19.3.4.1.4 Motion Segmentation, Motion Saliency, Video Salience

Chapter Contents (Back)
Motion Segmentation. Motion Saliency. Salient Object. Video Saliency.
See also Video Instance Segmentation.

Luo, Y.[Ye], Yuan, J.S.[Jun-Song], Xue, P.[Ping], Tian, Q.[Qi],
Saliency Density Maximization for Efficient Visual Objects Discovery,
CirSysVideo(21), No. 12, December 2011, pp. 1822-1834.
IEEE DOI 1112
BibRef
Earlier:
Saliency Density Maximization for Object Detection and Localization,
ACCV10(III: 396-408).
Springer DOI 1011
BibRef

Luo, Y.[Ye], Zhao, G.Q.[Gang-Qiang], Yuan, J.S.[Jun-Song],
Thematic Saliency Detection Using Spatial-Temporal Context,
LSVSM13(347-353)
IEEE DOI 1403
data mining BibRef

Hu, K.T.[Kang-Ting], Leou, J.J.[Jin-Jang], Hsiao, H.H.[Han-Hui],
Spatiotemporal saliency detection and salient region determination for H.264 videos,
JVCIR(24), No. 7, 2013, pp. 760-772.
Elsevier DOI 1309
BibRef
Earlier:
Visual attention region determination for H.264 videos,
ICPR12(2038-2041).
WWW Link. 1302
Spatial saliency BibRef

Ren, Z.X.[Zhi-Xiang], Gao, S.H.[Sheng-Hua], Chia, L.T.[Liang-Tien], Rajan, D.,
Regularized Feature Reconstruction for Spatio-Temporal Saliency Detection,
IP(22), No. 8, 2013, pp. 3120-3132.
IEEE DOI 1307
Laplace transforms, video saliency detection BibRef

Liu, Z.[Zhi], Zou, W.B.[Wen-Bin], Le Meur, O.[Olivier],
Saliency Tree: A Novel Saliency Detection Framework,
IP(23), No. 5, May 2014, pp. 1937-1952.
IEEE DOI 1405
image colour analysis BibRef

Perrin, A.F.[Anne-Flore], Zhang, L.[Lu], Le Meur, O.[Olivier],
How Well Current Saliency Prediction Models Perform on UAVs Videos?,
CAIP19(I:311-323).
Springer DOI 1909
BibRef

Le Meur, O.[Olivier],
Robustness and repeatability of saliency models subjected to visual degradations,
ICIP11(3285-3288).
IEEE DOI 1201
BibRef

Ren, Z.X.[Zhi-Xiang], Gao, S.H.[Sheng-Hua], Chia, L.T.[Liang-Tien], Tsang, I.W.,
Region-Based Saliency Detection and Its Application in Object Recognition,
CirSysVideo(24), No. 5, May 2014, pp. 769-779.
IEEE DOI 1405
Clustering algorithms BibRef

Hu, Y.Q.[Yi-Qun], Ren, Z.X.[Zhi-Xiang], Rajan, D.[Deepu], Chia, L.T.[Liang-Tien],
Salient Region Detection by Jointly Modeling Distinctness and Redundancy of Image Content,
ACCV10(II: 515-526).
Springer DOI 1011
BibRef

Yi, Y.[Yang], Ding, J.[Jia], Lai, J.L.[Jie-Ling],
A novel video salient object extraction method based on visual attention,
SP:IC(28), No. 1, January 2013, pp. 45-54.
Elsevier DOI 1301
Video object segmentation, Salient object extraction, Visual attention model, Attention object growing BibRef

Li, Y., Sheng, B., Ma, L., Wu, W., Xie, Z.,
Temporally Coherent Video Saliency Using Regional Dynamic Contrast,
CirSysVideo(23), No. 12, 2013, pp. 2067-2076.
IEEE DOI 1312
Computational efficiency. Region-based visual dynamic contrast. BibRef

Han, J., He, S., Qian, X., Wang, D., Guo, L., Liu, T.,
An Object-Oriented Visual Saliency Detection Framework Based on Sparse Coding Representations,
CirSysVideo(23), No. 12, 2013, pp. 2009-2021.
IEEE DOI 1312
Computer vision BibRef

Li, W.T.[Wei-Te], Chang, H.S.[Haw-Shiuan], Lien, K.C.[Kuo-Chin], Chang, H.T.[Hui-Tang], Wang, Y.F.,
Exploring Visual and Motion Saliency for Automatic Video Object Extraction,
IP(22), No. 7, 2013, pp. 2600-2610.
IEEE DOI conditional random field, foreground object extraction; foreground-background region separation, visual saliency 1307
BibRef

Li, W.T.[Wei-Te], Chang, H.T.[Hui-Tang], Lyu, H.S.[Hermes Shing], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Automatic saliency inspired foreground object extraction from videos,
ICIP12(1089-1092).
IEEE DOI 1302
BibRef

Yang, J., Zhao, G., Yuan, J., Shen, X., Lin, Z., Price, B., Brandt, J.,
Discovering Primary Objects in Videos by Saliency Fusion and Iterative Appearance Estimation,
CirSysVideo(26), No. 6, June 2016, pp. 1070-1083.
IEEE DOI 1606
Estimation BibRef

Bhattacharya, S.[Saumik], Venkatsh, K.S., Gupta, S.[Sumana],
Background estimation and motion saliency detection using total variation-based video decomposition,
SIViP(11), No. 1, January 2017, pp. 113-121.
WWW Link. 1702
BibRef
Earlier: A1, A3, A2:
Visual saliency detection using video decomposition,
ICIP16(684-688)
IEEE DOI 1610
Cameras BibRef

Duval-Poo, M.A., Noceti, N., Odone, F.[Francesca], de Vito, E.[Ernesto],
Scale Invariant and Noise Robust Interest Points With Shearlets,
IP(26), No. 6, June 2017, pp. 2853-2867.
IEEE DOI 1705
Gaussian noise, feature extraction, image coding, Gaussian noise, blob detection, blob-like features, compression artifacts, directional multiscale framework, image compression, shearlets framework, BibRef

Malafronte, D.[Damiano], Odone, F.[Francesca], de Vito, E.[Ernesto],
Detecting Spatio-Temporally Interest Points Using the Shearlet Transform,
IbPRIA17(501-510).
Springer DOI 1706
BibRef

Li, J., Xia, C., Chen, X.,
A Benchmark Dataset and Saliency-Guided Stacked Autoencoders for Video-Based Salient Object Detection,
IP(27), No. 1, January 2018, pp. 349-364.
IEEE DOI 1712
learning (artificial intelligence), object detection, video coding, SOD dataset, benchmark dataset, eye-tracking data, video dataset BibRef

Sun, X.[Xiao], Hu, Y.X.[Yu-Xing], Zhang, L.M.[Lu-Ming], Chen, Y.X.[Yan-Xiang], Li, P.[Ping], Xie, Z.[Zhao], Liu, Z.G.[Zhen-Guang],
Camera-Assisted Video Saliency Prediction and Its Applications,
Cyber(48), No. 9, September 2018, pp. 2520-2530.
IEEE DOI 1809
Find important regions in the image. cameras, feature extraction, learning (artificial intelligence), matrix decomposition, video saliency BibRef

Yang, J.[Jiong], Yuan, J.S.[Jun-Song],
Temporally enhanced image object proposals for online video object and action detections,
JVCIR(53), 2018, pp. 245-256.
Elsevier DOI 1805
Video, Proposal, Online, Detection, Temporal BibRef

Zhang, P., Yan, P., Wu, J., Liu, J., Shen, F.,
Unsupervised Saliency Detection in 3-D-Video Based on Multiscale Segmentation and Refinement,
SPLetters(25), No. 9, September 2018, pp. 1384-1388.
IEEE DOI 1809
feature extraction, graph theory, image colour analysis, image fusion, image motion analysis, image segmentation, segmentation BibRef

Pang, Y., Ye, L., Li, X., Pan, J.,
Incremental Learning With Saliency Map for Moving Object Detection,
CirSysVideo(28), No. 3, March 2018, pp. 640-651.
IEEE DOI 1804
Gaussian processes, image motion analysis, image sequences, learning (artificial intelligence), minimisation, subspace analysis BibRef

Xu, B., Niu, Y.,
Accurate Object Segmentation for Video Sequences via Temporal-Spatial-Frequency Saliency Model,
IEEE_Int_Sys(33), No. 1, January 2018, pp. 18-28.
IEEE DOI 1805
Cameras, Frequency-domain analysis, Image color analysis, Image segmentation, Object segmentation, Video sequences, visualization BibRef

Le, T.N.[Trung-Nghia], Sugimoto, A.[Akihiro],
Video Salient Object Detection Using Spatiotemporal Deep Features,
IP(27), No. 10, October 2018, pp. 5002-5015.
IEEE DOI 1808
BibRef
Earlier:
Contrast Based Hierarchical Spatial-Temporal Saliency for Video,
PSIVT15(734-748).
Springer DOI 1602
feature extraction, image colour analysis, image representation, image segmentation, object detection, random processes, video object segmentation BibRef

Chen, C., Li, S., Qin, H., Pan, Z., Yang, G.,
Bilevel Feature Learning for Video Saliency Detection,
MultMed(20), No. 12, December 2018, pp. 3324-3336.
IEEE DOI 1812
feature extraction, learning (artificial intelligence), Markov processes, object detection, video signal processing, Video Saliency Detection BibRef

Chen, Y.[Yu], Xiao, J.[Jing], Hu, L.[Liuyi], Chen, D.[Dan], Wang, Z.Y.[Zhong-Yuan], Li, D.S.[Deng-Shi],
Video Saliency Detection Using Spatiotemporal Cues,
IEICE(E101-D), No. 9, September 2018, pp. 2201-2208.
WWW Link. 1809
BibRef

Tang, Y.[Yi], Zou, W.B.[Wen-Bin], Jin, Z.[Zhi], Chen, Y.H.[Yu-Huan], Hua, Y.[Yang], Li, X.[Xia],
Weakly Supervised Salient Object Detection With Spatiotemporal Cascade Neural Networks,
CirSysVideo(29), No. 7, July 2019, pp. 1973-1984.
IEEE DOI 1907
Videos, Object detection, Spatiotemporal phenomena, Neural networks, Saliency detection, Machine learning, cascade fully convolutional network BibRef

Peng, Q., Cheung, Y.,
Automatic Video Object Segmentation Based on Visual and Motion Saliency,
MultMed(21), No. 12, December 2019, pp. 3083-3094.
IEEE DOI 1912
Manifolds, Visualization, Object segmentation, Motion segmentation, Image segmentation, Autoregressive processes, Labeling, graph model BibRef

Wen, H.F.[Hong-Fa], Zhou, X.F.[Xiao-Fei], Sun, Y.Q.[Yao-Qi], Zhang, J.Y.[Ji-Yong], Yan, C.G.[Cheng-Gang],
Deep fusion based video saliency detection,
JVCIR(62), 2019, pp. 279-285.
Elsevier DOI 1908
Video saliency, Convolutional network, Feature integration, Boundary BibRef

Patil, P.W., Murala, S.,
MSFgNet: A Novel Compact End-to-End Deep Network for Moving Object Detection,
ITS(20), No. 11, November 2019, pp. 4066-4077.
IEEE DOI 1911
Videos, Object detection, Estimation, Feature extraction, Lighting, Image color analysis, Saliency detection, Background estimation, CNN BibRef

Patil, P.W., Thawakar, O., Dudhane, A., Murala, S.,
Motion Saliency Based Generative Adversarial Network for Underwater Moving Object Segmentation,
ICIP19(1565-1569)
IEEE DOI 1910
Underwater medium, motion saliency, Generative adversarial network, frame segmentation BibRef

Maczyta, L.[Léo], Bouthemy, P.[Patrick], Meur, O.L.[Olivier Le],
CNN-based temporal detection of motion saliency in videos,
PRL(128), 2019, pp. 298-305.
Elsevier DOI 1912
Motion saliency, Temporal detection, CNN-based classification, Dominant motion estimation, Video analysis BibRef

Xu, M., Liu, B., Fu, P., Li, J., Hu, Y.H.,
Video Saliency Detection via Graph Clustering With Motion Energy and Spatiotemporal Objectness,
MultMed(21), No. 11, November 2019, pp. 2790-2805.
IEEE DOI 1911
Spatiotemporal phenomena, Visualization, Dynamics, Proposals, Feature extraction, Fuses, Video saliency, graph clustering BibRef

Zhang, Q., Huang, N., Yao, L., Zhang, D., Shan, C., Han, J.,
RGB-T Salient Object Detection via Fusing Multi-Level CNN Features,
IP(29), 2020, pp. 3321-3335.
IEEE DOI 2002
RGB-T salient object detection, adjacent-depth feature combination, multi-branch group fusion, joint attention guided bi-directional message passing BibRef

Dai, B.[Bo], Wang, Y.B.[Yan-Bo], Yao, Y.Y.[Yi-Yang], Ye, W.J.[Wei-Jing], Chen, T.[Ting],
RETRACTED: Efficient object analysis by leveraging deeply-trained object proposals prediction model,
JVCIR(69), 2020, pp. 102837.
Elsevier DOI 2006
BibRef
And: Original: JVCIR(61), 2019, pp. 218-224. 1906
Video surveillance, Deep model, Object, Moving target detection, Model learning BibRef

Chen, C., Wang, G., Peng, C., Zhang, X., Qin, H.,
Improved Robust Video Saliency Detection Based on Long-Term Spatial-Temporal Information,
IP(29), No. 1, 2020, pp. 1090-1100.
IEEE DOI 1911
Saliency detection, Deep learning, Quality assessment, Trajectory, Computational modeling, Color, Training, Video saliency detection, long-term information revealing BibRef

Lai, Q., Wang, W., Sun, H., Shen, J.,
Video Saliency Prediction Using Spatiotemporal Residual Attentive Networks,
IP(29), No. 1, 2020, pp. 1113-1126.
IEEE DOI 1911
Visualization, Computational modeling, Spatiotemporal phenomena, Dynamics, Task analysis, Data models, Predictive models, video saliency BibRef

Fang, Y., Ding, G., Li, J., Fang, Z.,
Deep3DSaliency: Deep Stereoscopic Video Saliency Detection Model by 3D Convolutional Networks,
IP(28), No. 5, May 2019, pp. 2305-2318.
IEEE DOI 1903
convolutional neural nets, deconvolution, feature extraction, image sequences, object detection, optimisation, 3D convolutional neural networks BibRef

Fang, Y.M.[Yu-Ming], Zhang, X.Q.[Xiao-Qiang], Yuan, F.N.[Fei-Niu], Imamoglu, N.[Nevrez], Liu, H.W.[Hai-Wen],
Video saliency detection by gestalt theory,
PR(96), 2019, pp. 106987.
Elsevier DOI 1909
Visual attention, Video saliency detection, Gestalt theory, Uncertainty weighting, Spatiotemporal saliency BibRef

Wang, Q.[Qiong], Zhang, L.[Lu], Zou, W.B.[Wen-Bin], Kpalma, K.[Kidiyo],
Salient video object detection using a virtual border and guided filter,
PR(97), 2020, pp. 106998.
Elsevier DOI 1910
Video salient object detection, Distance transform, Guided filter, Global motion BibRef

Wu, Z., Su, L., Huang, Q.,
Learning Coupled Convolutional Networks Fusion for Video Saliency Prediction,
CirSysVideo(29), No. 10, October 2019, pp. 2960-2971.
IEEE DOI 1910
convolutional neural nets, feature extraction, image motion analysis, inference mechanisms, fully convolutional network BibRef

Li, J., Fu, K., Zhao, S., Ge, S.,
Spatiotemporal Knowledge Distillation for Efficient Estimation of Aerial Video Saliency,
IP(29), No. 1, 2020, pp. 1902-1914.
IEEE DOI 1912
Computational modeling, Redundancy, Estimation, Visualization, Data models, Spatiotemporal phenomena, Drones, aerial video BibRef

Zhang, K.[Kao], Chen, Z.Z.[Zhen-Zhong],
Video Saliency Prediction Based on Spatial-Temporal Two-Stream Network,
CirSysVideo(29), No. 12, December 2019, pp. 3544-3557.
IEEE DOI 1912
Feature extraction, Predictive models, Streaming media, Visualization, Spatiotemporal phenomena, Computational modeling, deep learning BibRef

Zhang, K.[Kao], Chen, Z.Z.[Zhen-Zhong], Liu, S.[Shan],
A Spatial-Temporal Recurrent Neural Network for Video Saliency Prediction,
IP(30), 2021, pp. 572-587.
IEEE DOI 2012
Feature extraction, Predictive models, Computational modeling, Visualization, Streaming media, Biological system modeling, deep learning BibRef

Kavak, Y.[Yasin], Erdem, E.[Erkut], Erdem, A.[Aykut],
Hedging static saliency models to predict dynamic saliency,
SP:IC(81), 2020, pp. 115694.
Elsevier DOI 1912
Dynamic saliency, Hedge algorithm, Decision theoretic online learning, Feature integration BibRef

Jiang, L.[Lai], Xu, M.[Mai], Zhang, S.[Shanyi], Sigal, L.[Leonid],
DeepCT: A novel deep complex-valued network with learnable transform for video saliency prediction,
PR(102), 2020, pp. 107234.
Elsevier DOI 2003
Saliency prediction, Complex-valued network, Learnable transform, Convolutional LSTM BibRef

Fang, Y.M.[Yu-Ming], Zhang, C.[Chi], Min, X.K.[Xiong-Kuo], Huang, H.Q.[Han-Qin], Yi, Y.G.[Yu-Gen], Zhai, G.T.[Guang-Tao], Lin, C.W.[Chia-Wen],
DevsNet: Deep Video Saliency Network using Short-term and Long-term Cues,
PR(103), 2020, pp. 107294.
Elsevier DOI 2005
Video saliency detection, Spatiotemporal saliency, 3D convolution network (3D-ConvNet), Bidirectional convolutional long-short term memory network (B-ConvLSTM) BibRef

Li, Y., Li, S., Chen, C., Hao, A., Qin, H.,
Accurate and Robust Video Saliency Detection via Self-Paced Diffusion,
MultMed(22), No. 5, May 2020, pp. 1153-1167.
IEEE DOI 2005
Saliency detection, Proposals, Video sequences, Spatial coherence, Computational modeling, Optical imaging, Optical sensors, self-paced saliency diffusion BibRef

Zhou, F.[Feng], Shuai, H.[Hui], Liu, Q.S.[Qing-Shan], Guo, G.D.[Guo-Dong],
Flow driven attention network for video salient object detection,
IET-IPR(14), No. 6, 11 May 2020, pp. 997-1004.
DOI Link 2005
BibRef

Li, J.X.[Jun-Xia], Pan, Z.F.[Ze-Feng], Liu, Q.S.[Qing-Shan], Cui, Y.[Ying], Sun, Y.[Yubao],
Complementarity-Aware Attention Network for Salient Object Detection,
Cyber(52), No. 2, February 2022, pp. 873-886.
IEEE DOI 2202
Feature extraction, Saliency detection, Task analysis, Visualization, Semantics, Object detection, Deep learning, self-attention mechanism BibRef

Wang, Q.[Qiong], Zhang, L.[Lu], Li, Y.[Yan], Kpalma, K.[Kidiyo],
Overview of deep-learning based methods for salient object detection in videos,
PR(104), 2020, pp. 107340.
Elsevier DOI 2005
Deep-learning, Salient object detection, Video BibRef

Shokri, M.[Mohammad], Harati, A.[Ahad], Taba, K.[Kimya],
Salient object detection in video using deep non-local neural networks,
JVCIR(68), 2020, pp. 102769.
Elsevier DOI 2005
Video saliency detection, Deep learning, Non-local neural networks, Fully convolutional neural networks BibRef

Xu, M., Liu, B., Fu, P., Li, J., Hu, Y.H., Feng, S.,
Video Salient Object Detection via Robust Seeds Extraction and Multi-Graphs Manifold Propagation,
CirSysVideo(30), No. 7, July 2020, pp. 2191-2206.
IEEE DOI 2007
Spatiotemporal phenomena, Dynamics, Manifolds, Object detection, Reliability, Visualization, Feature extraction, Video saliency, multi-graphs saliency propagation BibRef

Chen, J.[Jin], Song, H.H.[Hui-Hui], Zhang, K.H.[Kai-Hua], Liu, B.[Bo], Liu, Q.S.[Qing-Shan],
Video saliency prediction using enhanced spatiotemporal alignment network,
PR(109), 2021, pp. 107615.
Elsevier DOI 2009
Video saliency prediction, Feature alignment, Deformable convolution, Bidirectional ConvLSTM BibRef

Wang, B., Liu, W., Han, G., He, S.,
Learning Long-Term Structural Dependencies for Video Salient Object Detection,
IP(29), 2020, pp. 9017-9031.
IEEE DOI 2009
Predictive models, Object detection, Feature extraction, Saliency detection, Convolution, Merging, Object recognition, supervoxel BibRef

Wang, W.G.[Wen-Guan], Shen, J.B.[Jian-Bing], Xie, J.W.[Jian-Wen], Cheng, M.M.[Ming-Ming], Ling, H.B.[Hai-Bin], Borji, A.[Ali],
Revisiting Video Saliency Prediction in the Deep Learning Era,
PAMI(43), No. 1, January 2021, pp. 220-237.
IEEE DOI 2012
Visualization, Benchmark testing, Sports, Predictive models, Analytical models, Computational modeling, Task analysis, deep learning BibRef

Guo, F., Wang, W., Shen, Z., Shen, J., Shao, L., Tao, D.,
Motion-Aware Rapid Video Saliency Detection,
CirSysVideo(30), No. 12, December 2020, pp. 4887-4898.
IEEE DOI 2012
Saliency detection, Video sequences, Spatiotemporal phenomena, Object detection, Dynamics, Optical propagation, Optical imaging, spatiotemporal salient object detection BibRef

Tang, J.[Jin], Fan, D.Z.[Dong-Zhe], Wang, X.X.[Xiao-Xiao], Tu, Z.Z.[Zheng-Zheng], Li, C.L.[Cheng-Long],
RGBT Salient Object Detection: Benchmark and A Novel Cooperative Ranking Approach,
CirSysVideo(30), No. 12, December 2020, pp. 4421-4433.
IEEE DOI 2012
Saliency detection, Object detection, Computational modeling, Task analysis, Lighting, Collaboration, Benchmark testing, joint optimization BibRef

Wang, K.P.[Kun-Peng], Lin, D.Y.[Dan-Ying], Li, C.L.[Cheng-Long], Tu, Z.Z.[Zheng-Zheng], Luo, B.[Bin],
Alignment-Free RGBT Salient Object Detection: Semantics-Guided Asymmetric Correlation Network and a Unified Benchmark,
MultMed(26), 2024, pp. 10692-10707.
IEEE DOI 2411
Correlation, Feature extraction, Manuals, Object detection, Convolution, Benchmark testing, Transformers, Alignment-free, RGBT salient object detection BibRef

Tu, Z.Z.[Zheng-Zheng], Li, Z.[Zhun], Li, C.L.[Cheng-Long], Tang, J.[Jin],
Weakly Alignment-Free RGBT Salient Object Detection With Deep Correlation Network,
IP(31), 2022, pp. 3752-3764.
IEEE DOI 2206
Correlation, Convolution, Decoding, Semantics, Feature extraction, Kernel, Task analysis, Salient object detection (SOD), bi-directional decoder BibRef

Tu, Z.Z.[Zheng-Zheng], Ma, Y.[Yan], Li, Z.[Zhun], Li, C.L.[Cheng-Long], Xu, J.M.[Jie-Ming], Liu, Y.T.[Yong-Tao],
RGBT Salient Object Detection: A Large-Scale Dataset and Benchmark,
MultMed(25), 2023, pp. 4163-4176.
IEEE DOI 2310
BibRef

Qiao, M., Xu, M., Wang, Z., Borji, A.,
Viewport-Dependent Saliency Prediction in 360° Video,
MultMed(23), 2021, pp. 748-760.
IEEE DOI 2102
Databases, Visualization, Task analysis, Predictive models, Heating systems, Observers, 360° video, viewport, multi-task DNN BibRef

Li, Y.X.[Yun-Xiao], Li, S.[Shuai], Chen, C.Z.[Chengli-Zhao], Hao, A.[Aimin], Qin, H.[Hong],
A Plug-and-Play Scheme to Adapt Image Saliency Deep Model for Video Data,
CirSysVideo(31), No. 6, June 2021, pp. 2315-2327.
IEEE DOI 2106
Saliency detection, Solid modeling, Spatiotemporal phenomena, Feature extraction, Image color analysis, Network architecture, weakly supervised learning BibRef

Zou, W.B.[Wen-Bin], Zhuo, S.K.[Sheng-Kai], Tang, Y.[Yi], Tian, S.S.[Shi-Shun], Li, X.[Xia], Xu, C.[Chen],
STA3D: Spatiotemporally attentive 3D network for video saliency prediction,
PRL(147), 2021, pp. 78-84.
Elsevier DOI 2106
Saliency prediction, Video, 3D networks, Deep learning BibRef

Wang, W.G.[Wen-Guan], Shen, J.B.[Jian-Bing], Lu, X.K.[Xian-Kai], Hoi, S.C.H.[Steven C. H.], Ling, H.B.[Hai-Bin],
Paying Attention to Video Object Pattern Understanding,
PAMI(43), No. 7, July 2021, pp. 2413-2428.
IEEE DOI 2106
Visualization, Object segmentation, Motion segmentation, Task analysis, Annotations, Biological system modeling, video salient object detection BibRef

Yin, H.[Hui], Chen, N.[Ning], Yang, L.[Lin], Wan, J.[Jin],
Pop-net: A self-growth network for popping out the salient object in videos,
IET-CV(15), No. 5, 2021, pp. 334-345.
DOI Link 2107
BibRef

Wang, Y.H.[Yu-Hao], Liu, Z.R.[Zhuo-Ran], Xia, Y.B.[Yi-Bo], Zhu, C.B.[Chun-Bo], Zhao, D.P.[Dan-Pei],
Spatiotemporal module for video saliency prediction based on self-attention,
IVC(112), 2021, pp. 104216.
Elsevier DOI 2107
Video saliency prediction, Spatio-temporal, Self-attention, Convolutional LSTM BibRef

Bellitto, G., Proietto Salanitri, F., Palazzo, S., Rundo, F., Giordano, D.[Daniela], Spampinato, C.[Concetto],
Hierarchical Domain-Adapted Feature Learning for Video Saliency Prediction,
IJCV(129), No. 12, December 2021, pp. 3216-3232.
Springer DOI 2111
BibRef

Huang, L.M.[Li-Ming], Song, K.[Kechen], Wang, J.[Jie], Niu, M.H.[Meng-Hui], Yan, Y.H.[Yun-Hui],
Multi-Graph Fusion and Learning for RGBT Image Saliency Detection,
CirSysVideo(32), No. 3, March 2022, pp. 1366-1377.
IEEE DOI 2203
Saliency detection, Feature extraction, Manifolds, Imaging, Adaptation models, Training, Object detection, adaptive ranking BibRef

Chen, C.L.[Cheng-Lizhao], Song, J.[Jia], Peng, C.[Chong], Wang, G.D.[Guo-Dong], Fang, Y.M.[Yu-Ming],
A Novel Video Salient Object Detection Method via Semisupervised Motion Quality Perception,
CirSysVideo(32), No. 5, May 2022, pp. 2732-2745.
IEEE DOI 2205
Streaming media, Object detection, Testing, Spatiotemporal phenomena, Feature extraction, Data models, semisupervised learning BibRef

Wang, J.[Jie], Song, K.C.[Ke-Chen], Bao, Y.Q.[Yan-Qi], Huang, L.M.[Li-Ming], Yan, Y.H.[Yun-Hui],
CGFNet: Cross-Guided Fusion Network for RGB-T Salient Object Detection,
CirSysVideo(32), No. 5, May 2022, pp. 2949-2961.
IEEE DOI 2205
Feature extraction, Decoding, Object detection, Semantics, Image edge detection, Task analysis, Image segmentation, cross-level enhancement BibRef

Huo, F.S.[Fu-Shuo], Zhu, X.G.[Xue-Gui], Zhang, L.[Lei], Liu, Q.F.[Qi-Feng], Shu, Y.[Yu],
Efficient Context-Guided Stacked Refinement Network for RGB-T Salient Object Detection,
CirSysVideo(32), No. 5, May 2022, pp. 3111-3124.
IEEE DOI 2205
Feature extraction, Task analysis, Fuses, Object detection, Image segmentation, Semantics, Lighting, Salient object detection, information fusion BibRef

Min, D.Y.[Ding-Yao], Zhang, C.[Chao], Lu, Y.K.[Yu-Kang], Fu, K.[Keren], Zhao, Q.J.[Qi-Jun],
Mutual-Guidance Transformer-Embedding Network for Video Salient Object Detection,
SPLetters(29), 2022, pp. 1674-1678.
IEEE DOI 2208
Transformers, Feature extraction, Radio frequency, Object detection, Task analysis, Standards, Optical imaging, video salient object detection BibRef

Lu, Y.K.[Yu-Kang], Min, D.Y.[Ding-Yao], Fu, K.[Keren], Zhao, Q.J.[Qi-Jun],
Depth-Cooperated Trimodal Network for Video Salient Object Detection,
ICIP22(116-120)
IEEE DOI 2211
Object detection, Benchmark testing, Spatiotemporal phenomena, Optical flow, Video salient object detection, multimodal, depth, attention BibRef

Zhang, Q.[Qiang], Xi, R.[Ruida], Xiao, T.L.[Tong-Lin], Huang, N.C.[Nian-Chang], Luo, Y.J.[Yong-Jiang],
Enabling modality interactions for RGB-T salient object detection,
CVIU(222), 2022, pp. 103514.
Elsevier DOI 2209
RGB-T salient object detection, Modality interactions, Scale interactions BibRef

Chen, G.[Gang], Shao, F.[Feng], Chai, X.L.[Xiong-Li], Chen, H.W.[Hang-Wei], Jiang, Q.P.[Qiu-Ping], Meng, X.C.[Xiang-Chao], Ho, Y.S.[Yo-Sung],
CGMDRNet: Cross-Guided Modality Difference Reduction Network for RGB-T Salient Object Detection,
CirSysVideo(32), No. 9, September 2022, pp. 6308-6323.
IEEE DOI 2209
Feature extraction, Image edge detection, Task analysis, Object detection, Transformers, Semantics, Visualization, transformer BibRef

Xu, Y.[Yanyu], Zhang, Z.H.[Zi-Heng], Gao, S.H.[Sheng-Hua],
Spherical DNNs and Their Applications in 360° Images and Videos,
PAMI(44), No. 10, October 2022, pp. 7235-7252.
IEEE DOI 2209
Videos, Saliency detection, Distortion, Convolution, Task analysis, Feature extraction, Kernel, Spherical deep neural networks, 360° videos BibRef

Ma, C.[Cheng], Sun, H.[Haowen], Rao, Y.M.[Yong-Ming], Zhou, J.[Jie], Lu, J.W.[Ji-Wen],
Video Saliency Forecasting Transformer,
CirSysVideo(32), No. 10, October 2022, pp. 6850-6862.
IEEE DOI 2210
Forecasting, Transformers, Task analysis, Visualization, Predictive models, Correlation, Video saliency forecasting, transformer BibRef

Chen, C.Z.[Chengli-Zhao], Wang, H.[Hengsen], Fang, Y.M.[Yu-Ming], Peng, C.[Chong],
A Novel Long-Term Iterative Mining Scheme for Video Salient Object Detection,
CirSysVideo(32), No. 11, November 2022, pp. 7662-7676.
IEEE DOI 2211
Proposals, Task analysis, Spatiotemporal phenomena, Object detection, Biological system modeling, video salient object detection BibRef

Pang, Y.[Yu], Wu, H.[Hao], Wu, C.D.[Cheng-Dong],
Cross-modal co-feedback cellular automata for RGB-T saliency detection,
PR(135), 2023, pp. 109138.
Elsevier DOI 2212
RGB-T saliency detection, Cellular automata, Cross-modal co-feedback framework, Pixel-wise refinement BibRef

Huang, X.M.[Xiao-Ming], Zhang, Y.J.[Yu-Jin],
Fast Video Saliency Detection via Maximally Stable Region Motion and Object Repeatability,
MultMed(24), 2022, pp. 4458-4470.
IEEE DOI 2212
Object detection, Saliency detection, Image color analysis, Feature extraction, Computational modeling, Hardware, Estimation, object repeatability BibRef

Chen, C.Z.[Chengli-Zhao], Song, M.K.[Meng-Ke], Song, W.F.[Wen-Feng], Guo, L.[Li], Jian, M.[Muwei],
A Comprehensive Survey on Video Saliency Detection With Auditory Information: The Audio-Visual Consistency Perceptual is the Key!,
CirSysVideo(33), No. 2, February 2023, pp. 457-477.
IEEE DOI 2302
Saliency detection, Task analysis, Training, Visualization, Visual systems, Object detection, Computer science, semantical consistency BibRef

Kong, Y.Q.[Yong-Qiang], Wang, Y.H.[Yun-Hong], Li, A.[Annan], Huang, Q.[Qiuyu],
Self-Sufficient Feature Enhancing Networks for Video Salient Object Detection,
MultMed(25), 2023, pp. 557-571.
IEEE DOI 2302
Feature extraction, Object detection, Optical imaging, Spatiotemporal phenomena, Task analysis, Estimation, Visualization, feature enhancing module BibRef

Song, K.[Kechen], Huang, L.M.[Li-Ming], Gong, A.[Aojun], Yan, Y.H.[Yun-Hui],
Multiple Graph Affinity Interactive Network and a Variable Illumination Dataset for RGBT Image Salient Object Detection,
CirSysVideo(33), No. 7, July 2023, pp. 3104-3118.
IEEE DOI 2307
Lighting, Cameras, Object detection, Optical imaging, Visualization, Saliency detection, Optimization, RGBT images, graph affinity BibRef

Lu, Z.L.[Ze-Lin], Liang, H.R.[Hao-Ran], Xu, B.W.[Bin-Wei], Liang, R.H.[Rong-Hua],
A progressive segmentation with weight contrast label enhancement for weakly supervised video salient object detection,
IET-IPR(17), No. 10, 2023, pp. 2925-2936.
DOI Link 2308
image segmentation, object detection BibRef

Zhang, Y.Z.[Yun-Zuo], Zhang, T.[Tian], Wu, C.[Cunyu], Zheng, Y.X.[Yu-Xin],
Accurate video saliency prediction via hierarchical fusion and temporal recurrence,
IVC(136), 2023, pp. 104744.
Elsevier DOI 2308
Video saliency prediction, Hierarchical spatiotemporal feature, Temporal recurrence, Attention mechanism BibRef

Cong, R.[Runmin], Zhang, K.[Kepu], Zhang, C.[Chen], Zheng, F.[Feng], Zhao, Y.[Yao], Huang, Q.M.[Qing-Ming], Kwong, S.[Sam],
Does Thermal Really Always Matter for RGB-T Salient Object Detection?,
MultMed(25), 2023, pp. 6971-6982.
IEEE DOI 2311
BibRef

Zhou, X.F.[Xiao-Fei], Wu, S.[Songhe], Shi, R.[Ran], Zheng, B.[Bolun], Wang, S.[Shuai], Yin, H.B.[Hai-Bing], Zhang, J.Y.[Ji-Yong], Yan, C.G.[Cheng-Gang],
Transformer-Based Multi-Scale Feature Integration Network for Video Saliency Prediction,
CirSysVideo(33), No. 12, December 2023, pp. 7696-7707.
IEEE DOI Code:
WWW Link. 2312
BibRef

Zhao, X.[Xing], Liang, H.R.[Hao-Ran], Li, P.P.[Pei-Pei], Sun, G.[Guodao], Zhao, D.D.[Dong-Dong], Liang, R.H.[Rong-Hua], He, X.F.[Xiao-Fei],
Motion-Aware Memory Network for Fast Video Salient Object Detection,
IP(33), 2024, pp. 709-721.
IEEE DOI 2402
Optical flow, Feature extraction, Task analysis, Decoding, Object detection, Spatiotemporal phenomena, feature fusion BibRef

Yang, Q.[Qin], Li, Y.Q.[Yu-Qi], Li, C.L.[Cheng-Lin], Wang, H.[Hao], Yan, S.[Sa], Wei, L.[Li], Dai, W.R.[Wen-Rui], Zou, J.[Junni], Xiong, H.K.[Hong-Kai], Frossard, P.[Pascal],
SVGC-AVA: 360-Degree Video Saliency Prediction With Spherical Vector-Based Graph Convolution and Audio-Visual Attention,
MultMed(26), 2024, pp. 3061-3076.
IEEE DOI 2402
Visualization, Feature extraction, Convolution, Streaming media, Correlation, Position measurement, Kernel, 360-degree videos, audio-visual attention BibRef

Zhang, Y.Z.[Yun-Zuo], Zhang, T.[Tian], Wu, C.Y.[Cun-Yu], Tao, R.[Ran],
Multi-Scale Spatiotemporal Feature Fusion Network for Video Saliency Prediction,
MultMed(26), 2024, pp. 4183-4193.
IEEE DOI 2403
Feature extraction, Spatiotemporal phenomena, Data mining, Semantics, Fuses, Video saliency prediction, attention mechanism BibRef

Wang, J.[Jian], Yu, S.Y.[Si-Yue], Zhang, B.F.[Bing-Feng], Zhao, X.Q.[Xin-Qiao], García-Fernández, Á.F.[Ángel F.], Lim, E.G.[Eng Gee], Xiao, J.[Jimin],
Cross-frame feature-saliency mutual reinforcing for weakly supervised video salient object detection,
PR(150), 2024, pp. 110302.
Elsevier DOI Code:
WWW Link. 2403
Video salient object detection, Scribble annotations, Cross-frame feature consistency, Cross-frame saliency consistency BibRef

Ma, C.J.[Chun-Jie], Du, L.[Lina], Zhuo, L.[Li], Li, J.[Jiafeng],
MPLA-Net: Multiple Pseudo Label Aggregation Network for Weakly Supervised Video Salient Object Detection,
CirSysVideo(34), No. 5, May 2024, pp. 3905-3918.
IEEE DOI 2405
Annotations, Object detection, Training, Task analysis, Image edge detection, Optical flow, Feature extraction, pseudo label consistency evaluation BibRef

Bao, L.[Liuxin], Zhou, X.F.[Xiao-Fei], Lu, X.[Xiankai], Sun, Y.Q.[Yao-Qi], Yin, H.B.[Hai-Bing], Hu, Z.H.[Zheng-Hui], Zhang, J.Y.[Ji-Yong], Yan, C.G.[Cheng-Gang],
Quality-Aware Selective Fusion Network for V-D-T Salient Object Detection,
IP(33), 2024, pp. 3212-3226.
IEEE DOI Code:
WWW Link. 2405
Feature extraction, Task analysis, Object detection, Image edge detection, Aggregates, Thermal degradation, salient object detection BibRef

Zhu, J.H.L.L.[Jun-Hao Lin-Lei], Shen, J.X.[Jia-Xing], Fu, H.Z.[Hua-Zhu], Zhang, Q.[Qing], Wang, L.S.[Lian-Sheng],
ViDSOD-100: A New Dataset and a Baseline Model for RGB-D Video Salient Object Detection,
IJCV(132), No. 11, November 2024, pp. 5173-5191.
Springer DOI 2411
BibRef

Qiu, J.Y.[Ji-Yuan], Jiang, C.[Chen], Wang, H.W.[Hao-Wen],
ETFormer: An Efficient Transformer Based on Multimodal Hybrid Fusion and Representation Learning for RGB-D-T Salient Object Detection,
SPLetters(31), 2024, pp. 2930-2934.
IEEE DOI 2411
Feature extraction, Training, Decoding, Transformers, Representation learning, Object detection BibRef


Aydemir, B.[Bahar], Hoffstetter, L.[Ludo], Zhang, T.[Tong], Salzmann, M.[Mathieu], Süsstrunk, S.[Sabine],
TempSAL - Uncovering Temporal Information for Deep Saliency Prediction,
CVPR23(6461-6470)
IEEE DOI 2309
BibRef

Hu, F.[Feiyan], Palazzo, S.[Simone], Salanitri, F.P.[Federica Proietto], Bellitto, G.[Giovanni], Moradi, M.[Morteza], Spampinato, C.[Concetto], McGuinness, K.[Kevin],
TinyHD: Efficient Video Saliency Prediction with Heterogeneous Decoders using Hierarchical Maps Distillation,
WACV23(2050-2059)
IEEE DOI 2302
Visualization, Computational modeling, Predictive models, Benchmark testing, Semisupervised learning BibRef

Nicora, E.[Elena], Noceti, N.[Nicoletta],
Exploring the Use of Efficient Projection Kernels for Motion Saliency Estimation,
CIAP22(III:158-169).
Springer DOI 2205
BibRef

Chen, Y.W.[Yi-Wen], Jin, X.J.[Xiao-Jie], Shen, X.H.[Xiao-Hui], Yang, M.H.[Ming-Hsuan],
Video Salient Object Detection via Contrastive Features and Attention Modules,
WACV22(536-545)
IEEE DOI 2202
Runtime, Recurrent neural networks, Correlation, Computational modeling, Semantics, Object detection, Segmentation, Grouping and Shape BibRef

Jiao, Y.X.[Ying-Xia], Wang, X.[Xiao], Chou, Y.C.[Yu-Cheng], Yang, S.Y.[Shou-Yuan], Ji, G.P.[Ge-Peng], Zhu, R.[Rong], Gao, G.[Ge],
Guidance and Teaching Network for Video Salient Object Detection,
ICIP21(2199-2203)
IEEE DOI 2201
Bridges, Image processing, Education, Modulation, Graphics processing units, Object detection, Teacher-student learning. BibRef

Yang, J.W.[Jing-Wen], Zhang, G.W.[Guan-Wen], Yan, J.M.[Jia-Ming], Zhou, W.[Wei],
TSMSAN: A Three-Stream Multi-Scale Attentive Network for Video Saliency Detection,
ICPR21(4371-4376)
IEEE DOI 2105
Dynamics, Feature extraction, Spatiotemporal phenomena, Task analysis, Saliency detection BibRef

Jiang, Z.K.[Zheng-Kai], Liu, Y.[Yu], Yang, C.[Ceyuan], Liu, J.[Jihao], Gao, P.[Peng], Zhang, Q.[Qian], Xiang, S.M.[Shi-Ming], Pan, C.H.[Chun-Hong],
Learning Where to Focus for Efficient Video Object Detection,
ECCV20(XVI: 18-34).
Springer DOI 2010
BibRef

Yan, H.[Hang], Xu, Y.L.[Yi-Ling], Sun, J.[Jun], Yang, L.[Le], Zhang, Y.F.[Yun-Fei], Huang, W.[Wei],
Fast Video Saliency Detection based on Feature Competition,
VCIP20(74-77)
IEEE DOI 2102
Feature extraction, Predictive models, Correlation, Visualization, Task analysis, Adaptation models, Fuses, Video saliency, ablation studies BibRef

Tangemann, M.[Matthias], Kümmerer, M.[Matthias], Wallis, T.S.A.[Thomas S. A.], Bethge, M.[Matthias],
Measuring the Importance of Temporal Features in Video Saliency,
ECCV20(XXVIII:667-684). xo
Springer DOI 2011
BibRef

Ren, S.C.[Su-Cheng], Han, C.[Chu], Yang, X.[Xin], Han, G.Q.[Guo-Qiang], He, S.F.[Sheng-Feng],
Tenet: Triple Excitation Network for Video Salient Object Detection,
ECCV20(V:212-228).
Springer DOI 2011
BibRef

Droste, R.[Richard], Jiao, J.B.[Jian-Bo], Noble, J.A.[J. Alison],
Unified Image and Video Saliency Modeling,
ECCV20(V:419-435).
Springer DOI 2011
BibRef

Nekrasov, V., Chen, H., Shen, C., Reid, I.D.,
Architecture Search of Dynamic Cells for Semantic Video Segmentation,
WACV20(1959-1968)
IEEE DOI 2006
Semantics, Optical imaging, Decoding, Image segmentation, Optical propagation, Biomedical optical imaging BibRef

Yan, P.X.[Peng-Xiang], Li, G.B.[Guan-Bin], Xie, Y.[Yuan], Li, Z.[Zhen], Wang, C.[Chuan], Chen, T.S.[Tian-Shui], Lin, L.[Liang],
Semi-Supervised Video Salient Object Detection Using Pseudo-Labels,
ICCV19(7283-7292)
IEEE DOI 2004
convolutional neural nets, image colour analysis, image enhancement, image motion analysis, image sequences, Coherence BibRef

Fan, D.P.[Deng-Ping], Wang, W.G.[Wen-Guan], Cheng, M.M.[Ming-Ming], Shen, J.B.[Jian-Bing],
Shifting More Attention to Video Salient Object Detection,
CVPR19(8546-8556).
IEEE DOI 2002
BibRef

Song, H.M.[Hong-Mei], Wang, W.G.[Wen-Guan], Zhao, S.Y.[San-Yuan], Shen, J.B.[Jian-Bing], Lam, K.M.[Kin-Man],
Pyramid Dilated Deeper ConvLSTM for Video Salient Object Detection,
ECCV18(XI: 744-760).
Springer DOI 1810
BibRef

Hoo, W.L., Chan, C.S.,
Anisotropic Partial Differential Equation Based Video Saliency Detection,
ICIP18(2311-2315)
IEEE DOI 1809
Saliency detection, Image color analysis, Tensile stress, Feature extraction, Task analysis, Discrete cosine transforms, partial differential equation BibRef

Xiao, B.[Bo], Wang, B.[Bin],
Efficient HD video and image salient object detection with hierarchical boolean map approach,
ICIVC17(1-7)
IEEE DOI 1708
Acceleration, Algorithm design and analysis, Feature extraction, Floods, Image resolution, Object detection, Visualization, hierarchical boolean map, parallel processing, salient object detection, video consistency BibRef

Zhang, L.[Long], Liu, Y.J.[Yu-Jun], Han, S.D.[Shou-Dong],
Video segmentation based on strong target constrained video saliency,
ICIVC17(356-360)
IEEE DOI 1708
Adaptive optics, Image color analysis, Image segmentation, Optical imaging, Robustness, Target tracking, full-connected conditional random field, object proposal, super-pixel, video saliency, video, segmentation BibRef

Wei, L.[Lina], Wang, F.F.[Fang-Fang], Li, X.[Xi], Wu, F.[Fei], Xiao, J.[Jun],
Graph-Theoretic Spatiotemporal Context Modeling for Video Saliency Detection,
ICIP17(4197-4201)
IEEE DOI 1803
Atomic layer deposition, Context modeling, Manifolds, Saliency detection, Spatiotemporal phenomena, Video saliency BibRef

Hu, Y.T.[Yuan-Ting], Huang, J.B.[Jia-Bin], Schwing, A.G.[Alexander G.],
VideoMatch: Matching Based Video Object Segmentation,
ECCV18(VIII: 56-73).
Springer DOI 1810
BibRef
And:
Unsupervised Video Object Segmentation Using Motion Saliency-Guided Spatio-Temporal Propagation,
ECCV18(I: 813-830).
Springer DOI 1810
BibRef

Chan, K.L.,
Saliency/non-saliency segregation in video sequences using perception-based local ternary pattern features,
MVA17(510-513)
DOI Link 1708
Adaptation models, Color, Computational modeling, History, Image color analysis, Mathematical model, Video sequences BibRef

Karimi, A.H., Shafiee, M.J., Scharfenberger, C., Ben Daya, I., Haider, S., Talukdar, N., Clausi, D.A., Wong, A.,
Spatio-temporal saliency detection using abstracted fully-connected graphical models,
ICIP16(694-698)
IEEE DOI 1610
Computational complexity BibRef

Xue, K.[Kang], Wang, X.[Xiying], Ma, G.Y.[Geng-Yu], Wang, H.T.[Hai-Tao], Nam, D.[Dong_Kyung],
A video saliency detection method based on spatial and motion information,
ICIP15(412-416)
IEEE DOI 1512
Classification, Motion, Saliency, Video BibRef

Lee, T.[Teahyung], Hwangbo, M.[Myung], Alan, T.[Tanfer], Tickoo, O.[Omesh], Iyer, R.[Ravishankar],
Low-complexity HOG for efficient video saliency,
ICIP15(3749-3752)
IEEE DOI 1512
low-complexity HOG, video saliency BibRef

Mansour, H.[Hassan], Rane, S.[Shantanu], Boufounos, P.T.[Petros T.], Vetro, A.[Anthony],
Video querying via compact descriptors of visually salient objects,
ICIP14(2789-2793)
IEEE DOI 1502
Accuracy BibRef

Hiratani, A., Nakashima, R., Matsumiya, K., Kuriki, I., Shioiri, S.,
Considerations of Self-Motion in Motion Saliency,
ACPR13(783-787)
IEEE DOI 1408
feature extraction BibRef

Agarwal, D., Soni, N., Namboodiri, A.M.,
Salient object detection in SfM point cloud,
NCVPRIPG13(1-4)
IEEE DOI 1408
image motion analysis BibRef

Gan, C.[Chuang], Qin, Z.C.[Zeng-Chang], Xu, J.[Jia], Wan, T.[Tao],
Salient object detection in image sequences via spatial-temporal cue,
VCIP13(1-6)
IEEE DOI 1402
feature extraction BibRef

Xia, Y.[Yang], Hu, R.M.[Rui-Min], Huang, Z.K.[Zhen-Kun], Su, Y.[Yin],
A novel method for generation of motion saliency,
ICIP10(4685-4688).
IEEE DOI 1009
BibRef

Taylor, G.W.[Graham W.], Fergus, R.[Rob], Le Cun, Y.L.[Yann L.], Bregler, C.[Christoph],
Convolutional Learning of Spatio-temporal Features,
ECCV10(VI: 140-153).
Springer DOI 1009
BibRef

Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Video Anomaly Detection .


Last update:Nov 26, 2024 at 16:40:19