Kuhl, F.,
Classification and Recognition of Hand-Printed Characters,
IEE Natl. ConventionMarch 1963, pp. 75-93.
BibRef
6303
Munson, J.H.,
Experiments in the Recognition of Handprinted Text:
Part I Character Recognition,
FJCC68(1125-1138).
BibRef
6800
Toussaint, G.T., and
Donaldson, R.W.,
Algorithms for Recognizing Contour-Traced Handprinted Characters,
TC(19), 1970, pp. 541-546.
BibRef
7000
Donaldson, R.W., and
Toussaint, G.T.,
Use of Contextual Constraints in Recognition of
Contour-Traced handprinted Characters,
TC(20), No. 8, August 1971, pp. 1096.
BibRef
7108
Hussain, A.B.S.,
Toussaint, G.T., and
Donaldson, R.W.,
Results Obtained Using a Simple Character Recognition Procedure on
Munson's Handprinted Data,
TC(21), 1972, pp. 269-281.
BibRef
7200
Casey, R.G.,
Moment Normalization of Handprinted Characters,
IBMRD(14), No. 5, September 1970, pp. 548-557.
BibRef
7009
Narasimhan, R.,
Reddy, V.S.N.,
A syntax-aided recognition scheme for handprinted English letters,
PR(3), No. 4, November 1971, pp. 345-361.
Elsevier DOI
0309
BibRef
Dutta, A.K.,
An Experimental Procedure for Handwritten Character Recognition,
TC(23), 1974, pp. 536-545.
BibRef
7400
Lin, W.L.,
Scully, T.L.,
Computer Identification of Constrained Handprinted Characters with a
High Recognition Rate,
SMC(4), 1974, pp. 497-504.
BibRef
7400
Dasarathy, B.V., and
Kumar, K.S.B.,
CHITRA: Cognitive Handprinted Input Trained Recursively Analyzing
System for Recognition of Alphanumeric Characters,
CIS(7), September 1978, No. 3, pp. 253-282.
BibRef
7809
Nevins, A.J.[Arthur J.],
An orientation free study of handprinted characters,
PR(11), No. 3, 1979, pp. 155-164.
Elsevier DOI
0309
BibRef
Biswan, P.,
Majumnder, A.K.,
A Multistage Fuzzy Classifier for Recognition of Handprinted Characters,
SMC(11), 1981, pp. 834-838.
BibRef
8100
Fleming, J.F.,
Hemmings, R.F.,
A Method of Recognition for Handwritten Block Capitals,
PRL(1), 1983, pp. 457-464.
BibRef
8300
Mori, S.,
Yamamoto, K.,
Yasuda, M.,
Research on Machine Recognition of Handprinted Characters,
PAMI(6), No. 4, July 1984, pp. 386-405.
BibRef
8407
Brown, R.M.,
Fay, T.H.,
Walker, C.L.,
Handprinted Symbol Recognition System,
PR(21), No. 2, 1988, pp. 91-118.
Elsevier DOI
BibRef
8800
Chen, L.H.[Ling-Hwei],
Lieh, J.R.[June-Rong],
Handwritten character recognition using a 2-layer random graph model by
relaxation matching,
PR(23), No. 11, 1990, pp. 1189-1205.
Elsevier DOI
0401
BibRef
Fukushima, K., and
Wake, N.,
Handwritten Alphanumeric Character Recognition by the Neocognitron,
TNN(2), No. 3, 1991, pp. 355-365.
BibRef
9100
Kuan, C.C.[Chih-Chau],
Hull, J.J.[Jonathan J.],
Srihari, S.N.[Sargur N.],
Method and apparatus for handwritten character recognition,
US_Patent5,058,182, October 15, 1991.
WWW Link.
BibRef
9110
Blackwell, K.T.,
Vogl, T.P.,
Hyman, S.D.,
Barbour, G.S.,
Alkon, D.L.,
A new approach to hand-written character recognition,
PR(25), No. 6, June 1992, pp. 655-666.
Elsevier DOI
0401
Neural Network.
BibRef
Abe, K.[Keiko],
Character discrimination system employing height-to-width ratio
and vertical extraction position information,
US_Patent5,138,668, August 11, 1992.
WWW Link.
BibRef
9208
Ohta, J.[Junichi],
Apparatus for converting handwritten characters onto finely shaped
characters of common size and pitch, aligned in an inferred direction,
US_Patent5,111,514, May 5, 1992
WWW Link.
BibRef
9205
Guo, J.,
Sun, N.,
Nemoto, Y.,
Kimura, M.,
Echigo, H.,
Sato, R.,
Recognition of Handwritten Characters Using
Pattern Transformation Method with Cosine Function,
IEICE(D-11, J176), No. 4, 1993, pp. 835-842.
In Japanese.
BibRef
9300
Smith, S.J.,
Bourgoin, M.O.,
Sims, K.,
Voorhees, H.L.,
Handwritten Character Classification Using Nearest-Neighbor
in Large Databases,
PAMI(16), No. 9, September 1994, pp. 915-919.
IEEE DOI
BibRef
9409
Kovacs-Vajna, Z.M.,
Guerrieri, R.,
Massively-Parallel Handwritten Character-Recognition Based on the
Distance Transform,
PR(28), No. 3, March 1995, pp. 293-301.
Elsevier DOI Distance transform converts binary into gray scale picture.
BibRef
9503
Kovacs-Vajna, Z.M.,
A Novel Architecture for High-Quality Hand-Printed
Character-Recognition,
PR(28), No. 11, November 1995, pp. 1685-1692.
Elsevier DOI
BibRef
9511
Shustorovich, A.,
Thrasher, C.W.,
Neural-Network Positioning and Classification of Handwritten Characters,
NeurNet(9), No. 4, June 1996, pp. 685-693.
9607
BibRef
Earlier:
ICPR96(D82.9).
9608
(Eastman Kodak Company, USA)
BibRef
AbuHaiba, I.S.I.,
Holt, M.J.J.,
Datta, S.,
Processing of Off-Line Handwritten Text:
Polygonal-Approximation and Enforcement of Temporal Information,
GMIP(56), No. 4, July 1994, pp. 324-335.
BibRef
9407
Abu Haiba, I.S.I.,
Holt, M.J.J.,
Datta, S.,
Straight-Line Approximation and 1D Representation of Off-Line
Handwritten Text,
IVC(12), No. 10, December 1994, pp. 649-659.
Elsevier DOI
BibRef
9412
Abu Haiba, I.S.I.,
Datta, S.,
Holt, M.J.J.,
Fuzzy State Machines to Recognize Totally Unconstructed
Handwritten Strokes,
IVC(13), No. 10, December 1995, pp. 755-769.
Elsevier DOI Strokes.
BibRef
9512
Abu Haiba, I.S.I.,
Holt, M.J.J.,
Datta, S.,
Processing of Binary Images of Handwritten Text Documents,
PR(29), No. 7, July 1996, pp. 1161-1177.
Elsevier DOI
9607
BibRef
Kim, D.H.[Dea-Hwan],
Kim, E.J.[Eun-Jung],
Bang, S.Y.[Sung-Yang],
A Variation Measure for Handwritten Character Image Data Using
Entropy Difference,
PR(30), No. 1, January 1997, pp. 19-29.
Elsevier DOI
9702
Degree of variation.
BibRef
Fairhurst, M.C.,
Rahman, A.F.R.,
Generalized-Approach to the Recognition of Structurally Similar
Handwritten Characters Using Multiple Expert Classifiers,
VISP(144), No. 1, February 1997, pp. 15-22.
9706
Classifiers, multiple.
See also New Hybrid Approach in Combining Multiple Experts to Recognize Handwritten Numerals, A.
See also Design Considerations in the Real-Time Implementation of Multiple Expert Image Classifiers within a Modular and Flexible Multiple-platform Design Environment.
BibRef
Cheng, D.H.,
Yan, H.,
Recognition of Broken and Noisy Handwritten Characters Using
Statistical-Methods Based on a Broken-Character-Mending Algorithm,
OptEng(36), No. 5, May 1997, pp. 1465-1479.
9706
BibRef
Fan, K.C.[Kuo-Chin],
Wang, Y.K.[Yuan-Kai],
A Genetic Sparse Distributed Memory Approach to the
Application of Handwritten Character Recognition,
PR(30), No. 12, December 1997, pp. 2015-2022.
Elsevier DOI
9805
Neural net.
BibRef
Garris, M.D.,
Blue, J.L.,
Candela, G.T.,
Dimmick, D.L.,
Geist, J.C.,
Grother, P.J.,
Janet, S.A.,
Omidvar, O.M.,
Wilson, C.L.,
Design of a Handprint Recognition System,
JEI(6), No. 2, April 1997, pp. 231-243.
9807
BibRef
Garris, M.D.,
Blue, J.L.,
Candela, G.T.,
Dimmick, D.L.,
Geist, J.C.,
Grother, P.J.,
Janet, S.A.,
Wilson, C.L.,
NIST Form-Based Handprint Recognition System,
NISTIR5469, July 1994.
BibRef
9407
Garris, M.D.,
Nist Form-Based Handprint Recognition System (Release 2.2),
NISTIRApril 2003.
HTML Version.
Code, OCR. Standard reference form-based handprint recognition system for
evaluating optical character recognition.
BibRef
0304
Garris, M.D.,
Blue, J.L.,
Candela, G.T.,
Dimmick, D.L.,
Geist, J.C.,
Grother, P.J.,
Janet, S.A.,
Wilson, C.L.,
Off-line Handwriting Recognition from Forms,
SMC-C95(2783-2788).
BibRef
9500
Garris, M.D.,
Wilson, C.L.,
Blue, J.L.,
Neural Network Based Systems for Handprint OCR Applications,
IP(7), No. 8, August 1998, pp. 1097-1112.
IEEE DOI
9808
BibRef
Heutte, L.,
Paquet, T.,
Moreau, J.V.,
Lecourtier, Y.,
Olivier, C.,
A Structural/Statistical Feature Based Vector for
Handwritten Character Recognition,
PRL(19), No. 7, May 1998, pp. 629-641.
9808
BibRef
Earlier: A1, A3, A2, A4, A5:
Combining Structural and Statistical Features for the
Recognition of Handwritten Characters,
ICPR96(II: 210-214).
IEEE DOI
9608
(Universite de Rouen, F)
BibRef
Wada, K.,
Mori, K.,
Toraichi, K.,
PARM:
A Parallel Relaxation Machine for Handwritten Character Recognition,
PRL(19), No. 5-6, April 1998, pp. 475-481.
9808
BibRef
Chim, Y.C.[Yuen-Chong],
Kassim, A.A.[Ashraf A.],
Ibrahim, Y.[Yaacob],
Dual Classifier System for Handwritten Alphanumeric
Character Recognition,
PAA(1), No. 3, 1998, pp. xx-yy.
BibRef
9800
Oh, I.S.[Il-Seok],
Suen, C.Y.[Ching Y.],
Distance features for neural network-based recognition of handwritten
characters,
IJDAR(1), No. 2, 1998, pp. 319-330.
BibRef
9800
Earlier:
A Feature for Character Recognition Based on
Directional Distance Distributions,
ICDAR97(288-292).
IEEE DOI
9708
BibRef
Oh, I.S.[Il-Seok],
Suen, C.Y.[Ching Y.],
A class-modular feedforward neural network for handwriting recognition,
PR(35), No. 1, January 2002, pp. 229-244.
Elsevier DOI
0111
BibRef
Oh, I.S.[Il-Seok],
Lee, J.S.[Jin-Seon],
Suen, C.Y.[Ching Y.],
Analysis of Class Separation and Combination of Class-Dependent
Features for Handwriting Recognition,
PAMI(21), No. 10, October 1999, pp. 1089-1094.
IEEE DOI
BibRef
9910
And:
A class-modularity for character recognition,
ICDAR01(64-68).
IEEE DOI
0109
Feature-Selection-Based combination and class-dependent features.
BibRef
Lee, J.S.[Jin-Seon],
Suen, C.Y.[Ching Y.],
Oh, I.S.[Il-Seok],
Using Class Separation for Feature Analysis and Combination of
Class-Dependent Features,
ICPR98(Vol I: 453-455).
IEEE DOI
9808
BibRef
Li, Z.C.,
Suen, C.Y.,
The partition-combination method for recognition of handwritten
characters,
PRL(21), No. 6-7, June 2000, pp. 701-720.
0006
BibRef
Li, Z.C.,
Suen, C.Y.,
Crucial combinations for the recognition of handwritten letters,
PRL(21), No. 10, October 2000, pp. 873-898.
0008
BibRef
Chen, H.,
Agazzi, O.E.,
Suen, C.Y.,
Piecewise Linear Modulation Model of Handwriting,
ICDAR97(363-367).
IEEE DOI
9708
BibRef
Chen, W.,
Suen, C.Y.,
Strobel, M.G.,
Extraction of Lines of Texts in Unconstrained Handwritten Documents,
ICDAR97(We-1A)
9708
In program, not in proceedings.
BibRef
Ghosh, D.,
Shivaprasad, A.P.,
An analytic approach for generation of artificial hand-printed
character database from given generative models,
PR(32), No. 6, June 1999, pp. 907-920.
Elsevier DOI
BibRef
9906
Pessoa, L.F.C.[Lúcio F.C.],
Maragos, P.[Petros],
Neural networks with hybrid morphological/rank/linear nodes: a unifying
framework with applications to handwritten character recognition,
PR(33), No. 6, June 2000, pp. 945-960.
Elsevier DOI
0004
BibRef
Lazzerini, B.[Beatrice],
Marcelloni, F.[Francesco],
A linguistic fuzzy recogniser of off-line handwritten characters,
PRL(21), No. 3, March 2000, pp. 319-327.
0004
BibRef
de Stefano, C.,
della Cioppa, A.,
Marcelli, A.,
Character preclassification based on genetic programming,
PRL(23), No. 12, October 2002, pp. 1439-1448.
Elsevier DOI
0206
BibRef
Cilia, N.D.[Nicole Dalia],
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
di Freca, A.S.[Alessandra Scotto],
A ranking-based feature selection approach for handwritten character
recognition,
PRL(121), 2019, pp. 77-86.
Elsevier DOI
1904
Feature selection, Handwritten character recognition
BibRef
Cilia, N.D.[Nicole Dalia],
d'Alessandro, T.[Tiziana],
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
Scotto-di Freca, A.[Alessandra],
Comparing filter and wrapper approaches for feature selection in
handwritten character recognition,
PRL(168), 2023, pp. 39-46.
Elsevier DOI
2304
BibRef
Cordella, L.P.,
de Stefano, C.[Claudio],
Fontanella, F.[Francesco],
Marrocco, C.,
A feature selection algorithm for handwritten character recognition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Cordella, L.P.,
de Stefano, C.,
Fontanella, F.,
Marcelli, A.,
Looking for Prototypes by Genetic Programming,
IWICPAS06(152-159).
Springer DOI
0608
BibRef
Earlier:
A Novel Genetic Programming Based Approach for Classification Problems,
CIAP05(727-734).
Springer DOI
0509
BibRef
Cordella, L.P.,
Foggia, P.,
Sansone, C.,
Tortorella, F.,
Vento, M.,
Prototyping Structural Shape Descriptions by Inductive Learning,
VF01(484 ff.).
Springer DOI
0209
BibRef
de Stefano, C.[Claudio],
della Cioppa, A.,
Marcelli, A.,
Matarazzo, F.,
Grouping Character Shapes by Means of Genetic Programming,
VF01(504 ff.).
Springer DOI
0209
BibRef
de Stefano, C.,
della Cioppa, A.,
Marcelli, A.,
Learning handwriting by evolution: a conceptual framework for
performance evaluation and tuning,
PR(35), No. 5, May 2002, pp. 1025-1037.
Elsevier DOI
0202
BibRef
de Stefano, C.[Claudio],
Garruto, M.[Marco],
Lapresa, L.[Luis],
Marcelli, A.[Angelo],
Using Strings for On-Line Handwriting Shape Matching:
A New Weighted Edit Distance,
CIAP05(1125-1132).
Springer DOI
0509
BibRef
de Stefano, C.,
Garruto, M.,
Marcelli, A.,
A multiresolution approach to on-line handwriting segmentation and
feature extraction,
ICPR04(II: 614-617).
IEEE DOI
0409
BibRef
Hanmandlu, M.,
Murali Mohan, K.R.,
Chakraborty, S.[Sourav],
Goyal, S.[Sumeer],
Choudhury, D.R.[D. Roy],
Unconstrained handwritten character recognition based on fuzzy logic,
PR(36), No. 3, March 2003, pp. 603-623.
Elsevier DOI
0301
BibRef
Hanmandlu, M.,
Murali Mohan, K.R.,
Chakraborty, S.[Sourav],
Goyal, S.[Sumeer],
Fuzzy Logic Based Handwritten Character Recognition,
ICIP01(III: 42-45).
IEEE DOI
0108
BibRef
Hanmandlu, M.,
Murali Mohan, K.R.,
Gupta, V.,
Fuzzy Logic Based Handwritten Character Recognition 2,
ICIP97(III: 714-717).
IEEE DOI
9710
BibRef
Chakravarthy, V.S.[V. Srinivasa],
Kompella, B.[Bhaskar],
The shape of handwritten characters,
PRL(24), No. 12, August 2003, pp. 1901-1913.
Elsevier DOI
0304
BibRef
Gangadhar, G.[Garipelli],
Joseph, D.[Denny],
Chakravarthy, V.S.[V. Srinivasa],
An oscillatory neuromotor model of handwriting generation,
IJDAR(10), No. 2, November 2007, pp. 69-84.
Springer DOI
0711
BibRef
Aksela, M.[Matti],
Girdziusas, R.[Ramunas],
Laaksonen, J.T.[Jorma T.],
Oja, E.[Erkki],
Kangas, J.[Jari],
Methods for adaptive combination of classifiers with application to
recognition of handwritten characters,
IJDAR(6), No. 1, 2003, pp. 23-41.
Springer DOI
0308
BibRef
Earlier: A1, A3, A4, A5, Only:
Rejection methods for an adaptive committee classifier,
ICDAR01(982-986).
IEEE DOI
0109
BibRef
Aksela, M.[Matti],
Laaksonen, J.T.[Jorma T.],
Adaptive combination of adaptive classifiers for handwritten character
recognition,
PRL(28), No. 1, 1 January 2007, pp. 136-143.
Elsevier DOI
0611
Classifier combining; Adaptive classifiers; Adaptive committee;
On-line adaptation; Handwritten character recognition
BibRef
Chou, C.H.[Chien-Hsing],
Lin, C.C.[Chin-Chin],
Liu, Y.H.[Ying-Ho],
Chang, F.[Fu],
A prototype classification method and its use in a hybrid solution for
multiclass pattern recognition,
PR(39), No. 4, April 2006, pp. 624-634.
Elsevier DOI
0604
Fuzzy c-means clustering algorithm; Handwritten character recognition;
Hybrid classifier; K-means clustering algorithm;
Prototype learning; Support vector machine
BibRef
Oncina, J.[Jose],
Sebban, M.[Marc],
Learning stochastic edit distance:
Application in handwritten character recognition,
PR(39), No. 9, September 2006, pp. 1575-1587.
Elsevier DOI
0606
BibRef
Earlier:
Using Learned Conditional Distributions as Edit Distance,
SSPR06(403-411).
Springer DOI
0608
Stochastic edit distance; Finite-state transducers
See also Learning state machine-based string edit kernels.
BibRef
Micó, L.[Luisa],
Oncina, J.[Jose],
A log square average case algorithm to make insertions in fast
similarity search,
PRL(33), No. 9, 1 July 2012, pp. 1060-1065.
Elsevier DOI
1202
Similarity search; Metric space; Dynamic index; Insertions
BibRef
Gagné, C.[Christian],
Parizeau, M.[Marc],
Genetic engineering of hierarchical fuzzy regional representations for
handwritten character recognition,
IJDAR(8), No. 4, September 2006, pp. 223-231.
Springer DOI
0609
BibRef
Lemieux, A.,
Gagné, C.[Christian],
Parizeau, M.[Marc],
Genetical engineering of handwriting representations,
FHR02(145-150).
IEEE Top Reference.
0209
BibRef
Parizeau, M.,
Lemieux, A.,
Gagne, C.,
Character recognition experiments using Unipen data,
ICDAR01(481-485).
IEEE DOI
0109
BibRef
Soares de Oliveira, L.E.[Luiz E.],
Morita, M.[Marisa],
Sabourin, Jr., R.[Robert],
Feature selection for ensembles applied to handwriting recognition,
IJDAR(8), No. 4, September 2006, pp. 262-279.
Springer DOI
0609
See also Impacts of verification on a numeral string recognition system.
BibRef
Soares de Oliveira, L.E.[Luiz E.],
Sabourin, Jr., R.[Robert],
Bortolozzi, F.,
Suen, C.Y.,
Feature selection for ensembles:
A hierarchical multi-objective genetic algorithm approach,
ICDAR03(676-680).
IEEE DOI
0311
BibRef
Hirabara, L.Y.[Luciane Y.],
Aires, S.B.K.[Simone B.K.],
de A. Freitas, C.O.[Cinthia O.],
de Souza Britto, Jr., A.[Alceu],
Sabourin, R.[Robert],
Dynamic Zoning Selection for Handwritten Character Recognition,
CIARP11(507-514).
Springer DOI
1111
BibRef
Plötz, T.[Thomas],
Fink, G.A.[Gernot A.],
Markov models for offline handwriting recognition: a survey,
IJDAR(12), No. 4, December 2009, pp. xx-yy.
Springer DOI
0912
Survey, Handwriting.
BibRef
Pauplin, O.[Olivier],
Jiang, J.M.[Jian-Min],
DBN-based structural learning and optimisation for automated
handwritten character recognition,
PRL(33), No. 6, 15 April 2012, pp. 685-692.
Elsevier DOI
1203
Pattern classification; Dynamic Bayesian Network; Structure learning;
Supervised learning; Handwritten character recognition; Evolutionary
Algorithm
BibRef
Liwicki, M.[Marcus],
Ebert, S.[Sebastian],
Dengel, A.[Andreas],
Bridging the gap between handwriting recognition and knowledge
management,
PRL(35), No. 1, 2014, pp. 204-213.
Elsevier DOI
1312
Handwriting recognition
BibRef
Vajda, S.[Szilárd],
Rangoni, Y.[Yves],
Cecotti, H.[Hubert],
Semi-automatic ground truth generation using unsupervised clustering
and limited manual labeling: Application to handwritten character
recognition,
PRL(58), No. 1, 2015, pp. 23-28.
Elsevier DOI
1505
Character recognition
BibRef
Costagliola, G.,
de Rosa, M.,
Fuccella, V.,
Handwriting on Smartwatches: An Empirical Investigation,
HMS(47), No. 6, December 2017, pp. 1100-1109.
IEEE DOI
1712
Character recognition, Handwriting recognition, Keyboards,
Performance evaluation, Text recognition, Wearable computing,
wristwatch
BibRef
Zhang, Y.P.[Ya-Ping],
Liang, S.[Shan],
Nie, S.[Shuai],
Liu, W.J.[Wen-Ju],
Peng, S.[Shouye],
Robust offline handwritten character recognition through exploring
writer-independent features under the guidance of printed data,
PRL(106), 2018, pp. 20-26.
Elsevier DOI
1804
Handwritten character recognition,
Writer-independent features, Adversarial feature learning,
Convolutional neural network
BibRef
Ptucha, R.[Raymond],
Such, F.P.[Felipe Petroski],
Pillai, S.[Suhas],
Brockler, F.[Frank],
Singh, V.[Vatsala],
Hutkowski, P.[Paul],
Intelligent character recognition using fully convolutional neural
networks,
PR(88), 2019, pp. 604-613.
Elsevier DOI
1901
Handwriting recognition, Fully convolutional neural networks, Deep learning
BibRef
Liu, Y.L.[Yu-Liang],
Jin, L.W.[Lian-Wen],
Lai, S.X.[Song-Xuan],
Automatic labeling of large amounts of handwritten characters with
gate-guided dynamic deep learning,
PRL(119), 2019, pp. 94-102.
Elsevier DOI
1902
Automatic labeling, Handwritten characters, Path signature, Gate guided
BibRef
Moysset, B.[Bastien],
Messina, R.[Ronaldo],
Are 2D-LSTM really dead for offline text recognition?,
IJDAR(22), No. 3, September 2019, pp. 193-208.
Springer DOI
1909
BibRef
Yousef, M.[Mohamed],
Hussain, K.F.[Khaled F.],
Mohammed, U.S.[Usama S.],
Accurate, data-efficient, unconstrained text recognition with
convolutional neural networks,
PR(108), 2020, pp. 107482.
Elsevier DOI
2008
Text recognition, Optical character recognition,
Handwriting recognition, CAPTCHA Solving, Deep learning
BibRef
Kotani, A.[Atsunobu],
Tellex, S.[Stefanie],
Tompkin, J.[James],
Generating Handwriting via Decoupled Style Descriptors,
ECCV20(XII: 764-780).
Springer DOI
2010
BibRef
Liu, X.Y.[Xi-Yan],
Meng, G.F.[Gao-Feng],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Handwritten Text Generation via Disentangled Representations,
SPLetters(28), 2021, pp. 1838-1842.
IEEE DOI
2109
Training, Gaussian distribution, Text recognition,
Image reconstruction, Task analysis, Generators, Convolution,
deep learning
BibRef
Kojic, T.[Tanja],
Vergari, M.[Maurizio],
Möller, S.[Sebastian],
Voigt-Antons, J.N.[Jan-Niklas],
Assessing User Experience of Text Readability with Eye Tracking in
Virtual Reality,
VAMR22(I:199-211).
Springer DOI
2206
BibRef
Ao, X.[Xiang],
Zhang, X.Y.[Xu-Yao],
Liu, C.L.[Cheng-Lin],
Cross-modal prototype learning for zero-shot handwritten character
recognition,
PR(131), 2022, pp. 108859.
Elsevier DOI
2208
Online handwriting, Offline handwriting, Printed character,
Zero-shot, Prototype, Cross-modality
BibRef
Dhiaf, M.[Marwa],
Rouhou, A.C.[Ahmed Cheikh],
Kessentini, Y.[Yousri],
Ben Salem, S.[Sinda],
MSdocTr-Lite: A lite transformer for full page multi-script
handwriting recognition,
PRL(169), 2023, pp. 28-34.
Elsevier DOI
2305
Seq2Seq model, Page-level recognition,
Handwritten text recognition, Multi-script, Transformer, Transfer learning
BibRef
Coquenet, D.[Denis],
Chatelain, C.[Clément],
Paquet, T.[Thierry],
DAN: A Segmentation-Free Document Attention Network for Handwritten
Document Recognition,
PAMI(45), No. 7, July 2023, pp. 8227-8243.
IEEE DOI
2306
Layout, Text recognition, Task analysis, Image segmentation,
Handwriting recognition, Transformers, Annotations, transformer
BibRef
Vidal, E.[Enrique],
Toselli, A.H.[Alejandro H.],
Ríos-Vila, A.[Antonio],
Calvo-Zaragoza, J.[Jorge],
End-to-End page-Level assessment of handwritten text recognition,
PR(142), 2023, pp. 109695.
Elsevier DOI
2307
Handwritten text recognition,
Full-Page end-to-End text image transcription, Word error rate
BibRef
Zhou, Y.[Yunyu],
Minematsu, T.[Tsubasa],
Shimada, A.[Atsushi],
Improvement of Image Segmentation Model for Handwritten Notebook
Analytics,
ICIP23(1870-1874)
IEEE DOI
2312
BibRef
Pippi, V.[Vittorio],
Cascianelli, S.[Silvia],
Cucchiara, R.[Rita],
Handwritten Text Generation from Visual Archetypes,
CVPR23(22458-22467)
IEEE DOI
2309
BibRef
Zhang, X.Y.[Xiao-Yi],
Wang, J.P.[Jia-Peng],
Jin, L.W.[Lian-Wen],
Ren, Y.J.[Yu-Jin],
Xue, Y.[Yang],
CMT-CO: Contrastive Learning with Character Movement Task for
Handwritten Text Recognition,
ACCV22(VII:626-642).
Springer DOI
2307
BibRef
Heil, R.[Raphaela],
Breznik, E.[Eva],
A Study of Augmentation Methods for Handwritten Stenography Recognition,
IbPRIA23(134-145).
Springer DOI
2307
BibRef
Cascianelli, S.[Silvia],
Cornia, M.[Marcella],
Baraldi, L.[Lorenzo],
Piazzi, M.L.[Maria Ludovica],
Schiuma, R.[Rosiana],
Cucchiara, R.[Rita],
Learning to Read L'Infinito:
Handwritten Text Recognition with Synthetic Training Data,
CAIP21(II:340-350).
Springer DOI
2112
BibRef
Bhunia, A.K.[Ayan Kumar],
Ghose, S.[Shuvozit],
Kumar, A.[Amandeep],
Chowdhury, P.N.[Pinaki Nath],
Sain, A.[Aneeshan],
Song, Y.Z.[Yi-Zhe],
MetaHTR: Towards Writer-Adaptive Handwritten Text Recognition,
CVPR21(15825-15834)
IEEE DOI
2111
Adaptation models, Adaptive systems,
Text recognition, Computational modeling, Computer architecture, Writing
BibRef
Cojocaru, I.[Iulian],
Cascianelli, S.[Silvia],
Baraldi, L.[Lorenzo],
Corsini, M.[Massimiliano],
Cucchiara, R.[Rita],
Watch Your Strokes: Improving Handwritten Text Recognition with
Deformable Convolutions,
ICPR21(6096-6103)
IEEE DOI
2105
Handwriting recognition, Adaptation models, Convolution,
Text recognition, Benchmark testing, Writing, Distance measurement
BibRef
Jayasundara, V.,
Jayasekara, S.,
Jayasekara, H.,
Rajasegaran, J.,
Seneviratne, S.,
Rodrigo, R.,
TextCaps: Handwritten Character Recognition With Very Small Datasets,
WACV19(254-262)
IEEE DOI
1904
handwritten character recognition,
learning (artificial intelligence), object recognition,
Task analysis
BibRef
Clark-Younger, H.,
Mills, S.,
Szymanski, L.,
Stacked Hourglass CNN for Handwritten Character Location,
IVCNZ18(1-6)
IEEE DOI
1902
Training, Heating systems, Task analysis, Character recognition,
Keyword search, Semantics,
character recognition
BibRef
Tang, W.,
Yu, P.,
Zhou, J.,
Wu, Y.,
Towards a Unified Compositional Model for Visual Pattern Modeling,
ICCV17(2803-2812)
IEEE DOI
1802
backpropagation, character recognition, graph theory,
handwritten character recognition, image recognition,
Visualization
BibRef
Peymani, K.,
Soryani, M.,
From machine generated to handwritten character recognition;
a deep learning approach,
IPRIA17(243-247)
IEEE DOI
1712
feedforward neural nets,
handwritten character recognition,
Optical Character Recognition
BibRef
Ayyalasomayajula, K.R.[Kalyan Ram],
Nettelblad, C.[Carl],
Brun, A.[Anders],
Feature Evaluation for Handwritten Character Recognition with
Regressive and Generative Hidden Markov Models,
ISVC16(I: 278-287).
Springer DOI
1701
BibRef
Amara, M.[Marwa],
Zidi, K.[Kamel],
Ghedira, K.[Khaled],
Towards a Generic M-SVM Parameters Estimation Using Overlapping Swarm
Intelligence for Handwritten Characters Recognition,
ACIVS16(498-509).
Springer DOI
1611
BibRef
El-Sana, J.[Jihad],
Kedem, K.[Klara],
Word of blobs,
ICDAR15(1016-1020)
IEEE DOI
1511
Blobs that resemble the strokes.
BibRef
Hyuga, T.,
Wada, H.,
Aizawa, T.,
Ijiri, Y.,
Kawade, M.,
Deformed and Touched Characters Recognition,
ACPR13(744-745)
IEEE DOI
1408
computer vision
BibRef
Cecotti, H.[Hubert],
Vajda, S.[Szilárd],
A Radial Neural Convolutional Layer for Multi-oriented Character
Recognition,
ICDAR13(668-672)
IEEE DOI
1312
BibRef
And:
Rejection Schemes in Multi-class Classification:
Application to Handwritten Character Recognition,
ICDAR13(445-449)
IEEE DOI
1312
handwritten character recognition
Radon transforms.
BibRef
Roy, U.,
Sankaran, N.,
Sankar, K.P.,
Jawahar, C.V.,
Character N-Gram Spotting on Handwritten Documents Using
Weakly-Supervised Segmentation,
ICDAR13(577-581)
IEEE DOI
1312
handwritten character recognition
BibRef
Breuel, T.M.,
Ul-Hasan, A.,
Al-Azawi, M.A.,
Shafait, F.,
High-Performance OCR for Printed English and Fraktur Using LSTM
Networks,
ICDAR13(683-687)
IEEE DOI
1312
handwriting recognition
BibRef
Ciresan, D.C.[Dan Claudiu],
Meier, U.[Ueli],
Gambardella, L.M.[Luca Maria],
Schmidhuber, J.[Jurgen],
Convolutional Neural Network Committees for Handwritten Character
Classification,
ICDAR11(1135-1139).
IEEE DOI
1111
BibRef
Gao, Y.[Yan],
Jin, L.[Lanwen],
He, C.[Cong],
Zhou, G.[Guibin],
Handwriting Character Recognition as a Service:
A New Handwriting Recognition System Based on Cloud Computing,
ICDAR11(885-889).
IEEE DOI
1111
BibRef
Miyoshi, T.[Toshinori],
Shinjo, H.[Hiroshi],
Nagasaki, T.[Takeshi],
Simplified polynomial network classifier for handwritten character
recognition,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Schlapbach, A.[Andreas],
Wettstein, F.[Frank],
Bunke, H.[Horst],
Estimating the readability of handwritten text:
A Support Vector Regression based approach,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Thome, N.,
Vacavant, A.,
A Combined Statistical-Structural Strategy for Alphanumeric Recognition,
ISVC07(II: 529-538).
Springer DOI
0711
BibRef
Sadri, J.[Javad],
Suen, C.Y.[Ching Y.],
Bui, T.D.[Tien D.],
A New Clustering Method for Improving Plasticity and Stability in
Handwritten Character Recognition Systems,
ICPR06(II: 1130-1133).
IEEE DOI
0609
BibRef
Miyao, H.[Hidetoshi],
Maruyama, M.[Minoru],
Virtual Example Synthesis Based on PCA for Off-Line Handwritten
Character Recognition,
DAS06(96-105).
Springer DOI
0602
See also online handwritten music symbol recognition system, An.
See also On-Line Handwritten flowchart Recognition, Beautification and Editing System.
BibRef
Miyao, H.,
Maruyama, M.,
Nakano, Y.,
Hananoi, T.,
Off-line handwritten character recognition by SVM based on the virtual
examples synthesized from on-line characters,
ICDAR05(I: 494-498).
IEEE DOI
0508
BibRef
Liu, Y.[Yang],
Liu, X.B.[Xia-Bi],
Jia, Y.D.[Yun-De],
Hand-Gesture Based Text Input for Wearable Computers,
CVS06(8).
IEEE DOI
0602
Write the character by the fingertip.
BibRef
Keysers, D.,
Gollan, C.,
Ney, H.,
Local context in non-linear deformation models for handwritten
character recognition,
ICPR04(IV: 511-514).
IEEE DOI
0409
BibRef
Sun, G.[Guangling],
Huang, J.H.[Jian-Hua],
Tang, X.L.[Xiang-Long],
Active discriminant functions for handwriting recognition,
ICPR04(II: 602-605).
IEEE DOI
0409
BibRef
Chang, F.[Fu],
Lin, C.C.[Chin-Chin],
Chen, C.J.[Chun-Jen],
Applying a hybrid method to handwritten character recognition,
ICPR04(II: 529-532).
IEEE DOI
0409
BibRef
Noor, N.M.,
Razaz, M.,
Manley-Cooke, P.,
Global geometry extraction for fuzzy logic based handwritten character
recognition,
ICPR04(II: 513-516).
IEEE DOI
0409
BibRef
Ellozy, H.A.[Hamed A.],
Jeanty, H.H.[Henry H.],
Tappert, C.C.[Charles C.],
Handwriting recognition employing pairwise discriminant measures,
US_Patent5,005,205, April 2, 1991.
WWW Link.
BibRef
9104
Cha, S.H.[Sung-Hyuk],
Yoon, S.S.[Sung-Soo],
Tappert, C.C.,
On binary similarity measures for handwritten character recognition,
ICDAR05(I: 4-8).
IEEE DOI
0508
BibRef
Cha, S.H.[Sung-Hyuk],
Tappert, C.C.,
Srihari, S.N.,
Optimizing binary feature vector similarity measure using genetic
algorithm and handwritten character recognition,
ICDAR03(662-665).
IEEE DOI
0311
BibRef
Feldbach, M.,
Tönnies, K.D.,
Word segmentation of handwritten dates in historical documents by
combining semantic a-priori-knowledge with local features,
ICDAR03(333-337).
IEEE DOI
0311
BibRef
Earlier:
Segmentation of the Date in Entries of Historical Church Registers,
DAGM02(403 ff.).
Springer DOI
0303
BibRef
Earlier:
Line detection and segmentation in historical church registers,
ICDAR01(743-747).
IEEE DOI
0109
BibRef
Cho, S.J.[Sung-Jung],
Perrone, M.P.,
Ratzlaff, E.,
Probability table compression for handwritten character recognition,
ICDAR03(173-177).
IEEE DOI
0311
BibRef
Nopsuwanchai, R.,
Povey, D.,
Discriminative training for HMM-based of fine handwritten character
recognition,
ICDAR03(114-118).
IEEE DOI
0311
BibRef
Wada, Y.,
Kasuga, H.,
Sumita, K.,
An evolutionary approach for the generation of diversiform characters
using a handwriting model,
ICPR02(III: 131-134).
IEEE DOI
0211
BibRef
Mori, M.,
Video text recognition using feature compensation as category-dependent
feature extraction,
ICDAR03(645-649).
IEEE DOI
0311
BibRef
Mori, M.,
Sawaki, M.,
Hagita, N.,
Category-dependent feature extraction for recognition of degraded
handwritten characters,
ICPR02(III: 155-159).
IEEE DOI
0211
BibRef
Mori, M.,
Sawaki, M.,
Hagita, N.,
Murase, H.,
Mukawa, N.,
Robust feature extraction based on run-length compensation for degraded
handwritten character recognition,
ICDAR01(650-654).
IEEE DOI
0109
BibRef
Lam, L.,
Xu, Q.Z.[Qi-Zhi],
Suen, C.Y.,
Differentiation between alphabetic and numeric data using NN ensembles,
ICPR02(IV: 40-43).
IEEE DOI
0211
BibRef
Zhu, X.Y.[Xiao-Yan],
Shi, Y.F.[Yi-Fan],
A handwritten character recognition method with ANN feedback,
ICDAR01(255-259).
IEEE DOI
0109
BibRef
And:
A New Algorithm for Handwritten Character Recognition,
ICIP01(I: 1130-1133).
IEEE DOI
0108
BibRef
Arlandis, J.[Joaquim],
Perez-Cortes, J.C.[Juan-Carlos],
Llobet, R.[Rafael],
Handwritten Character Recognition Using the Continuos Distance
Transformation,
ICPR00(Vol I: 940-943).
IEEE DOI
0009
BibRef
Miller, E.G.[Erik G.],
Matsakis, N.E.[Nicholas E.],
Viola, P.A.[Paul A.],
Learning from One Example through Shared Densities on Transforms,
CVPR00(I: 464-471).
IEEE DOI
0005
Learning
BibRef
Prema, K.V.,
Reddy, N.V.S.,
Neural Network Based Handwritten Character Recognition
for Conflict Resolution,
MVA98(xx-yy).
BibRef
9800
Waizumi, Y.,
Kato, N.,
Saruta, K.,
Nemoto, Y.,
High Speed Rough Classification for Handwritten Characters
Using Hierarchical Learning Vector Quantization,
ICDAR97(23-27).
IEEE DOI
9708
BibRef
Matsumura, S.,
Kobayashi, T.,
Nakamura, O.,
Ogura, K.,
Document Input According to Recognition Accuracy of
Handwritten Characters,
ICDAR97(51-55).
IEEE DOI
9708
BibRef
Rodrigues Gomes, N.,
Lee, L.L.[Luan Ling],
Feature extraction based on fuzzy set theory for handwriting
recognition,
ICDAR01(655-659).
IEEE DOI
0109
BibRef
Lee, L.L.[Luan Ling],
Rodrigues Gomes, N.,
Disconnected Handwritten Character Image Recognition,
ICDAR97(467-470).
IEEE DOI
9708
BibRef
Gloger, J.M.,
Kaltenmeier, A.,
Mandler, E.,
Andrews, L.,
Reject Management in a Handwriting Recognition System,
ICDAR97(556-559).
IEEE DOI
9708
BibRef
Kimura, F.,
Kayahara, N.,
Miyake, Y.,
Shridhar, M.,
Machine and human recognition of segmented characters from handwritten
words,
ICDAR97(866-869).
IEEE DOI
9708
BibRef
Park, H.S.[Hee-Seon],
Lee, S.W.[Seong-Whan],
An HMMRF-based statistical approach for off-line handwritten character
recognition,
ICPR96(II: 320-324).
IEEE DOI
9608
(Korea Univ., KOR)
BibRef
Gong, Y.,
Boyer, A.,
Hand-written text recognition based on a new formulation,
ICPR92(II:112-115).
IEEE DOI
9208
BibRef
Yokozuka, S.,
Kida, H.,
An application of feature selection to handwritten character
recognition,
ICPR92(II:537-540).
IEEE DOI
9208
BibRef
Kimura, M.,
Ejima, T.,
Aso, H.,
Yashiro, H.,
Son, N.,
Suzuki, M.,
An Intelligent Character Recognition System with High Accuracy and
High Speed by Integrating Image-Type and Logical-Type
Information Processings,
ICPR88(I: 38-40).
IEEE DOI
BibRef
8800
Holder, S.,
Dengler, J.,
Font- and Size-Invariant Character Recognition with
Greyvalue Image Features,
ICPR88(I: 252-254).
IEEE DOI
8811
BibRef
Leveridge, P.C.,
Leedham, C.G.,
Experiments with an N-Tuple Recogniser for Fast 'First Try'
Recognition of Unconstrained Handwritten Symbols,
ICPR88(II: 905-907).
IEEE DOI
8811
BibRef
Lettera, C.,
Masera, L.,
Paoli, C.,
Porinelli, R.,
Use of a Dictionary in Conjunction with a Handwritten Texts Recognizer,
ICPR86(699-701).
BibRef
8600
Sagawa, T.,
Tanaka, E.,
Suzuki, M.,
Fujita, M.,
An Unsupervised Learning of Hand-Printed Characters with
Linguistic Information,
ICPR84(766-769).
BibRef
8400
Kuklinski, T.T.,
Components of Handprint Style Variabilty,
ICPR84(924-926).
BibRef
8400
Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Handwritten Characters, Feature Extraction .