhi-Fei],
Liu, W.X.[Wen-Xin],
Qin, Z.[Zhan],
Ren, K.[Kui],
Feature Importance-aware Transferable Adversarial Attacks,
ICCV21(7619-7628)
IEEE DOI
2203
Degradation, Limiting, Correlation, Computational modeling,
Aggregates, Transforms, Adversarial learning, Explainable AI, Recognition and classification
BibRef
Wang, X.[Xin],
Lin, S.Y.[Shu-Yun],
Zhang, H.[Hao],
Zhu, Y.F.[Yu-Fei],
Zhang, Q.S.[Quan-Shi],
Interpreting Attributions and Interactions of Adversarial Attacks,
ICCV21(1075-1084)
IEEE DOI
2203
Visualization, Costs, Perturbation methods, Estimation,
Task analysis, Faces, Explainable AI, Adversarial learning
BibRef
Kumar, C.[Chetan],
Kumar, D.[Deepak],
Shao, M.[Ming],
Generative Adversarial Attack on Ensemble Clustering,
WACV22(3839-3848)
IEEE DOI
2202
Clustering methods, Supervised learning,
Clustering algorithms, Benchmark testing, Probabilistic logic,
Semi- and Un- supervised Learning
BibRef
Du, A.[Andrew],
Chen, B.[Bo],
Chin, T.J.[Tat-Jun],
Law, Y.W.[Yee Wei],
Sasdelli, M.[Michele],
Rajasegaran, R.[Ramesh],
Campbell, D.[Dillon],
Physical Adversarial Attacks on an Aerial Imagery Object Detector,
WACV22(3798-3808)
IEEE DOI
2202
Measurement, Deep learning, Satellites, Neural networks, Lighting,
Detectors, Observers, Deep Learning -> Adversarial Learning,
Adversarial Attack and Defense Methods
BibRef
Zhao, B.Y.[Bing-Yin],
Lao, Y.J.[Ying-Jie],
Towards Class-Oriented Poisoning Attacks Against Neural Networks,
WACV22(2244-2253)
IEEE DOI
2202
Training, Measurement, Computational modeling,
Neural networks, Machine learning, Predictive models,
Adversarial Attack and Defense Methods
BibRef
Chen, Z.H.[Zhen-Hua],
Wang, C.H.[Chu-Hua],
Crandall, D.[David],
Semantically Stealthy Adversarial Attacks against Segmentation Models,
WACV22(2846-2855)
IEEE DOI
2202
Image segmentation, Perturbation methods,
Computational modeling, Feature extraction, Context modeling,
Grouping and Shape
BibRef
Yin, M.J.[Ming-Jun],
Li, S.[Shasha],
Song, C.Y.[Cheng-Yu],
Asif, M.S.[M. Salman],
Roy-Chowdhury, A.K.[Amit K.],
Krishnamurthy, S.V.[Srikanth V.],
ADC: Adversarial attacks against object Detection that evade Context
consistency checks,
WACV22(2836-2845)
IEEE DOI
2202
Deep learning, Adaptation models,
Computational modeling, Neural networks, Buildings, Detectors,
Adversarial Attack and Defense Methods Object
Detection/Recognition/Categorization
BibRef
Li, X.R.[Xiao-Rui],
Cui, W.Y.[Wei-Yu],
Huang, J.W.[Jia-Wei],
Wang, W.Y.[Wen-Yi],
Chen, J.W.[Jian-Wen],
Regularized Intermediate Layers Attack:
Adversarial Examples With High Transferability,
ICIP21(1904-1908)
IEEE DOI
2201
Image recognition, Filtering, Perturbation methods,
Optimization methods, Convolutional neural networks, Transferability
BibRef
Bai, T.[Tao],
Zhao, J.[Jun],
Zhu, J.L.[Jin-Lin],
Han, S.D.[Shou-Dong],
Chen, J.F.[Jie-Feng],
Li, B.[Bo],
Kot, A.[Alex],
AI-GAN: Attack-Inspired Generation of Adversarial Examples,
ICIP21(2543-2547)
IEEE DOI
2201
Training, Image quality, Deep learning, Perturbation methods,
Image processing, Generative adversarial networks, deep learning
BibRef
Abdelfattah, M.[Mazen],
Yuan, K.W.[Kai-Wen],
Wang, Z.J.[Z. Jane],
Ward, R.[Rabab],
Towards Universal Physical Attacks on Cascaded Camera-Lidar 3d Object
Detection Models,
ICIP21(3592-3596)
IEEE DOI
2201
Geometry, Deep learning, Solid modeling, Laser radar,
Image processing, Object detection, Adversarial attacks, deep learning
BibRef
Gurulingan, N.K.[Naresh Kumar],
Arani, E.[Elahe],
Zonooz, B.[Bahram],
UniNet: A Unified Scene Understanding Network and Exploring
Multi-Task Relationships through the Lens of Adversarial Attacks,
DeepMTL21(2239-2248)
IEEE DOI
2112
Shape, Semantics, Neural networks, Information sharing,
Estimation, Object detection
BibRef
Ding, Y.Z.[Yu-Zhen],
Thakur, N.[Nupur],
Li, B.X.[Bao-Xin],
AdvFoolGen: Creating Persistent Troubles for Deep Classifiers,
AROW21(142-151)
IEEE DOI
2112
Measurement, Deep learning,
Neural networks, Buildings, Gaussian distribution
BibRef
Boloor, A.[Adith],
Wu, T.[Tong],
Naughton, P.[Patrick],
Chakrabarti, A.[Ayan],
Zhang, X.[Xuan],
Vorobeychik, Y.[Yevgeniy],
Can Optical Trojans Assist Adversarial Perturbations?,
AROW21(122-131)
IEEE DOI
2112
Perturbation methods, Neural networks, Pipelines,
Optical device fabrication, Cameras, Optical imaging, Trojan horses
BibRef
Gnanasambandam, A.[Abhiram],
Sherman, A.M.[Alex M.],
Chan, S.H.[Stanley H.],
Optical Adversarial Attack,
AROW21(92-101)
IEEE DOI
2112
Integrated optics, Computational modeling, Lighting, Optical imaging
BibRef
Lennon, M.[Max],
Drenkow, N.[Nathan],
Burlina, P.[Phil],
Patch Attack Invariance: How Sensitive are Patch Attacks to 3D Pose?,
AROW21(112-121)
IEEE DOI
2112
Measurement, Training, Heating systems,
Sensitivity analysis, Conferences
BibRef
Yu, Y.R.[Yun-Rui],
Gao, X.T.[Xi-Tong],
Xu, C.Z.[Cheng-Zhong],
LAFEAT: Piercing Through Adversarial Defenses with Latent Features,
CVPR21(5731-5741)
IEEE DOI
2111
Degradation, Schedules, Computational modeling,
Perturbation methods, Lattices, Robustness
BibRef
Wang, X.S.[Xiao-Sen],
He, K.[Kun],
Enhancing the Transferability of Adversarial Attacks through Variance
Tuning,
CVPR21(1924-1933)
IEEE DOI
2111
Deep learning, Codes, Perturbation methods,
Computational modeling, Pattern recognition, Iterative methods
BibRef
Pony, R.[Roi],
Naeh, I.[Itay],
Mannor, S.[Shie],
Over-the-Air Adversarial Flickering Attacks against Video Recognition
Networks,
CVPR21(515-524)
IEEE DOI
2111
Deep learning, Perturbation methods, Observers,
Pattern recognition, Image classification
BibRef
Rampini, A.[Arianna],
Pestarini, F.[Franco],
Cosmo, L.[Luca],
Melzi, S.[Simone],
Rodolŕ, E.[Emanuele],
Universal Spectral Adversarial Attacks for Deformable Shapes,
CVPR21(3215-3225)
IEEE DOI
2111
Geometry, Shape, Perturbation methods,
Predictive models, Eigenvalues and eigenfunctions, Robustness
BibRef
Rezaei, S.[Shahbaz],
Liu, X.[Xin],
On the Difficulty of Membership Inference Attacks,
CVPR21(7888-7896)
IEEE DOI
2111
Training, Analytical models, Codes,
Computational modeling, Pattern recognition
BibRef
Kariyappa, S.[Sanjay],
Prakash, A.[Atul],
Qureshi, M.K.[Moinuddin K],
MAZE: Data-Free Model Stealing Attack Using Zeroth-Order Gradient
Estimation,
CVPR21(13809-13818)
IEEE DOI
2111
Training, Cloning, Estimation, Machine learning,
Intellectual property, Predictive models, Data models
BibRef
Duan, R.J.[Ran-Jie],
Mao, X.F.[Xiao-Feng],
Qin, A.K.,
Chen, Y.F.[Yue-Feng],
Ye, S.[Shaokai],
He, Y.[Yuan],
Yang, Y.[Yun],
Adversarial Laser Beam:
Effective Physical-World Attack to DNNs in a Blink,
CVPR21(16057-16066)
IEEE DOI
2111
Deep learning, Laser theory, Robustness,
Pattern recognition, Laser beams
BibRef
Chen, Z.K.[Zhi-Kai],
Xie, L.X.[Ling-Xi],
Pang, S.M.[Shan-Min],
He, Y.[Yong],
Tian, Q.[Qi],
Appending Adversarial Frames for Universal Video Attack,
WACV21(3198-3207)
IEEE DOI
2106
Measurement, Perturbation methods,
Semantics, Pipelines, Euclidean distance
BibRef
Cancela, B.[Brais],
Bolón-Canedo, V.[Verónica],
Alonso-Betanzos, A.[Amparo],
A delayed Elastic-Net approach for performing adversarial attacks,
ICPR21(378-384)
IEEE DOI
2105
Perturbation methods, Data preprocessing, Benchmark testing,
Size measurement, Robustness, Pattern recognition, Security
BibRef
Li, X.C.[Xiu-Chuan],
Zhang, X.Y.[Xu-Yao],
Yin, F.[Fei],
Liu, C.L.[Cheng-Lin],
F-mixup: Attack CNNs From Fourier Perspective,
ICPR21(541-548)
IEEE DOI
2105
Training, Frequency-domain analysis, Perturbation methods,
Neural networks, Robustness, Pattern recognition, High frequency
BibRef
Grosse, K.[Kathrin],
Smith, M.T.[Michael T.],
Backes, M.[Michael],
Killing Four Birds with one Gaussian Process:
The Relation between different Test-Time Attacks,
ICPR21(4696-4703)
IEEE DOI
2105
Analytical models, Reverse engineering, Training data,
Gaussian processes, Data models, Classification algorithms, Pattern recognition
BibRef
Barati, R.[Ramin],
Safabakhsh, R.[Reza],
Rahmati, M.[Mohammad],
Towards Explaining Adversarial Examples Phenomenon in Artificial
Neural Networks,
ICPR21(7036-7042)
IEEE DOI
2105
Training, Artificial neural networks, Pattern recognition,
Proposals, Convergence, adversarial attack, robustness,
adversarial training
BibRef
Li, W.J.[Wen-Jie],
Tondi, B.[Benedetta],
Ni, R.R.[Rong-Rong],
Barni, M.[Mauro],
Increased-confidence Adversarial Examples for Deep Learning
Counter-forensics,
MMForWild20(411-424).
Springer DOI
2103
BibRef
Dong, X.S.[Xin-Shuai],
Liu, H.[Hong],
Ji, R.R.[Rong-Rong],
Cao, L.J.[Liu-Juan],
Ye, Q.X.[Qi-Xiang],
Liu, J.Z.[Jian-Zhuang],
Tian, Q.[Qi],
API-net: Robust Generative Classifier via a Single Discriminator,
ECCV20(XIII:379-394).
Springer DOI
2011
BibRef
Liu, A.S.[Ai-Shan],
Huang, T.R.[Tai-Ran],
Liu, X.L.[Xiang-Long],
Xu, Y.T.[Yi-Tao],
Ma, Y.Q.[Yu-Qing],
Chen, X.Y.[Xin-Yun],
Maybank, S.J.[Stephen J.],
Tao, D.C.[Da-Cheng],
Spatiotemporal Attacks for Embodied Agents,
ECCV20(XVII:122-138).
Springer DOI
2011
Code, Adversarial Attack.
WWW Link.
BibRef
Fan, Y.B.[Yan-Bo],
Wu, B.Y.[Bao-Yuan],
Li, T.H.[Tuan-Hui],
Zhang, Y.[Yong],
Li, M.Y.[Ming-Yang],
Li, Z.F.[Zhi-Feng],
Yang, Y.J.[Yu-Jiu],
Sparse Adversarial Attack via Perturbation Factorization,
ECCV20(XXII:35-50).
Springer DOI
2011
BibRef
Guo, J.F.[Jun-Feng],
Liu, C.[Cong],
Practical Poisoning Attacks on Neural Networks,
ECCV20(XXVII:142-158).
Springer DOI
2011
BibRef
Costales, R.,
Mao, C.,
Norwitz, R.,
Kim, B.,
Yang, J.,
Live Trojan Attacks on Deep Neural Networks,
AML-CV20(3460-3469)
IEEE DOI
2008
Trojan horses, Computational modeling, Neural networks,
Machine learning
BibRef
Haque, M.,
Chauhan, A.,
Liu, C.,
Yang, W.,
ILFO: Adversarial Attack on Adaptive Neural Networks,
CVPR20(14252-14261)
IEEE DOI
2008
Computational modeling, Energy consumption, Robustness,
Neural networks, Adaptation models, Machine learning, Perturbation methods
BibRef
Zhou, M.,
Wu, J.,
Liu, Y.,
Liu, S.,
Zhu, C.,
DaST: Data-Free Substitute Training for Adversarial Attacks,
CVPR20(231-240)
IEEE DOI
2008
Data models, Training, Machine learning, Perturbation methods,
Task analysis, Estimation
BibRef
Ganeshan, A.[Aditya],
Vivek, B.S.,
Radhakrishnan, V.B.[Venkatesh Babu],
FDA: Feature Disruptive Attack,
ICCV19(8068-8078)
IEEE DOI
2004
Deal with adversarial attacks.
image classification, image representation,
learning (artificial intelligence), neural nets, optimisation,
BibRef
Han, J.,
Dong, X.,
Zhang, R.,
Chen, D.,
Zhang, W.,
Yu, N.,
Luo, P.,
Wang, X.,
Once a MAN: Towards Multi-Target Attack via Learning Multi-Target
Adversarial Network Once,
ICCV19(5157-5166)
IEEE DOI
2004
convolutional neural nets, learning (artificial intelligence),
pattern classification, security of data, Decoding
BibRef
Deng, Y.,
Karam, L.J.,
Universal Adversarial Attack Via Enhanced Projected Gradient Descent,
ICIP20(1241-1245)
IEEE DOI
2011
Perturbation methods, Computational modeling, Training,
Convolutional neural networks,
projected gradient descent (PGD)
BibRef
Sun, C.,
Chen, S.,
Cai, J.,
Huang, X.,
Type I Attack For Generative Models,
ICIP20(593-597)
IEEE DOI
2011
Image reconstruction, Decoding,
Aerospace electronics, Generative adversarial networks,
generative models
BibRef
Braunegg, A.,
Chakraborty, A.[Amartya],
Krumdick, M.[Michael],
Lape, N.[Nicole],
Leary, S.[Sara],
Manville, K.[Keith],
Merkhofer, E.[Elizabeth],
Strickhart, L.[Laura],
Walmer, M.[Matthew],
Apricot: A Dataset of Physical Adversarial Attacks on Object Detection,
ECCV20(XXI:35-50).
Springer DOI
2011
BibRef
Zhang, H.[Hu],
Zhu, L.C.[Lin-Chao],
Zhu, Y.[Yi],
Yang, Y.[Yi],
Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior,
ECCV20(XX:240-256).
Springer DOI
2011
BibRef
Gao, L.L.[Lian-Li],
Zhang, Q.L.[Qi-Long],
Song, J.K.[Jing-Kuan],
Liu, X.L.[Xiang-Long],
Shen, H.T.[Heng Tao],
Patch-wise Attack for Fooling Deep Neural Network,
ECCV20(XXVIII:307-322).
Springer DOI
2011
BibRef
Bai, J.W.[Jia-Wang],
Chen, B.[Bin],
Li, Y.M.[Yi-Ming],
Wu, D.X.[Dong-Xian],
Guo, W.W.[Wei-Wei],
Xia, S.T.[Shu-Tao],
Yang, E.H.[En-Hui],
Targeted Attack for Deep Hashing Based Retrieval,
ECCV20(I:618-634).
Springer DOI
2011
BibRef
Nakka, K.K.[Krishna Kanth],
Salzmann, M.[Mathieu],
Indirect Local Attacks for Context-aware Semantic Segmentation Networks,
ECCV20(V:611-628).
Springer DOI
2011
BibRef
Wu, Z.X.[Zu-Xuan],
Lim, S.N.[Ser-Nam],
Davis, L.S.[Larry S.],
Goldstein, T.[Tom],
Making an Invisibility Cloak: Real World Adversarial Attacks on Object
Detectors,
ECCV20(IV:1-17).
Springer DOI
2011
BibRef
Li, Q.Z.[Qi-Zhang],
Guo, Y.W.[Yi-Wen],
Chen, H.[Hao],
Yet Another Intermediate-level Attack,
ECCV20(XVI: 241-257).
Springer DOI
2010
BibRef
Li, M.,
Deng, C.,
Li, T.,
Yan, J.,
Gao, X.,
Huang, H.,
Towards Transferable Targeted Attack,
CVPR20(638-646)
IEEE DOI
2008
Curing, Iterative methods, Extraterrestrial measurements, Entropy,
Perturbation methods, Robustness
BibRef
Gupta, S.,
Dube, P.,
Verma, A.,
Improving the affordability of robustness training for DNNs,
AML-CV20(3383-3392)
IEEE DOI
2008
Training, Mathematical model, Computational modeling, Robustness,
Neural networks, Optimization
BibRef
Zhang, Z.,
Wu, T.,
Learning Ordered Top-k Adversarial Attacks via Adversarial
Distillation,
AML-CV20(3364-3373)
IEEE DOI
2008
Perturbation methods, Robustness, Task analysis, Semantics, Training,
Visualization, Protocols
BibRef
Chen, X.,
Yan, X.,
Zheng, F.,
Jiang, Y.,
Xia, S.,
Zhao, Y.,
Ji, R.,
One-Shot Adversarial Attacks on Visual Tracking With Dual Attention,
CVPR20(10173-10182)
IEEE DOI
2008
Target tracking, Task analysis, Visualization,
Perturbation methods, Object tracking, Optimization
BibRef
Zhou, H.,
Chen, D.,
Liao, J.,
Chen, K.,
Dong, X.,
Liu, K.,
Zhang, W.,
Hua, G.,
Yu, N.,
LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack
of Point Cloud Based Deep Networks,
CVPR20(10353-10362)
IEEE DOI
2008
Feature extraction,
Perturbation methods, Decoding, Training, Neural networks, Target recognition
BibRef
Machiraju, H.[Harshitha],
Balasubramanian, V.N.[Vineeth N],
A Little Fog for a Large Turn,
WACV20(2891-2900)
IEEE DOI
2006
Perturbation methods, Meteorology, Autonomous robots,
Task analysis, Data models, Predictive models, Robustness
BibRef
Yang, C.H.,
Liu, Y.,
Chen, P.,
Ma, X.,
Tsai, Y.J.,
When Causal Intervention Meets Adversarial Examples and Image Masking
for Deep Neural Networks,
ICIP19(3811-3815)
IEEE DOI
1910
Causal Reasoning, Adversarial Example, Adversarial Robustness,
Interpretable Deep Learning, Visual Reasoning
BibRef
Yao, H.,
Regan, M.,
Yang, Y.,
Ren, Y.,
Image Decomposition and Classification Through a Generative Model,
ICIP19(400-404)
IEEE DOI
1910
Generative model, classification, adversarial defense
BibRef
Li, J.,
Ji, R.,
Liu, H.,
Hong, X.,
Gao, Y.,
Tian, Q.,
Universal Perturbation Attack Against Image Retrieval,
ICCV19(4898-4907)
IEEE DOI
2004
feature extraction, image classification, image representation,
image retrieval, learning (artificial intelligence), Pipelines
BibRef
Finlay, C.,
Pooladian, A.,
Oberman, A.,
The LogBarrier Adversarial Attack:
Making Effective Use of Decision Boundary Information,
ICCV19(4861-4869)
IEEE DOI
2004
gradient methods, image classification, minimisation, neural nets,
security of data, LogBarrier adversarial attack, Benchmark testing
BibRef
Jandial, S.,
Mangla, P.,
Varshney, S.,
Balasubramanian, V.,
AdvGAN++: Harnessing Latent Layers for Adversary Generation,
NeruArch19(2045-2048)
IEEE DOI
2004
feature extraction, neural nets, MNIST datasets, CIFAR-10 datasets,
attack rates, realistic images, latent features, input image,
AdvGAN
BibRef
Wang, C.L.[Cheng-Long],
Bunel, R.[Rudy],
Dvijotham, K.[Krishnamurthy],
Huang, P.S.[Po-Sen],
Grefenstette, E.[Edward],
Kohli, P.[Pushmeet],
Knowing When to Stop: Evaluation and Verification of Conformity to
Output-Size Specifications,
CVPR19(12252-12261).
IEEE DOI
2002
ulnerability of these models to attacks aimed at changing the output-size.
BibRef
Modas, A.[Apostolos],
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Frossard, P.[Pascal],
SparseFool: A Few Pixels Make a Big Difference,
CVPR19(9079-9088).
IEEE DOI
2002
sparse attack.
BibRef
Yao, Z.W.[Zhe-Wei],
Gholami, A.[Amir],
Xu, P.[Peng],
Keutzer, K.[Kurt],
Mahoney, M.W.[Michael W.],
Trust Region Based Adversarial Attack on Neural Networks,
CVPR19(11342-11351).
IEEE DOI
2002
BibRef
Zeng, X.H.[Xiao-Hui],
Liu, C.X.[Chen-Xi],
Wang, Y.S.[Yu-Siang],
Qiu, W.C.[Wei-Chao],
Xie, L.X.[Ling-Xi],
Tai, Y.W.[Yu-Wing],
Tang, C.K.[Chi-Keung],
Yuille, A.L.[Alan L.],
Adversarial Attacks Beyond the Image Space,
CVPR19(4297-4306).
IEEE DOI
2002
BibRef
Corneanu, C.A.[Ciprian A.],
Madadi, M.[Meysam],
Escalera, S.[Sergio],
Martinez, A.M.[Aleix M.],
What Does It Mean to Learn in Deep Networks? And, How Does One Detect
Adversarial Attacks?,
CVPR19(4752-4761).
IEEE DOI
2002
BibRef
Liu, X.Q.[Xuan-Qing],
Hsieh, C.J.[Cho-Jui],
Rob-GAN: Generator, Discriminator, and Adversarial Attacker,
CVPR19(11226-11235).
IEEE DOI
2002
BibRef
Gupta, P.[Puneet],
Rahtu, E.[Esa],
MLAttack: Fooling Semantic Segmentation Networks by Multi-layer Attacks,
GCPR19(401-413).
Springer DOI
1911
BibRef
Zhao, W.[Wei],
Yang, P.P.[Peng-Peng],
Ni, R.R.[Rong-Rong],
Zhao, Y.[Yao],
Li, W.J.[Wen-Jie],
Cycle GAN-Based Attack on Recaptured Images to Fool both Human and
Machine,
IWDW18(83-92).
Springer DOI
1905
BibRef
Xu, X.J.[Xiao-Jun],
Chen, X.Y.[Xin-Yun],
Liu, C.[Chang],
Rohrbach, A.[Anna],
Darrell, T.J.[Trevor J.],
Song, D.[Dawn],
Fooling Vision and Language Models Despite Localization and Attention
Mechanism,
CVPR18(4951-4961)
IEEE DOI
1812
Attacks.
Prediction algorithms, Computational modeling, Neural networks,
Knowledge discovery, Visualization, Predictive models, Natural languages
BibRef
Dong, Y.,
Liao, F.,
Pang, T.,
Su, H.,
Zhu, J.,
Hu, X.,
Li, J.,
Boosting Adversarial Attacks with Momentum,
CVPR18(9185-9193)
IEEE DOI
1812
Iterative methods, Robustness, Training, Data models,
Adaptation models, Security
BibRef
Eykholt, K.,
Evtimov, I.,
Fernandes, E.,
Li, B.,
Rahmati, A.,
Xiao, C.,
Prakash, A.,
Kohno, T.,
Song, D.,
Robust Physical-World Attacks on Deep Learning Visual Classification,
CVPR18(1625-1634)
IEEE DOI
1812
Perturbation methods, Roads, Cameras, Visualization, Pipelines,
Autonomous vehicles, Detectors
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Backdoor Attacks .