Miller, D.J.,
Xiang, Z.,
Kesidis, G.,
Adversarial Learning Targeting Deep Neural Network Classification:
A Comprehensive Review of Defenses Against Attacks,
PIEEE(108), No. 3, March 2020, pp. 402-433.
IEEE DOI
2003
Training data, Neural networks, Reverse engineering,
Machine learning, Robustness, Training data, Feature extraction,
white box
BibRef
Amini, S.,
Ghaemmaghami, S.,
Towards Improving Robustness of Deep Neural Networks to Adversarial
Perturbations,
MultMed(22), No. 7, July 2020, pp. 1889-1903.
IEEE DOI
2007
Robustness, Perturbation methods, Training, Deep learning,
Neural networks, Signal to noise ratio,
interpretable
BibRef
Li, X.R.[Xu-Rong],
Ji, S.L.[Shou-Ling],
Ji, J.T.[Jun-Tao],
Ren, Z.Y.[Zhen-Yu],
Wu, C.M.[Chun-Ming],
Li, B.[Bo],
Wang, T.[Ting],
Adversarial examples detection through the sensitivity in space
mappings,
IET-CV(14), No. 5, August 2020, pp. 201-213.
DOI Link
2007
BibRef
Li, H.,
Zeng, Y.,
Li, G.,
Lin, L.,
Yu, Y.,
Online Alternate Generator Against Adversarial Attacks,
IP(29), 2020, pp. 9305-9315.
IEEE DOI
2010
Generators, Training, Perturbation methods, Knowledge engineering,
Convolutional neural networks, Deep learning, image classification
BibRef
Shi, Y.C.[Yu-Cheng],
Han, Y.H.[Ya-Hong],
Zhang, Q.X.[Quan-Xin],
Kuang, X.H.[Xiao-Hui],
Adaptive iterative attack towards explainable adversarial robustness,
PR(105), 2020, pp. 107309.
Elsevier DOI
2006
Adversarial example, Adversarial attack, Image classification
BibRef
Wang, Y.,
Su, H.,
Zhang, B.,
Hu, X.,
Interpret Neural Networks by Extracting Critical Subnetworks,
IP(29), 2020, pp. 6707-6720.
IEEE DOI
2007
Predictive models, Logic gates, Neural networks, Machine learning,
Feature extraction, Robustness, Visualization,
adversarial robustness
BibRef
Liu, A.S.[Ai-Shan],
Liu, X.L.[Xiang-Long],
Yu, H.[Hang],
Zhang, C.Z.[Chong-Zhi],
Liu, Q.[Qiang],
Tao, D.C.[Da-Cheng],
Training Robust Deep Neural Networks via Adversarial Noise
Propagation,
IP(30), 2021, pp. 5769-5781.
IEEE DOI
2106
Training, Adaptation models, Visualization, Computational modeling,
Neural networks, Manuals, Robustness, Adversarial examples,
deep neural networks
BibRef
Jia, K.[Kui],
Tao, D.C.[Da-Cheng],
Gao, S.H.[Sheng-Hua],
Xu, X.M.[Xiang-Min],
Improving Training of Deep Neural Networks via Singular Value
Bounding,
CVPR17(3994-4002)
IEEE DOI
1711
Histograms, Machine learning, Neural networks,
Optimization, Standards, Training
BibRef
Zhang, C.Z.[Chong-Zhi],
Liu, A.S.[Ai-Shan],
Liu, X.L.[Xiang-Long],
Xu, Y.T.[Yi-Tao],
Yu, H.[Hang],
Ma, Y.Q.[Yu-Qing],
Li, T.L.[Tian-Lin],
Interpreting and Improving Adversarial Robustness of Deep Neural
Networks With Neuron Sensitivity,
IP(30), 2021, pp. 1291-1304.
IEEE DOI
2012
Neurons, Sensitivity, Robustness, Computational modeling,
Analytical models, Training, Deep learning, Model interpretation,
neuron sensitivity
BibRef
Ortiz-Jiménez, G.[Guillermo],
Modas, A.[Apostolos],
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Frossard, P.[Pascal],
Optimism in the Face of Adversity: Understanding and Improving Deep
Learning Through Adversarial Robustness,
PIEEE(109), No. 5, May 2021, pp. 635-659.
IEEE DOI
2105
Neural networks, Deep learning, Robustness, Security, Tools,
Perturbation methods, Benchmark testing, Adversarial robustness,
transfer learning
BibRef
Yüce, G.[Gizem],
Ortiz-Jiménez, G.[Guillermo],
Besbinar, B.[Beril],
Frossard, P.[Pascal],
A Structured Dictionary Perspective on Implicit Neural
Representations,
CVPR22(19206-19216)
IEEE DOI
2210
Deep learning, Dictionaries, Data visualization,
Power system harmonics, Harmonic analysis,
Self- semi- meta- unsupervised learning
BibRef
Bai, X.[Xiao],
Wang, X.[Xiang],
Liu, X.L.[Xiang-Long],
Liu, Q.[Qiang],
Song, J.K.[Jing-Kuan],
Sebe, N.[Nicu],
Kim, B.[Been],
Explainable deep learning for efficient and robust pattern
recognition: A survey of recent developments,
PR(120), 2021, pp. 108102.
Elsevier DOI
2109
Survey, Explainable Learning. Explainable deep learning,
Network compression and acceleration, Adversarial robustness,
Stability in deep learning
BibRef
Ma, X.J.[Xing-Jun],
Niu, Y.H.[Yu-Hao],
Gu, L.[Lin],
Wang, Y.S.[Yi-Sen],
Zhao, Y.T.[Yi-Tian],
Bailey, J.[James],
Lu, F.[Feng],
Understanding adversarial attacks on deep learning based medical
image analysis systems,
PR(110), 2021, pp. 107332.
Elsevier DOI
2011
Adversarial attack, Adversarial example detection,
Medical image analysis, Deep learning
BibRef
Zhou, M.[Mo],
Niu, Z.X.[Zhen-Xing],
Wang, L.[Le],
Zhang, Q.L.[Qi-Lin],
Hua, G.[Gang],
Adversarial Ranking Attack and Defense,
ECCV20(XIV:781-799).
Springer DOI
2011
BibRef
Agarwal, A.[Akshay],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Ratha, N.[Nalini],
Cognitive data augmentation for adversarial defense via pixel masking,
PRL(146), 2021, pp. 244-251.
Elsevier DOI
2105
Adversarial attacks, Deep learning, Data augmentation
BibRef
Agarwal, A.[Akshay],
Ratha, N.[Nalini],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Exploring Robustness Connection between Artificial and Natural
Adversarial Examples,
ArtOfRobust22(178-185)
IEEE DOI
2210
Deep learning, Neural networks, Semantics, Transformers, Robustness,
Convolutional neural networks
BibRef
Li, Z.R.[Zhuo-Rong],
Feng, C.[Chao],
Wu, M.H.[Ming-Hui],
Yu, H.C.[Hong-Chuan],
Zheng, J.W.[Jian-Wei],
Zhu, F.[Fanwei],
Adversarial robustness via attention transfer,
PRL(146), 2021, pp. 172-178.
Elsevier DOI
2105
Adversarial defense, Robustness, Representation learning,
Visual attention, Transfer learning
BibRef
Zhang, S.D.[Shu-Dong],
Gao, H.[Haichang],
Rao, Q.X.[Qing-Xun],
Defense Against Adversarial Attacks by Reconstructing Images,
IP(30), 2021, pp. 6117-6129.
IEEE DOI
2107
Perturbation methods, Image reconstruction, Training,
Iterative methods, Computational modeling, Predictive models,
perceptual loss
BibRef
Hu, W.Z.[Wen-Zheng],
Li, M.Y.[Ming-Yang],
Wang, Z.[Zheng],
Wang, J.Q.[Jian-Qiang],
Zhang, C.S.[Chang-Shui],
DiFNet: Densely High-Frequency Convolutional Neural Networks,
SPLetters(28), 2021, pp. 1340-1344.
IEEE DOI
2107
Image edge detection, Convolution, Perturbation methods, Training,
Neural networks, Robustness, Robust,
deep convolution neural network
BibRef
Mustafa, A.[Aamir],
Khan, S.H.[Salman H.],
Hayat, M.[Munawar],
Goecke, R.[Roland],
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Deeply Supervised Discriminative Learning for Adversarial Defense,
PAMI(43), No. 9, September 2021, pp. 3154-3166.
IEEE DOI
2108
Robustness, Perturbation methods, Training, Linear programming,
Optimization, Marine vehicles, Prototypes, Adversarial defense,
deep supervision
BibRef
Khodabakhsh, A.[Ali],
Akhtar, Z.[Zahid],
Unknown presentation attack detection against rational attackers,
IET-Bio(10), No. 5, 2021, pp. 460-479.
DOI Link
2109
BibRef
Zhang, X.W.[Xing-Wei],
Zheng, X.L.[Xiao-Long],
Mao, W.J.[Wen-Ji],
Adversarial Perturbation Defense on Deep Neural Networks,
Surveys(54), No. 8, October 2021, pp. xx-yy.
DOI Link
2110
Survey, Adversarial Defense. security, deep neural networks, origin, Adversarial perturbation defense
BibRef
Chen, X.[Xuan],
Ma, Y.N.[Yue-Na],
Lu, S.W.[Shi-Wei],
Yao, Y.[Yu],
Boundary augment: A data augment method to defend poison attack,
IET-IPR(15), No. 13, 2021, pp. 3292-3303.
DOI Link
2110
BibRef
Xu, Y.H.[Yong-Hao],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Self-Attention Context Network: Addressing the Threat of Adversarial
Attacks for Hyperspectral Image Classification,
IP(30), 2021, pp. 8671-8685.
IEEE DOI
2110
Deep learning, Training, Hyperspectral imaging, Feature extraction,
Task analysis, Perturbation methods, Predictive models,
deep learning
BibRef
Yu, H.[Hang],
Liu, A.S.[Ai-Shan],
Li, G.C.[Geng-Chao],
Yang, J.C.[Ji-Chen],
Zhang, C.Z.[Chong-Zhi],
Progressive Diversified Augmentation for General Robustness of DNNs:
A Unified Approach,
IP(30), 2021, pp. 8955-8967.
IEEE DOI
2111
Robustness, Training, Handheld computers, Perturbation methods,
Complexity theory, Streaming media, Standards
BibRef
Dai, T.[Tao],
Feng, Y.[Yan],
Chen, B.[Bin],
Lu, J.[Jian],
Xia, S.T.[Shu-Tao],
Deep image prior based defense against adversarial examples,
PR(122), 2022, pp. 108249.
Elsevier DOI
2112
Deep neural network, Adversarial example, Image prior, Defense
BibRef
Lo, S.Y.[Shao-Yuan],
Patel, V.M.[Vishal M.],
Defending Against Multiple and Unforeseen Adversarial Videos,
IP(31), 2022, pp. 962-973.
IEEE DOI
2201
Videos, Training, Robustness, Perturbation methods, Resists,
Image reconstruction, Image recognition, Adversarial video,
multi-perturbation robustness
BibRef
Wang, J.W.[Jin-Wei],
Zhao, J.J.[Jun-Jie],
Yin, Q.L.[Qi-Lin],
Luo, X.Y.[Xiang-Yang],
Zheng, Y.H.[Yu-Hui],
Shi, Y.Q.[Yun-Qing],
Jha, S.I.K.[Sun-Il Kr.],
SmsNet: A New Deep Convolutional Neural Network Model for Adversarial
Example Detection,
MultMed(24), 2022, pp. 230-244.
IEEE DOI
2202
Feature extraction, Training, Manuals, Perturbation methods,
Information science, Principal component analysis, SmsConnection
BibRef
Mygdalis, V.[Vasileios],
Pitas, I.[Ioannis],
Hyperspherical class prototypes for adversarial robustness,
PR(125), 2022, pp. 108527.
Elsevier DOI
2203
Adversarial defense, Adversarial robustness,
Hypersphere prototype loss, HCP loss
BibRef
Liang, Q.[Qi],
Li, Q.[Qiang],
Nie, W.Z.[Wei-Zhi],
LD-GAN: Learning perturbations for adversarial defense based on GAN
structure,
SP:IC(103), 2022, pp. 116659.
Elsevier DOI
2203
Adversarial attacks, Adversarial defense,
Adversarial robustness, Image classification
BibRef
Shao, R.[Rui],
Perera, P.[Pramuditha],
Yuen, P.C.[Pong C.],
Patel, V.M.[Vishal M.],
Open-Set Adversarial Defense with Clean-Adversarial Mutual Learning,
IJCV(130), No. 1, January 2022, pp. 1070-1087.
Springer DOI
2204
BibRef
Earlier:
Open-set Adversarial Defense,
ECCV20(XVII:682-698).
Springer DOI
2011
BibRef
Subramanyam, A.V.,
Sinkhorn Adversarial Attack and Defense,
IP(31), 2022, pp. 4039-4049.
IEEE DOI
2206
Iterative methods, Training, Perturbation methods,
Loss measurement, Standards, Robustness, Linear programming,
adversarial attack and defense
BibRef
Khong, T.T.T.[Thi Thu Thao],
Nakada, T.[Takashi],
Nakashima, Y.[Yasuhiko],
A Hybrid Bayesian-Convolutional Neural Network for Adversarial
Robustness,
IEICE(E105-D), No. 7, July 2022, pp. 1308-1319.
WWW Link.
2207
BibRef
Wang, K.[Ke],
Li, F.J.[Feng-Jun],
Chen, C.M.[Chien-Ming],
Hassan, M.M.[Mohammad Mehedi],
Long, J.Y.[Jin-Yi],
Kumar, N.[Neeraj],
Interpreting Adversarial Examples and Robustness for Deep
Learning-Based Auto-Driving Systems,
ITS(23), No. 7, July 2022, pp. 9755-9764.
IEEE DOI
2207
Training, Robustness, Deep learning, Perturbation methods,
Interference, Computer science, Computational modeling,
adversarial robustness
BibRef
Wang, Y.Z.[Yuan-Zhe],
Liu, Q.[Qipeng],
Mihankhah, E.[Ehsan],
Lv, C.[Chen],
Wang, D.[Danwei],
Detection and Isolation of Sensor Attacks for Autonomous Vehicles:
Framework, Algorithms, and Validation,
ITS(23), No. 7, July 2022, pp. 8247-8259.
IEEE DOI
2207
Robot sensing systems, Autonomous vehicles, Laser radar,
Mathematical model, Detectors, Global Positioning System, cyber-attack
BibRef
Wang, J.[Jia],
Su, W.Q.[Wu-Qiang],
Luo, C.W.[Cheng-Wen],
Chen, J.[Jie],
Song, H.B.[Hou-Bing],
Li, J.Q.[Jian-Qiang],
CSG: Classifier-Aware Defense Strategy Based on Compressive Sensing
and Generative Networks for Visual Recognition in Autonomous Vehicle
Systems,
ITS(23), No. 7, July 2022, pp. 9543-9553.
IEEE DOI
2207
Training, Neural networks, Compressed sensing,
Perturbation methods, Robustness, Real-time systems,
generative neural networks
BibRef
Wang, K.[Kun],
Liu, M.Z.[Mao-Zhen],
YOLO-Anti: YOLO-based counterattack model for unseen congested object
detection,
PR(131), 2022, pp. 108814.
Elsevier DOI
2208
Deep learning, Congested and occluded objects, Object detection
BibRef
Xue, W.[Wei],
Chen, Z.M.[Zhi-Ming],
Tian, W.W.[Wei-Wei],
Wu, Y.H.[Yun-Hua],
Hua, B.[Bing],
A Cascade Defense Method for Multidomain Adversarial Attacks under
Remote Sensing Detection,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Shi, X.S.[Xiao-Shuang],
Peng, Y.F.[Yi-Fan],
Chen, Q.Y.[Qing-Yu],
Keenan, T.[Tiarnan],
Thavikulwat, A.T.[Alisa T.],
Lee, S.[Sungwon],
Tang, Y.X.[Yu-Xing],
Chew, E.Y.[Emily Y.],
Summers, R.M.[Ronald M.],
Lu, Z.Y.[Zhi-Yong],
Robust convolutional neural networks against adversarial attacks on
medical images,
PR(132), 2022, pp. 108923.
Elsevier DOI
2209
CNNs, Adversarial examples, Sparsity denoising
BibRef
Rakin, A.S.[Adnan Siraj],
He, Z.[Zhezhi],
Li, J.T.[Jing-Tao],
Yao, F.[Fan],
Chakrabarti, C.[Chaitali],
Fan, D.L.[De-Liang],
T-BFA: Targeted Bit-Flip Adversarial Weight Attack,
PAMI(44), No. 11, November 2022, pp. 7928-7939.
IEEE DOI
2210
BibRef
Earlier: A2, A1, A3, A5, A6, Only:
Defending and Harnessing the Bit-Flip Based Adversarial Weight Attack,
CVPR20(14083-14091)
IEEE DOI
2008
Computational modeling, Random access memory, Computer security,
Training, Quantization (signal), Data models, Memory management, bit-flip.
Neural networks, Random access memory, Indexes,
Optimization, Degradation, Immune system
BibRef
Melacci, S.[Stefano],
Ciravegna, G.[Gabriele],
Sotgiu, A.[Angelo],
Demontis, A.[Ambra],
Biggio, B.[Battista],
Gori, M.[Marco],
Roli, F.[Fabio],
Domain Knowledge Alleviates Adversarial Attacks in Multi-Label
Classifiers,
PAMI(44), No. 12, December 2022, pp. 9944-9959.
IEEE DOI
2212
Training, Training data, Robustness, Task analysis,
Adversarial machine learning, Ink, Semisupervised learning,
multi-label classification
BibRef
Yu, X.[Xi],
Smedemark-Margulies, N.[Niklas],
Aeron, S.[Shuchin],
Koike-Akino, T.[Toshiaki],
Moulin, P.[Pierre],
Brand, M.[Matthew],
Parsons, K.[Kieran],
Wang, Y.[Ye],
Improving adversarial robustness by learning shared information,
PR(134), 2023, pp. 109054.
Elsevier DOI
2212
Adversarial robustness, Information bottleneck,
Multi-view learning, Shared information,
BibRef
Machado, G.R.[Gabriel Resende],
Silva, E.[Eugenio],
Goldschmidt, R.R.[Ronaldo Ribeiro],
Adversarial Machine Learning in Image Classification:
A Survey Toward the Defender's Perspective,
Surveys(55), No. 1, January 2023, pp. xx-yy.
DOI Link
2212
adversarial attacks, deep neural networks, adversarial images,
defense methods, image classification
BibRef
Rathore, H.[Hemant],
Sasan, A.[Animesh],
Sahay, S.K.[Sanjay K.],
Sewak, M.[Mohit],
Defending malware detection models against evasion based adversarial
attacks,
PRL(164), 2022, pp. 119-125.
Elsevier DOI
2212
Adversarial robustness, Deep neural network, Evasion attack,
Malware analysis and detection, Machine learning
BibRef
Lee, S.[Sungyoon],
Kim, H.[Hoki],
Lee, J.W.[Jae-Wook],
GradDiv: Adversarial Robustness of Randomized Neural Networks via
Gradient Diversity Regularization,
PAMI(45), No. 2, February 2023, pp. 2645-2651.
IEEE DOI
2301
Neural networks, Robustness, Stochastic processes, Perturbation methods,
Training, Transform coding, Statistics, directional analysis
BibRef
Lin, D.[Da],
Wang, Y.G.[Yuan-Gen],
Tang, W.X.[Wei-Xuan],
Kang, X.G.[Xian-Gui],
Boosting Query Efficiency of Meta Attack With Dynamic Fine-Tuning,
SPLetters(29), 2022, pp. 2557-2561.
IEEE DOI
2301
Distortion, Optimization, Estimation, Training, Tuning, Closed box,
Rate distortion theory, Adversarial attack, query efficiency
BibRef
Zhou, S.[Shuai],
Liu, C.[Chi],
Ye, D.[Dayong],
Zhu, T.Q.[Tian-Qing],
Zhou, W.[Wanlei],
Yu, P.S.[Philip S.],
Adversarial Attacks and Defenses in Deep Learning:
From a Perspective of Cybersecurity,
Surveys(55), No. 8, December 2022, pp. xx-yy.
DOI Link
2301
cybersecurity, adversarial attacks and defenses,
advanced persistent threats, Deep learning
BibRef
Picot, M.[Marine],
Messina, F.[Francisco],
Boudiaf, M.[Malik],
Labeau, F.[Fabrice],
Ben Ayed, I.[Ismail],
Piantanida, P.[Pablo],
Adversarial Robustness Via Fisher-Rao Regularization,
PAMI(45), No. 3, March 2023, pp. 2698-2710.
IEEE DOI
2302
Robustness, Manifolds, Training, Perturbation methods, Standards,
Neural networks, Adversarial machine learning, safety AI
BibRef
Stutz, D.[David],
Chandramoorthy, N.[Nandhini],
Hein, M.[Matthias],
Schiele, B.[Bernt],
Random and Adversarial Bit Error Robustness:
Energy-Efficient and Secure DNN Accelerators,
PAMI(45), No. 3, March 2023, pp. 3632-3647.
IEEE DOI
2302
Robustness, Quantization (signal), Random access memory, Training,
Voltage, Bit error rate, Low voltage, DNN Accelerators, DNN quantization
BibRef
Stutz, D.[David],
Hein, M.[Matthias],
Schiele, B.[Bernt],
Disentangling Adversarial Robustness and Generalization,
CVPR19(6969-6980).
IEEE DOI
2002
BibRef
Guo, Y.[Yong],
Stutz, D.[David],
Schiele, B.[Bernt],
Improving Robustness by Enhancing Weak Subnets,
ECCV22(XXIV:320-338).
Springer DOI
2211
BibRef
Guo, J.[Jun],
Bao, W.[Wei],
Wang, J.K.[Jia-Kai],
Ma, Y.Q.[Yu-Qing],
Gao, X.H.[Xing-Hai],
Xiao, G.[Gang],
Liu, A.[Aishan],
Dong, J.[Jian],
Liu, X.L.[Xiang-Long],
Wu, W.J.[Wen-Jun],
A comprehensive evaluation framework for deep model robustness,
PR(137), 2023, pp. 109308.
Elsevier DOI
2302
Adversarial examples, Evaluation metrics, Model robustness
BibRef
Niu, Z.H.[Zhong-Han],
Yang, Y.B.[Yu-Bin],
Defense Against Adversarial Attacks with Efficient Frequency-Adaptive
Compression and Reconstruction,
PR(138), 2023, pp. 109382.
Elsevier DOI
2303
Deep neural networks, Adversarial defense,
Adversarial robustness, Closed-set attack, Open-set attack
BibRef
Zhang, J.J.[Jia-Jin],
Chao, H.Q.[Han-Qing],
Yan, P.K.[Ping-Kun],
Toward Adversarial Robustness in Unlabeled Target Domains,
IP(32), 2023, pp. 1272-1284.
IEEE DOI
2303
Training, Robustness, Adaptation models, Data models, Deep learning,
Task analysis, Labeling, Adversarial robustness, domain adaptation,
pseudo labeling
BibRef
Brau, F.[Fabio],
Rossolini, G.[Giulio],
Biondi, A.[Alessandro],
Buttazzo, G.[Giorgio],
On the Minimal Adversarial Perturbation for Deep Neural Networks With
Provable Estimation Error,
PAMI(45), No. 4, April 2023, pp. 5038-5052.
IEEE DOI
2303
Perturbation methods, Robustness, Estimation, Neural networks,
Deep learning, Error analysis, Computational modeling,
verification methods
BibRef
Quan, C.[Chen],
Sriranga, N.[Nandan],
Yang, H.D.[Hao-Dong],
Han, Y.H.S.[Yung-Hsiang S.],
Geng, B.C.[Bao-Cheng],
Varshney, P.K.[Pramod K.],
Efficient Ordered-Transmission Based Distributed Detection Under Data
Falsification Attacks,
SPLetters(30), 2023, pp. 145-149.
IEEE DOI
2303
Energy efficiency, Wireless sensor networks, Upper bound,
Optimization, Distributed databases, Simulation,
distributed detection
BibRef
Naseer, M.[Muzammal],
Khan, S.[Salman],
Hayat, M.[Munawar],
Khan, F.S.[Fahad Shahbaz],
Porikli, F.M.[Fatih M.],
Stylized Adversarial Defense,
PAMI(45), No. 5, May 2023, pp. 6403-6414.
IEEE DOI
2304
Training, Perturbation methods, Robustness, Multitasking,
Predictive models, Computational modeling, Visualization, multi-task objective
BibRef
Xu, Q.Q.[Qian-Qian],
Yang, Z.Y.[Zhi-Yong],
Zhao, Y.R.[Yun-Rui],
Cao, X.C.[Xiao-Chun],
Huang, Q.M.[Qing-Ming],
Rethinking Label Flipping Attack:
From Sample Masking to Sample Thresholding,
PAMI(45), No. 6, June 2023, pp. 7668-7685.
IEEE DOI
2305
Data models, Training data, Training, Deep learning, Predictive models,
Testing, Optimization, Label flipping attack, machine learning
BibRef
Zago, J.G.[João G.],
Antonelo, E.A.[Eric A.],
Baldissera, F.L.[Fabio L.],
Saad, R.T.[Rodrigo T.],
Benford's law: What does it say on adversarial images?,
JVCIR(93), 2023, pp. 103818.
Elsevier DOI
2305
Benford's law, Adversarial attacks,
Convolutional neural networks, Adversarial detection
BibRef
Li, W.[Wen],
Wang, H.Y.[Heng-You],
Huo, L.Z.[Lian-Zhi],
He, Q.[Qiang],
Zhang, C.L.[Chang-Lun],
Robust attention ranking architecture with frequency-domain transform
to defend against adversarial samples,
CVIU(233), 2023, pp. 103717.
Elsevier DOI
2307
Adversarial samples, Attention mechanism,
Discrete cosine transform, Key points ranking
BibRef
Zhang, Y.X.[Yu-Xuan],
Meng, H.[Hua],
Cao, X.M.[Xue-Mei],
Zhou, Z.C.[Zheng-Chun],
Yang, M.[Mei],
Adhikary, A.R.[Avik Ranjan],
Interpreting vulnerabilities of multi-instance learning to
adversarial perturbations,
PR(142), 2023, pp. 109725.
Elsevier DOI
2307
Customized perturbation, Multi-instance learning,
Universal perturbation, Vulnerability
BibRef
Dong, J.H.[Jun-Hao],
Yang, L.X.[Ling-Xiao],
Wang, Y.[Yuan],
Xie, X.H.[Xiao-Hua],
Lai, J.H.[Jian-Huang],
Toward Intrinsic Adversarial Robustness Through Probabilistic
Training,
IP(32), 2023, pp. 3862-3872.
IEEE DOI
2307
Training, Uncertainty, Probabilistic logic, Robustness, Standards,
Computational modeling, Feature extraction, Deep neural networks, uncertainty
BibRef
Lee, H.[Hakmin],
Ro, Y.M.[Yong Man],
Adversarial anchor-guided feature refinement for adversarial defense,
IVC(136), 2023, pp. 104722.
Elsevier DOI
2308
Adversarial example, Adversarial robustness,
Adversarial anchor, Covariate shift, Feature refinement
BibRef
Gao, W.[Wei],
Zhang, X.[Xu],
Guo, S.[Shangwei],
Zhang, T.W.[Tian-Wei],
Xiang, T.[Tao],
Qiu, H.[Han],
Wen, Y.G.[Yong-Gang],
Liu, Y.[Yang],
Automatic Transformation Search Against Deep Leakage From Gradients,
PAMI(45), No. 9, September 2023, pp. 10650-10668.
IEEE DOI Collaborative learning, deal with attacks that reveal shared data.
2309
BibRef
Wei, X.X.[Xing-Xing],
Wang, S.[Songping],
Yan, H.Q.[Huan-Qian],
Efficient Robustness Assessment via Adversarial Spatial-Temporal
Focus on Videos,
PAMI(45), No. 9, September 2023, pp. 10898-10912.
IEEE DOI
2309
BibRef
Saini, N.[Nandini],
Chattopadhyay, C.[Chiranjoy],
Das, D.[Debasis],
SOLARNet: A single stage regression based framework for efficient and
robust object recognition in aerial images,
PRL(172), 2023, pp. 37-43.
Elsevier DOI
2309
Adversarial attacks, Deep learning, Aerial image,
Object detection, DOTA, DIOR
BibRef
Heo, J.[Jaehyuk],
Seo, S.[Seungwan],
Kang, P.[Pilsung],
Exploring the differences in adversarial robustness between ViT- and
CNN-based models using novel metrics,
CVIU(235), 2023, pp. 103800.
Elsevier DOI
2310
Adversarial robustness, Computer vision
BibRef
Huang, L.F.[Li-Feng],
Gao, C.Y.[Cheng-Ying],
Liu, N.[Ning],
Erosion Attack: Harnessing Corruption To Improve Adversarial Examples,
IP(32), 2023, pp. 4828-4841.
IEEE DOI Code:
WWW Link.
2310
BibRef
Wang, K.[Ke],
Chen, Z.C.[Zi-Cong],
Dang, X.L.[Xi-Lin],
Fan, X.[Xuan],
Han, X.M.[Xu-Ming],
Chen, C.M.[Chien-Ming],
Ding, W.P.[Wei-Ping],
Yiu, S.M.[Siu-Ming],
Weng, J.[Jian],
Uncovering Hidden Vulnerabilities in Convolutional Neural Networks
through Graph-based Adversarial Robustness Evaluation,
PR(143), 2023, pp. 109745.
Elsevier DOI
2310
Graph of patterns, Graph distance algorithm,
Adversarial robustness, Interpretable graph-based systems,
Convolutional neural networks
BibRef
Yang, S.R.[Suo-Rong],
Li, J.Q.[Jin-Qiao],
Zhang, T.Y.[Tian-Yue],
Zhao, J.[Jian],
Shen, F.[Furao],
AdvMask: A sparse adversarial attack-based data augmentation method
for image classification,
PR(144), 2023, pp. 109847.
Elsevier DOI
2310
Data augmentation, Image classification,
Sparse adversarial attack, Generalization
BibRef
Ding, F.[Feng],
Shen, Z.Y.[Zhang-Yi],
Zhu, G.P.[Guo-Pu],
Kwong, S.[Sam],
Zhou, Y.C.[Yi-Cong],
Lyu, S.W.[Si-Wei],
ExS-GAN: Synthesizing Anti-Forensics Images via Extra Supervised GAN,
Cyber(53), No. 11, November 2023, pp. 7162-7173.
IEEE DOI
2310
BibRef
Shi, C.[Cheng],
Liu, Y.[Ying],
Zhao, M.H.[Ming-Hua],
Pun, C.M.[Chi-Man],
Miao, Q.G.[Qi-Guang],
Attack-invariant attention feature for adversarial defense in
hyperspectral image classification,
PR(145), 2024, pp. 109955.
Elsevier DOI Code:
WWW Link.
2311
Hyperspectral image classification, Adversarial defense,
Attack-invariant attention feature, Adversarial attack
BibRef
Liu, D.[Deyin],
Wu, L.Y.B.[Lin Yuan-Bo],
Li, B.[Bo],
Boussaid, F.[Farid],
Bennamoun, M.[Mohammed],
Xie, X.H.[Xiang-Hua],
Liang, C.W.[Cheng-Wu],
Jacobian norm with Selective Input Gradient Regularization for
interpretable adversarial defense,
PR(145), 2024, pp. 109902.
Elsevier DOI Code:
WWW Link.
2311
Selective input gradient regularization,
Jacobian normalization, Adversarial robustness
BibRef
Zhang, C.H.[Chen-Han],
Yu, S.[Shui],
Tian, Z.Y.[Zhi-Yi],
Yu, J.J.Q.[James J. Q.],
Generative Adversarial Networks: A Survey on Attack and Defense
Perspective,
Surveys(56), No. 4, November 2023, pp. xx-yy.
DOI Link
2312
Survey, GAN Attacks. security and privacy, GANs survey, deep learning,
attack and defense, Generative adversarial networks
BibRef
Liu, H.[Hui],
Zhao, B.[Bo],
Guo, J.[Jiabao],
Zhang, K.[Kehuan],
Liu, P.[Peng],
A lightweight unsupervised adversarial detector based on autoencoder
and isolation forest,
PR(147), 2024, pp. 110127.
Elsevier DOI
2312
Deep neural networks, Adversarial examples,
Adversarial detection, Autoencoder, Isolation forest
BibRef
Chu, T.S.[Tian-Shu],
Fang, K.[Kun],
Yang, J.[Jie],
Huang, X.L.[Xiao-Lin],
Improving the adversarial robustness of quantized neural networks via
exploiting the feature diversity,
PRL(176), 2023, pp. 117-122.
Elsevier DOI
2312
Quantized neural networks, Adversarial robustness,
Orthogonal regularization, Feature diversity
BibRef
Fang, K.[Kun],
Tao, Q.H.[Qing-Hua],
Wu, Y.W.[Ying-Wen],
Li, T.[Tao],
Cai, J.[Jia],
Cai, F.P.[Fei-Peng],
Huang, X.L.[Xiao-Lin],
Yang, J.[Jie],
Towards robust neural networks via orthogonal diversity,
PR(149), 2024, pp. 110281.
Elsevier DOI
2403
Model augmentation, Multi-head, Orthogonality,
Margin-maximization, Data augmentation, Adversarial robustness
BibRef
Chu, T.S.[Tian-Shu],
Yang, Z.P.[Zuo-Peng],
Yang, J.[Jie],
Huang, X.L.[Xiao-Lin],
Improving the Robustness of Convolutional Neural Networks Via Sketch
Attention,
ICIP21(869-873)
IEEE DOI
2201
Training, Perturbation methods, Image processing, Pipelines,
Robustness, Convolutional neural networks, CNNs,
sketch attention
BibRef
Yu, Y.R.[Yun-Rui],
Gao, X.T.[Xi-Tong],
Xu, C.Z.[Cheng-Zhong],
LAFIT: Efficient and Reliable Evaluation of Adversarial Defenses With
Latent Features,
PAMI(46), No. 1, January 2024, pp. 354-369.
IEEE DOI
2312
BibRef
Zhang, X.X.[Xing-Xing],
Gui, S.[Shupeng],
Jin, J.[Jian],
Zhu, Z.F.[Zhen-Feng],
Zhao, Y.[Yao],
ATZSL: Defensive Zero-Shot Recognition in the Presence of Adversaries,
MultMed(26), 2024, pp. 15-27.
IEEE DOI
2401
BibRef
Xu, S.W.[Sheng-Wang],
Qiao, T.[Tong],
Xu, M.[Ming],
Wang, W.[Wei],
Zheng, N.[Ning],
Robust Adversarial Watermark Defending Against GAN Synthesization
Attack,
SPLetters(31), 2024, pp. 351-355.
IEEE DOI
2402
Watermarking, Transform coding, Generative adversarial networks,
Forgery, Image coding, Discrete cosine transforms, Decoding,
JPEG compression
BibRef
Wang, D.H.[Dong-Hua],
Yao, W.[Wen],
Jiang, T.S.[Ting-Song],
Chen, X.Q.[Xiao-Qian],
AdvOps: Decoupling adversarial examples,
PR(149), 2024, pp. 110252.
Elsevier DOI
2403
Adversarial attack, Analysis of adversarial examples, Analysis of neural network
BibRef
Zhuang, W.[Wenzi],
Huang, L.F.[Li-Feng],
Gao, C.Y.[Cheng-Ying],
Liu, N.[Ning],
LAFED: Towards robust ensemble models via Latent Feature
Diversification,
PR(150), 2024, pp. 110225.
Elsevier DOI Code:
WWW Link.
2403
Adversarial example, Adversarial defense, Ensemble model, Robustness
BibRef
Wang, W.D.[Wei-Dong],
Li, Z.[Zhi],
Liu, S.[Shuaiwei],
Zhang, L.[Li],
Yang, J.[Jin],
Wang, Y.[Yi],
Feature decoupling and interaction network for defending against
adversarial examples,
IVC(144), 2024, pp. 104931.
Elsevier DOI
2404
Deep neural networks, Adversarial examples,
Adversarial defense, Feature decoupling-interaction
BibRef
Li, Y.J.[Yan-Jie],
Xie, B.[Bin],
Guo, S.T.[Song-Tao],
Yang, Y.Y.[Yuan-Yuan],
Xiao, B.[Bin],
A Survey of Robustness and Safety of 2D and 3D Deep Learning Models
against Adversarial Attacks,
Surveys(56), No. 6, January 2024, pp. xx-yy.
DOI Link
2404
Deep learning, 3D computer vision, adversarial attack, robustness
BibRef
Zhao, C.L.[Cheng-Long],
Mei, S.B.[Shi-Bin],
Ni, B.B.[Bing-Bing],
Yuan, S.C.[Sheng-Chao],
Yu, Z.B.[Zhen-Bo],
Wang, J.[Jun],
Variational Adversarial Defense:
A Bayes Perspective for Adversarial Training,
PAMI(46), No. 5, May 2024, pp. 3047-3063.
IEEE DOI
2404
Training, Training data, Data models, Complexity theory, Robustness,
Perturbation methods, Optimization, Variational inference, model robustness
BibRef
Yao, Q.S.[Qing-Song],
He, Z.C.[Ze-Cheng],
Li, Y.X.[Yue-Xiang],
Lin, Y.[Yi],
Ma, K.[Kai],
Zheng, Y.F.[Ye-Feng],
Zhou, S.K.[S. Kevin],
Adversarial Medical Image With Hierarchical Feature Hiding,
MedImg(43), No. 4, April 2024, pp. 1296-1307.
IEEE DOI
2404
Medical diagnostic imaging, Hybrid fiber coaxial cables,
Perturbation methods, Iterative methods, Feature extraction,
adversarial attacks and defense
BibRef
He, S.Y.[Shi-Yuan],
Wei, J.[Jiwei],
Zhang, C.N.[Chao-Ning],
Xu, X.[Xing],
Song, J.K.[Jing-Kuan],
Yang, Y.[Yang],
Shen, H.T.[Heng Tao],
Boosting Adversarial Training with Hardness-Guided Attack Strategy,
MultMed(26), 2024, pp. 7748-7760.
IEEE DOI
2405
Training, Robustness, Data models, Perturbation methods,
Adaptation models, Standards, Predictive models, model robustness
BibRef
Liu, A.[Aishan],
Tang, S.Y.[Shi-Yu],
Chen, X.Y.[Xin-Yun],
Huang, L.[Lei],
Qin, H.T.[Hao-Tong],
Liu, X.L.[Xiang-Long],
Tao, D.C.[Da-Cheng],
Towards Defending Multiple-Norm Bounded Adversarial Perturbations via
Gated Batch Normalization,
IJCV(132), No. 6, June 2024, pp. 1881-1898.
Springer DOI
2406
BibRef
Zhou, M.[Mo],
Wang, L.[Le],
Niu, Z.X.[Zhen-Xing],
Zhang, Q.[Qilin],
Zheng, N.N.[Nan-Ning],
Hua, G.[Gang],
Adversarial Attack and Defense in Deep Ranking,
PAMI(46), No. 8, August 2024, pp. 5306-5324.
IEEE DOI
2407
Robustness, Perturbation methods, Glass box, Training, Face recognition,
Adaptation models, Task analysis, ranking model robustness
BibRef
Zhang, L.[Lei],
Zhou, Y.H.[Yu-Hang],
Yang, Y.[Yi],
Gao, X.B.[Xin-Bo],
Meta Invariance Defense Towards Generalizable Robustness to Unknown
Adversarial Attacks,
PAMI(46), No. 10, October 2024, pp. 6669-6687.
IEEE DOI
2409
Robustness, Training, Task analysis, Feature extraction,
Metalearning, Perturbation methods, Artificial neural networks,
deep neural network
BibRef
Zhang, H.[Han],
Zhang, X.[Xin],
Sun, Y.[Yuan],
Ji, L.X.[Li-Xia],
Detecting adversarial samples by noise injection and denoising,
c
IVC(150), 2024, pp. 105238.
Elsevier DOI
2409
Artificial intelligence security,
Adversarial sample detection, Image classification, Noise, Denoising
BibRef
Zhu, R.[Rui],
Ma, S.P.[Shi-Ping],
He, L.Y.[Lin-Yuan],
Ge, W.[Wei],
FFA: Foreground Feature Approximation Digitally against Remote
Sensing Object Detection,
RS(16), No. 17, 2024, pp. 3194.
DOI Link
2409
BibRef
Zhang, P.F.[Peng-Fei],
Huang, Z.[Zi],
Xu, X.S.[Xin-Shun],
Bai, G.[Guangdong],
Effective and Robust Adversarial Training Against Data and Label
Corruptions,
MultMed(26), 2024, pp. 9477-9488.
IEEE DOI
2410
Data models, Perturbation methods, Training, Noise measurement,
Noise, Semisupervised learning, Predictive models,
semi-supervised learning
BibRef
Li, Z.R.[Zhuo-Rong],
Wu, M.H.[Ming-Hui],
Jin, C.[Canghong],
Yu, D.[Daiwei],
Yu, H.[Hongchuan],
Adversarial self-training for robustness and generalization,
PRL(185), 2024, pp. 117-123.
Elsevier DOI
2410
Adversarial defense, Adversarial attack, Robustness,
Generalization, Self-training
BibRef
Liu, Y.[Yujia],
Yang, C.X.[Chen-Xi],
Li, D.Q.[Ding-Quan],
Ding, J.H.[Jian-Hao],
Jiang, T.T.[Ting-Ting],
Defense Against Adversarial Attacks on No-Reference Image Quality
Models with Gradient Norm Regularization,
CVPR24(25554-25563)
IEEE DOI
2410
Image quality, Training, Performance evaluation,
Perturbation methods, Computational modeling, Predictive models,
adversarial defense method
BibRef
Zhang, L.[Lilin],
Yang, N.[Ning],
Sun, Y.C.[Yan-Chao],
Yu, P.S.[Philip S.],
Provable Unrestricted Adversarial Training Without Compromise With
Generalizability,
PAMI(46), No. 12, December 2024, pp. 8302-8319.
IEEE DOI
2411
Robustness, Training, Standards, Perturbation methods, Stars,
Optimization, Adversarial robustness, standard generalizability
BibRef
Li, Z.Y.[Ze-Yang],
Hu, C.[Chuxiong],
Wang, Y.[Yunan],
Yang, Y.J.[Yu-Jie],
Li, S.E.[Shengbo Eben],
Safe Reinforcement Learning With Dual Robustness,
PAMI(46), No. 12, December 2024, pp. 10876-10890.
IEEE DOI
2411
Safety, Games, Game theory, Task analysis, Robustness, Optimization,
Convergence, Reinforcement learning, robustness, safety, zero-sum Markov game
BibRef
Li, J.W.[Jia-Wen],
Fang, K.[Kun],
Huang, X.L.[Xiao-Lin],
Yang, J.[Jie],
Boosting certified robustness via an expectation-based similarity
regularization,
IVC(151), 2024, pp. 105272.
Elsevier DOI
2411
Image classification, Adversarial robustness, Metric learning,
Certified robustness, Randomized smoothing
BibRef
Li, Z.R.[Zhuo-Rong],
Yu, D.[Daiwei],
Wei, L.[Lina],
Jin, C.H.[Cang-Hong],
Zhang, Y.[Yun],
Chan, S.[Sixian],
Soften to Defend: Towards Adversarial Robustness via Self-Guided
Label Refinement,
CVPR24(24776-24785)
IEEE DOI
2410
Training, Accuracy, Noise, Computer architecture, Robustness,
Robust overfitting, Adversarial training,
Label smoothing
BibRef
Zhang, C.S.[Chen-Shuang],
Pan, F.[Fei],
Kim, J.[Junmo],
Kweon, I.S.[In So],
Mao, C.Z.[Cheng-Zhi],
ImageNet-D: Benchmarking Neural Network Robustness on Diffusion
Synthetic Object,
CVPR24(21752-21762)
IEEE DOI Code:
WWW Link.
2410
Visualization, Accuracy, Computational modeling, Soft sensors,
Benchmark testing, Diffusion models, Robustness, Dataset
BibRef
Franco, N.[Nicola],
Lorenz, J.M.[Jeanette Miriam],
Roscher, K.[Karsten],
Günnemann, S.[Stephan],
Understanding ReLU Network Robustness Through Test Set Certification
Performance,
SAIAD24(3451-3460)
IEEE DOI
2410
Accuracy, Perturbation methods, Neural networks, Reliability theory,
Robustness, Stability analysis, Safety, Formal Verification
BibRef
Niu, Y.[Yue],
Ali, R.E.[Ramy E.],
Prakash, S.[Saurav],
Avestimehr, S.[Salman],
All Rivers Run to the Sea: Private Learning with Asymmetric Flows,
CVPR24(12353-12362)
IEEE DOI
2410
Training, Privacy, Quantization (signal), Accuracy,
Computational modeling, Machine learning, Complexity theory,
Distributed Machine Learning
BibRef
Park, H.[Hyejin],
Hwang, J.Y.[Jeong-Yeon],
Mun, S.[Sunung],
Park, S.[Sangdon],
Ok, J.[Jungseul],
MedBN: Robust Test-Time Adaptation against Malicious Test Samples,
CVPR24(5997-6007)
IEEE DOI Code:
WWW Link.
2410
Training, Estimation, Benchmark testing, Robustness,
Inference algorithms, Data models, Test-Time Adaptation, Robustness
BibRef
Hong, S.[SangHwa],
Learning to Schedule Resistant to Adversarial Attacks in Diffusion
Probabilistic Models Under the Threat of Lipschitz Singularities,
AML24(2957-2966)
IEEE DOI
2410
Resistance, Schedules, Image synthesis, Computational modeling,
Face recognition, Reinforcement learning, Adversarial Attack
BibRef
Mumcu, F.[Furkan],
Yilmaz, Y.[Yasin],
Multimodal Attack Detection for Action Recognition Models,
AML24(2967-2976)
IEEE DOI
2410
Target recognition, Graphics processing units, Detectors,
Real-time systems, Robustness, Action Recognition Models
BibRef
Fares, S.[Samar],
Nandakumar, K.[Karthik],
Attack To Defend: Exploiting Adversarial Attacks for Detecting
Poisoned Models,
CVPR24(24726-24735)
IEEE DOI
2410
Sensitivity, Machine learning algorithms, Computational modeling,
Perturbation methods, Closed box, Machine learning, Safety
BibRef
Cui, X.M.[Xuan-Ming],
Aparcedo, A.[Alejandro],
Jang, Y.K.[Young Kyun],
Lim, S.N.[Ser-Nam],
On the Robustness of Large Multimodal Models Against Image
Adversarial Attacks,
CVPR24(24625-24634)
IEEE DOI
2410
Visualization, Accuracy, Robustness,
Question answering (information retrieval),
Adversarial attack
BibRef
Wang, Y.T.[Yan-Ting],
Fu, H.Y.[Hong-Ye],
Zou, W.[Wei],
Jia, J.[Jinyuan],
MMCert: Provable Defense Against Adversarial Attacks to Multi-Modal
Models,
CVPR24(24655-24664)
IEEE DOI
2410
Solid modeling, Image segmentation, Emotion recognition,
Perturbation methods, Computational modeling, Roads, multi-modal
BibRef
Wang, K.Y.[Kun-Yu],
He, X.R.[Xuan-Ran],
Wang, W.X.[Wen-Xuan],
Wang, X.S.[Xiao-Sen],
Boosting Adversarial Transferability by Block Shuffle and Rotation,
CVPR24(24336-24346)
IEEE DOI Code:
WWW Link.
2410
Heating systems, Deep learning, Limiting, Codes,
Perturbation methods, Computational modeling, adversarial attack,
BibRef
Fang, B.[Bin],
Li, B.[Bo],
Wu, S.[Shuang],
Ding, S.H.[Shou-Hong],
Yi, R.[Ran],
Ma, L.Z.[Li-Zhuang],
Re-Thinking Data Availability Attacks Against Deep Neural Networks,
CVPR24(12215-12224)
IEEE DOI
2410
Training, Noise, Resists, Machine learning, Solids, Data models,
Unlearnable Examples, Data Privacy, Data Availability Attacks
BibRef
Zheng, J.H.[Jun-Hao],
Lin, C.H.[Chen-Hao],
Sun, J.H.[Jia-Hao],
Zhao, Z.Y.[Zheng-Yu],
Li, Q.[Qian],
Shen, C.[Chao],
Physical 3D Adversarial Attacks against Monocular Depth Estimation in
Autonomous Driving,
CVPR24(24452-24461)
IEEE DOI Code:
WWW Link.
2410
Solid modeling, Rain, Shape, Computational modeling, Estimation,
Robustness, Monocular Depth Estimation, Autonomous Driving, Adversarial Attack
BibRef
Christensen, P.E.[Peter Ebert],
Snæbjarnarson, V.[Vésteinn],
Dittadi, A.[Andrea],
Belongie, S.[Serge],
Benaim, S.[Sagie],
Assessing Neural Network Robustness via Adversarial Pivotal Tuning,
WACV24(2940-2949)
IEEE DOI
2404
Training, Semantics, Neural networks, Training data,
Benchmark testing, Robustness, Generators, Algorithms
BibRef
Cohen, G.[Gilad],
Giryes, R.[Raja],
Simple Post-Training Robustness using Test Time Augmentations and
Random Forest,
WACV24(3984-3994)
IEEE DOI Code:
WWW Link.
2404
Training, Threat modeling, Adaptation models, Image color analysis,
Artificial neural networks, Transforms, Robustness, Algorithms,
adversarial attack and defense methods
BibRef
Sharma, A.[Abhijith],
Munz, P.[Phil],
Narayan, A.[Apurva],
Assist Is Just as Important as the Goal:
Image Resurfacing to Aid Model's Robust Prediction,
WACV24(3821-3830)
IEEE DOI
2404
Visualization, TV, Perturbation methods, Predictive models,
Benchmark testing, Security, Algorithms, Adversarial learning,
adversarial attack and defense methods
BibRef
Schlarmann, C.[Christian],
Hein, M.[Matthias],
On the Adversarial Robustness of Multi-Modal Foundation Models,
AROW23(3679-3687)
IEEE DOI
2401
BibRef
Tao, Y.[Yunbo],
Liu, D.Z.[Dai-Zong],
Zhou, P.[Pan],
Xie, Y.[Yulai],
Du, W.[Wei],
Hu, W.[Wei],
3DHacker: Spectrum-based Decision Boundary Generation for Hard-label
3D Point Cloud Attack,
ICCV23(14294-14304)
IEEE DOI
2401
BibRef
Ruan, S.W.[Shou-Wei],
Dong, Y.P.[Yin-Peng],
Su, H.[Hang],
Peng, J.T.[Jian-Teng],
Chen, N.[Ning],
Wei, X.X.[Xing-Xing],
Towards Viewpoint-Invariant Visual Recognition via Adversarial
Training,
ICCV23(4686-4696)
IEEE DOI
2401
BibRef
Yang, D.Y.[Dong-Yoon],
Kong, I.[Insung],
Kim, Y.[Yongdai],
Enhancing Adversarial Robustness in Low-Label Regime via Adaptively
Weighted Regularization and Knowledge Distillation,
ICCV23(4529-4538)
IEEE DOI
2401
BibRef
Lee, B.K.[Byung-Kwan],
Kim, J.[Junho],
Ro, Y.M.[Yong Man],
Mitigating Adversarial Vulnerability through Causal Parameter
Estimation by Adversarial Double Machine Learning,
ICCV23(4476-4486)
IEEE DOI
2401
BibRef
Suzuki, S.[Satoshi],
Yamaguchi, S.[Shin'ya],
Takeda, S.[Shoichiro],
Kanai, S.[Sekitoshi],
Makishima, N.[Naoki],
Ando, A.[Atsushi],
Masumura, R.[Ryo],
Adversarial Finetuning with Latent Representation Constraint to
Mitigate Accuracy-Robustness Tradeoff,
ICCV23(4367-4378)
IEEE DOI
2401
BibRef
Fang, H.[Han],
Zhang, J.[Jiyi],
Qiu, Y.P.[Yu-Peng],
Liu, J.Y.[Jia-Yang],
Xu, K.[Ke],
Fang, C.[Chengfang],
Chang, E.C.[Ee-Chien],
Tracing the Origin of Adversarial Attack for Forensic Investigation
and Deterrence,
ICCV23(4312-4321)
IEEE DOI
2401
BibRef
Zhu, P.[Peifei],
Osada, G.[Genki],
Kataoka, H.[Hirokatsu],
Takahashi, T.[Tsubasa],
Frequency-aware GAN for Adversarial Manipulation Generation,
ICCV23(4292-4301)
IEEE DOI
2401
BibRef
Ji, Q.F.[Qiu-Fan],
Wang, L.[Lin],
Shi, C.[Cong],
Hu, S.S.[Sheng-Shan],
Chen, Y.Y.[Ying-Ying],
Sun, L.C.[Li-Chao],
Benchmarking and Analyzing Robust Point Cloud Recognition:
Bag of Tricks for Defending Adversarial Examples,
ICCV23(4272-4281)
IEEE DOI Code:
WWW Link.
2401
BibRef
Jin, Y.L.[Yu-Lin],
Zhang, X.Y.[Xiao-Yu],
Lou, J.[Jian],
Ma, X.[Xu],
Wang, Z.L.[Zi-Long],
Chen, X.F.[Xiao-Feng],
Explaining Adversarial Robustness of Neural Networks from Clustering
Effect Perspective,
ICCV23(4499-4508)
IEEE DOI Code:
WWW Link.
2401
BibRef
Li, Y.M.[Yi-Ming],
Fang, Q.[Qi],
Bai, J.[Jiamu],
Chen, S.[Siheng],
Xu, F.J.F.[Felix Jue-Fei],
Feng, C.[Chen],
Among Us: Adversarially Robust Collaborative Perception by Consensus,
ICCV23(186-195)
IEEE DOI
2401
BibRef
Lee, M.J.[Min-Jong],
Kim, D.[Dongwoo],
Robust Evaluation of Diffusion-Based Adversarial Purification,
ICCV23(134-144)
IEEE DOI
2401
Evaluation of purification process at run-time.
BibRef
Frosio, I.[Iuri],
Kautz, J.[Jan],
The Best Defense is a Good Offense:
Adversarial Augmentation Against Adversarial Attacks,
CVPR23(4067-4076)
IEEE DOI
2309
BibRef
Sharma, S.[Shivam],
Joshi, R.[Rohan],
Bhilare, S.[Shruti],
Joshi, M.V.[Manjunath V.],
Robust Adversarial Defence: Use of Auto-inpainting,
CAIP23(I:110-119).
Springer DOI
2312
BibRef
Silva, H.P.[Hondamunige Prasanna],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Diffdefense: Defending Against Adversarial Attacks via Diffusion Models,
CIAP23(II:430-442).
Springer DOI
2312
BibRef
di Domenico, N.[Nicolò],
Borghi, G.[Guido],
Franco, A.[Annalisa],
Maltoni, D.[Davide],
Combining Identity Features and Artifact Analysis for Differential
Morphing Attack Detection,
CIAP23(I:100-111).
Springer DOI
2312
BibRef
Tapia, J.[Juan],
Busch, C.[Christoph],
Impact of Synthetic Images on Morphing Attack Detection Using a Siamese
Network,
CIARP23(I:343-357).
Springer DOI
2312
BibRef
Zeng, H.[Hui],
Chen, B.W.[Bi-Wei],
Deng, K.[Kang],
Peng, A.[Anjie],
Adversarial Example Detection Bayesian Game,
ICIP23(1710-1714)
IEEE DOI Code:
WWW Link.
2312
BibRef
Piat, W.[William],
Fadili, J.[Jalal],
Jurie, S.F.[S Frédéric],
Exploring the Connection Between Neuron Coverage and Adversarial
Robustness in DNN Classifiers,
ICIP23(745-749)
IEEE DOI
2312
BibRef
Atsague, M.[Modeste],
Nirala, A.[Ashutosh],
Fakorede, O.[Olukorede],
Tian, J.[Jin],
A Penalized Modified Huber Regularization to Improve Adversarial
Robustness,
ICIP23(2675-2679)
IEEE DOI
2312
BibRef
Zhang, J.F.[Jie-Fei],
Wang, J.[Jie],
Lyu, W.L.[Wan-Li],
Yin, Z.X.[Zhao-Xia],
Local Texture Complexity Guided Adversarial Attack,
ICIP23(2065-2069)
IEEE DOI
2312
BibRef
Wang, B.H.[Bing-Hui],
Pang, M.[Meng],
Dong, Y.[Yun],
Turning Strengths into Weaknesses: A Certified Robustness Inspired
Attack Framework against Graph Neural Networks,
CVPR23(16394-16403)
IEEE DOI
2309
BibRef
Nguyen, N.B.[Ngoc-Bao],
Chandrasegaran, K.[Keshigeyan],
Abdollahzadeh, M.[Milad],
Cheung, N.M.[Ngai-Man],
Re-Thinking Model Inversion Attacks Against Deep Neural Networks,
CVPR23(16384-16393)
IEEE DOI
2309
BibRef
Tan, C.C.[Chuang-Chuang],
Zhao, Y.[Yao],
Wei, S.[Shikui],
Gu, G.H.[Guang-Hua],
Wei, Y.C.[Yun-Chao],
Learning on Gradients: Generalized Artifacts Representation for
GAN-Generated Images Detection,
CVPR23(12105-12114)
IEEE DOI
2309
BibRef
Bai, Q.Y.[Qing-Yan],
Yang, C.[Ceyuan],
Xu, Y.H.[Ying-Hao],
Liu, X.H.[Xi-Hui],
Yang, Y.[Yujiu],
Shen, Y.J.[Yu-Jun],
GLeaD: Improving GANs with A Generator-Leading Task,
CVPR23(12094-12104)
IEEE DOI
2309
BibRef
Jamil, H.[Huma],
Liu, Y.J.[Ya-Jing],
Caglar, T.[Turgay],
Cole, C.[Christina],
Blanchard, N.[Nathaniel],
Peterson, C.[Christopher],
Kirby, M.[Michael],
Hamming Similarity and Graph Laplacians for Class Partitioning and
Adversarial Image Detection,
TAG-PRA23(590-599)
IEEE DOI
2309
BibRef
Huang, B.[Bo],
Chen, M.Y.[Ming-Yang],
Wang, Y.[Yi],
Lu, J.[Junda],
Cheng, M.[Minhao],
Wang, W.[Wei],
Boosting Accuracy and Robustness of Student Models via Adaptive
Adversarial Distillation,
CVPR23(24668-24677)
IEEE DOI
2309
BibRef
Dong, M.J.[Min-Jing],
Xu, C.[Chang],
Adversarial Robustness via Random Projection Filters,
CVPR23(4077-4086)
IEEE DOI
2309
BibRef
Kim, W.J.[Woo Jae],
Cho, Y.[Yoonki],
Jung, J.[Junsik],
Yoon, S.E.[Sung-Eui],
Feature Separation and Recalibration for Adversarial Robustness,
CVPR23(8183-8192)
IEEE DOI
2309
BibRef
Huang, S.H.[Shi-Hua],
Lu, Z.C.[Zhi-Chao],
Deb, K.[Kalyanmoy],
Boddeti, V.N.[Vishnu Naresh],
Revisiting Residual Networks for Adversarial Robustness,
CVPR23(8202-8211)
IEEE DOI
2309
BibRef
Kim, J.[Junho],
Lee, B.K.[Byung-Kwan],
Ro, Y.M.[Yong Man],
Demystifying Causal Features on Adversarial Examples and Causal
Inoculation for Robust Network by Adversarial Instrumental Variable
Regression,
CVPR23(12032-12042)
IEEE DOI
2309
BibRef
Croce, F.[Francesco],
Rebuffi, S.A.[Sylvestre-Alvise],
Shelhamer, E.[Evan],
Gowal, S.[Sven],
Seasoning Model Soups for Robustness to Adversarial and Natural
Distribution Shifts,
CVPR23(12313-12323)
IEEE DOI
2309
BibRef
Li, S.[Simin],
Zhang, S.[Shuning],
Chen, G.[Gujun],
Wang, D.[Dong],
Feng, P.[Pu],
Wang, J.[Jiakai],
Liu, A.[Aishan],
Yi, X.[Xin],
Liu, X.L.[Xiang-Long],
Towards Benchmarking and Assessing Visual Naturalness of Physical
World Adversarial Attacks,
CVPR23(12324-12333)
IEEE DOI
2309
BibRef
Li, Z.[Zhuowan],
Wong, X.[Xingrui],
Stengel-Eskin, E.[Elias],
Kortylewski, A.[Adam],
Ma, W.[Wufei],
van Durme, B.[Benjamin],
Yuille, A.L.[Alan L.],
Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in
Visual Reasoning,
CVPR23(14963-14973)
IEEE DOI
2309
BibRef
Wang, Z.[Zifan],
Ding, N.[Nan],
Levinboim, T.[Tomer],
Chen, X.[Xi],
Soricut, R.[Radu],
Improving Robust Generalization by Direct PAC-Bayesian Bound
Minimization,
CVPR23(16458-16468)
IEEE DOI
2309
BibRef
Agarwal, A.[Akshay],
Ratha, N.[Nalini],
Singh, R.[Richa],
Vatsa, M.[Mayank],
Robustness Against Gradient based Attacks through Cost Effective
Network Fine-Tuning,
FaDE-TCV23(28-37)
IEEE DOI
2309
BibRef
Liang, H.Y.[Heng-Yue],
Liang, B.[Buyun],
Sun, J.[Ju],
Cui, Y.[Ying],
Mitchell, T.[Tim],
Implications of Solution Patterns on Adversarial Robustness,
AML23(2393-2400)
IEEE DOI
2309
BibRef
Redgrave, T.[Timothy],
Crum, C.[Colton],
Generating Adversarial Samples in Mini-Batches May Be Detrimental To
Adversarial Robustness,
AML23(2378-2384)
IEEE DOI
2309
BibRef
Godfrey, C.[Charles],
Kvinge, H.[Henry],
Bishoff, E.[Elise],
Mckay, M.[Myles],
Brown, D.[Davis],
Doster, T.[Tim],
Byler, E.[Eleanor],
How many dimensions are required to find an adversarial example?,
AML23(2353-2360)
IEEE DOI
2309
BibRef
Gavrikov, P.[Paul],
Keuper, J.[Janis],
On the Interplay of Convolutional Padding and Adversarial Robustness,
BRAVO23(3983-3992)
IEEE DOI
2401
BibRef
Wang, R.[Ren],
Li, Y.X.[Yu-Xuan],
Liu, S.[Sijia],
Exploring Diversified Adversarial Robustness in Neural Networks via
Robust Mode Connectivity,
AML23(2346-2352)
IEEE DOI
2309
BibRef
Nandi, S.[Soumalya],
Addepalli, S.[Sravanti],
Rangwani, H.[Harsh],
Babu, R.V.[R. Venkatesh],
Certified Adversarial Robustness Within Multiple Perturbation Bounds,
AML23(2298-2305)
IEEE DOI
2309
BibRef
Chen, Y.W.[Yu-Wei],
Chu, S.Y.[Shi-Yong],
Adversarial Defense in Aerial Detection,
AML23(2306-2313)
IEEE DOI
2309
BibRef
Sarkar, S.[Soumyendu],
Babu, A.R.[Ashwin Ramesh],
Mousavi, S.[Sajad],
Ghorbanpour, S.[Sahand],
Gundecha, V.[Vineet],
Guillen, A.[Antonio],
Luna, R.[Ricardo],
Naug, A.[Avisek],
Robustness with Query-efficient Adversarial Attack using
Reinforcement Learning,
AML23(2330-2337)
IEEE DOI
2309
BibRef
Mofayezi, M.[Mohammadreza],
Medghalchi, Y.[Yasamin],
Benchmarking Robustness to Text-Guided Corruptions,
GCV23(779-786)
IEEE DOI
2309
BibRef
Zhou, Q.G.[Qing-Guo],
Lei, M.[Ming],
Zhi, P.[Peng],
Zhao, R.[Rui],
Shen, J.[Jun],
Yong, B.B.[Bin-Bin],
Towards Improving the Anti-Attack Capability of the Rangenet++,
ACCVWS22(60-70).
Springer DOI
2307
BibRef
Chandna, K.[Kshitij],
Improving Adversarial Robustness by Penalizing Natural Accuracy,
AdvRob22(517-533).
Springer DOI
2304
BibRef
Zhao, Z.Y.[Zheng-Yu],
Dang, N.[Nga],
Larson, M.[Martha],
The Importance of Image Interpretation: Patterns of Semantic
Misclassification in Real-world Adversarial Images,
MMMod23(II: 718-725).
Springer DOI
2304
BibRef
Venkatesh, R.[Rahul],
Wong, E.[Eric],
Kolter, Z.[Zico],
Adversarial robustness in discontinuous spaces via alternating
sampling and descent,
WACV23(4651-4660)
IEEE DOI
2302
Training, Solid modeling, Perturbation methods, Pipelines,
Predictive models, Search problems,
visual reasoning
BibRef
Nayak, G.K.[Gaurav Kumar],
Rawal, R.[Ruchit],
Chakraborty, A.[Anirban],
DE-CROP: Data-efficient Certified Robustness for Pretrained
Classifiers,
WACV23(4611-4620)
IEEE DOI
2302
Deep learning, Smoothing methods, Costs, Neural networks,
Training data, Robustness, Algorithms: Adversarial learning
BibRef
Kakizaki, K.[Kazuya],
Fukuchi, K.[Kazuto],
Sakuma, J.[Jun],
Certified Defense for Content Based Image Retrieval,
WACV23(4550-4559)
IEEE DOI
2302
Training, Deep learning, Image retrieval, Neural networks,
Linear programming, Feature extraction, visual reasoning
BibRef
Zheng, Z.H.[Zhi-Hao],
Ying, X.W.[Xiao-Wen],
Yao, Z.[Zhen],
Chuah, M.C.[Mooi Choo],
Robustness of Trajectory Prediction Models Under Map-Based Attacks,
WACV23(4530-4539)
IEEE DOI
2302
Visualization, Image coding, Sensitivity analysis,
Computational modeling, Predictive models, Control systems,
adversarial attack and defense methods
BibRef
Mathur, A.N.[Aradhya Neeraj],
Madan, A.[Anish],
Sharma, O.[Ojaswa],
SLI-pSp: Injecting Multi-Scale Spatial Layout in pSp,
WACV23(4084-4093)
IEEE DOI
2302
Visualization, Image synthesis, Layout, Generators, Task analysis,
Algorithms: Computational photography,
adversarial attack and defense methods
BibRef
Dargaud, L.[Laurine],
Ibsen, M.[Mathias],
Tapia, J.[Juan],
Busch, C.[Christoph],
A Principal Component Analysis-Based Approach for Single Morphing
Attack Detection,
Explain-Bio23(683-692)
IEEE DOI
2302
Training, Learning systems, Visualization, Image color analysis,
Feature extraction, Human in the loop, Detection algorithms
BibRef
Drenkow, N.[Nathan],
Lennon, M.[Max],
Wang, I.J.[I-Jeng],
Burlina, P.[Philippe],
Do Adaptive Active Attacks Pose Greater Risk Than Static Attacks?,
WACV23(1380-1389)
IEEE DOI
2302
Measurement, Sensitivity analysis, Aggregates, Kinematics, Observers,
Trajectory, Algorithms: Adversarial learning,
visual reasoning
BibRef
Chen, Y.K.[Yong-Kang],
Zhang, M.[Ming],
Li, J.[Jin],
Kuang, X.H.[Xiao-Hui],
Adversarial Attacks and Defenses in Image Classification:
A Practical Perspective,
ICIVC22(424-430)
IEEE DOI
2301
Training, Deep learning, Benchmark testing,
Security, Image classification, deep learning, security, defenses
BibRef
Beetham, J.[James],
Kardan, N.[Navid],
Mian, A.[Ajmal],
Shah, M.[Mubarak],
Detecting Compromised Architecture/Weights of a Deep Model,
ICPR22(2843-2849)
IEEE DOI
2212
Smoothing methods, Perturbation methods, Closed box, Detectors,
Predictive models, Data models
BibRef
Hwang, D.[Duhun],
Lee, E.[Eunjung],
Rhee, W.[Wonjong],
AID-Purifier: A Light Auxiliary Network for Boosting Adversarial
Defense,
ICPR22(2401-2407)
IEEE DOI
2212
Training, Codes, Purification, Boosting, Robustness
BibRef
Tasaki, H.[Hajime],
Kaneko, Y.[Yuji],
Chao, J.H.[Jin-Hui],
Curse of co-Dimensionality: Explaining Adversarial Examples by
Embedding Geometry of Data Manifold,
ICPR22(2364-2370)
IEEE DOI
2212
Manifolds, Geometry, Training, Deep learning,
Neural networks, Training data
BibRef
Modas, A.[Apostolos],
Rade, R.[Rahul],
Ortiz-Jiménez, G.[Guillermo],
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Frossard, P.[Pascal],
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions,
ECCV22(XXV:623-640).
Springer DOI
2211
BibRef
Khalsi, R.[Rania],
Smati, I.[Imen],
Sallami, M.M.[Mallek Mziou],
Ghorbel, F.[Faouzi],
A Novel System for Deep Contour Classifiers Certification Under
Filtering Attacks,
ICIP22(3561-3565)
IEEE DOI
2211
Deep learning, Upper bound, Image recognition, Filtering,
Perturbation methods, Robustness, Kernel, Contours classification,
Uncertainty in AI
BibRef
Zhang, Y.X.[Yu-Xuan],
Dong, B.[Bo],
Heide, F.[Felix],
All You Need Is RAW: Defending Against Adversarial Attacks with Camera
Image Pipelines,
ECCV22(XIX:323-343).
Springer DOI
2211
BibRef
Lu, B.[Bingyi],
Liu, J.Y.[Ji-Yuan],
Xiong, H.L.[Hui-Lin],
Transformation-Based Adversarial Defense Via Sparse Representation,
ICIP22(1726-1730)
IEEE DOI
2211
Bridges, Training, Deep learning, Dictionaries, Perturbation methods,
Neural networks, adversarial examples, adversarial defense, image classification
BibRef
Subramanyam, A.V.,
Raj, A.[Abhigyan],
Barycentric Defense,
ICIP22(2276-2280)
IEEE DOI
2211
Training, Codes, Extraterrestrial measurements, Robustness,
Barycenter, Dual Wasserstein, Adversarial defense
BibRef
Do, K.[Kien],
Harikumar, H.[Haripriya],
Le, H.[Hung],
Nguyen, D.[Dung],
Tran, T.[Truyen],
Rana, S.[Santu],
Nguyen, D.[Dang],
Susilo, W.[Willy],
Venkatesh, S.[Svetha],
Towards Effective and Robust Neural Trojan Defenses via Input Filtering,
ECCV22(V:283-300).
Springer DOI
2211
BibRef
Sun, J.C.[Jia-Chen],
Mehra, A.[Akshay],
Kailkhura, B.[Bhavya],
Chen, P.Y.[Pin-Yu],
Hendrycks, D.[Dan],
Hamm, J.[Jihun],
Mao, Z.M.[Z. Morley],
A Spectral View of Randomized Smoothing Under Common Corruptions:
Benchmarking and Improving Certified Robustness,
ECCV22(IV:654-671).
Springer DOI
2211
BibRef
Li, G.L.[Guan-Lin],
Xu, G.W.[Guo-Wen],
Qiu, H.[Han],
He, R.[Ruan],
Li, J.[Jiwei],
Zhang, T.W.[Tian-Wei],
Improving Adversarial Robustness of 3D Point Cloud Classification
Models,
ECCV22(IV:672-689).
Springer DOI
2211
BibRef
Kowalski, C.[Charles],
Famili, A.[Azadeh],
Lao, Y.J.[Ying-Jie],
Towards Model Quantization on the Resilience Against Membership
Inference Attacks,
ICIP22(3646-3650)
IEEE DOI
2211
Resistance, Performance evaluation, Privacy, Quantization (signal),
Computational modeling, Neural networks, Training data, Neural Network
BibRef
Nayak, G.K.[Gaurav Kumar],
Rawal, R.[Ruchit],
Lal, R.[Rohit],
Patil, H.[Himanshu],
Chakraborty, A.[Anirban],
Holistic Approach to Measure Sample-level Adversarial Vulnerability
and its Utility in Building Trustworthy Systems,
HCIS22(4331-4340)
IEEE DOI
2210
Measurement, Training, Knowledge engineering,
Predictive models, Reliability engineering
BibRef
Chen, Y.W.[Yu-Wei],
Rethinking Adversarial Examples in Wargames,
ArtOfRobust22(100-106)
IEEE DOI
2210
Neural networks, Decision making, Games, Prediction algorithms,
Software, Security
BibRef
Haque, M.[Mirazul],
Budnik, C.J.[Christof J.],
Yang, W.[Wei],
CorrGAN: Input Transformation Technique Against Natural Corruptions,
ArtOfRobust22(193-196)
IEEE DOI
2210
Deep learning, Perturbation methods, Neural networks,
Generative adversarial networks
BibRef
Ren, S.C.[Su-Cheng],
Gao, Z.Q.[Zheng-Qi],
Hua, T.Y.[Tian-Yu],
Xue, Z.H.[Zi-Hui],
Tian, Y.L.[Yong-Long],
He, S.F.[Sheng-Feng],
Zhao, H.[Hang],
Co-advise: Cross Inductive Bias Distillation,
CVPR22(16752-16761)
IEEE DOI
2210
Training, Representation learning, Convolutional codes,
Convolution, Transformers,
Adversarial attack and defense
BibRef
Pang, T.Y.[Tian-Yu],
Zhang, H.[Huishuai],
He, D.[Di],
Dong, Y.P.[Yin-Peng],
Su, H.[Hang],
Chen, W.[Wei],
Zhu, J.[Jun],
Liu, T. .Y.[Tie- Yan],
Two Coupled Rejection Metrics Can Tell Adversarial Examples Apart,
CVPR22(15202-15212)
IEEE DOI
2210
Measurement, Training, Couplings, Machine learning,
Predictive models, Robustness, Adversarial attack and defense, Machine learning
BibRef
Li, K.D.[Kai-Dong],
Zhang, Z.M.[Zi-Ming],
Zhong, C.C.[Cun-Cong],
Wang, G.H.[Guang-Hui],
Robust Structured Declarative Classifiers for 3D Point Clouds:
Defending Adversarial Attacks with Implicit Gradients,
CVPR22(15273-15283)
IEEE DOI
2210
Point cloud compression, Deep learning, Image coding,
Neural networks, Lattices,
Deep learning architectures and techniques
BibRef
Ren, Q.B.[Qi-Bing],
Bao, Q.Q.[Qing-Quan],
Wang, R.Z.[Run-Zhong],
Yan, J.C.[Jun-Chi],
Appearance and Structure Aware Robust Deep Visual Graph Matching:
Attack, Defense and Beyond,
CVPR22(15242-15251)
IEEE DOI
2210
Training, Visualization, Image recognition, Computational modeling,
Robustness, Data models, Adversarial attack and defense,
Representation learning
BibRef
Vellaichamy, S.[Sivapriya],
Hull, M.[Matthew],
Wang, Z.J.J.[Zi-Jie J.],
Das, N.[Nilaksh],
Peng, S.Y.[Sheng-Yun],
Park, H.[Haekyu],
Chau, D.H.P.[Duen Horng Polo],
DetectorDetective:
Investigating the Effects of Adversarial Examples on Object Detectors,
CVPR22(21452-21459)
IEEE DOI
2210
Visualization, Head, Detectors, Object detection, Feature extraction,
Magnetic heads, Behavioral sciences
BibRef
Lee, B.K.[Byung-Kwan],
Kim, J.[Junho],
Ro, Y.M.[Yong Man],
Masking Adversarial Damage: Finding Adversarial Saliency for Robust
and Sparse Network,
CVPR22(15105-15115)
IEEE DOI
2210
Training, Degradation, Computational modeling, Semantics,
Neural networks, Memory management, Robustness, Adversarial attack and defense
BibRef
Liu, Y.[Ye],
Cheng, Y.[Yaya],
Gao, L.L.[Lian-Li],
Liu, X.L.[Xiang-Long],
Zhang, Q.L.[Qi-Long],
Song, J.K.[Jing-Kuan],
Practical Evaluation of Adversarial Robustness via Adaptive Auto
Attack,
CVPR22(15084-15093)
IEEE DOI
2210
Adaptation models, Codes, Computational modeling, Robustness,
Iterative methods, Adversarial attack and defense
BibRef
Özdenizci, O.[Ozan],
Legenstein, R.[Robert],
Improving Robustness Against Stealthy Weight Bit-Flip Attacks by
Output Code Matching,
CVPR22(13378-13387)
IEEE DOI
2210
Deep learning, Codes, Quantization (signal), Impedance matching,
Computational modeling, Benchmark testing,
Deep learning architectures and techniques
BibRef
Dong, J.H.[Jun-Hao],
Wang, Y.[Yuan],
Lai, J.H.[Jian-Huang],
Xie, X.H.[Xiao-Hua],
Improving Adversarially Robust Few-shot Image Classification with
Generalizable Representations,
CVPR22(9015-9024)
IEEE DOI
2210
Training, Deep learning, Image recognition, Benchmark testing,
Task analysis,
Adversarial attack and defense
BibRef
Yamada, Y.[Yutaro],
Otani, M.[Mayu],
Does Robustness on ImageNet Transfer to Downstream Tasks?,
CVPR22(9205-9214)
IEEE DOI
2210
Image segmentation, Transfer learning, Semantics, Neural networks,
Object detection, Transformers, Robustness,
Adversarial attack and defense
BibRef
Mao, X.F.[Xiao-Feng],
Qi, G.[Gege],
Chen, Y.F.[Yue-Feng],
Li, X.D.[Xiao-Dan],
Duan, R.J.[Ran-Jie],
Ye, S.[Shaokai],
He, Y.[Yuan],
Xue, H.[Hui],
Towards Robust Vision Transformer,
CVPR22(12032-12041)
IEEE DOI
2210
Systematics, Costs, Machine vision, Training data, Benchmark testing,
Transformers, Robustness, Adversarial attack and defense
BibRef
Chen, T.L.[Tian-Long],
Zhang, Z.Y.[Zhen-Yu],
Zhang, Y.H.[Yi-Hua],
Chang, S.Y.[Shi-Yu],
Liu, S.[Sijia],
Wang, Z.Y.[Zhang-Yang],
Quarantine: Sparsity Can Uncover the Trojan Attack Trigger for Free,
CVPR22(588-599)
IEEE DOI
2210
Training, Deep learning, Neural networks, Training data,
Network architecture,
Adversarial attack and defense
BibRef
Sun, M.J.[Ming-Jie],
Li, Z.C.[Zi-Chao],
Xiao, C.W.[Chao-Wei],
Qiu, H.[Haonan],
Kailkhura, B.[Bhavya],
Liu, M.Y.[Ming-Yan],
Li, B.[Bo],
Can Shape Structure Features Improve Model Robustness under Diverse
Adversarial Settings?,
ICCV21(7506-7515)
IEEE DOI
2203
Visualization, Systematics, Sensitivity, Shape, Image edge detection,
Perturbation methods, Pipelines, Adversarial learning,
Recognition and classification
BibRef
Huang, J.X.[Jia-Xing],
Guan, D.[Dayan],
Xiao, A.[Aoran],
Lu, S.J.[Shi-Jian],
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking,
ICCV21(8968-8979)
IEEE DOI
2203
Training, Representation learning, Perturbation methods, Semantics,
Supervised learning, FAA, grouping and shape
BibRef
Yin, M.J.[Ming-Jun],
Li, S.[Shasha],
Cai, Z.[Zikui],
Song, C.Y.[Cheng-Yu],
Asif, M.S.[M. Salman],
Roy-Chowdhury, A.K.[Amit K.],
Krishnamurthy, S.V.[Srikanth V.],
Exploiting Multi-Object Relationships for Detecting Adversarial
Attacks in Complex Scenes,
ICCV21(7838-7847)
IEEE DOI
2203
Deep learning, Machine vision, Computational modeling,
Neural networks, Detectors, Context modeling, Adversarial learning,
Scene analysis and understanding
BibRef
Abusnaina, A.[Ahmed],
Wu, Y.H.[Yu-Hang],
Arora, S.[Sunpreet],
Wang, Y.Z.[Yi-Zhen],
Wang, F.[Fei],
Yang, H.[Hao],
Mohaisen, D.[David],
Adversarial Example Detection Using Latent Neighborhood Graph,
ICCV21(7667-7676)
IEEE DOI
2203
Training, Manifolds, Deep learning, Network topology,
Perturbation methods, Neural networks, Adversarial learning,
Recognition and classification
BibRef
Mao, C.Z.[Cheng-Zhi],
Chiquier, M.[Mia],
Wang, H.[Hao],
Yang, J.F.[Jun-Feng],
Vondrick, C.[Carl],
Adversarial Attacks are Reversible with Natural Supervision,
ICCV21(641-651)
IEEE DOI
2203
Training, Benchmark testing, Robustness, Inference algorithms,
Image restoration, Recognition and classification, Adversarial learning
BibRef
Zhao, X.J.[Xue-Jun],
Zhang, W.C.[Wen-Can],
Xiao, X.K.[Xiao-Kui],
Lim, B.[Brian],
Exploiting Explanations for Model Inversion Attacks,
ICCV21(662-672)
IEEE DOI
2203
Privacy, Semantics, Data visualization, Medical services,
Predictive models, Data models, Artificial intelligence,
Recognition and classification
BibRef
Wang, Q.[Qian],
Kurz, D.[Daniel],
Reconstructing Training Data from Diverse ML Models by Ensemble
Inversion,
WACV22(3870-3878)
IEEE DOI
2202
Training, Analytical models, Filtering, Training data,
Machine learning, Predictive models, Security/Surveillance
BibRef
Tursynbek, N.[Nurislam],
Petiushko, A.[Aleksandr],
Oseledets, I.[Ivan],
Geometry-Inspired Top-k Adversarial Perturbations,
WACV22(4059-4068)
IEEE DOI
2202
Perturbation methods, Prediction algorithms,
Multitasking, Classification algorithms, Task analysis,
Adversarial Attack and Defense Methods
BibRef
Nayak, G.K.[Gaurav Kumar],
Rawal, R.[Ruchit],
Chakraborty, A.[Anirban],
DAD: Data-free Adversarial Defense at Test Time,
WACV22(3788-3797)
IEEE DOI
2202
Training, Adaptation models, Biological system modeling,
Frequency-domain analysis, Training data,
Adversarial Attack and Defense Methods
BibRef
Scheliga, D.[Daniel],
Mäder, P.[Patrick],
Seeland, M.[Marco],
PRECODE - A Generic Model Extension to Prevent Deep Gradient Leakage,
WACV22(3605-3614)
IEEE DOI
2202
Training, Privacy, Data privacy, Perturbation methods,
Computational modeling, Training data, Stochastic processes,
Deep Learning Gradient Inversion Attacks
BibRef
Wang, S.J.[Shao-Jie],
Wu, T.[Tong],
Chakrabarti, A.[Ayan],
Vorobeychik, Y.[Yevgeniy],
Adversarial Robustness of Deep Sensor Fusion Models,
WACV22(1371-1380)
IEEE DOI
2202
Training, Systematics, Laser radar, Perturbation methods,
Neural networks, Object detection, Sensor fusion,
Adversarial Attack and Defense Methods
BibRef
Drenkow, N.[Nathan],
Fendley, N.[Neil],
Burlina, P.[Philippe],
Attack Agnostic Detection of Adversarial Examples via Random Subspace
Analysis,
WACV22(2815-2825)
IEEE DOI
2202
Training, Performance evaluation,
Perturbation methods, Training data, Detectors, Feature extraction,
Security/Surveillance
BibRef
Cheng, H.[Hao],
Xu, K.D.[Kai-Di],
Li, Z.G.[Zhen-Gang],
Zhao, P.[Pu],
Wang, C.[Chenan],
Lin, X.[Xue],
Kailkhura, B.[Bhavya],
Goldhahn, R.[Ryan],
More or Less (MoL): Defending against Multiple Perturbation Attacks
on Deep Neural Networks through Model Ensemble and Compression,
Hazards22(645-655)
IEEE DOI
2202
Training, Deep learning, Perturbation methods,
Computational modeling, Conferences, Neural networks
BibRef
Lang, I.[Itai],
Kotlicki, U.[Uriel],
Avidan, S.[Shai],
Geometric Adversarial Attacks and Defenses on 3D Point Clouds,
3DV21(1196-1205)
IEEE DOI
2201
Point cloud compression, Geometry, Deep learning, Solid modeling,
Shape, Semantics, 3D Point Clouds, Geometry Processing, Defense Methods
BibRef
Hasnat, A.[Abul],
Shvai, N.[Nadiya],
Nakib, A.[Amir],
CNN Classifier's Robustness Enhancement when Preserving Privacy,
ICIP21(3887-3891)
IEEE DOI
2201
Privacy, Data privacy, Image processing, Supervised learning,
Prediction algorithms, Robustness, Privacy, Vehicle Classification, CNN
BibRef
Liu, L.Q.[Lan-Qing],
Duan, Z.Y.[Zhen-Yu],
Xu, G.Z.[Guo-Zheng],
Xu, Y.[Yi],
Self-Supervised Disentangled Embedding for Robust Image
Classification,
ICIP21(1494-1498)
IEEE DOI
2201
Deep learning, Image segmentation, Correlation, Target recognition,
Tools, Robustness, Security, Disentanglement, Adversarial Examples, Robustness
BibRef
Maho, T.[Thibault],
Bonnet, B.[Benoît],
Furony, T.[Teddy],
Le Merrer, E.[Erwan],
RoBIC: A Benchmark Suite for Assessing Classifiers Robustness,
ICIP21(3612-3616)
IEEE DOI
2201
Image processing, Benchmark testing, Distortion, Robustness,
Distortion measurement, Benchmark, adversarial examples,
half-distortion measure
BibRef
Wang, Y.P.[Yao-Peng],
Xie, L.[Lehui],
Liu, X.M.[Xi-Meng],
Yin, J.L.[Jia-Li],
Zheng, T.J.[Ting-Jie],
Model-Agnostic Adversarial Example Detection Through Logit
Distribution Learning,
ICIP21(3617-3621)
IEEE DOI
2201
Deep learning, Resistance, Semantics, Feature extraction,
Task analysis, deep learning, adversarial detector,
adversarial defenses
BibRef
Co, K.T.[Kenneth T.],
Muñoz-González, L.[Luis],
Kanthan, L.[Leslie],
Glocker, B.[Ben],
Lupu, E.C.[Emil C.],
Universal Adversarial Robustness of Texture and Shape-Biased Models,
ICIP21(799-803)
IEEE DOI
2201
Training, Deep learning, Analytical models, Perturbation methods,
Image processing, Neural networks,
deep neural networks
BibRef
Agarwal, A.[Akshay],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Ratha, N.[Nalini],
Intelligent and Adaptive Mixup Technique for Adversarial Robustness,
ICIP21(824-828)
IEEE DOI
2201
Training, Deep learning, Image recognition, Image analysis,
Perturbation methods, Robustness, Natural language processing,
Object Recognition
BibRef
Chai, W.H.[Wei-Heng],
Lu, Y.T.[Yan-Tao],
Velipasalar, S.[Senem],
Weighted Average Precision: Adversarial Example Detection for Visual
Perception of Autonomous Vehicles,
ICIP21(804-808)
IEEE DOI
2201
Measurement, Perturbation methods, Image processing, Pipelines,
Neural networks, Optimization methods, Object detection, Neural Networks
BibRef
Kung, B.H.[Bo-Han],
Chen, P.C.[Pin-Chun],
Liu, Y.C.[Yu-Cheng],
Chen, J.C.[Jun-Cheng],
Squeeze and Reconstruct: Improved Practical Adversarial Defense Using
Paired Image Compression and Reconstruction,
ICIP21(849-853)
IEEE DOI
2201
Training, Deep learning, Image coding, Perturbation methods,
Transform coding, Robustness, Adversarial Attack,
JPEG Compression, Artifact Correction
BibRef
Li, C.Y.[Chau Yi],
Sánchez-Matilla, R.[Ricardo],
Shamsabadi, A.S.[Ali Shahin],
Mazzon, R.[Riccardo],
Cavallaro, A.[Andrea],
On the Reversibility of Adversarial Attacks,
ICIP21(3073-3077)
IEEE DOI
2201
Deep learning, Perturbation methods, Image processing,
Benchmark testing, Adversarial perturbations,
Reversibility
BibRef
Bakiskan, C.[Can],
Cekic, M.[Metehan],
Sezer, A.D.[Ahmet Dundar],
Madhow, U.[Upamanyu],
A Neuro-Inspired Autoencoding Defense Against Adversarial Attacks,
ICIP21(3922-3926)
IEEE DOI
2201
Training, Deep learning, Image coding, Perturbation methods,
Neural networks, Decoding, Adversarial, Machine learning, Robust,
Defense
BibRef
Pérez, J.C.[Juan C.],
Alfarra, M.[Motasem],
Jeanneret, G.[Guillaume],
Rueda, L.[Laura],
Thabet, A.[Ali],
Ghanem, B.[Bernard],
Arbeláez, P.[Pablo],
Enhancing Adversarial Robustness via Test-Time Transformation
Ensembling,
AROW21(81-91)
IEEE DOI
2112
Deep learning, Perturbation methods,
Transforms, Robustness, Data models
BibRef
De, K.[Kanjar],
Pedersen, M.[Marius],
Impact of Colour on Robustness of Deep Neural Networks,
AROW21(21-30)
IEEE DOI
2112
Deep learning, Image color analysis,
Perturbation methods, Tools, Distortion, Robustness
BibRef
Truong, J.B.[Jean-Baptiste],
Maini, P.[Pratyush],
Walls, R.J.[Robert J.],
Papernot, N.[Nicolas],
Data-Free Model Extraction,
CVPR21(4769-4778)
IEEE DOI
2111
Adaptation models, Computational modeling,
Intellectual property, Predictive models, Data models, Complexity theory
BibRef
Mehra, A.[Akshay],
Kailkhura, B.[Bhavya],
Chen, P.Y.[Pin-Yu],
Hamm, J.[Jihun],
How Robust are Randomized Smoothing based Defenses to Data Poisoning?,
CVPR21(13239-13248)
IEEE DOI
2111
Training, Deep learning, Smoothing methods, Toxicology,
Perturbation methods, Distortion, Robustness
BibRef
Deng, Z.J.[Zhi-Jie],
Yang, X.[Xiao],
Xu, S.Z.[Shi-Zhen],
Su, H.[Hang],
Zhu, J.[Jun],
LiBRe: A Practical Bayesian Approach to Adversarial Detection,
CVPR21(972-982)
IEEE DOI
2111
Training, Deep learning, Costs, Uncertainty, Neural networks,
Bayes methods
BibRef
Yang, K.[Karren],
Lin, W.Y.[Wan-Yi],
Barman, M.[Manash],
Condessa, F.[Filipe],
Kolter, Z.[Zico],
Defending Multimodal Fusion Models against Single-Source Adversaries,
CVPR21(3339-3348)
IEEE DOI
2111
Training, Sentiment analysis,
Perturbation methods, Neural networks, Object detection, Robustness
BibRef
Wu, T.[Tong],
Liu, Z.W.[Zi-Wei],
Huang, Q.Q.[Qing-Qiu],
Wang, Y.[Yu],
Lin, D.[Dahua],
Adversarial Robustness under Long-Tailed Distribution,
CVPR21(8655-8664)
IEEE DOI
2111
Training, Systematics, Codes, Robustness
BibRef
Ong, D.S.[Ding Sheng],
Chan, C.S.[Chee Seng],
Ng, K.W.[Kam Woh],
Fan, L.X.[Li-Xin],
Yang, Q.[Qiang],
Protecting Intellectual Property of Generative Adversarial Networks
from Ambiguity Attacks,
CVPR21(3629-3638)
IEEE DOI
2111
Deep learning, Knowledge engineering,
Image synthesis, Superresolution, Intellectual property, Watermarking
BibRef
Addepalli, S.[Sravanti],
Jain, S.[Samyak],
Sriramanan, G.[Gaurang],
Babu, R.V.[R. Venkatesh],
Boosting Adversarial Robustness using Feature Level Stochastic
Smoothing,
SAIAD21(93-102)
IEEE DOI
2109
Training, Deep learning, Smoothing methods,
Boosting, Feature extraction
BibRef
Pestana, C.[Camilo],
Liu, W.[Wei],
Glance, D.[David],
Mian, A.[Ajmal],
Defense-friendly Images in Adversarial Attacks:
Dataset and Metrics for Perturbation Difficulty,
WACV21(556-565)
IEEE DOI
2106
Measurement, Deep learning,
Machine learning algorithms, Image recognition
BibRef
Ali, A.[Arslan],
Migliorati, A.[Andrea],
Bianchi, T.[Tiziano],
Magli, E.[Enrico],
Beyond Cross-Entropy: Learning Highly Separable Feature Distributions
for Robust and Accurate Classification,
ICPR21(9711-9718)
IEEE DOI
2105
Robustness to adversarial attacks.
Training, Deep learning, Perturbation methods,
Gaussian distribution, Linear programming, Robustness
BibRef
Kyatham, V.[Vinay],
Mishra, D.[Deepak],
Prathosh, A.P.,
Variational Inference with Latent Space Quantization for Adversarial
Resilience,
ICPR21(9593-9600)
IEEE DOI
2105
Manifolds, Degradation, Quantization (signal),
Perturbation methods, Neural networks, Data models, Real-time systems
BibRef
Li, H.[Honglin],
Fan, Y.F.[Yi-Fei],
Ganz, F.[Frieder],
Yezzi, A.J.[Anthony J.],
Barnaghi, P.[Payam],
Verifying the Causes of Adversarial Examples,
ICPR21(6750-6757)
IEEE DOI
2105
Geometry, Perturbation methods, Neural networks, Linearity,
Estimation, Aerospace electronics, Probabilistic logic
BibRef
Hou, Y.F.[Yu-Fan],
Zou, L.X.[Li-Xin],
Liu, W.D.[Wei-Dong],
Task-based Focal Loss for Adversarially Robust Meta-Learning,
ICPR21(2824-2829)
IEEE DOI
2105
Training, Perturbation methods, Resists, Machine learning,
Benchmark testing, Robustness
BibRef
Huang, Y.T.[Yen-Ting],
Liao, W.H.[Wen-Hung],
Huang, C.W.[Chen-Wei],
Defense Mechanism Against Adversarial Attacks Using Density-based
Representation of Images,
ICPR21(3499-3504)
IEEE DOI
2105
Deep learning, Perturbation methods, Transforms,
Hybrid power systems, Intelligent systems
BibRef
Chhabra, S.[Saheb],
Agarwal, A.[Akshay],
Singh, R.[Richa],
Vatsa, M.[Mayank],
Attack Agnostic Adversarial Defense via Visual Imperceptible Bound,
ICPR21(5302-5309)
IEEE DOI
2105
Visualization, Sensitivity, Databases, Computational modeling,
Perturbation methods, Predictive models, Prediction algorithms
BibRef
Šircelj, J.[Jaka],
Skocaj, D.[Danijel],
Accuracy-Perturbation Curves for Evaluation of Adversarial Attack and
Defence Methods,
ICPR21(6290-6297)
IEEE DOI
2105
Training, Visualization, Perturbation methods, Machine learning,
Robustness, Generators
BibRef
Watson, M.[Matthew],
Moubayed, N.A.[Noura Al],
Attack-agnostic Adversarial Detection on Medical Data Using
Explainable Machine Learning,
ICPR21(8180-8187)
IEEE DOI
2105
Training, Deep learning, Perturbation methods, MIMICs,
Medical services, Predictive models, Feature extraction,
Medical Data
BibRef
Alamri, F.[Faisal],
Kalkan, S.[Sinan],
Pugeault, N.[Nicolas],
Transformer-Encoder Detector Module: Using Context to Improve
Robustness to Adversarial Attacks on Object Detection,
ICPR21(9577-9584)
IEEE DOI
2105
Visualization, Perturbation methods, Detectors, Object detection,
Transforms, Field-flow fractionation, Feature extraction
BibRef
Schwartz, D.[Daniel],
Alparslan, Y.[Yigit],
Kim, E.[Edward],
Regularization and Sparsity for Adversarial Robustness and Stable
Attribution,
ISVC20(I:3-14).
Springer DOI
2103
BibRef
Carrara, F.[Fabio],
Caldelli, R.[Roberto],
Falchi, F.[Fabrizio],
Amato, G.[Giuseppe],
Defending Neural ODE Image Classifiers from Adversarial Attacks with
Tolerance Randomization,
MMForWild20(425-438).
Springer DOI
2103
BibRef
Rusak, E.[Evgenia],
Schott, L.[Lukas],
Zimmermann, R.S.[Roland S.],
Bitterwolf, J.[Julian],
Bringmann, O.[Oliver],
Bethge, M.[Matthias],
Brendel, W.[Wieland],
A Simple Way to Make Neural Networks Robust Against Diverse Image
Corruptions,
ECCV20(III:53-69).
Springer DOI
2012
BibRef
Li, Y.W.[Ying-Wei],
Bai, S.[Song],
Xie, C.H.[Ci-Hang],
Liao, Z.Y.[Zhen-Yu],
Shen, X.H.[Xiao-Hui],
Yuille, A.L.[Alan L.],
Regional Homogeneity: Towards Learning Transferable Universal
Adversarial Perturbations Against Defenses,
ECCV20(XI:795-813).
Springer DOI
2011
BibRef
Bui, A.[Anh],
Le, T.[Trung],
Zhao, H.[He],
Montague, P.[Paul],
deVel, O.[Olivier],
Abraham, T.[Tamas],
Phung, D.[Dinh],
Improving Adversarial Robustness by Enforcing Local and Global
Compactness,
ECCV20(XXVII:209-223).
Springer DOI
2011
BibRef
Xu, J.,
Li, Y.,
Jiang, Y.,
Xia, S.T.,
Adversarial Defense Via Local Flatness Regularization,
ICIP20(2196-2200)
IEEE DOI
2011
Training, Standards, Perturbation methods, Robustness, Visualization,
Linearity, Taylor series, adversarial defense,
gradient-based regularization
BibRef
Maung, M.,
Pyone, A.,
Kiya, H.,
Encryption Inspired Adversarial Defense For Visual Classification,
ICIP20(1681-1685)
IEEE DOI
2011
Training, Transforms, Encryption, Perturbation methods,
Machine learning, Adversarial defense,
perceptual image encryption
BibRef
Shah, S.A.A.,
Bougre, M.,
Akhtar, N.,
Bennamoun, M.,
Zhang, L.,
Efficient Detection of Pixel-Level Adversarial Attacks,
ICIP20(718-722)
IEEE DOI
2011
Robots, Training, Perturbation methods, Machine learning, Robustness,
Task analysis, Testing, Adversarial attack, perturbation detection,
deep learning
BibRef
Jia, S.[Shuai],
Ma, C.[Chao],
Song, Y.B.[Yi-Bing],
Yang, X.K.[Xiao-Kang],
Robust Tracking Against Adversarial Attacks,
ECCV20(XIX:69-84).
Springer DOI
2011
BibRef
Mao, C.Z.[Cheng-Zhi],
Cha, A.[Augustine],
Gupta, A.[Amogh],
Wang, H.[Hao],
Yang, J.F.[Jun-Feng],
Vondrick, C.[Carl],
Generative Interventions for Causal Learning,
CVPR21(3946-3955)
IEEE DOI
2111
Training, Visualization, Correlation,
Computational modeling, Control systems
BibRef
Mao, C.Z.[Cheng-Zhi],
Gupta, A.[Amogh],
Nitin, V.[Vikram],
Ray, B.[Baishakhi],
Song, S.[Shuran],
Yang, J.F.[Jun-Feng],
Vondrick, C.[Carl],
Multitask Learning Strengthens Adversarial Robustness,
ECCV20(II:158-174).
Springer DOI
2011
BibRef
Li, S.S.[Sha-Sha],
Zhu, S.T.[Shi-Tong],
Paul, S.[Sudipta],
Roy-Chowdhury, A.K.[Amit K.],
Song, C.Y.[Cheng-Yu],
Krishnamurthy, S.[Srikanth],
Swami, A.[Ananthram],
Chan, K.S.[Kevin S.],
Connecting the Dots: Detecting Adversarial Perturbations Using Context
Inconsistency,
ECCV20(XXIII:396-413).
Springer DOI
2011
BibRef
Li, Y.[Yueru],
Cheng, S.Y.[Shu-Yu],
Su, H.[Hang],
Zhu, J.[Jun],
Defense Against Adversarial Attacks via Controlling Gradient Leaking on
Embedded Manifolds,
ECCV20(XXVIII:753-769).
Springer DOI
2011
BibRef
Rounds, J.[Jeremiah],
Kingsland, A.[Addie],
Henry, M.J.[Michael J.],
Duskin, K.R.[Kayla R.],
Probing for Artifacts: Detecting Imagenet Model Evasions,
AML-CV20(3432-3441)
IEEE DOI
2008
Perturbation methods, Probes, Computational modeling, Robustness,
Image color analysis, Machine learning, Indexes
BibRef
Kariyappa, S.,
Qureshi, M.K.,
Defending Against Model Stealing Attacks With Adaptive Misinformation,
CVPR20(767-775)
IEEE DOI
2008
Data models, Adaptation models, Cloning, Predictive models,
Computational modeling, Security, Perturbation methods
BibRef
Mohapatra, J.,
Weng, T.,
Chen, P.,
Liu, S.,
Daniel, L.,
Towards Verifying Robustness of Neural Networks Against A Family of
Semantic Perturbations,
CVPR20(241-249)
IEEE DOI
2008
Semantics, Perturbation methods, Robustness, Image color analysis,
Brightness, Neural networks, Tools
BibRef
Wu, M.,
Kwiatkowska, M.,
Robustness Guarantees for Deep Neural Networks on Videos,
CVPR20(308-317)
IEEE DOI
2008
Robustness, Videos, Optical imaging, Adaptive optics,
Optical sensors, Measurement, Neural networks
BibRef
Chan, A.,
Tay, Y.,
Ong, Y.,
What It Thinks Is Important Is Important: Robustness Transfers
Through Input Gradients,
CVPR20(329-338)
IEEE DOI
2008
Robustness, Task analysis, Training, Computational modeling,
Perturbation methods, Impedance matching, Predictive models
BibRef
Zhang, L.,
Yu, M.,
Chen, T.,
Shi, Z.,
Bao, C.,
Ma, K.,
Auxiliary Training: Towards Accurate and Robust Models,
CVPR20(369-378)
IEEE DOI
2008
Training, Robustness, Perturbation methods, Neural networks,
Data models, Task analysis, Feature extraction
BibRef
Saha, A.,
Subramanya, A.,
Patil, K.,
Pirsiavash, H.,
Role of Spatial Context in Adversarial Robustness for Object
Detection,
AML-CV20(3403-3412)
IEEE DOI
2008
Detectors, Object detection, Cognition, Training, Blindness,
Perturbation methods, Optimization
BibRef
Jefferson, B.,
Marrero, C.O.,
Robust Assessment of Real-World Adversarial Examples,
AML-CV20(3442-3449)
IEEE DOI
2008
Cameras, Light emitting diodes, Robustness, Lighting, Detectors,
Testing, Perturbation methods
BibRef
Goel, A.,
Agarwal, A.,
Vatsa, M.,
Singh, R.,
Ratha, N.K.,
DNDNet: Reconfiguring CNN for Adversarial Robustness,
TCV20(103-110)
IEEE DOI
2008
Mathematical model, Perturbation methods, Machine learning,
Robustness, Computational modeling, Databases
BibRef
Cohen, G.,
Sapiro, G.,
Giryes, R.,
Detecting Adversarial Samples Using Influence Functions and Nearest
Neighbors,
CVPR20(14441-14450)
IEEE DOI
2008
Training, Robustness, Loss measurement, Feature extraction,
Neural networks, Perturbation methods, Training data
BibRef
Rahnama, A.,
Nguyen, A.T.,
Raff, E.,
Robust Design of Deep Neural Networks Against Adversarial Attacks
Based on Lyapunov Theory,
CVPR20(8175-8184)
IEEE DOI
2008
Robustness, Nonlinear systems, Training, Control theory,
Stability analysis, Perturbation methods, Transient analysis
BibRef
Zhao, Y.,
Wu, Y.,
Chen, C.,
Lim, A.,
On Isometry Robustness of Deep 3D Point Cloud Models Under
Adversarial Attacks,
CVPR20(1198-1207)
IEEE DOI
2008
Robustness, Data models,
Solid modeling, Computational modeling, Perturbation methods
BibRef
Gowal, S.,
Qin, C.,
Huang, P.,
Cemgil, T.,
Dvijotham, K.,
Mann, T.,
Kohli, P.,
Achieving Robustness in the Wild via Adversarial Mixing With
Disentangled Representations,
CVPR20(1208-1217)
IEEE DOI
2008
Perturbation methods, Robustness, Training, Semantics, Correlation,
Task analysis, Mathematical model
BibRef
Jeddi, A.,
Shafiee, M.J.,
Karg, M.,
Scharfenberger, C.,
Wong, A.,
Learn2Perturb: An End-to-End Feature Perturbation Learning to Improve
Adversarial Robustness,
CVPR20(1238-1247)
IEEE DOI
2008
Perturbation methods, Robustness, Training, Neural networks,
Data models, Uncertainty, Optimization
BibRef
Addepalli, S.[Sravanti],
Vivek, B.S.,
Baburaj, A.[Arya],
Sriramanan, G.[Gaurang],
Babu, R.V.[R. Venkatesh],
Towards Achieving Adversarial Robustness by Enforcing Feature
Consistency Across Bit Planes,
CVPR20(1017-1026)
IEEE DOI
2008
Training, Robustness, Quantization (signal), Visual systems,
Perturbation methods, Neural networks
BibRef
Yuan, J.,
He, Z.,
Ensemble Generative Cleaning With Feedback Loops for Defending
Adversarial Attacks,
CVPR20(578-587)
IEEE DOI
2008
Cleaning, Feedback loop, Transforms, Neural networks, Estimation,
Fuses, Iterative methods
BibRef
Guo, M.,
Yang, Y.,
Xu, R.,
Liu, Z.,
Lin, D.,
When NAS Meets Robustness: In Search of Robust Architectures Against
Adversarial Attacks,
CVPR20(628-637)
IEEE DOI
2008
Robustness, Training, Network architecture,
Neural networks, Convolution, Architecture
BibRef
Chen, T.,
Liu, S.,
Chang, S.,
Cheng, Y.,
Amini, L.,
Wang, Z.,
Adversarial Robustness:
From Self-Supervised Pre-Training to Fine-Tuning,
CVPR20(696-705)
IEEE DOI
2008
Robustness, Task analysis, Training, Standards, Data models,
Computational modeling, Tuning
BibRef
Lee, S.,
Lee, H.,
Yoon, S.,
Adversarial Vertex Mixup: Toward Better Adversarially Robust
Generalization,
CVPR20(269-278)
IEEE DOI
2008
Robustness, Training, Standards, Perturbation methods,
Complexity theory, Upper bound, Data models
BibRef
Dong, Y.,
Fu, Q.,
Yang, X.,
Pang, T.,
Su, H.,
Xiao, Z.,
Zhu, J.,
Benchmarking Adversarial Robustness on Image Classification,
CVPR20(318-328)
IEEE DOI
2008
Robustness, Adaptation models, Training, Predictive models,
Perturbation methods, Data models, Measurement
BibRef
Xiao, C.,
Zheng, C.,
One Man's Trash Is Another Man's Treasure:
Resisting Adversarial Examples by Adversarial Examples,
CVPR20(409-418)
IEEE DOI
2008
Training, Robustness, Perturbation methods, Neural networks,
Transforms, Mathematical model, Numerical models
BibRef
Naseer, M.,
Khan, S.,
Hayat, M.,
Khan, F.S.,
Porikli, F.M.,
A Self-supervised Approach for Adversarial Robustness,
CVPR20(259-268)
IEEE DOI
2008
Perturbation methods, Task analysis, Distortion, Training,
Robustness, Feature extraction, Neural networks
BibRef
Zhao, Y.,
Tian, Y.,
Fowlkes, C.,
Shen, W.,
Yuille, A.L.,
Resisting Large Data Variations via Introspective Transformation
Network,
WACV20(3069-3078)
IEEE DOI
2006
Training, Testing, Robustness, Training data,
Linear programming, Resists
BibRef
Kim, D.H.[Dong-Hyun],
Bargal, S.A.[Sarah Adel],
Zhang, J.M.[Jian-Ming],
Sclaroff, S.[Stan],
Multi-way Encoding for Robustness,
WACV20(1341-1349)
IEEE DOI
2006
To counter adversarial attacks.
Encoding, Robustness, Perturbation methods, Training,
Biological system modeling, Neurons, Correlation
BibRef
Folz, J.,
Palacio, S.,
Hees, J.,
Dengel, A.,
Adversarial Defense based on Structure-to-Signal Autoencoders,
WACV20(3568-3577)
IEEE DOI
2006
Perturbation methods, Semantics, Robustness, Predictive models,
Training, Decoding, Neural networks
BibRef
Zheng, S.,
Zhu, Z.,
Zhang, X.,
Liu, Z.,
Cheng, J.,
Zhao, Y.,
Distribution-Induced Bidirectional Generative Adversarial Network for
Graph Representation Learning,
CVPR20(7222-7231)
IEEE DOI
2008
Generative adversarial networks, Robustness, Data models,
Generators, Task analysis, Gaussian distribution
BibRef
Benz, P.[Philipp],
Zhang, C.N.[Chao-Ning],
Imtiaz, T.[Tooba],
Kweon, I.S.[In So],
Double Targeted Universal Adversarial Perturbations,
ACCV20(IV:284-300).
Springer DOI
2103
BibRef
Earlier: A2,, A1, A3, A4:
Understanding Adversarial Examples From the Mutual Influence of
Images and Perturbations,
CVPR20(14509-14518)
IEEE DOI
2008
Perturbation methods, Correlation, Training data,
Feature extraction, Training, Task analysis, Robustness
BibRef
Xie, C.,
Tan, M.,
Gong, B.,
Wang, J.,
Yuille, A.L.,
Le, Q.V.,
Adversarial Examples Improve Image Recognition,
CVPR20(816-825)
IEEE DOI
2008
Training, Robustness, Degradation, Image recognition,
Perturbation methods, Standards, Supervised learning
BibRef
Dabouei, A.,
Soleymani, S.,
Taherkhani, F.,
Dawson, J.,
Nasrabadi, N.M.,
SmoothFool: An Efficient Framework for Computing Smooth Adversarial
Perturbations,
WACV20(2654-2663)
IEEE DOI
2006
Perturbation methods, Frequency-domain analysis, Robustness,
Training, Optimization, Network architecture, Topology
BibRef
Peterson, J.[Joshua],
Battleday, R.[Ruairidh],
Griffiths, T.[Thomas],
Russakovsky, O.[Olga],
Human Uncertainty Makes Classification More Robust,
ICCV19(9616-9625)
IEEE DOI
2004
CIFAR10H dataset.
To make deep network robust ot adversarial attacks.
convolutional neural nets, learning (artificial intelligence),
pattern classification, classification performance,
Dogs
BibRef
Miyazato, S.,
Wang, X.,
Yamasaki, T.,
Aizawa, K.,
Reinforcing the Robustness of a Deep Neural Network to Adversarial
Examples by Using Color Quantization of Training Image Data,
ICIP19(884-888)
IEEE DOI
1910
convolutional neural network, adversarial example, color quantization
BibRef
Ramanathan, T.,
Manimaran, A.,
You, S.,
Kuo, C.J.,
Robustness of Saak Transform Against Adversarial Attacks,
ICIP19(2531-2535)
IEEE DOI
1910
Saak transform, Adversarial attacks, Deep Neural Networks, Image Classification
BibRef
Chen, H.,
Liang, J.,
Chang, S.,
Pan, J.,
Chen, Y.,
Wei, W.,
Juan, D.,
Improving Adversarial Robustness via Guided Complement Entropy,
ICCV19(4880-4888)
IEEE DOI
2004
entropy, learning (artificial intelligence), neural nets,
probability, adversarial defense, adversarial robustness,
BibRef
Bai, Y.,
Feng, Y.,
Wang, Y.,
Dai, T.,
Xia, S.,
Jiang, Y.,
Hilbert-Based Generative Defense for Adversarial Examples,
ICCV19(4783-4792)
IEEE DOI
2004
feature extraction, Hilbert transforms, neural nets,
security of data, scan mode, advanced Hilbert curve scan order
BibRef
Jang, Y.,
Zhao, T.,
Hong, S.,
Lee, H.,
Adversarial Defense via Learning to Generate Diverse Attacks,
ICCV19(2740-2749)
IEEE DOI
2004
learning (artificial intelligence), neural nets,
pattern classification, security of data, adversarial defense, Machine learning
BibRef
Mustafa, A.,
Khan, S.,
Hayat, M.,
Goecke, R.,
Shen, J.,
Shao, L.,
Adversarial Defense by Restricting the Hidden Space of Deep Neural
Networks,
ICCV19(3384-3393)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image classification, image representation, Iterative methods
BibRef
Taran, O.[Olga],
Rezaeifar, S.[Shideh],
Holotyak, T.[Taras],
Voloshynovskiy, S.[Slava],
Defending Against Adversarial Attacks by Randomized Diversification,
CVPR19(11218-11225).
IEEE DOI
2002
BibRef
Sun, B.[Bo],
Tsai, N.H.[Nian-Hsuan],
Liu, F.C.[Fang-Chen],
Yu, R.[Ronald],
Su, H.[Hao],
Adversarial Defense by Stratified Convolutional Sparse Coding,
CVPR19(11439-11448).
IEEE DOI
2002
BibRef
Ho, C.H.[Chih-Hui],
Leung, B.[Brandon],
Sandstrom, E.[Erik],
Chang, Y.[Yen],
Vasconcelos, N.M.[Nuno M.],
Catastrophic Child's Play:
Easy to Perform, Hard to Defend Adversarial Attacks,
CVPR19(9221-9229).
IEEE DOI
2002
BibRef
Dubey, A.[Abhimanyu],
van der Maaten, L.[Laurens],
Yalniz, Z.[Zeki],
Li, Y.X.[Yi-Xuan],
Mahajan, D.[Dhruv],
Defense Against Adversarial Images Using Web-Scale Nearest-Neighbor
Search,
CVPR19(8759-8768).
IEEE DOI
2002
BibRef
Dong, Y.P.[Yin-Peng],
Pang, T.Y.[Tian-Yu],
Su, H.[Hang],
Zhu, J.[Jun],
Evading Defenses to Transferable Adversarial Examples by
Translation-Invariant Attacks,
CVPR19(4307-4316).
IEEE DOI
2002
BibRef
Rony, J.[Jerome],
Hafemann, L.G.[Luiz G.],
Oliveira, L.S.[Luiz S.],
Ben Ayed, I.[Ismail],
Sabourin, R.[Robert],
Granger, E.[Eric],
Decoupling Direction and Norm for Efficient Gradient-Based L2
Adversarial Attacks and Defenses,
CVPR19(4317-4325).
IEEE DOI
2002
BibRef
Qiu, Y.X.[Yu-Xian],
Leng, J.W.[Jing-Wen],
Guo, C.[Cong],
Chen, Q.[Quan],
Li, C.[Chao],
Guo, M.[Minyi],
Zhu, Y.H.[Yu-Hao],
Adversarial Defense Through Network Profiling Based Path Extraction,
CVPR19(4772-4781).
IEEE DOI
2002
BibRef
Jia, X.J.[Xiao-Jun],
Wei, X.X.[Xing-Xing],
Cao, X.C.[Xiao-Chun],
Foroosh, H.[Hassan],
ComDefend: An Efficient Image Compression Model to Defend Adversarial
Examples,
CVPR19(6077-6085).
IEEE DOI
2002
BibRef
Raff, E.[Edward],
Sylvester, J.[Jared],
Forsyth, S.[Steven],
McLean, M.[Mark],
Barrage of Random Transforms for Adversarially Robust Defense,
CVPR19(6521-6530).
IEEE DOI
2002
BibRef
Ji, J.,
Zhong, B.,
Ma, K.,
Multi-Scale Defense of Adversarial Images,
ICIP19(4070-4074)
IEEE DOI
1910
deep learning, adversarial images, defense, multi-scale, image evolution
BibRef
Agarwal, C.,
Nguyen, A.,
Schonfeld, D.,
Improving Robustness to Adversarial Examples by Encouraging
Discriminative Features,
ICIP19(3801-3805)
IEEE DOI
1910
Adversarial Machine Learning, Robustness, Defenses, Deep Learning
BibRef
Saha, S.,
Kumar, A.,
Sahay, P.,
Jose, G.,
Kruthiventi, S.,
Muralidhara, H.,
Attack Agnostic Statistical Method for Adversarial Detection,
SDL-CV19(798-802)
IEEE DOI
2004
feature extraction, image classification,
learning (artificial intelligence), neural nets, Adversarial Attack
BibRef
Taran, O.[Olga],
Rezaeifar, S.[Shideh],
Voloshynovskiy, S.[Slava],
Bridging Machine Learning and Cryptography in Defence Against
Adversarial Attacks,
Objectionable18(II:267-279).
Springer DOI
1905
BibRef
Naseer, M.,
Khan, S.,
Porikli, F.M.,
Local Gradients Smoothing: Defense Against Localized Adversarial
Attacks,
WACV19(1300-1307)
IEEE DOI
1904
data compression, feature extraction, gradient methods,
image classification, image coding, image representation,
High frequency
BibRef
Akhtar, N.,
Liu, J.,
Mian, A.,
Defense Against Universal Adversarial Perturbations,
CVPR18(3389-3398)
IEEE DOI
1812
Perturbation methods, Training, Computational modeling, Detectors,
Neural networks, Robustness, Integrated circuits
BibRef
Behpour, S.,
Xing, W.,
Ziebart, B.D.,
ARC: Adversarial Robust Cuts for Semi-Supervised and Multi-label
Classification,
WiCV18(1986-19862)
IEEE DOI
1812
Markov random fields, Task analysis, Training, Testing,
Support vector machines, Fasteners, Games
BibRef
Karim, R.,
Islam, M.A.,
Mohammed, N.,
Bruce, N.D.B.,
On the Robustness of Deep Learning Models to Universal Adversarial
Attack,
CRV18(55-62)
IEEE DOI
1812
Perturbation methods, Computational modeling, Neural networks,
Task analysis, Image segmentation, Data models, Semantics,
Semantic Segmentation
BibRef
Jakubovitz, D.[Daniel],
Giryes, R.[Raja],
Improving DNN Robustness to Adversarial Attacks Using Jacobian
Regularization,
ECCV18(XII: 525-541).
Springer DOI
1810
BibRef
Rozsa, A.,
Gunther, M.,
Boult, T.E.,
Towards Robust Deep Neural Networks with BANG,
WACV18(803-811)
IEEE DOI
1806
image processing, learning (artificial intelligence),
neural nets, BANG technique, adversarial image utilization,
Training
BibRef
Lu, J.,
Issaranon, T.,
Forsyth, D.A.,
SafetyNet: Detecting and Rejecting Adversarial Examples Robustly,
ICCV17(446-454)
IEEE DOI
1802
image colour analysis, image reconstruction,
learning (artificial intelligence), neural nets,
BibRef
Mukuta, Y.,
Ushiku, Y.,
Harada, T.,
Spatial-Temporal Weighted Pyramid Using Spatial Orthogonal Pooling,
CEFR-LCV17(1041-1049)
IEEE DOI
1802
Encoding, Feature extraction, Robustness,
Spatial resolution, Standards
BibRef
Moosavi-Dezfooli, S.M.[Seyed-Mohsen],
Fawzi, A.[Alhussein],
Fawzi, O.[Omar],
Frossard, P.[Pascal],
Universal Adversarial Perturbations,
CVPR17(86-94)
IEEE DOI
1711
Correlation, Neural networks, Optimization,
Robustness, Training, Visualization
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Adversarial Patch Attacks .