He, Z.[Zhi],
Liu, H.[Han],
Wang, Y.W.[Yi-Wen],
Hu, J.[Jie],
Generative Adversarial Networks-Based Semi-Supervised Learning for
Hyperspectral Image Classification,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link
1711
BibRef
He, Z.[Zhi],
Wang, Y.W.[Yi-Wen],
Hu, J.[Jie],
Joint Sparse and Low-Rank Multitask Learning with Laplacian-Like
Regularization for Hyperspectral Classification,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Creswell, A.,
White, T.,
Dumoulin, V.,
Arulkumaran, K.,
Sengupta, B.,
Bharath, A.A.,
Generative Adversarial Networks: An Overview,
SPMag(35), No. 1, January 2018, pp. 53-65.
IEEE DOI
1801
Convolutional codes, Data models, Generators, Image resolution,
Machine learning, Semantics, Signal resolution, Training data
BibRef
Gao, F.[Fei],
Yang, Y.[Yue],
Wang, J.[Jun],
Sun, J.P.[Jin-Ping],
Yang, E.[Erfu],
Zhou, H.Y.[Hui-Yu],
A Deep Convolutional Generative Adversarial Networks (DCGANs)-Based
Semi-Supervised Method for Object Recognition in Synthetic Aperture
Radar (SAR) Images,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Chang, W.K.[Wen-Kai],
Yang, G.D.[Guo-Dong],
Yu, J.Z.[Jun-Zhi],
Liang, Z.Z.[Zi-Ze],
Real-time segmentation of various insulators using generative
adversarial networks,
IET-CV(12), No. 5, August 2018, pp. 596-602.
DOI Link
1807
BibRef
Zhu, L.,
Chen, Y.,
Ghamisi, P.,
Benediktsson, J.A.,
Generative Adversarial Networks for Hyperspectral Image
Classification,
GeoRS(56), No. 9, September 2018, pp. 5046-5063.
IEEE DOI
1809
Training, Hyperspectral imaging,
Feature extraction, Generators,
hyperspectral image (HSI) classification
BibRef
Hang, R.L.[Ren-Long],
Zhou, F.[Feng],
Liu, Q.S.[Qing-Shan],
Ghamisi, P.[Pedram],
Classification of Hyperspectral Images via Multitask Generative
Adversarial Networks,
GeoRS(59), No. 2, February 2021, pp. 1424-1436.
IEEE DOI
2101
Task analysis, Generative adversarial networks, Generators,
Training, Deep learning, Image reconstruction, multitask learning
BibRef
Zheng, R.B.[Ruo-Bing],
Wu, G.Q.[Guo-Qiang],
Yan, C.[Chao],
Zhang, R.[Renyu],
Luo, Z.[Ze],
Yan, B.P.[Bao-Ping],
Exploration in Mapping Kernel-Based Home Range Models from Remote
Sensing Imagery with Conditional Adversarial Networks,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Borji, A.[Ali],
Pros and cons of GAN evaluation measures,
CVIU(179), 2019, pp. 41-65.
Elsevier DOI
1903
Generative adversarial nets, Generative models, Evaluation,
Deep learning, Neural networks
BibRef
Ding, S.[Sihao],
Wallin, A.[Andreas],
Towards recovery of conditional vectors from conditional generative
adversarial networks,
PRL(122), 2019, pp. 66-72.
Elsevier DOI
1904
Generative adversarial networks, Conditional, Recover
BibRef
Chen, L.Q.[Liu-Qing],
Wang, P.[Pan],
Dong, H.[Hao],
Shi, F.[Feng],
Han, J.[Ji],
Guo, Y.[Yike],
Childs, P.R.N.[Peter R.N.],
Xiao, J.[Jun],
Wu, C.[Chao],
An artificial intelligence based data-driven approach for design
ideation,
JVCIR(61), 2019, pp. 10-22.
Elsevier DOI
1906
Idea generation, Artificial intelligence in design,
Data-driven design, Generative adversarial networks,
Computational creativity
BibRef
Deng, C.,
Yang, E.,
Liu, T.,
Li, J.,
Liu, W.,
Tao, D.,
Unsupervised Semantic-Preserving Adversarial Hashing for Image Search,
IP(28), No. 8, August 2019, pp. 4032-4044.
IEEE DOI
1907
binary codes, file organisation, image coding, image retrieval,
matrix algebra, neural nets, unsupervised learning,
deep learning
BibRef
Wang, X.,
Tan, K.,
Du, Q.,
Chen, Y.,
Du, P.,
Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image
Classification,
GeoRS(57), No. 9, September 2019, pp. 7232-7245.
IEEE DOI
1909
Hyperspectral imaging, Feature extraction,
Generative adversarial networks, Hidden Markov models, CapsNet,
triple generative adversarial network (TripleGAN)
BibRef
Mao, X.D.[Xu-Dong],
Li, Q.[Qing],
Xie, H.R.[Hao-Ran],
Lau, R.Y.K.[Raymond Y.K.],
Wang, Z.[Zhen],
Smolley, S.P.[Stephen Paul],
On the Effectiveness of Least Squares Generative Adversarial Networks,
PAMI(41), No. 12, December 2019, pp. 2947-2960.
IEEE DOI
1911
BibRef
Earlier:
Least Squares Generative Adversarial Networks,
ICCV17(2813-2821)
IEEE DOI
1802
Generators, Linear programming, Task analysis,
Generative adversarial networks, Stability analysis,
image generation.
image classification, least squares approximations,
unsupervised learning, LSGANs,
Stability analysis
BibRef
Sun, Y.[Yubao],
Chen, J.[Jiwei],
Liu, Q.S.[Qing-Shan],
Liu, G.C.[Guang-Can],
Learning image compressed sensing with sub-pixel convolutional
generative adversarial network,
PR(98), 2020, pp. 107051.
Elsevier DOI
1911
Compressed sensing, Sub-pixel convolutional GAN, Compound loss
BibRef
Wojna, Z.[Zbigniew],
Ferrari, V.[Vittorio],
Guadarrama, S.[Sergio],
Silberman, N.[Nathan],
Chen, L.C.[Liang-Chieh],
Fathi, A.[Alireza],
Uijlings, J.[Jasper],
The Devil is in the Decoder: Classification, Regression and GANs,
IJCV(127), No. 11-12, December 2019, pp. 1694-1706.
Springer DOI
1911
BibRef
Wei, G.[Gang],
Luo, M.[Minnan],
Liu, H.[Huan],
Zhang, D.H.[Dong-Hui],
Zheng, Q.H.[Qing-Hua],
Progressive generative adversarial networks with reliable sample
identification,
PRL(130), 2020, pp. 91-98.
Elsevier DOI
2002
Generative adversarial networks, Sample selection, Unsupervised learning
BibRef
Milbich, T.[Timo],
Ghori, O.[Omair],
Diego, F.[Ferran],
Ommer, B.[Björn],
Unsupervised representation learning by discovering reliable image
relations,
PR(102), 2020, pp. 107107.
Elsevier DOI
2003
Unsupervised learning, Visual representation learning,
Unsupervised image classification, Mining reliable relations,
Divide-and-conquer
BibRef
Lorenz, D.[Dominik],
Bereska, L.[Leonard],
Milbich, T.[Timo],
Ommer, B.[Bjorn],
Unsupervised Part-Based Disentangling of Object Shape and Appearance,
CVPR19(10947-10956).
IEEE DOI
2002
BibRef
Peng, Y.[Ye],
Zhao, W.T.[Wen-Tao],
Cai, W.[Wei],
Su, J.S.[Jin-Shu],
Han, B.[Biao],
Liu, Q.A.[Qi-Ang],
Evaluating Deep Learning for Image Classification in Adversarial
Environment,
IEICE(E103-D), No. 4, April 2020, pp. 825-837.
WWW Link.
2004
BibRef
Feng, J.[Jie],
Feng, X.L.[Xue-Liang],
Chen, J.T.[Jian-Tong],
Cao, X.H.[Xiang-Hai],
Zhang, X.R.[Xiang-Rong],
Jiao, L.C.[Li-Cheng],
Yu, T.[Tao],
Generative Adversarial Networks Based on Collaborative Learning and
Attention Mechanism for Hyperspectral Image Classification,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Qi, M.,
Wang, Y.,
Li, A.,
Luo, J.,
STC-GAN: Spatio-Temporally Coupled Generative Adversarial Networks
for Predictive Scene Parsing,
IP(29), 2020, pp. 5420-5430.
IEEE DOI
2004
Predictive Scene Parsing, Generative Adversarial Networks,
Coupled Architecture, Spatio-Temporal Features
BibRef
Newson, A.[Alasdair],
Almansa, A.[Andrés],
Gousseau, Y.[Yann],
Ladjal, S.[Saďd],
Processing Simple Geometric Attributes with Autoencoders,
JMIV(62), No. 3, April 2020, pp. 293-312.
Springer DOI
2004
BibRef
Zhang, L.[Long],
Zhao, J.Y.[Jie-Yu],
Ye, X.L.[Xu-Lun],
Chen, Y.[Yu],
Cooperation: A new force for boosting generative adversarial nets with
dual-network structure,
IET-IPR(14), No. 6, 11 May 2020, pp. 1073-1080.
DOI Link
2005
BibRef
Qi, G.J.[Guo-Jun],
Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities,
IJCV(128), No. 5, May 2020, pp. 1118-1140.
Springer DOI
2005
BibRef
Ravat, R.S.[Rajvardhan Singh],
Verma, Y.[Yashaswi],
A retrieval-based approach for diverse and image-specific adversary
selection,
MultInfoRetr(9), No. 2, June 2020, pp. 125-133.
Springer DOI
2005
BibRef
Wan, D.[Diwen],
Shen, F.M.[Fu-Min],
Liu, L.[Li],
Zhu, F.[Fan],
Huang, L.[Lei],
Yu, M.Y.[Meng-Yang],
Shen, H.T.[Heng Tao],
Shao, L.[Ling],
Deep quantization generative networks,
PR(105), 2020, pp. 107338.
Elsevier DOI
2006
Compression, Acceleration, Generative models, Network quantization
BibRef
Zhang, Z.H.[Zhi-Hong],
Zeng, Y.B.[Yang-Bin],
Bai, L.[Lu],
Hu, Y.Q.[Yi-Qun],
Wu, M.H.[Mei-Hong],
Wang, S.[Shuai],
Hancock, E.R.[Edwin R.],
Spectral bounding: Strictly satisfying the 1-Lipschitz property for
generative adversarial networks,
PR(105), 2020, pp. 107179.
Elsevier DOI
2006
Generative adversarial networks, 1-Lipschitz constraint,
Spectral bounding, Image generation
BibRef
Mishra, D.[Deepak],
Jayendran, A.[Aravind],
Prathosh, A.P.,
Effect of the Latent Structure on Clustering With GANs,
SPLetters(27), 2020, pp. 900-904.
IEEE DOI
2006
Random variables,
Generative adversarial networks, Generators, Data models,
neural networks
BibRef
Song, J.K.[Jing-Kuan],
He, T.[Tao],
Gao, L.L.[Lian-Li],
Xu, X.[Xing],
Hanjalic, A.[Alan],
Shen, H.T.[Heng Tao],
Unified Binary Generative Adversarial Network for Image Retrieval and
Compression,
IJCV(128), No. 8-9, September 2020, pp. 2243-2264.
Springer DOI
2008
BibRef
Abbasnejad, M.E.[M. Ehsan],
Shi, J.[Javen],
van den Hengel, A.J.[Anton J.],
Liu, L.Q.[Ling-Qiao],
GADE: A Generative Adversarial Approach to Density Estimation and its
Applications,
IJCV(128), No. 10-11, November 2020, pp. 2731-2743.
Springer DOI
2009
BibRef
Abbasnejad, M.E.[M. Ehsan],
Shi, J.Q.F.[Javen Qin-Feng],
van den Hengel, A.J.[Anton J.],
Liu, L.Q.[Ling-Qiao],
A Generative Adversarial Density Estimator,
CVPR19(10774-10783).
IEEE DOI
2002
BibRef
Li, W.[Wei],
Fan, L.[Li],
Wang, Z.Y.[Zhen-Yu],
Ma, C.[Chao],
Cui, X.H.[Xiao-Hui],
Tackling mode collapse in multi-generator GANs with orthogonal
vectors,
PR(110), 2021, pp. 107646.
Elsevier DOI
2011
GANs, Mode collapse, Multiple generators, Orthogonal vectors, Minimax formula
BibRef
Liu, K.L.[Kang-Lin],
Qiu, G.P.[Guo-Ping],
Tang, W.M.[Wen-Ming],
Zhou, F.[Fei],
Spectral Regularization for Combating Mode Collapse in GANs,
IVC(104), 2020, pp. 104005.
Elsevier DOI
2012
BibRef
Earlier:
ICCV19(6381-6389)
IEEE DOI
2004
Spectral regularization,
Generative adversarial networks (GANs), Mode collapse.
neural nets, singular value decomposition, SR-GANs, SN-GANs,
spectral normalized GANs, Optimization
BibRef
Wang, J.[Jue],
Cherian, A.[Anoop],
Discriminative Video Representation Learning Using Support Vector
Classifiers,
PAMI(43), No. 2, February 2021, pp. 420-433.
IEEE DOI
2101
BibRef
And:
Learning Discriminative Video Representations Using Adversarial
Perturbations,
ECCV18(II: 716-733).
Springer DOI
1810
Support vector machines, Feature extraction, Trajectory,
Task analysis, Image recognition,
deep learning
BibRef
Wang, J.[Jue],
Cherian, A.[Anoop],
Porikli, F.M.[Fatih M.],
Gould, S.,
Video Representation Learning Using Discriminative Pooling,
CVPR18(1149-1158)
IEEE DOI
1812
Support vector machines, Computational modeling, Task analysis,
Feature extraction, Data models, Kernel
BibRef
Li, X.[Xiao],
Fang, M.[Min],
Li, H.[Haikun],
Bias alleviating generative adversarial network for generalized
zero-shot classification,
IVC(105), 2021, pp. 104077.
Elsevier DOI
2101
Generalized zero shot classification,
Generative adversarial network, Unseen visual prototypes,
Semantic relationships
BibRef
Zhang, M.[Man],
Zhou, Y.[Yong],
Zhao, J.Q.[Jia-Qi],
Xia, S.X.[Shi-Xiong],
Wang, J.Q.[Jia-Qi],
Huang, Z.Z.[Zi-Zheng],
Semi-supervised blockwisely architecture search for efficient
lightweight generative adversarial network,
PR(112), 2021, pp. 107794.
Elsevier DOI
2102
Semi-supervised, GANs, Network architecture search,
Image generation, Image classification
BibRef
Hu, P.[Peng],
Peng, X.[Xi],
Zhu, H.Y.[Hong-Yuan],
Lin, J.[Jie],
Zhen, L.L.[Liang-Li],
Wang, W.[Wei],
Peng, D.Z.[De-Zhong],
Cross-modal discriminant adversarial network,
PR(112), 2021, pp. 107734.
Elsevier DOI
2102
Adversarial learning, Cross-modal representation learning,
Cross-modal retrieval, Discriminant adversarial network, Latent common space
BibRef
Gnanha, A.T.[Aurele Tohokantche],
Cao, W.M.[Wen-Ming],
Mao, X.D.[Xu-Dong],
Wu, S.[Si],
Wong, H.S.[Hau-San],
Li, Q.[Qing],
The residual generator: An improved divergence minimization framework
for GAN,
PR(121), 2022, pp. 108222.
Elsevier DOI
2109
Generative adversarial networks, Image synthesis, Deep learning
BibRef
Tan, D.N.[Da-Ning],
Liu, Y.[Yu],
Li, G.[Gang],
Yao, L.[Libo],
Sun, S.[Shun],
He, Y.[You],
Serial GANs: A Feature-Preserving Heterogeneous Remote Sensing Image
Transformation Model,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Marín, J.[Javier],
Escalera, S.[Sergio],
SSSGAN: Satellite Style and Structure Generative Adversarial Networks,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
A generative model of high resolution satellite imagery to support
image segmentation.
BibRef
Liu, Y.[Ying],
Fan, H.[Heng],
Yuan, X.H.[Xiao-Hui],
Xiang, J.H.[Jin-Hai],
GL-GAN: Adaptive global and local bilevel optimization for generative
adversarial network,
PR(123), 2022, pp. 108375.
Elsevier DOI
2112
Generative adversarial networks (GAN),
Global and local bilevel optimization, Ada-OP, Image generation
BibRef
Baykal, G.[Gulcin],
Ozcelik, F.[Furkan],
Unal, G.[Gozde],
Exploring DeshuffleGANs in Self-Supervised Generative Adversarial
Networks,
PR(122), 2022, pp. 108244.
Elsevier DOI
2112
Self-Supervised generative adversarial networks,
Generative adversarial networks, Self-supervised learning,
Deshuffling
BibRef
Yu, S.[Simin],
Zhang, K.[Kuntian],
Xiao, C.[Chuan],
Huang, J.Z.[Joshua Zhexue],
Li, M.J.J.[Mark Jun-Jie],
Onizuka, M.[Makoto],
HSGAN: Reducing mode collapse in GANs by the latent code distance of
homogeneous samples,
CVIU(214), 2022, pp. 103314.
Elsevier DOI
2112
Generative adversarial networks, Mode collapse, Image generation
BibRef
Zhao, T.T.[Ting-Ting],
Wang, Y.[Ying],
Li, G.X.[Gui-Xi],
Kong, L.[Le],
Chen, Y.[Yarui],
Wang, Y.[Yuan],
Xie, N.[Ning],
Yang, J.[Jucheng],
A model-based reinforcement learning method based on conditional
generative adversarial networks,
PRL(152), 2021, pp. 18-25.
Elsevier DOI
2112
BibRef
Chinbat, V.[Vanchinbal],
Bae, S.H.[Seung-Hwan],
GA3N: Generative adversarial AutoAugment network,
PR(127), 2022, pp. 108637.
Elsevier DOI
2205
Data augmentation, AutoAugment, Generative adversarial network,
Classification, Deep learning, Adversarial learning
BibRef
Mu, J.Z.[Jin-Zhen],
Chen, C.Y.[Chun-Yan],
Zhu, W.S.[Wen-Shan],
Li, S.[Shuang],
Zhou, Y.[Yan],
Taming mode collapse in generative adversarial networks using
cooperative realness discriminators,
IET-IPR(16), No. 8, 2022, pp. 2240-2262.
DOI Link
2205
BibRef
Struski, L.[Lukasz],
Knop, S.[Szymon],
Spurek, P.[Przemyslaw],
Daniec, W.[Wiktor],
Tabor, J.[Jacek],
LocoGAN: Locally convolutional GAN,
CVIU(221), 2022, pp. 103462.
Elsevier DOI
2206
GAN, Generative models, Fully convolutional architecture, Textures
BibRef
Bai, J.[Jing],
Lu, J.W.[Jia-Wei],
Xiao, Z.[Zhu],
Chen, Z.[Zheng],
Jiao, L.C.[Li-Cheng],
Generative Adversarial Networks Based on Transformer Encoder and
Convolution Block for Hyperspectral Image Classification,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, C.X.[Chong-Xuan],
Xu, K.[Kun],
Zhu, J.[Jun],
Liu, J.S.[Jia-Shuo],
Zhang, B.[Bo],
Triple Generative Adversarial Networks,
PAMI(44), No. 12, December 2022, pp. 9629-9640.
IEEE DOI
2212
Generators, Generative adversarial networks, Task analysis,
Semisupervised learning, Games, Entropy, Linear programming,
conditional image generation
BibRef
Xu, T.[Teng],
Yan, H.Y.[Hong-Yong],
Yu, H.[Hui],
Zhang, Z.Y.[Zhi-Yong],
Removing Time Dispersion from Elastic Wave Modeling with the pix2pix
Algorithm Based on cGAN,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Buzuti, L.F.[Lucas F.],
Thomaz, C.E.[Carlos E.],
Fréchet AutoEncoder Distance: A new approach for evaluation of
Generative Adversarial Networks,
CVIU(235), 2023, pp. 103768.
Elsevier DOI
2310
Generative adversarial networks, Autoencoder,
Feature extraction, Fréchet distance, Evaluation, Measure
BibRef
Chen, Y.M.[Yan-Ming],
Xu, J.H.[Jia-Hao],
An, Z.[Zhulin],
Zhuang, F.Z.[Fu-Zhen],
Multi-scale conditional reconstruction generative adversarial network,
IVC(141), 2024, pp. 104885.
Elsevier DOI
2402
Generative adversarial network, Unsupervised generation,
Multi-scale instance, Reconstructed losses
BibRef
Li, J.Z.[Jin-Zhong],
Zeng, H.[Huan],
Xiao, C.W.[Cun-Wei],
Ouyang, C.J.[Chun-Juan],
Liu, H.[Hua],
Listwise learning to rank method combining approximate NDCG ranking
indicator with Conditional Generative Adversarial Networks,
PRL(179), 2024, pp. 31-37.
Elsevier DOI
2403
Learning to rank, Conditional Generative Adversarial Networks,
Approximate Normalized Discounted Cumulative Gain, Ranking indicator
BibRef
Cai, J.Y.[Jin-Yu],
Zhang, Y.H.[Yun-He],
Wang, S.P.[Shi-Ping],
Fan, J.C.[Ji-Cong],
Guo, W.Z.[Wen-Zhong],
Wasserstein Embedding Learning for Deep Clustering:
A Generative Approach,
MultMed(26), 2024, pp. 7567-7580.
IEEE DOI
2405
Integrate robust generative models with clustering.
Training, Data models, Generative adversarial networks,
Clustering methods, Task analysis, Deep learning, Decoding, auto-encoder
BibRef
Luo, Y.X.[Yi-Xin],
Yang, Z.W.[Zhou-Wang],
DynGAN: Solving Mode Collapse in GANs With Dynamic Clustering,
PAMI(46), No. 8, August 2024, pp. 5493-5503.
IEEE DOI
2407
Generators, Training, Data models, Computational modeling,
Unsupervised learning, Manifolds
BibRef
Choi, J.[Jaewoong],
Hwang, G.[Geonho],
Cho, H.[Hyunsoo],
Kang, M.J.[Myung-Joo],
Analyzing the latent space of GAN through local dimension estimation
for disentanglement evaluation,
PR(157), 2025, pp. 110914.
Elsevier DOI
2409
Generative Adversarial Network, Disentanglement,
Semantic factorization, Dimension estimation, Grassmannian
BibRef
Zhang, B.C.[Bei-Chen],
Li, L.[Liang],
Wang, S.H.[Shu-Hui],
Cai, S.F.[Shao-Fei],
Zha, Z.J.[Zheng-Jun],
Tian, Q.[Qi],
Huang, Q.M.[Qing-Ming],
Inductive State-Relabeling Adversarial Active Learning With Heuristic
Clique Rescaling,
PAMI(46), No. 12, December 2024, pp. 9780-9796.
IEEE DOI
2411
Uncertainty, Annotations, Task analysis, Data models, Training,
Redundancy, Generators, Active learning, adversarial learning,
data diversity
BibRef
Zhang, B.C.[Bei-Chen],
Li, L.[Liang],
Yang, S.,
Wang, S.H.[Shu-Hui],
Zha, Z.J.[Zheng-Jun],
Huang, Q.M.[Qing-Ming],
State-Relabeling Adversarial Active Learning,
CVPR20(8753-8762)
IEEE DOI
2008
Task analysis, Uncertainty, Generators, Data models,
Computational modeling, Image reconstruction, Learning systems
BibRef
Fan, L.[Lei],
Wu, Y.[Ying],
Avoiding Lingering in Learning Active Recognition by Adversarial
Disturbance,
WACV23(4601-4610)
IEEE DOI
2302
Training, Working environment noise, Perturbation methods, Games,
Turning, Cameras, Robotics
BibRef
Sapkota, S.[Suman],
Khanal, B.[Bidur],
Bhattarai, B.[Binod],
Khanal, B.[Bishesh],
Kim, T.K.[Tae-Kyun],
Label Geometry Aware Discriminator for Conditional Generative
Adversarial Networks,
ICPR22(2914-2920)
IEEE DOI
2212
Measurement, Manifolds, Geometry, Additives,
Generative adversarial networks, Generators, Active appearance model
BibRef
Ding, F.[Fei],
Yang, Y.[Yin],
Luo, F.[Feng],
Clustering by Directly Disentangling Latent Space,
ICIP22(341-345)
IEEE DOI
2211
Clustering methods, Impedance matching,
Generative adversarial networks, Generators, Task analysis, latent space
BibRef
Akimoto, N.,
Kasai, S.,
Hayashi, M.,
Aoki, Y.,
360-Degree Image Completion by Two-Stage Conditional GANs,
ICIP19(4704-4708)
IEEE DOI
1910
Generative adversarial networks, 360 degrees, image completion, extrapolation
BibRef
Yazici, Y.[Yasin],
Lecouat, B.[Bruno],
Yap, K.H.[Kim Hui],
Winkler, S.[Stefan],
Piliouras, G.[Georgios],
Chandrasekhar, V.[Vijay],
Foo, C.S.[Chuan-Sheng],
Mixed Membership Generative Adversarial Networks,
ICIP22(1026-1030)
IEEE DOI
2211
Analytical models, Image resolution,
Generative adversarial networks, Generators, Data models,
mixture membership models
BibRef
Huang, G.L.[Gi-Luen],
Wu, P.Y.[Pei-Yuan],
CTGAN: Cloud Transformer Generative Adversarial Network,
ICIP22(511-515)
IEEE DOI
2211
Satellites, Codes, Clouds, Feature extraction, Transformers,
Generative adversarial networks, Remote sensing, FormoSat-2 satellite
BibRef
Lee, G.[Gayoung],
Kim, H.[Hyunsu],
Kim, J.[Junho],
Kim, S.[Seonghyeon],
Ha, J.W.[Jung-Woo],
Choi, Y.[Yunjey],
Generator Knows What Discriminator Should Learn in Unconditional GANs,
ECCV22(XVII:406-422).
Springer DOI
2211
BibRef
Balakrishnan, G.[Guha],
Gadde, R.[Raghudeep],
Martinez, A.[Aleix],
Perona, P.[Pietro],
Rayleigh EigenDirections (REDs):
Nonlinear GAN Latent Space Traversals for Multidimensional Features,
ECCV22(XVII:510-526).
Springer DOI
2211
BibRef
Lee, J.[Junghyuk],
Lee, J.S.[Jong-Seok],
TREND: Truncated Generalized Normal Density Estimation of Inception
Embeddings for GAN Evaluation,
ECCV22(XXIII:87-103).
Springer DOI
2211
BibRef
Chen, Z.[Zikun],
Jiang, R.[Ruowei],
Duke, B.[Brendan],
Zhao, H.[Han],
Aarabi, P.[Parham],
Exploring Gradient-Based Multi-directional Controls in GANs,
ECCV22(XXIII:104-119).
Springer DOI
2211
BibRef
Avrahami, O.[Omri],
Lischinski, D.[Dani],
Fried, O.[Ohad],
GAN Cocktail: Mixing GANs Without Dataset Access,
ECCV22(XXIII:205-221).
Springer DOI
2211
BibRef
Lin, C.Y.[Chien-Yu],
Prabhu, A.[Anish],
Merth, T.[Thomas],
Mehta, S.[Sachin],
Ranjan, A.[Anurag],
Horton, M.[Maxwell],
Rastegari, M.[Mohammad],
SPIN: An Empirical Evaluation on Sharing Parameters of Isotropic
Networks,
ECCV22(XI:553-568).
Springer DOI
2211
BibRef
Chan, E.R.[Eric R.],
Lin, C.Z.[Connor Z.],
Chan, M.A.[Matthew A.],
Nagano, K.[Koki],
Pan, B.[Boxiao],
de Mello, S.[Shalini],
Gallo, O.[Orazio],
Guibas, L.J.[Leonidas J.],
Tremblay, J.[Jonathan],
Khamis, S.[Sameh],
Karras, T.[Tero],
Wetzstein, G.[Gordon],
Efficient Geometry-aware 3D Generative Adversarial Networks,
CVPR22(16102-16112)
IEEE DOI
2210
Solid modeling, Shape, Image synthesis, Network architecture,
Rendering (computer graphics), Rapid prototyping, Vision + graphics
BibRef
Ni, Y.[Yao],
Koniusz, P.[Piotr],
Hartley, R.I.[Richard I.],
Nock, R.[Richard],
Manifold Learning Benefits GANs,
CVPR22(11255-11264)
IEEE DOI
2210
Manifolds, Image coding, Statistical analysis, Refining,
Noise reduction, Machine learning,
Statistical methods
BibRef
Fontanini, T.[Tomaso],
Praticň, C.[Claudio],
Prati, A.[Andrea],
Towards Latent Space Optimization of GANs Using Meta-Learning,
CIAP22(I:646-657).
Springer DOI
2205
BibRef
Tzelepis, C.[Christos],
Tzimiropoulos, G.[Georgios],
Patras, I.[Ioannis],
WarpedGANSpace: Finding non-linear RBF paths in GAN latent space,
ICCV21(6373-6382)
IEEE DOI
2203
Visualization, Codes, Protocols, Art, Buildings, Inspection,
Neural generative models, Explainable AI
BibRef
Issenhuth, T.[Thibaut],
Tanielian, U.[Ugo],
Picard, D.[David],
Mary, J.[Jérémie],
Latent reweighting, an almost free improvement for GANs,
WACV22(3574-3583)
IEEE DOI
2202
Visualization, Computational modeling, Architecture,
Neural networks, Fitting, Sampling methods, GANs
BibRef
Collier, E.[Edward],
Mukhopadhyay, S.[Supratik],
SimilarityGAN: Using Similarity to Loosen Structural Constraints in
Generative Adversarial Models,
DICTA21(1-8)
IEEE DOI
2201
Digital images, Computational modeling,
Generative adversarial networks, Generators, Structural Constraint
BibRef
Nissani Nissensohn, D.N.[Daniel N.],
A Simple Generative Network,
ISVC21(II:242-250).
Springer DOI
2112
BibRef
Liu, H.F.[Hua-Feng],
Wang, J.Q.[Jia-Qi],
Jing, L.P.[Li-Ping],
Cluster-wise Hierarchical Generative Model for Deep Amortized
Clustering,
CVPR21(15104-15113)
IEEE DOI
2111
Measurement, Adaptation models,
Computational modeling, Trajectory
BibRef
Hyun, S.[Sangeek],
Kim, J.[Jihwan],
Heo, J.P.[Jae-Pil],
Self-Supervised Video GANs: Learning for Appearance Consistency and
Motion Coherency,
CVPR21(10821-10830)
IEEE DOI
2111
Force, Benchmark testing,
Generative adversarial networks, Generators
BibRef
Kim, K.[Kwanyoung],
Park, D.[Dongwon],
Kim, K.I.[Kwang In],
Chun, S.Y.[Se Young],
Task-Aware Variational Adversarial Active Learning,
CVPR21(8162-8171)
IEEE DOI
2111
Deep learning, Limiting, Costs, Semantics, Benchmark testing,
Generative adversarial networks, Data models
BibRef
Yang, H.T.[Hui-Ting],
Chai, L.Y.[Liang-Yu],
Wen, Q.[Qiang],
Zhao, S.[Shuang],
Sun, Z.X.[Zi-Xun],
He, S.F.[Sheng-Feng],
Discovering Interpretable Latent Space Directions of GANs Beyond
Binary Attributes,
CVPR21(12172-12180)
IEEE DOI
2111
Correlation, Codes, Semantics,
Generative adversarial networks, Task analysis
BibRef
Hu, Q.J.[Qian-Jiang],
Wang, X.[Xiao],
Hu, W.[Wei],
Qi, G.J.[Guo-Jun],
AdCo: Adversarial Contrast for Efficient Learning of Unsupervised
Representations from Self-Trained Negative Adversaries,
CVPR21(1074-1083)
IEEE DOI
2111
Learning systems, Codes,
Graphics processing units, Task analysis
BibRef
Daunhawer, I.[Imant],
Sutter, T.M.[Thomas M.],
Marcinkevics, R.[Ricards],
Vogt, J.E.[Julia E.],
Self-supervised Disentanglement of Modality-Specific and Shared Factors
Improves Multimodal Generative Models,
GCPR20(459-473).
Springer DOI
2110
BibRef
Li, Z.Q.[Zi-Qiang],
Tao, R.[Rentuo],
Niu, H.J.[Hong-Jing],
Yue, M.D.[Ming-Dao],
Li, B.[Bin],
Interpreting the Latent Space of GANs via Correlation Analysis for
Controllable Concept Manipulation,
ICPR21(1942-1948)
IEEE DOI
2105
How does the GAN really work?
Drugs, Visualization, Analytical models, Correlation,
Statistical analysis, Image synthesis, Semantics
BibRef
Zheng, W.B.[Wen-Bo],
Yan, L.[Lan],
Wang, F.Y.[Fei-Yue],
Gou, C.[Chao],
Learning from the Negativity: Deep Negative Correlation Meta-learning
for Adversarial Image Classification,
MMMod21(I:531-540).
Springer DOI
2106
BibRef
Katsumata, K.[Kai],
Kobayashi, R.[Ryoga],
Uncertainty Estimates in Deep Generative Models Using Gaussian
Processes,
ISVC20(I:121-132).
Springer DOI
2103
BibRef
Saberi, I.[Iman],
Faghih, F.[Fathiyeh],
Self-competitive Neural Networks,
ISVC20(I:15-26).
Springer DOI
2103
BibRef
Ayadi, I.[Imen],
Turinici, G.[Gabriel],
Stochastic Runge-Kutta methods and adaptive SGD-G2 stochastic
gradient descent,
ICPR21(8220-8227)
IEEE DOI
2105
Adaptive systems, Image databases, Neural networks, Minimization,
Standards, Optimization
BibRef
Turinici, G.[Gabriel],
Convergence Dynamics of Generative Adversarial Networks:
The Dual Metric Flows,
CADL20(619-634).
Springer DOI
2103
BibRef
Roziere, B.[Baptiste],
Teytaud, F.[Fabien],
Hosu, V.[Vlad],
Lin, H.[Hanhe],
Rapin, J.[Jeremy],
Zameshina, M.[Mariia],
Teytaud, O.[Olivier],
EvolGAN: Evolutionary Generative Adversarial Networks,
ACCV20(IV:679-694).
Springer DOI
2103
BibRef
Wang, F.[Fan],
Liu, H.D.[Hui-Dong],
Samaras, D.[Dimitris],
Chen, C.[Chao],
Topogan: A Topology-aware Generative Adversarial Network,
ECCV20(III:118-136).
Springer DOI
2012
BibRef
Xu, K.D.[Kai-Di],
Zhang, G.Y.[Gao-Yuan],
Liu, S.J.[Si-Jia],
Fan, Q.F.[Quan-Fu],
Sun, M.S.[Meng-Shu],
Chen, H.G.[Hong-Ge],
Chen, P.Y.[Pin-Yu],
Wang, Y.Z.[Yan-Zhi],
Lin, X.[Xue],
Adversarial T-shirt! Evading Person Detectors in a Physical World,
ECCV20(V:665-681).
Springer DOI
2011
BibRef
Qu, H.[Hui],
Zhang, Y.K.[Yi-Kai],
Chang, Q.[Qi],
Yan, Z.N.[Zhen-Nan],
Chen, C.[Chao],
Metaxas, D.N.[Dimitris N.],
Learn Distributed GAN with Temporary Discriminators,
ECCV20(XXVII:175-192).
Springer DOI
2011
BibRef
Peng, X.,
Bouzerdoum, A.[Abdesselam],
Phung, S.L.[Son L.],
Infer the Input to the Generator of Auxiliary Classifier Generative
Adversarial Networks,
ICIP20(76-80)
IEEE DOI
2011
Generators, Convolutional codes, Data models,
Optimized production technology, Linear programming, ACGANs,
encoder
BibRef
Zhu, X.Q.[Xin-Qi],
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
Learning Disentangled Representations with Latent Variation
Predictability,
ECCV20(X:684-700).
Springer DOI
2011
BibRef
Peebles, W.[William],
Peebles, J.[John],
Zhu, J.Y.[Jun-Yan],
Efros, A.[Alexei],
Torralba, A.B.[Antonio B.],
The Hessian Penalty: A Weak Prior for Unsupervised Disentanglement,
ECCV20(VI:581-597).
Springer DOI
2011
BibRef
Zhang, X.B.[Xiao-Bing],
Lu, S.J.[Shi-Jian],
Gong, H.G.[Hai-Gang],
Luo, Z.P.[Zhi-Peng],
Liu, M.[Ming],
Amln: Adversarial-based Mutual Learning Network for Online Knowledge
Distillation,
ECCV20(XII: 158-173).
Springer DOI
2010
BibRef
Srinivasan, P.P.,
Mildenhall, B.,
Tancik, M.,
Barron, J.T.,
Tucker, R.,
Snavely, N.,
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent
Illumination,
CVPR20(8077-8086)
IEEE DOI
2008
Lighting,
Rendering (computer graphics), Geometry, Solid modeling, Cameras, Light sources
BibRef
Pumarola, A.[Albert],
Popov, S.[Stefan],
Moreno-Noguer, F.[Francesc],
Ferrari, V.[Vittorio],
C-Flow: Conditional Generative Flow Models for Images and 3D Point
Clouds,
CVPR20(7946-7955)
IEEE DOI
2008
Couplings, Data models,
Shape, Solid modeling, Computational modeling
BibRef
Chong, M.J.[Min Jin],
Forsyth, D.A.[David A.],
Effectively Unbiased FID and Inception Score and Where to Find Them,
CVPR20(6069-6078)
IEEE DOI
2008
Fréchet Inception Distance (FID) and the Inception Score (IS)/
Generators, Computational modeling, Monte Carlo methods,
Extrapolation, Entropy, Standards
BibRef
Gu, J.,
Shen, Y.,
Zhou, B.,
Image Processing Using Multi-Code GAN Prior,
CVPR20(3009-3018)
IEEE DOI
2008
Image reconstruction, Task analysis, Generators,
Semantics, Image resolution
BibRef
Mopuri, K.R.,
Shaj, V.,
Babu, R.V.,
Adversarial Fooling Beyond 'Flipping the Label',
AML-CV20(3374-3382)
IEEE DOI
2008
Measurement, Semantics, Visualization, Computational modeling, Dogs,
Perturbation methods, Analytical models
BibRef
Agarwal, A.,
Vatsa, M.,
Singh, R.,
Ratha, N.K.,
Noise is Inside Me! Generating Adversarial Perturbations with Noise
Derived from Natural Filters,
AML-CV20(3354-3363)
IEEE DOI
2008
Databases, Cameras, Perturbation methods, Computational modeling,
Image edge detection, Data mining, Machine learning
BibRef
Wang, Y.,
Chen, Y.,
Zhang, X.,
Sun, J.,
Jia, J.,
Attentive Normalization for Conditional Image Generation,
CVPR20(5093-5102)
IEEE DOI
2008
Semantics, Layout, Image generation,
Generative adversarial networks, Correlation
BibRef
Zhao, Z.,
Liu, Z.,
Larson, M.,
Towards Large Yet Imperceptible Adversarial Image Perturbations With
Perceptual Color Distance,
CVPR20(1036-1045)
IEEE DOI
2008
Image color analysis, Perturbation methods, Optimization,
Semantics, Visualization, Extraterrestrial measurements
BibRef
Ghojogh, B.[Benyamin],
Karray, F.[Fakhri],
Crowley, M.[Mark],
Theoretical Insights into the Use of Structural Similarity Index in
Generative Models and Inferential Autoencoders,
ICIAR20(II:112-117).
Springer DOI
2007
BibRef
Sinha, S.,
Ebrahimi, S.,
Darrell, T.J.,
Variational Adversarial Active Learning,
ICCV19(5971-5980)
IEEE DOI
2004
image classification, image segmentation,
learning (artificial intelligence), neural nets, Labeling
BibRef
dos Santos, C.N.[Cicero Nogueira],
Mroueh, Y.[Youssef],
Padhi, I.[Inkit],
Dognin, P.[Pierre],
Learning Implicit Generative Models by Matching Perceptual Features,
ICCV19(4460-4469)
IEEE DOI
2004
convolutional neural nets, feature extraction, image matching,
learning (artificial intelligence), implicit generative models,
Method of moments
BibRef
Xiao, C.,
Deng, R.,
Li, B.,
Lee, T.,
Edwards, B.,
Yi, J.,
Song, D.,
Liu, M.,
Molloy, I.,
AdvIT: Adversarial Frames Identifier Based on Temporal Consistency in
Videos,
ICCV19(3967-3976)
IEEE DOI
2004
feature extraction, image classification, image motion analysis,
image sequences, learning (artificial intelligence), neural nets,
Adaptive optics
BibRef
Shu, H.[Han],
Wang, Y.H.[Yun-He],
Jia, X.[Xu],
Han, K.[Kai],
Chen, H.T.[Han-Ting],
Xu, C.J.[Chun-Jing],
Tian, Q.[Qi],
Xu, C.[Chang],
Co-Evolutionary Compression for Unpaired Image Translation,
ICCV19(3234-3243)
IEEE DOI
2004
computational complexity, convolution,
evolutionary computation, feature extraction, image coding,
Convolution
BibRef
Sadeghi, B.,
Yu, R.,
Boddeti, V.N.[Vishnu Naresh],
On the Global Optima of Kernelized Adversarial Representation
Learning,
ICCV19(7970-7978)
IEEE DOI
2004
iterative methods, learning (artificial intelligence),
minimax techniques, neural nets, iterative minimax optimization,
Convergence
BibRef
Xiang, Y.,
Fu, Y.,
Ji, P.,
Huang, H.,
Incremental Learning Using Conditional Adversarial Networks,
ICCV19(6618-6627)
IEEE DOI
2004
convolutional neural nets, feature extraction, image recognition,
image representation, learning (artificial intelligence),
BibRef
Mullick, S.S.,
Datta, S.,
Das, S.,
Generative Adversarial Minority Oversampling,
ICCV19(1695-1704)
IEEE DOI
2004
image classification, image sampling,
learning (artificial intelligence), neural nets,
Tuning
BibRef
Zhao, P.,
Liu, S.,
Chen, P.,
Hoang, N.,
Xu, K.,
Kailkhura, B.,
Lin, X.,
On the Design of Black-Box Adversarial Examples by Leveraging
Gradient-Free Optimization and Operator Splitting Method,
ICCV19(121-130)
IEEE DOI
2004
Bayes methods, image classification, image retrieval,
learning (artificial intelligence), optimisation, Estimation
BibRef
Pande, S.,
Banerjee, A.,
Kumar, S.,
Banerjee, B.,
Chaudhuri, S.,
An Adversarial Approach to Discriminative Modality Distillation for
Remote Sensing Image Classification,
CroMoL19(4571-4580)
IEEE DOI
2004
feature extraction, geophysical image processing,
image classification, image representation,
Hyperspectral images
BibRef
Liu, H.,
Ji, R.,
Li, J.,
Zhang, B.,
Gao, Y.,
Wu, Y.,
Huang, F.,
Universal Adversarial Perturbation via Prior Driven Uncertainty
Approximation,
ICCV19(2941-2949)
IEEE DOI
2004
gradient methods, Monte Carlo methods, neural nets,
sampling methods, stochastic processes, deep learning models,
Laplace equations
BibRef
Mahdizadehaghdam, S.,
Panahi, A.,
Krim, H.,
Sparse Generative Adversarial Network,
CEFRL19(3063-3071)
IEEE DOI
2004
feature extraction, learning (artificial intelligence),
signal reconstruction, signal representation, vectors,
deep learning
BibRef
Krishnan, D.,
Teterwak, P.,
Sarna, A.,
Maschinot, A.,
Liu, C.,
Belanger, D.,
Freeman, W.,
Boundless: Generative Adversarial Networks for Image Extension,
ICCV19(10520-10529)
IEEE DOI
2004
image colour analysis, image restoration, image texture,
neural nets, computational photography, computer graphics,
Context modeling
BibRef
Kundu, J.N.,
Gor, M.,
Agrawal, D.,
Radhakrishnan, V.B.,
GAN-Tree: An Incrementally Learned Hierarchical Generative Framework
for Multi-Modal Data Distributions,
ICCV19(8190-8199)
IEEE DOI
2004
learning (artificial intelligence), neural nets,
pattern clustering, tree data structures, Task analysis
BibRef
Shocher, A.[Assaf],
Gandelsman, Y.[Yossi],
Mosseri, I.[Inbar],
Yarom, M.[Michal],
Irani, M.[Michal],
Freeman, W.T.[William T.],
Dekel, T.[Tali],
Semantic Pyramid for Image Generation,
CVPR20(7455-7464)
IEEE DOI
2008
Semantics, Feature extraction, Image reconstruction,
Generators, Task analysis, Aerospace electronics
BibRef
Shaham, T.R.,
Dekel, T.,
Michaeli, T.,
SinGAN: Learning a Generative Model From a Single Natural Image,
ICCV19(4569-4579)
IEEE DOI
2004
Award, Marr Prize. image classification, image segmentation, image texture,
learning (artificial intelligence), SinGAN, Computational modeling
BibRef
Raj, A.,
Li, Y.,
Bresler, Y.,
GAN-Based Projector for Faster Recovery With Convergence Guarantees
in Linear Inverse Problems,
ICCV19(5601-5610)
IEEE DOI
2004
compressed sensing, computational complexity, Gaussian processes,
gradient methods, image reconstruction, inverse problems,
Approximation algorithms
BibRef
Shama, F.,
Mechrez, R.,
Shoshan, A.,
Zelnik-Manor, L.,
Adversarial Feedback Loop,
ICCV19(3204-3213)
IEEE DOI
2004
feature extraction, image resolution,
learning (artificial intelligence), neural nets, GAN based model, Feeds
BibRef
Schwettmann, S.[Sarah],
Hernandez, E.[Evan],
Bau, D.[David],
Klein, S.[Samuel],
Andreas, J.[Jacob],
Torralba, A.B.[Antonio B.],
Toward a Visual Concept Vocabulary for GAN Latent Space,
ICCV21(6784-6792)
IEEE DOI
2203
Vocabulary, Visualization, Annotations, Buildings, Natural languages,
Transforms, Observers, Neural generative models,
BibRef
Lin, C.H.,
Chang, C.,
Chen, Y.,
Juan, D.,
Wei, W.,
Chen, H.,
COCO-GAN: Generation by Parts via Conditional Coordinating,
ICCV19(4511-4520)
IEEE DOI
2004
divide and conquer methods, extrapolation,
learning (artificial intelligence), neural nets, COCO-GAN,
Task analysis
BibRef
Wieluch, S.,
Schwenker, F.,
Dropout Induced Noise for Co-Creative GAN Systems,
Fashion19(3137-3140)
IEEE DOI
2004
neural nets, dropout induced noise,
generative adversarial networks, latent space exploration,
neural net
BibRef
Al-Rawi, M.,
Bazazian, D.,
Valveny, E.,
Can Generative Adversarial Networks Teach Themselves Text
Segmentation?,
AIM19(3342-3350)
IEEE DOI
2004
data mining, image segmentation, natural language processing,
text analysis, unsupervised learning, scene image, F1 Score
BibRef
Liu, H.,
Gu, X.,
Samaras, D.,
Wasserstein GAN With Quadratic Transport Cost,
ICCV19(4831-4840)
IEEE DOI
2004
learning (artificial intelligence), neural nets,
statistical distributions, Wasserstein GAN,
Linear programming
BibRef
Feng, Z.[Zeyu],
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
Self-Supervised Representation Learning by Rotation Feature Decoupling,
CVPR19(10356-10366).
IEEE DOI
2002
BibRef
Xing, X.L.[Xiang-Lei],
Gao, R.Q.[Rui-Qi],
Han, T.[Tian],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Deformable Generator Networks: Unsupervised Disentanglement of
Appearance and Geometry,
PAMI(44), No. 3, March 2022, pp. 1162-1179.
IEEE DOI
2202
BibRef
Earlier: A1, A3, A2, A4, A5:
Unsupervised Disentangling of Appearance and Geometry by Deformable
Generator Network,
CVPR19(10346-10355).
IEEE DOI
2002
Generators, Deformable models, Data models, Shape, Interpolation,
Analytical models, Image color analysis, Unsupervised learning,
deformable model.
2 separate generators.
BibRef
Liu, S.H.[Shao-Hui],
Zhang, X.[Xiao],
Wangni, J.Q.[Jian-Qiao],
Shi, J.B.[Jian-Bo],
Normalized Diversification,
CVPR19(10298-10307).
IEEE DOI
2002
BibRef
Wu, J.Q.[Ji-Qing],
Huang, Z.W.[Zhi-Wu],
Acharya, D.[Dinesh],
Li, W.[Wen],
Thoma, J.[Janine],
Paudel, D.P.[Danda Pani],
Van Gool, L.J.[Luc J.],
Sliced Wasserstein Generative Models,
CVPR19(3708-3717).
IEEE DOI
2002
BibRef
Zhao, J.B.J.[Jun-Bo Jake],
Cho, K.H.[Kyung-Hyun],
Retrieval-Augmented Convolutional Neural Networks Against Adversarial
Examples,
CVPR19(11555-11563).
IEEE DOI
2002
BibRef
Yu, B.[Bing],
Wu, J.F.[Jing-Feng],
Ma, J.W.[Jin-Wen],
Zhu, Z.X.[Zhan-Xing],
Tangent-Normal Adversarial Regularization for Semi-Supervised Learning,
CVPR19(10668-10676).
IEEE DOI
2002
BibRef
Jaiswal, A.[Ayush],
Wu, Y.[Yue],
Abd Almageed, W.[Wael],
Masi, I.[Iacopo],
Natarajan, P.[Premkumar],
AIRD: Adversarial Learning Framework for Image Repurposing Detection,
CVPR19(11322-11331).
IEEE DOI
2002
BibRef
Taghanaki, S.A.[Saeid Asgari],
Abhishek, K.[Kumar],
Azizi, S.[Shekoofeh],
Hamarneh, G.[Ghassan],
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial
Perturbations,
CVPR19(11332-11341).
IEEE DOI
2002
BibRef
Liang, J.[Jian],
Cao, Y.[Yuren],
Zhang, C.B.[Chen-Bin],
Chang, S.Y.[Shi-Yu],
Bai, K.[Kun],
Xu, Z.L.[Zeng-Lin],
Additive Adversarial Learning for Unbiased Authentication,
CVPR19(11420-11429).
IEEE DOI
2002
BibRef
Liu, Z.H.[Zi-Hao],
Liu, Q.[Qi],
Liu, T.[Tao],
Xu, N.[Nuo],
Lin, X.[Xue],
Wang, Y.Z.[Yan-Zhi],
Wen, W.J.[Wu-Jie],
Feature Distillation: DNN-Oriented JPEG Compression Against Adversarial
Examples,
CVPR19(860-868).
IEEE DOI
2002
BibRef
Huh, M.Y.[Min-Young],
Sun, S.H.[Shao-Hua],
Zhang, N.[Ning],
Feedback Adversarial Learning: Spatial Feedback for Improving
Generative Adversarial Networks,
CVPR19(1476-1485).
IEEE DOI
2002
BibRef
Ghasedi, K.[Kamran],
Wang, X.Q.[Xiao-Qian],
Deng, C.[Cheng],
Huang, H.[Heng],
Balanced Self-Paced Learning for Generative Adversarial Clustering
Network,
CVPR19(4386-4395).
IEEE DOI
2002
BibRef
Qi, M.S.[Meng-Shi],
Wang, Y.H.[Yun-Hong],
Qin, J.[Jie],
Li, A.[Annan],
KE-GAN: Knowledge Embedded Generative Adversarial Networks for
Semi-Supervised Scene Parsing,
CVPR19(5232-5241).
IEEE DOI
2002
BibRef
Park, J.S.[Jae Sung],
Rohrbach, M.[Marcus],
Darrell, T.J.[Trevor J.],
Rohrbach, A.[Anna],
Adversarial Inference for Multi-Sentence Video Description,
CVPR19(6591-6601).
IEEE DOI
2002
BibRef
Xiao, C.W.[Chao-Wei],
Yang, D.W.[Da-Wei],
Li, B.[Bo],
Deng, J.[Jia],
Liu, M.Y.[Ming-Yan],
MeshAdv: Adversarial Meshes for Visual Recognition,
CVPR19(6891-6900).
IEEE DOI
2002
BibRef
Inkawhich, N.[Nathan],
Wen, W.[Wei],
Li, H.(.[Hai (Helen)],
Chen, Y.R.[Yi-Ran],
Feature Space Perturbations Yield More Transferable Adversarial
Examples,
CVPR19(7059-7067).
IEEE DOI
2002
BibRef
Heim, E.[Eric],
Constrained Generative Adversarial Networks for Interactive Image
Generation,
CVPR19(10745-10753).
IEEE DOI
2002
BibRef
Gomez-Villa, A.[Alexander],
Martin, A.[Adrian],
Vazquez-Corral, J.[Javier],
Bertalmio, M.[Marcelo],
Convolutional Neural Networks Can Be Deceived by Visual Illusions,
CVPR19(12301-12309).
IEEE DOI
2002
BibRef
Liu, F.[Fang],
Deng, X.M.[Xiao-Ming],
Lai, Y.K.[Yu-Kun],
Liu, Y.J.[Yong-Jin],
Ma, C.X.[Cui-Xia],
Wang, H.A.[Hong-An],
SketchGAN: Joint Sketch Completion and Recognition With Generative
Adversarial Network,
CVPR19(5823-5832).
IEEE DOI
2002
BibRef
Eghbal-zadeh, H.[Hamid],
Zellinger, W.[Werner],
Widmer, G.[Gerhard],
Mixture Density Generative Adversarial Networks,
CVPR19(5813-5822).
IEEE DOI
2002
BibRef
Zhu, B.[Bin],
Ngo, C.W.[Chong-Wah],
Chen, J.J.[Jing-Jing],
Hao, Y.B.[Yan-Bin],
R2GAN: Cross-Modal Recipe Retrieval With Generative Adversarial Network,
CVPR19(11469-11478).
IEEE DOI
2002
BibRef
Romijnders, R.[Rob],
Mahendran, A.[Aravindh],
Tschannen, M.[Michael],
Djolonga, J.[Josip],
Ritter, M.[Marvin],
Houlsby, N.[Neil],
Lucic, M.[Mario],
Representation learning from videos in-the-wild:
An object-centric approach,
WACV21(177-187)
IEEE DOI
2106
Visualization, Transfer learning,
Detectors, Image representation, Benchmark testing
BibRef
Chen, T.[Ting],
Zhai, X.H.[Xiao-Hua],
Ritter, M.[Marvin],
Lucic, M.[Mario],
Houlsby, N.[Neil],
Self-Supervised GANs via Auxiliary Rotation Loss,
CVPR19(12146-12155).
IEEE DOI
2002
BibRef
Papadopoulos, D.P.[Dim P.],
Tamaazousti, Y.[Youssef],
Ofli, F.[Ferda],
Weber, I.[Ingmar],
Torralba, A.B.[Antonio B.],
How to Make a Pizza: Learning a Compositional Layer-Based GAN Model,
CVPR19(7994-8003).
IEEE DOI
2002
BibRef
Deshpande, I.[Ishan],
Hu, Y.T.[Yuan-Ting],
Sun, R.[Ruoyu],
Pyrros, A.[Ayis],
Siddiqui, N.[Nasir],
Koyejo, S.[Sanmi],
Zhao, Z.Z.[Zhi-Zhen],
Forsyth, D.A.[David A.],
Schwing, A.G.[Alexander G.],
Max-Sliced Wasserstein Distance and Its Use for GANs,
CVPR19(10640-10648).
IEEE DOI
2002
BibRef
Vandenhende, S.,
de Brabandere, B.,
Neven, D.,
Van Gool, L.J.,
A Three-Player GAN: Generating Hard Samples to Improve Classification
Networks,
MVA19(1-6)
DOI Link
1806
game theory, image classification, image recognition,
learning (artificial intelligence),
Computational modeling
BibRef
Pinetz, T.[Thomas],
Soukup, D.[Daniel],
Pock, T.[Thomas],
On the Estimation of the Wasserstein Distance in Generative Models,
GCPR19(156-170).
Springer DOI
1911
BibRef
Kim, B.,
Lee, J.,
Kim, K.,
Kim, S.,
Kim, J.,
Collaborative Method for Incremental Learning on Classification and
Generation,
ICIP19(390-394)
IEEE DOI
1910
Incremental Learning, Deep Neural Networks, Generative Adversarial Networks
BibRef
Mao, Q.,
Wang, S.,
Zhang, X.,
Wang, S.,
Ma, S.,
Fidelity or Quality? A Region-Aware Framework for Enhanced Image
Decoding via Hybrid Neural Networks,
ICIP19(2616-2620)
IEEE DOI
1910
Image restoration, generative adversarial networks,
enhanced image decoding, perceptual quality, fidelity
BibRef
Zhuang, Y.,
Hsu, C.,
Detecting Generated Image Based on a Coupled Network with Two-Step
Pairwise Learning,
ICIP19(3212-3216)
IEEE DOI
1910
Forgery detection, generative adversarial networks, triplet loss,
deep learning, coupled network
BibRef
Lu, Y.,
Velipasalar, S.,
Autonomous Choice of Deep Neural Network Parameters by a Modified
Generative Adversarial Network,
ICIP19(3846-3850)
IEEE DOI
1910
Deep learning, neural networks, parameter choice,
generative adversarial networks
BibRef
Yang, R.,
Nakayama, H.,
Bipolar GAN: Double Check the Solution Space and Lighten False
Positive Errors in Generative Adversarial Nets,
ICIP19(4260-4264)
IEEE DOI
1910
GAN, Bipolar discriminator, Compatibility
BibRef
Wang, Y.,
Nikkhah, M.,
Zhu, X.,
Tan, W.,
Liston, R.,
Learning Geographically Distributed Data for Multiple Tasks Using
Generative Adversarial Networks,
ICIP19(4589-4593)
IEEE DOI
1910
distributed machine learning,
generative adversarial networks (GAN), semi-supervised learning
BibRef
Caldelli, R.,
Becarelli, R.,
Carrara, F.,
Falchi, F.,
Amato, G.,
Exploiting CNN Layer Activations to Improve Adversarial Image
Classification,
ICIP19(2289-2293)
IEEE DOI
1910
Adversarial images, neural networks, layer activations, adversarial detection
BibRef
Guo, W.K.[Wei-Kuo],
Liang, J.[Jian],
Kong, X.W.[Xiang-Wei],
Song, L.X.[Ling-Xiao],
He, R.[Ran],
X-GACMN: An X-Shaped Generative Adversarial Cross-Modal Network with
Hypersphere Embedding,
ACCV18(V:513-529).
Springer DOI
1906
BibRef
Ying, G.H.[Guo-Hao],
Zou, Y.T.[Ying-Tian],
Wan, L.[Lin],
Hu, Y.M.[Yi-Ming],
Feng, J.S.[Jia-Shi],
Better Guider Predicts Future Better:
Difference Guided Generative Adversarial Networks,
ACCV18(VI:277-292).
Springer DOI
1906
BibRef
Heljakka, A.[Ari],
Solin, A.[Arno],
Kannala, J.H.[Ju-Ho],
Pioneer Networks: Progressively Growing Generative Autoencoder,
ACCV18(I:22-38).
Springer DOI
1906
BibRef
Alberti, M.[Michele],
Pondenkandath, V.[Vinaychandran],
Würsch, M.[Marcel],
Bouillon, M.[Manuel],
Seuret, M.[Mathias],
Ingold, R.[Rolf],
Liwicki, M.[Marcus],
Are You Tampering with My Data?,
Objectionable18(II:296-312).
Springer DOI
1905
BibRef
Belagiannis, V.[Vasileios],
Farshad, A.[Azade],
Galasso, F.[Fabio],
Adversarial Network Compression,
CEFR-LCV18(IV:431-449).
Springer DOI
1905
BibRef
Öngün, C.[Cihan],
Temizel, A.[Alptekin],
Paired 3D Model Generation with Conditional Generative Adversarial
Networks,
3D-Wild18(I:473-487).
Springer DOI
1905
BibRef
Carrara, F.[Fabio],
Becarelli, R.[Rudy],
Caldelli, R.[Roberto],
Falchi, F.[Fabrizio],
Amato, G.[Giuseppe],
Adversarial Examples Detection in Features Distance Spaces,
Objectionable18(II:313-327).
Springer DOI
1905
BibRef
Assens, M.[Marc],
Giro-i-Nieto, X.[Xavier],
McGuinness, K.[Kevin],
O'Connor, N.E.[Noel E.],
PathGAN: Visual Scanpath Prediction with Generative Adversarial
Networks,
Egocentric18(V:406-422).
Springer DOI
1905
BibRef
Jaiswal, A.[Ayush],
Abd-Almageed, W.[Wael],
Wu, Y.[Yue],
Natarajan, P.[Premkumar],
Bidirectional Conditional Generative Adversarial Networks,
ACCV18(III:216-232).
Springer DOI
1906
BibRef
Earlier:
CapsuleGAN: Generative Adversarial Capsule Network,
BrainDriven18(III:526-535).
Springer DOI
1905
BibRef
Blum, O.[Oliver],
Brattoli, B.[Biagio],
Ommer, B.[Björn],
X-GAN: Improving Generative Adversarial Networks with ConveX
Combinations,
GCPR18(199-214).
Springer DOI
1905
BibRef
Kazemi, H.,
Iranmanesh, S.M.,
Nasrabadi, N.,
Style and Content Disentanglement in Generative Adversarial Networks,
WACV19(848-856)
IEEE DOI
1904
feature extraction, geophysical image processing,
image classification, image representation, image texture,
Task analysis
BibRef
Han, T.,
Lu, Y.,
Wu, J.,
Xing, X.,
Wu, Y.N.,
Learning Generator Networks for Dynamic Patterns,
WACV19(809-818)
IEEE DOI
1904
convolutional neural nets, image representation, image sequences,
learning (artificial intelligence), spatiotemporal phenomena,
Dynamics
BibRef
Juefei-Xu, F.,
Boddeti, V.N.,
Savvides, M.,
Perturbative Neural Networks,
CVPR18(3310-3318)
IEEE DOI
1812
Perturbation methods, Convolution, Standards, Task analysis,
Convolutional neural networks, Visualization
BibRef
Oseledets, I.,
Khrulkov, V.,
Art of Singular Vectors and Universal Adversarial Perturbations,
CVPR18(8562-8570)
IEEE DOI
1812
Perturbation methods, Jacobian matrices, Optimization,
Neural networks, Visualization, Correlation
BibRef
Gupta, A.,
Johnson, J.,
Fei-Fei, L.,
Savarese, S.,
Alahi, A.,
Social GAN: Socially Acceptable Trajectories with Generative
Adversarial Networks,
CVPR18(2255-2264)
IEEE DOI
1812
Trajectory, Computational modeling,
Predictive models, Generators, History, Decoding
BibRef
Hayes, J.,
On Visible Adversarial Perturbations & Digital Watermarking,
PRIV18(1678-16787)
IEEE DOI
1812
Perturbation methods, Watermarking, Computational modeling,
Visualization, Task analysis, Image restoration
BibRef
Pal, A.,
Balasubramanian, V.N.,
Adversarial Data Programming: Using GANs to Relax the Bottleneck of
Curated Labeled Data,
CVPR18(1556-1565)
IEEE DOI
1812
Labeling, Data models,
Generative adversarial networks, Computational modeling,
Programming
BibRef
Ma, S.,
Fu, J.,
Chen, C.W.,
Mei, T.,
DA-GAN: Instance-Level Image Translation by Deep Attention Generative
Adversarial Networks,
CVPR18(5657-5666)
IEEE DOI
1812
Task analysis, Semantics, Generative adversarial networks, Birds,
Geometry
BibRef
Hosseini, H.,
Poovendran, R.,
Semantic Adversarial Examples,
PRIV18(1695-16955)
IEEE DOI
1812
Image color analysis, Perturbation methods, Semantics, Shape,
Security, Automobiles, Marine vehicles
BibRef
Wu, K.,
Zhang, C.,
Deep Generative Adversarial Networks for the Sparse Signal Denoising,
ICPR18(1127-1132)
IEEE DOI
1812
Noise reduction, Encoding, Task analysis,
Data models, Generative adversarial networks
BibRef
Guo, Y.[Ye],
Liu, K.[Ke],
Yu, Z.Y.[Ze-Yun],
Porous Structure Design in Tissue Engineering Using Anisotropic Radial
Basis Functions,
ISVC18(79-90).
Springer DOI
1811
BibRef
Makkapati, V.V.[Vishnu Vardhan],
Patro, A., (2017)
Enhancing Symmetry in GAN Generated Fashion Images,
SGAI17(xx-yy).
Springer DOI LNCS 10630.
1811
BibRef
Patro, A.,
Makkapati, V.V.[Vishnu Vardhan],
Mukhopadhyay, J.,
Evaluation of Loss Functions for Estimation of Latent Vectors from GAN,
MLSP18(1-6).
IEEE DOI
1811
BibRef
Tran, N.T.[Ngoc-Trung],
Bui, T.A.[Tuan-Anh],
Cheung, N.M.[Ngai-Man],
Dist-GAN: An Improved GAN Using Distance Constraints,
ECCV18(XIV: 387-401).
Springer DOI
1810
BibRef
Zhao, B.[Bo],
Chang, B.[Bo],
Jie, Z.Q.[Ze-Qun],
Sigal, L.[Leonid],
Modular Generative Adversarial Networks,
ECCV18(XIV: 157-173).
Springer DOI
1810
BibRef
Zhou, W.[Wen],
Hou, X.[Xin],
Chen, Y.J.[Yong-Jun],
Tang, M.Y.[Meng-Yun],
Huang, X.Q.[Xiang-Qi],
Gan, X.[Xiang],
Yang, Y.[Yong],
Transferable Adversarial Perturbations,
ECCV18(XIV: 471-486).
Springer DOI
1810
BibRef
Jha, A.H.[Ananya Harsh],
Anand, S.[Saket],
Singh, M.[Maneesh],
Veeravasarapu, V.S.R.,
Disentangling Factors of Variation with Cycle-Consistent Variational
Auto-encoders,
ECCV18(III: 829-845).
Springer DOI
1810
BibRef
Edraki, M.[Marzieh],
Qi, G.J.[Guo-Jun],
Generalized Loss-Sensitive Adversarial Learning with Manifold Margins,
ECCV18(VI: 90-104).
Springer DOI
1810
BibRef
Chang, C.C.[Chia-Che],
Lin, C.H.[Chieh Hubert],
Lee, C.R.[Che-Rung],
Juan, D.C.[Da-Cheng],
Wei, W.[Wei],
Chen, H.T.[Hwann-Tzong],
Escaping from Collapsing Modes in a Constrained Space,
ECCV18(VII: 212-227).
Springer DOI
1810
mode collapse issue in GANs
BibRef
Shmelkov, K.[Konstantin],
Schmid, C.[Cordelia],
Alahari, K.[Karteek],
How Good Is My GAN?,
ECCV18(II: 218-234).
Springer DOI
1810
BibRef
Liang, X.D.[Xiao-Dan],
Zhang, H.[Hao],
Lin, L.[Liang],
Xing, E.[Eric],
Generative Semantic Manipulation with Mask-Contrasting GAN,
ECCV18(XIII: 574-590).
Springer DOI
1810
BibRef
Wu, J.Q.[Ji-Qing],
Huang, Z.W.[Zhi-Wu],
Thoma, J.[Janine],
Acharya, D.[Dinesh],
Van Gool, L.J.[Luc J.],
Wasserstein Divergence for GANs,
ECCV18(VI: 673-688).
Springer DOI
1810
BibRef
Xu, K.[Kai],
Zhang, Z.K.[Zhi-Kang],
Ren, F.B.[Feng-Bo],
LAPRAN: A Scalable Laplacian Pyramid Reconstructive Adversarial Network
for Flexible Compressive Sensing Reconstruction,
ECCV18(X: 491-507).
Springer DOI
1810
BibRef
Zhang, X.[Xi],
Lai, H.J.[Han-Jiang],
Feng, J.S.[Jia-Shi],
Attention-Aware Deep Adversarial Hashing for Cross-Modal Retrieval,
ECCV18(XV: 614-629).
Springer DOI
1810
BibRef
Liang, J.[Jie],
Yang, J.F.[Ju-Feng],
Lee, H.Y.[Hsin-Ying],
Wang, K.[Kai],
Yang, M.H.[Ming-Hsuan],
Sub-GAN: An Unsupervised Generative Model via Subspaces,
ECCV18(XI: 726-743).
Springer DOI
1810
BibRef
Wang, G.[Guan'an],
Hu, Q.[Qinghao],
Cheng, J.[Jian],
Hou, Z.G.[Zeng-Guang],
Semi-supervised Generative Adversarial Hashing for Image Retrieval,
ECCV18(XV: 491-507).
Springer DOI
1810
BibRef
Di, X.,
Yu, P.,
Multiplicative Noise Channel in Generative Adversarial Networks,
CEFR-LCV17(1165-1172)
IEEE DOI
1802
Additive noise, Additives, Convergence,
Gaussian noise, Uncertainty, Visualization
BibRef
Metzen, J.H.[Jan Hendrik],
Kumar, M.C.[Mummadi Chaithanya],
Brox, T.[Thomas],
Fischer, V.[Volker],
Universal Adversarial Perturbations Against Semantic Image
Segmentation,
ICCV17(2774-2783)
IEEE DOI
1802
Noise specifically generated to fool the system.
image denoising, image segmentation,
learning (artificial intelligence), arbitrary inputs,
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Training of Adversarial Networks .