Main, R.[Russell],
Cho, M.A.[Moses Azong],
Mathieu, R.[Renaud],
O'Kennedy, M.M.[Martha M.],
Ramoelo, A.[Abel],
Koch, S.[Susan],
An investigation into robust spectral indices for leaf chlorophyll
estimation,
PandRS(66), No. 6, November 2011, pp. 751-761.
Elsevier DOI
1112
Leaf level reflectance; Leaf chlorophyll; Red-edge; Vegetation
indices; Photosynthetic activity
BibRef
Fournier, A.,
Daumard, F.,
Champagne, S.,
Ounis, A.,
Goulas, Y.,
Moya, I.,
Effect of canopy structure on sun-induced chlorophyll fluorescence,
PandRS(68), No. 1, March 2012, pp. 112-120.
Elsevier DOI
1204
Canopy structure; Chlorophyll fluorescence measurement; Simulation;
F687/F760 fluorescence ratio; Oxygen absorption band; Band infilling
BibRef
Vuolo, F.,
Dash, J.,
Curran, P.,
Lajas, D.,
Kwiatkowska, E.,
Methodologies and Uncertainties in the Use of the Terrestrial
Chlorophyll Index for the Sentinel-3 Mission,
RS(4), No. 5, May 2012, pp. 1112-1133.
DOI Link
1205
BibRef
Yu, K.[Kang],
Leufen, G.[Georg],
Hunsche, M.[Mauricio],
Noga, G.[Georg],
Chen, X.P.[Xin-Ping],
Bareth, G.[Georg],
Investigation of Leaf Diseases and Estimation of Chlorophyll
Concentration in Seven Barley Varieties Using Fluorescence and
Hyperspectral Indices,
RS(6), No. 1, 2013, pp. 64-86.
DOI Link
1402
BibRef
Yu, K.,
Lenz-Wiedemann, V.I.S.,
Leufen, G.,
Hunsche, M.,
Noga, G.,
Chen, X.P.,
Bareth, G.,
Assessing Hyperspectral Vegetation Indices for Estimating Leaf
Chlorophyll Concentration of Summer Barley,
AnnalsPRS(I-7), No. 2012, pp. 89-94.
HTML Version.
1209
BibRef
Igamberdiev, R.,
Bill, R.,
Schubert, H.,
Lennartz, B.,
Analysis of Cross-Seasonal Spectral Response from Kettle Holes:
Application of Remote Sensing Techniques for Chlorophyll Estimation,
RS(4), No. 11, November 2012, pp. 3481-3500.
DOI Link
1211
BibRef
Frampton, W.J.[William James],
Dash, J.[Jadunandan],
Watmough, G.[Gary],
Milton, E.J.[Edward James],
Evaluating the capabilities of Sentinel-2 for quantitative estimation
of biophysical variables in vegetation,
PandRS(82), No. 1, August 2013, pp. 83-92.
Elsevier DOI
1306
Vegetation; Sentinel-2; Chlorophyll; Red-Edge; LAI
BibRef
Rivera, J.P.[Juan Pablo],
Verrelst, J.[Jochem],
Leonenko, G.[Ganna],
Moreno, J.[José],
Multiple Cost Functions and Regularization Options for Improved
Retrieval of Leaf Chlorophyll Content and LAI through Inversion of
the PROSAIL Model,
RS(5), No. 7, 2013, pp. 3280-3304.
DOI Link
1308
BibRef
Verrelst, J.[Jochem],
Rivera, J.P.[Juan Pablo],
Moreno, J.[José],
Camps-Valls, G.[Gustavo],
Gaussian processes uncertainty estimates in experimental Sentinel-2
LAI and leaf chlorophyll content retrieval,
PandRS(86), No. 1, 2013, pp. 157-167.
Elsevier DOI
1312
Uncertainty estimates
BibRef
Sanches, I.D.[Ieda Del'Arco],
de Souza Filho, C.R.[Carlos Roberto],
Kokaly, R.F.[Raymond Floyd],
Spectroscopic remote sensing of plant stress at leaf and canopy
levels using the chlorophyll 680nm absorption feature with continuum
removal,
PandRS(97), No. 1, 2014, pp. 111-122.
Elsevier DOI
1410
Hyperspectral
BibRef
Amaral, C.H.[Cibele H.],
Roberts, D.A.[Dar A.],
Almeida, T.I.R.[Teodoro I.R.],
de Souza Filho, C.R.[Carlos Roberto],
Mapping invasive species and spectral mixture relationships with
neotropical woody formations in southeastern Brazil,
PandRS(108), No. 1, 2015, pp. 80-93.
Elsevier DOI
1511
Invasive species
BibRef
Yu, K.[Kang],
Lenz-Wiedemann, V.[Victoria],
Chen, X.[Xinping],
Bareth, G.[Georg],
Estimating leaf chlorophyll of barley at different growth stages
using spectral indices to reduce soil background and canopy structure
effects,
PandRS(97), No. 1, 2014, pp. 58-77.
Elsevier DOI
1410
Leaf chlorophyll
BibRef
Liu, X.J.[Xin-Jie],
Liu, L.Y.[Liang-Yun],
Assessing Band Sensitivity to Atmospheric Radiation Transfer for
Space-Based Retrieval of Solar-Induced Chlorophyll Fluorescence,
RS(6), No. 11, 2014, pp. 10656-10675.
DOI Link
1412
BibRef
Croft, H.,
Chen, J.M.,
Zhang, Y.,
Simic, A.,
Noland, T.L.,
Nesbitt, N.,
Arabian, J.,
Evaluating leaf chlorophyll content prediction from multispectral
remote sensing data within a physically-based modelling framework,
PandRS(102), No. 1, 2015, pp. 85-95.
Elsevier DOI
1503
Leaf area index
BibRef
Ni, Z.Y.[Zhuo-Ya],
Liu, Z.G.[Zhi-Gang],
Huo, H.Y.[Hong-Yuan],
Li, Z.L.[Zhao-Liang],
Nerry, F.[Françoise],
Wang, Q.S.[Qing-Shan],
Li, X.[Xiaowen],
Early Water Stress Detection Using Leaf-Level Measurements of
Chlorophyll Fluorescence and Temperature Data,
RS(7), No. 3, 2015, pp. 3232-3249.
DOI Link
1504
BibRef
Liu, X.J.[Xin-Jie],
Liu, L.Y.[Liang-Yun],
Zhang, S.[Su],
Zhou, X.F.[Xian-Feng],
New Spectral Fitting Method for Full-Spectrum Solar-Induced
Chlorophyll Fluorescence Retrieval Based on Principal Components
Analysis,
RS(7), No. 8, 2015, pp. 10626.
DOI Link
1509
BibRef
Julitta, T.[Tommaso],
Corp, L.A.[Lawrence A.],
Rossini, M.[Micol],
Burkart, A.[Andreas],
Cogliati, S.[Sergio],
Davies, N.[Neville],
Hom, M.[Milton],
Arthur, A.M.[Alasdair Mac],
Middleton, E.M.[Elizabeth M.],
Rascher, U.[Uwe],
Schickling, A.[Anke],
Colombo, R.[Roberto],
Comparison of Sun-Induced Chlorophyll Fluorescence Estimates Obtained
from Four Portable Field Spectroradiometers,
RS(8), No. 2, 2016, pp. 122.
DOI Link
1603
BibRef
Sabater, N.[Neus],
Vicent, J.[Jorge],
Alonso, L.[Luis],
Verrelst, J.[Jochem],
Middleton, E.M.[Elizabeth M.],
Porcar-Castell, A.[Albert],
Moreno, J.[José],
Compensation of Oxygen Transmittance Effects for Proximal Sensing
Retrieval of Canopy-Leaving Sun-Induced Chlorophyll Fluorescence,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Pacheco-Labrador, J.[Javier],
Hueni, A.[Andreas],
Mihai, L.[Laura],
Sakowska, K.[Karolina],
Julitta, T.[Tommaso],
Kuusk, J.[Joel],
Sporea, D.[Dan],
Alonso, L.[Luis],
Burkart, A.[Andreas],
Cendrero-Mateo, M.P.[M. Pilar],
Aasen, H.[Helge],
Goulas, Y.[Yves],
Arthur, A.M.[Alasdair Mac],
Sun-Induced Chlorophyll Fluorescence I: Instrumental Considerations
for Proximal Spectroradiometers,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Aasen, H.[Helge],
van Wittenberghe, S.[Shari],
Medina, N.S.[Neus Sabater],
Damm, A.[Alexander],
Goulas, Y.[Yves],
Wieneke, S.[Sebastian],
Hueni, A.[Andreas],
Malenovský, Z.[Zbynek],
Alonso, L.[Luis],
Pacheco-Labrador, J.[Javier],
Cendrero-Mateo, M.P.[M. Pilar],
Tomelleri, E.[Enrico],
Burkart, A.[Andreas],
Cogliati, S.[Sergio],
Rascher, U.[Uwe],
Arthur, A.M.[Alasdair Mac],
Sun-Induced Chlorophyll Fluorescence II: Review of Passive
Measurement Setups, Protocols, and Their Application at the Leaf to
Canopy Level,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Cendrero-Mateo, M.P.[M. Pilar],
Wieneke, S.[Sebastian],
Damm, A.[Alexander],
Alonso, L.[Luis],
Pinto, F.[Francisco],
Moreno, J.[Jose],
Guanter, L.[Luis],
Celesti, M.[Marco],
Rossini, M.[Micol],
Sabater, N.[Neus],
Cogliati, S.[Sergio],
Julitta, T.[Tommaso],
Rascher, U.[Uwe],
Goulas, Y.[Yves],
Aasen, H.[Helge],
Pacheco-Labrador, J.[Javier],
Arthur, A.M.[Alasdair Mac],
Sun-Induced Chlorophyll Fluorescence III: Benchmarking Retrieval
Methods and Sensor Characteristics for Proximal Sensing,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Rossini, M.[Micol],
Meroni, M.[Michele],
Celesti, M.[Marco],
Cogliati, S.[Sergio],
Julitta, T.[Tommaso],
Panigada, C.[Cinzia],
Rascher, U.[Uwe],
van der Tol, C.[Christiaan],
Colombo, R.[Roberto],
Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and
Their Ratio in Different Canopies Based on Observed and Modeled Data,
RS(8), No. 5, 2016, pp. 412.
DOI Link
1606
BibRef
Schickling, A.[Anke],
Matveeva, M.[Maria],
Damm, A.[Alexander],
Schween, J.H.[Jan H.],
Wahner, A.[Andreas],
Graf, A.[Alexander],
Crewell, S.[Susanne],
Rascher, U.[Uwe],
Combining Sun-Induced Chlorophyll Fluorescence and Photochemical
Reflectance Index Improves Diurnal Modeling of Gross Primary
Productivity,
RS(8), No. 7, 2016, pp. 574.
DOI Link
1608
BibRef
Zhang, C.[Chao],
Filella, I.[Iolanda],
Garbulsky, M.F.[Martín F.],
Peñuelas, J.[Josep],
Affecting Factors and Recent Improvements of the Photochemical
Reflectance Index (PRI) for Remotely Sensing Foliar, Canopy and
Ecosystemic Radiation-Use Efficiencies,
RS(8), No. 9, 2016, pp. 677.
DOI Link
1610
BibRef
Davila, J.C.,
Zaremba, M.B.,
An Iterative Learning Framework for Multimodal Chlorophyll-a
Estimation,
GeoRS(54), No. 12, December 2016, pp. 7299-7308.
IEEE DOI
1612
hydrological techniques
BibRef
de Sousa, C.H.R.[Celio Helder Resende],
Hilker, T.[Thomas],
Waring, R.[Richard],
de Moura, Y.M.[Yhasmin Mendes],
Lyapustin, A.[Alexei],
Progress in Remote Sensing of Photosynthetic Activity over the Amazon
Basin,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Tong, A.[Alexander],
He, Y.H.[Yu-Hong],
Estimating and mapping chlorophyll content for a heterogeneous
grassland: Comparing prediction power of a suite of vegetation
indices across scales between years,
PandRS(126), No. 1, 2017, pp. 146-167.
Elsevier DOI
1704
Spectral indices
BibRef
Sonobe, R.[Rei],
Wang, Q.[Quan],
Towards a Universal Hyperspectral Index to Assess Chlorophyll Content
in Deciduous Forests,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Li, D.[Dong],
Cheng, T.[Tao],
Zhou, K.[Kai],
Zheng, H.[Hengbiao],
Yao, X.[Xia],
Tian, Y.[Yongchao],
Zhu, Y.[Yan],
Cao, W.[Weixing],
WREP: A wavelet-based technique for extracting the red edge position
from reflectance spectra for estimating leaf and canopy chlorophyll
contents of cereal crops,
PandRS(129), No. 1, 2017, pp. 103-117.
Elsevier DOI
1706
Chlorophyll content
BibRef
Pinto, F.[Francisco],
Müller-Linow, M.[Mark],
Schickling, A.[Anke],
Cendrero-Mateo, M.P.[M. Pilar],
Ballvora, A.[Agim],
Rascher, U.[Uwe],
Multiangular Observation of Canopy Sun-Induced Chlorophyll
Fluorescence by Combining Imaging Spectroscopy and Stereoscopy,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Madani, N.[Nima],
Kimball, J.S.[John S.],
Jones, L.A.[Lucas A.],
Parazoo, N.C.[Nicholas C.],
Guan, K.[Kaiyu],
Global Analysis of Bioclimatic Controls on Ecosystem Productivity
Using Satellite Observations of Solar-Induced Chlorophyll
Fluorescence,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Rahimzadeh-Bajgiran, P.[Parinaz],
Tubuxin, B.[Bayaer],
Omasa, K.[Kenji],
Estimating Chlorophyll Fluorescence Parameters Using the Joint
Fraunhofer Line Depth and Laser-Induced Saturation Pulse (FLD-LISP)
Method in Different Plant Species,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Sabater, N.[Neus],
Vicent, J.[Jorge],
Alonso, L.[Luis],
Cogliati, S.[Sergio],
Verrelst, J.[Jochem],
Moreno, J.[José],
Impact of Atmospheric Inversion Effects on Solar-Induced Chlorophyll
Fluorescence: Exploitation of the Apparent Reflectance as a Quality
Indicator,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Du, S.S.[Shan-Shan],
Liu, L.Y.[Liang-Yun],
Liu, X.J.[Xin-Jie],
Hu, J.C.[Jiao-Chan],
Response of Canopy Solar-Induced Chlorophyll Fluorescence to the
Absorbed Photosynthetically Active Radiation Absorbed by Chlorophyll,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Verrelst, J.[Jochem],
Rivera Caicedo, J.P.[Juan Pablo],
Muñoz-Marí, J.[Jordi],
Camps-Valls, G.[Gustau],
Moreno, J.[José],
SCOPE-Based Emulators for Fast Generation of Synthetic Canopy
Reflectance and Sun-Induced Fluorescence Spectra,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
chlorophyll fluorescence
BibRef
Sun, J.[Jia],
Shi, S.[Shuo],
Yang, J.[Jian],
Du, L.[Lin],
Gong, W.[Wei],
Chen, B.[Biwu],
Song, S.[Shalei],
Analyzing the performance of PROSPECT model inversion based on
different spectral information for leaf biochemical properties
retrieval,
PandRS(135), No. Supplement C, 2018, pp. 74-83.
Elsevier DOI
1712
Leaf optical properties, PROSPECT, Hyperspectral data, Biochemistry
BibRef
Bertani, G.[Gabriel],
Wagner, F.H.[Fabien H.],
Anderson, L.O.[Liana O.],
Aragão, L.E.O.C.[Luiz E. O. C.],
Chlorophyll Fluorescence Data Reveals Climate-Related Photosynthesis
Seasonality in Amazonian Forests,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Ma, X.D.[Xiao-Dan],
Feng, J.R.[Jia-Rui],
Guan, H.[Haiou],
Liu, G.[Gang],
Prediction of Chlorophyll Content in Different Light Areas of Apple
Tree Canopies based on the Color Characteristics of 3D Reconstruction,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Hu, J.C.[Jiao-Chan],
Liu, X.J.[Xin-Jie],
Liu, L.Y.[Liang-Yun],
Guan, L.L.[Lin-Lin],
Evaluating the Performance of the SCOPE Model in Simulating Canopy
Solar-Induced Chlorophyll Fluorescence,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Liu, X.J.[Xin-Jie],
Guo, J.[Jian],
Hu, J.C.[Jiao-Chan],
Liu, L.Y.[Liang-Yun],
Atmospheric Correction for Tower-Based Solar-Induced Chlorophyll
Fluorescence Observations at O2-A Band,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Sala, I.[Iria],
Navarro, G.[Gabriel],
Bolado-Penagos, M.[Marina],
Echevarría, F.[Fidel],
García, C.M.[Carlos M.],
High-Chlorophyll-Area Assessment Based on Remote Sensing
Observations: The Case Study of Cape Trafalgar,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Blix, K.[Katalin],
Eltoft, T.[Torbjørn],
Machine Learning Automatic Model Selection Algorithm for Oceanic
Chlorophyll-a Content Retrieval,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Lu, X.L.[Xiao-Liang],
Liu, Z.[Zhunqiao],
Zhou, Y.[Yuyu],
Liu, Y.L.[Ya-Ling],
Tang, J.[Jianwu],
Performance of Solar-Induced Chlorophyll Fluorescence in Estimating
Water-Use Efficiency in a Temperate Forest,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Lu, X.L.[Xiao-Liang],
Liu, Z.[Zhunqiao],
Zhou, Y.[Yuyu],
Liu, Y.L.[Ya-Ling],
An, S.[Shuqing],
Tang, J.[Jianwu],
Comparison of Phenology Estimated from Reflectance-Based Indices and
Solar-Induced Chlorophyll Fluorescence (SIF) Observations in a
Temperate Forest Using GPP-Based Phenology as the Standard,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Pyo, J.C.[Jong Cheol],
Ligaray, M.[Mayzonee],
Kwon, Y.S.[Yong Sung],
Ahn, M.H.[Myoung-Hwan],
Kim, K.[Kyunghyun],
Lee, H.[Hyuk],
Kang, T.[Taegu],
Cho, S.B.[Seong Been],
Park, Y.[Yongeun],
Cho, K.H.[Kyung Hwa],
High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a
Using Airborne Hyperspectral Imagery,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Hilborn, A.[Andrea],
Costa, M.[Maycira],
Applications of DINEOF to Satellite-Derived Chlorophyll-a from a
Productive Coastal Region,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Hu, J.C.[Jiao-Chan],
Liu, L.Y.[Liang-Yun],
Guo, J.[Jian],
Du, S.S.[Shan-Shan],
Liu, X.J.[Xin-Jie],
Upscaling Solar-Induced Chlorophyll Fluorescence from an
Instantaneous to Daily Scale Gives an Improved Estimation of the
Gross Primary Productivity,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Wei, X.X.[Xiao-Xu],
Wang, X.F.[Xu-Feng],
Wei, W.[Wei],
Wan, W.[Wei],
Use of Sun-Induced Chlorophyll Fluorescence Obtained by OCO-2 and
GOME-2 for GPP Estimates of the Heihe River Basin, China,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Nichol, C.J.[Caroline J.],
Drolet, G.[Guillaume],
Porcar-Castell, A.[Albert],
Wade, T.[Tom],
Sabater, N.[Neus],
Middleton, E.M.[Elizabeth M.],
MacLellan, C.[Chris],
Levula, J.[Janne],
Mammarella, I.[Ivan],
Vesala, T.[Timo],
Atherton, J.[Jon],
Diurnal and Seasonal Solar Induced Chlorophyll Fluorescence and
Photosynthesis in a Boreal Scots Pine Canopy,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Campbell, P.K.E.[Petya K. E.],
Huemmrich, K.F.[Karl F.],
Middleton, E.M.[Elizabeth M.],
Ward, L.A.[Lauren A.],
Julitta, T.[Tommaso],
Daughtry, C.S.T.[Craig S. T.],
Burkart, A.[Andreas],
Russ, A.L.[Andrew L.],
Kustas, W.P.[William P.],
Diurnal and Seasonal Variations in Chlorophyll Fluorescence
Associated with Photosynthesis at Leaf and Canopy Scales,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ahlman, L.[Linnéa],
Bånkestad, D.[Daniel],
Wik, T.[Torsten],
Relation between Changes in Photosynthetic Rate and Changes in Canopy
Level Chlorophyll Fluorescence Generated by Light Excitation of
Different Led Colours in Various Background Light,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Li, X.[Xing],
Xiao, J.F.[Jing-Feng],
A Global, 0.05-Degree Product of Solar-Induced Chlorophyll
Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Jin, J.,
Wang, Q.,
Selection of Informative Spectral Bands for PLS Models to Estimate
Foliar Chlorophyll Content Using Hyperspectral Reflectance,
GeoRS(57), No. 5, May 2019, pp. 3064-3072.
IEEE DOI
1905
vegetation mapping, leaf chemical components,
informative spectral bands, informative bands,
partial least squares (PLS)
BibRef
Román, J.R.[José Raúl],
Rodríguez-Caballero, E.[Emilio],
Rodríguez-Lozano, B.[Borja],
Roncero-Ramos, B.[Beatriz],
Chamizo, S.[Sonia],
Águila-Carricondo, P.[Pilar],
Cantón, Y.[Yolanda],
Spectral Response Analysis: An Indirect and Non-Destructive
Methodology for the Chlorophyll Quantification of Biocrusts,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Vanbrabant, Y.[Yasmin],
Tits, L.[Laurent],
Delalieux, S.[Stephanie],
Pauly, K.[Klaas],
Verjans, W.[Wim],
Somers, B.[Ben],
Multitemporal Chlorophyll Mapping in Pome Fruit Orchards from
Remotely Piloted Aircraft Systems,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Qiu, F.[Feng],
Chen, J.M.[Jing M.],
Croft, H.[Holly],
Li, J.[Jing],
Zhang, Q.[Qian],
Zhang, Y.Q.[Yong-Qin],
Ju, W.M.[Wei-Min],
Retrieving Leaf Chlorophyll Content by Incorporating Variable Leaf
Surface Reflectance in the PROSPECT Model,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Wei, J.[Jin],
Tang, X.[Xuguang],
Gu, Q.[Qing],
Wang, M.[Min],
Ma, M.[Mingguo],
Han, X.[Xujun],
Using Solar-Induced Chlorophyll Fluorescence Observed by OCO-2 to
Predict Autumn Crop Production in China,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Brown, L.A.[Luke A.],
Ogutu, B.O.[Booker O.],
Dash, J.[Jadunandan],
Estimating Forest Leaf Area Index and Canopy Chlorophyll Content with
Sentinel-2: An Evaluation of Two Hybrid Retrieval Algorithms,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Merrick, T.[Trina],
Pau, S.[Stephanie],
Jorge, M.L.S.P.[Maria Luisa S.P.],
Silva, T.S.F.[Thiago S. F.],
Bennartz, R.[Ralf],
Spatiotemporal Patterns and Phenology of Tropical Vegetation
Solar-Induced Chlorophyll Fluorescence across Brazilian Biomes Using
Satellite Observations,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Hosoi, F.[Fumiki],
Umeyama, S.[Sho],
Kuo, K.[Kuangting],
Estimating 3D Chlorophyll Content Distribution of Trees Using an
Image Fusion Method Between 2D Camera and 3D Portable Scanning Lidar,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Xie, M.M.[Meng-Meng],
Wang, Z.Q.[Zhong-Qiang],
Huete, A.[Alfredo],
Brown, L.A.[Luke A.],
Wang, H.[Heyu],
Xie, Q.[Qiaoyun],
Xu, X.[Xinpeng],
Ding, Y.L.[Yan-Ling],
Estimating Peanut Leaf Chlorophyll Content with Dorsiventral Leaf
Adjusted Indices: Minimizing the Impact of Spectral Differences
between Adaxial and Abaxial Leaf Surfaces,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Lu, B.[Bing],
He, Y.H.[Yu-Hong],
Evaluating Empirical Regression, Machine Learning, and Radiative
Transfer Modelling for Estimating Vegetation Chlorophyll Content
Using Bi-Seasonal Hyperspectral Images,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Liu, L.Z.[Lei-Zhen],
Zhao, W.H.[Wen-Hui],
Wu, J.J.[Jian-Jun],
Liu, S.[Shasha],
Teng, Y.[Yanguo],
Yang, J.H.[Jian-Hua],
Han, X.[Xinyi],
The Impacts of Growth and Environmental Parameters on Solar-Induced
Chlorophyll Fluorescence at Seasonal and Diurnal Scales,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zeng, C.Q.[Chui-Qing],
Binding, C.[Caren],
The Effect of Mineral Sediments on Satellite Chlorophyll-a Retrievals
from Line-Height Algorithms Using Red and Near-Infrared Bands,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Li, X.[Xing],
Xiao, J.F.[Jing-Feng],
Mapping Photosynthesis Solely from Solar-Induced Chlorophyll
Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary
Production Derived from OCO-2,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Zhang, Q.[Qian],
Zhang, X.K.[Xiao-Kang],
Li, Z.H.[Zhao-Hui],
Wu, Y.[Yunfei],
Zhang, Y.[Yongguang],
Comparison of Bi-Hemispherical and Hemispherical-Conical
Configurations for In Situ Measurements of Solar-Induced Chlorophyll
Fluorescence,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Dong, T.F.[Tai-Feng],
Shang, J.[Jiali],
Chen, J.M.[Jing M.],
Liu, J.[Jiangui],
Qian, B.[Budong],
Ma, B.[Baoluo],
Morrison, M.J.[Malcolm J.],
Zhang, C.[Chao],
Liu, Y.P.[Yu-Peng],
Shi, Y.[Yichao],
Pan, H.[Hui],
Zhou, G.[Guisheng],
Assessment of Portable Chlorophyll Meters for Measuring Crop Leaf
Chlorophyll Concentration,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Miraglio, T.[Thomas],
Adeline, K.[Karine],
Huesca, M.[Margarita],
Ustin, S.[Susan],
Briottet, X.[Xavier],
Monitoring LAI, Chlorophylls, and Carotenoids Content of a Woodland
Savanna Using Hyperspectral Imagery and 3D Radiative Transfer
Modeling,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
And:
Correction:
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Annala, L.[Leevi],
Honkavaara, E.[Eija],
Tuominen, S.[Sakari],
Pölönen, I.[Ilkka],
Chlorophyll Concentration Retrieval by Training Convolutional Neural
Network for Stochastic Model of Leaf Optical Properties (SLOP)
Inversion,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Kira, O.[Oz],
Sun, Y.[Ying],
Extraction of sub-pixel C3/C4 emissions of solar-induced chlorophyll
fluorescence (SIF) using artificial neural network,
PandRS(161), 2020, pp. 135-146.
Elsevier DOI
2002
solar-induced chlorophyll fluorescence (SIF),
Sub-pixel SIF extraction,
Artificial neural network (ANN)
BibRef
Guo, M.[Meng],
Li, J.[Jing],
Huang, S.[Shubo],
Wen, L.X.[Li-Xiang],
Feasibility of Using MODIS Products to Simulate Sun-Induced
Chlorophyll Fluorescence (SIF) in Boreal Forests,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Gao, Y.[Yun],
Wang, S.[Songhan],
Guan, K.[Kaiyu],
Wolanin, A.[Aleksandra],
You, L.Z.[Liang-Zhi],
Ju, W.M.[Wei-Min],
Zhang, Y.G.[Yong-Guang],
The Ability of Sun-Induced Chlorophyll Fluorescence From OCO-2 and
MODIS-EVI to Monitor Spatial Variations of Soybean and Maize Yields
in the Midwestern USA,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Jin, J.[Jia],
Pratama, B.A.[Bayu Arief],
Wang, Q.[Quan],
Tracing Leaf Photosynthetic Parameters Using Hyperspectral Indices in
an Alpine Deciduous Forest,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Bendig, J.,
Malenovský, Z.,
Gautam, D.,
Lucieer, A.,
Solar-Induced Chlorophyll Fluorescence Measured From an Unmanned
Aircraft System: Sensor Etaloning and Platform Motion Correction,
GeoRS(58), No. 5, May 2020, pp. 3437-3444.
IEEE DOI
2005
Airborne spectroscopy,
solar-induced chlorophyll fluorescence (SIF), unmanned aerial vehicle (UAV)
BibRef
Mohebzadeh, H.[Hamid],
Yeom, J.[Junho],
Lee, T.[Taesam],
Spatial Downscaling of MODIS Chlorophyll-a with Genetic Programming
in South Korea,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Qiu, R.N.[Ruo-Nan],
Han, G.[Ge],
Ma, X.[Xin],
Sha, Z.Y.[Zong-Yao],
Shi, T.Q.[Tian-Qi],
Xu, H.[Hao],
Zhang, M.[Miao],
CO2 Concentration, A Critical Factor Influencing the Relationship
between Solar-induced Chlorophyll Fluorescence and Gross Primary
Productivity,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Liu, L.Z.[Lei-Zhen],
Zhao, W.H.[Wen-Hui],
Shen, Q.[Qiu],
Wu, J.J.[Jian-Jun],
Teng, Y.G.[Yan-Guo],
Yang, J.H.[Jian-Hua],
Han, X.Y.[Xin-Yi],
Tian, F.[Feng],
Nonlinear Relationship Between the Yield of Solar-Induced Chlorophyll
Fluorescence and Photosynthetic Efficiency in Senescent Crops,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Vargas, J.Q.[Juan Quirós],
Bendig, J.[Juliane],
Arthur, A.M.[Alasdair Mac],
Burkart, A.[Andreas],
Julitta, T.[Tommaso],
Maseyk, K.[Kadmiel],
Thomas, R.[Rick],
Siegmann, B.[Bastian],
Rossini, M.[Micol],
Celesti, M.[Marco],
Schüttemeyer, D.[Dirk],
Kraska, T.[Thorsten],
Muller, O.[Onno],
Rascher, U.[Uwe],
Unmanned Aerial Systems (UAS)-Based Methods for Solar Induced
Chlorophyll Fluorescence (SIF) Retrieval with Non-Imaging
Spectrometers: State of the Art,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Ali, A.M.[Abebe Mohammed],
Darvishzadeh, R.[Roshanak],
Skidmore, A.[Andrew],
Heurich, M.[Marco],
Paganini, M.[Marc],
Heiden, U.[Uta],
Mücher, S.[Sander],
Evaluating Prediction Models for Mapping Canopy Chlorophyll Content
Across Biomes,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Syariz, M.A.[Muhammad Aldila],
Lin, C.H.[Chao-Hung],
Nguyen, M.V.[Manh Van],
Jaelani, L.M.[Lalu Muhamad],
Blanco, A.C.[Ariel C.],
WaterNet: A Convolutional Neural Network for Chlorophyll-a
Concentration Retrieval,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Ma, Y.[Yan],
Liu, L.Y.[Liang-Yun],
Chen, R.N.[Ruo-Nan],
Du, S.S.[Shan-Shan],
Liu, X.J.[Xin-Jie],
Generation of a Global Spatially Continuous TanSat Solar-Induced
Chlorophyll Fluorescence Product by Considering the Impact of the
Solar Radiation Intensity,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Qian, X.J.[Xiao-Jin],
Liu, L.Y.[Liang-Yun],
Retrieving Crop Leaf Chlorophyll Content Using an Improved
Look-Up-Table Approach by Combining Multiple Canopy Structures and
Soil Backgrounds,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Bhadra, S.[Sourav],
Sagan, V.[Vasit],
Maimaitijiang, M.[Maitiniyazi],
Maimaitiyiming, M.[Matthew],
Newcomb, M.[Maria],
Shakoor, N.[Nadia],
Mockler, T.C.[Todd C.],
Quantifying Leaf Chlorophyll Concentration of Sorghum from
Hyperspectral Data Using Derivative Calculus and Machine Learning,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Pastor-Guzman, J.,
Brown, L.,
Morris, H.,
Bourg, L.,
Goryl, P.,
Dransfeld, S.,
Dash, J.,
The Sentinel-3 OLCI Terrestrial Chlorophyll Index (OTCI): Algorithm
Improvements, Spatiotemporal Consistency and Continuity with the
MERIS Archive,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Sonobe, R.[Rei],
Yamashita, H.[Hiroto],
Mihara, H.[Harumi],
Morita, A.[Akio],
Ikka, T.[Takashi],
Estimation of Leaf Chlorophyll a, b and Carotenoid Contents and Their
Ratios Using Hyperspectral Reflectance,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Hoeppner, J.M.[J. Malin],
Skidmore, A.K.[Andrew K.],
Darvishzadeh, R.[Roshanak],
Heurich, M.[Marco],
Chang, H.C.[Hsing-Chung],
Gara, T.W.[Tawanda W.],
Mapping Canopy Chlorophyll Content in a Temperate Forest Using
Airborne Hyperspectral Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Zou, T.Y.[Tian-Yuan],
Zhang, J.[Jing],
A New Fluorescence Quantum Yield Efficiency Retrieval Method to
Simulate Chlorophyll Fluorescence under Natural Conditions,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Pineda, M.[Mónica],
Barón, M.[Matilde],
Pérez-Bueno, M.L.[María-Luisa],
Thermal Imaging for Plant Stress Detection and Phenotyping,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Sun, Q.[Qi],
Jiao, Q.J.[Quan-Jun],
Qian, X.J.[Xiao-Jin],
Liu, L.Y.[Liang-Yun],
Liu, X.J.[Xin-Jie],
Dai, H.Y.[Hua-Yang],
Improving the Retrieval of Crop Canopy Chlorophyll Content Using
Vegetation Index Combinations,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Feng, H.Z.[Huai-Ze],
Xu, T.R.[Tong-Ren],
Liu, L.Y.[Liang-Yun],
Zhou, S.[Sha],
Zhao, J.X.[Jing-Xue],
Liu, S.M.[Shao-Min],
Xu, Z.[Ziwei],
Mao, K.[Kebiao],
He, X.L.[Xin-Lei],
Zhu, Z.L.[Zhong-Li],
Chai, L.[Linna],
Modeling Transpiration with Sun-Induced Chlorophyll Fluorescence
Observations via Carbon-Water Coupling Methods,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Park, J.E.[Ji-Eun],
Park, K.A.[Kyung-Ae],
Application of Deep Learning for Speckle Removal in GOCI
Chlorophyll-a Concentration Images (2012-2017),
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Wang, H.B.[Hai-Bo],
Xiao, J.F.[Jing-Feng],
Improving the Capability of the SCOPE Model for Simulating
Solar-Induced Fluorescence and Gross Primary Production Using Data
from OCO-2 and Flux Towers,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
Solar-induced chlorophyll fluorescence. For Gross Primary Production.
BibRef
Bai, Y.[Yu],
Liang, S.L.[Shun-Lin],
Yuan, W.P.[Wen-Ping],
Estimating Global Gross Primary Production from Sun-Induced
Chlorophyll Fluorescence Data and Auxiliary Information Using Machine
Learning Methods,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Tong, C.[Chiming],
Bao, Y.[Yunfei],
Zhao, F.[Feng],
Fan, C.[Chongrui],
Li, Z.J.[Zhen-Jiang],
Huang, Q.[Qiaolin],
Evaluation of the FluorWPS Model and Study of the Parameter
Sensitivity for Simulating Solar-Induced Chlorophyll Fluorescence,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Ogashawara, I.[Igor],
Kiel, C.[Christine],
Jechow, A.[Andreas],
Kohnert, K.[Katrin],
Ruhtz, T.[Thomas],
Grossart, H.P.[Hans-Peter],
Hölker, F.[Franz],
Nejstgaard, J.C.[Jens C.],
Berger, S.A.[Stella A.],
Wollrab, S.[Sabine],
The Use of Sentinel-2 for Chlorophyll-a Spatial Dynamics Assessment:
A Comparative Study on Different Lakes in Northern Germany,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Grave, C.D.[Charlotte De],
Pipia, L.[Luca],
Siegmann, B.[Bastian],
Morcillo-Pallarés, P.[Pablo],
Rivera-Caicedo, J.P.[Juan Pablo],
Moreno, J.[José],
Verrelst, J.[Jochem],
Retrieving and Validating Leaf and Canopy Chlorophyll Content at
Moderate Resolution: A Multiscale Analysis with the Sentinel-3 OLCI
Sensor,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Nguyen, M.V.,
Chu, H.J.,
Lin, C.H.,
Lalu, M.J.,
Feature Selection of Optical Satellite Images for Chlorophyll-a
Concentration Estimation,
ISSDQ19(1249-1253).
DOI Link
1912
BibRef
Irteza, S.M.,
Nichol, J.E.,
Measurement Of Sun Induced Chlorophyll Fluorescence Using Hyperspectral
Satellite Imagery,
ISPRS16(B8: 911-913).
DOI Link
1610
BibRef
Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Chlorophyll Estimation in Water .