Caucci, L.[Luca],
Barrett, H.H.[Harrison H.],
Devaney, N.[Nicholas],
Rodríguez, J.J.[Jeffrey J.],
Application of the Hotelling and ideal observers to detection and
localization of exoplanets,
JOSA-A(24), No. 12, December 2007, pp. B13-B24.
WWW Link.
0801
Object detection. Planets.
BibRef
Lampert, C.H.[Christoph H.],
Blaschko, M.B.[Matthew B.],
Hofmann, T.[Thomas],
Efficient Subwindow Search:
A Branch and Bound Framework for Object Localization,
PAMI(31), No. 12, December 2009, pp. 2129-2142.
IEEE DOI
0911
BibRef
Earlier:
Beyond sliding windows:
Object localization by efficient subwindow search,
CVPR08(1-8).
IEEE DOI
0806
Award, CVPR. Efficient search for existence of object.
BibRef
Blaschko, M.B.[Matthew B.],
Branch and Bound Strategies for Non-maximal Suppression in Object
Detection,
EMMCVPR11(385-398).
Springer DOI
1107
BibRef
Lampert, C.H.[Christoph H.],
An efficient divide-and-conquer cascade for nonlinear object detection,
CVPR10(1022-1029).
IEEE DOI
1006
BibRef
Earlier:
Detecting objects in large image collections and videos by efficient
subimage retrieval,
ICCV09(987-994).
IEEE DOI
0909
BibRef
Blaschko, M.B.[Matthew B.],
Lampert, C.H.[Christoph H.],
Object Localization with Global and Local Context Kernels,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Earlier:
Learning to Localize Objects with Structured Output Regression,
ECCV08(I: 2-15).
Springer DOI
0810
BibRef
Shi, Z.Y.[Zhi-Yuan],
Hospedales, T.M.[Timothy M.],
Xiang, T.[Tao],
Bayesian Joint Modelling for Object Localisation in Weakly Labelled
Images,
PAMI(37), No. 10, October 2015, pp. 1959-1972.
IEEE DOI
1509
BibRef
Earlier:
Bayesian Joint Topic Modelling for Weakly Supervised Object
Localisation,
ICCV13(2984-2991)
IEEE DOI
1403
Bayesian; Joint Topic Modelling; Weakly Supervised
Adaptation models
BibRef
Shi, Z.Y.[Zhi-Yuan],
Yang, Y.X.[Yong-Xin],
Hospedales, T.M.[Timothy M.],
Xiang, T.[Tao],
Weakly-Supervised Image Annotation and Segmentation with Objects and
Attributes,
PAMI(39), No. 12, December 2017, pp. 2525-2538.
IEEE DOI
1711
BibRef
Earlier:
Weakly Supervised Learning of Objects, Attributes and Their
Associations,
ECCV14(II: 472-487).
Springer DOI
1408
Correlation, Detectors,
Semantics, Indian buffet process,
Weakly supervised learning, non-parametric Bayesian model.
Finding bounding box.
BibRef
Halawani, A.[Alaa],
Li, H.B.[Hai-Bo],
100 lines of code for shape-based object localization,
PR(60), No. 1, 2016, pp. 458-472.
Elsevier DOI
1609
Code, Object Detection. Object detection
BibRef
Wang, L.T.[Lian-Tao],
Lu, J.F.[Jian-Feng],
Li, X.Y.[Xiang-Yu],
Huan, Z.[Zhan],
Liang, J.Z.[Jiu-Zhen],
Chen, S.Y.[Shu-Yue],
Learning arbitrary-shape object detector from bounding-box annotation
by searching region-graph,
PRL(87), No. 1, 2017, pp. 171-176.
Elsevier DOI
1703
Object localization
BibRef
Feng, Y.J.[You-Ji],
Wu, Y.H.[Yi-Hong],
Fan, L.X.[Li-Xin],
Real-time SLAM relocalization with online learning of binary feature
indexing,
MVA(28), No. 8, November 2017, pp. 953-963.
WWW Link.
1710
BibRef
Earlier:
Online Learning of Binary Feature Indexing for Real-Time SLAM
Relocalization,
BD3DCV14(206-217).
Springer DOI
1504
BibRef
Wu, S.K.[Sheng-Kai],
Li, X.P.[Xiao-Ping],
Wang, X.G.[Xing-Gang],
IoU-aware single-stage object detector for accurate localization,
IVC(97), 2020, pp. 103911.
Elsevier DOI
2005
IoU prediction, IoU-aware detector, Accurate localization,
Single-stage object detector
BibRef
Hu, Y.Z.[Yan-Zhu],
Zhu, D.D.[Dong-Dong],
Ai, X.B.[Xin-Bo],
Xu, Y.[Yabo],
Category-wise feature extractor based on ADL method for weak-supervised
object localisation,
IET-IPR(14), No. 15, 15 December 2020, pp. 3965-3974.
DOI Link
2103
BibRef
Peng, H.Y.[Han-Yang],
Yu, S.Q.[Shi-Qi],
A Systematic IoU-Related Method:
Beyond Simplified Regression for Better Localization,
IP(30), 2021, pp. 5032-5044.
IEEE DOI
2106
Standards, Detectors, Location awareness, Computer architecture,
Measurement, Systematics, Object detection, Object detection,
optimization
BibRef
Wang, B.[Bo],
Yuan, C.F.[Chun-Feng],
Li, B.[Bing],
Ding, X.M.[Xin-Miao],
Li, Z.Y.[Ze-Ya],
Wu, Y.[Ying],
Hu, W.M.[Wei-Ming],
Multi-Scale Low-Discriminative Feature Reactivation for Weakly
Supervised Object Localization,
IP(30), 2021, pp. 6050-6065.
IEEE DOI
2107
Location awareness, Neurons, Task analysis, Pattern recognition,
Automation, Search problems, Proposals,
multi-scale class activation mapping
BibRef
Benassou, S.N.[Sabrina Narimene],
Shi, W.[Wuzhen],
Jiang, F.[Feng],
Benzine, A.[Abdallah],
Hierarchical complementary learning for weakly supervised object
localization,
SP:IC(100), 2022, pp. 116520.
Elsevier DOI
2112
Weakly supervised object localization, Class activation map,
Complementary map, Fusion strategy
BibRef
Wang, X.L.[Xiao-Lian],
Hu, X.[Xiyuan],
Chen, C.[Chen],
Peng, S.[Silong],
Regularizing deep networks with label geometry for accurate object
localization on small training datasets,
PRL(154), 2022, pp. 53-59.
Elsevier DOI
2202
Object detection, Object localization, Label geometry,
Box evolution, Small dataset, Human-machine interaction
BibRef
Piao, Z.Q.[Zheng-Quan],
Wang, J.[Junbo],
Tang, L.[Linbo],
Zhao, B.J.[Bao-Jun],
Wang, W.Z.[Wen-Zheng],
AccLoc: Anchor-Free and two-stage detector for accurate object
localization,
PR(126), 2022, pp. 108523.
Elsevier DOI
2204
Object detection, Accurate localization, Anchor-free, NMS-free, Two-stage
BibRef
Santiago, C.[Carlos],
Medley, D.O.[Daniela O.],
Marques, J.S.[Jorge S.],
Nascimento, J.C.[Jacinto C.],
Model-Agnostic Temporal Regularizer for Object Localization Using
Motion Fields,
IP(31), 2022, pp. 2478-2487.
IEEE DOI
2204
Location awareness, Tracking, Trajectory, Predictive models,
Computational modeling, Estimation, Motion segmentation,
temporal regularization
BibRef
Panwar, K.[Kuntal],
Babu, P.[Prabhu],
Stoica, P.[Petre],
Maximum Likelihood Algorithm for Time-Delay Based Multistatic Target
Localization,
SPLetters(29), 2022, pp. 847-851.
IEEE DOI
2204
Location awareness, Signal processing algorithms, Receivers,
Noise measurement, Maximum likelihood estimation, Transmitters,
majorization-minimization
BibRef
Hui, W.J.[Wen-Jun],
Tan, C.[Chuangchuang],
Gu, G.H.[Guang-Hua],
Zhao, Y.[Yao],
Gradient-based refined class activation map for weakly supervised
object localization,
PR(128), 2022, pp. 108664.
Elsevier DOI
2205
Weakly supervised object localization,
Gradients of loss function, Class-specific mask,
Category consistency
BibRef
Zhou, L.M.[Lin-Mao],
Chang, H.[Hong],
Ma, B.P.[Bing-Peng],
Shan, S.G.[Shi-Guang],
Interactive Regression and Classification for Dense Object Detector,
IP(31), 2022, pp. 3684-3696.
IEEE DOI
2206
Location awareness, Detectors, Feature extraction,
Object detection, Standards, Backpropagation, Pipelines, interactive
BibRef
Feng, C.J.[Cheng-Jian],
Zhong, Y.[Yujie],
Gao, Y.[Yu],
Scott, M.R.[Matthew R.],
Huang, W.L.[Wei-Lin],
TOOD: Task-aligned One-stage Object Detection,
ICCV21(3490-3499)
IEEE DOI
2203
Location awareness, Training, Measurement, Codes, Object detection,
Detectors, Detection and localization in 2D and 3D,
BibRef
Kim, J.[Jeesoo],
Choe, J.[Junsuk],
Yun, S.[Sangdoo],
Kwak, N.[Nojun],
Normalization Matters in Weakly Supervised Object Localization,
ICCV21(3407-3416)
IEEE DOI
2203
Location awareness, Training, Annotations, Computer architecture,
Performance gain, Solids,
Efficient training and inference methods
BibRef
Meng, M.[Meng],
Zhang, T.Z.[Tian-Zhu],
Tian, Q.[Qi],
Zhang, Y.D.[Yong-Dong],
Wu, F.[Feng],
Foreground Activation Maps for Weakly Supervised Object Localization,
ICCV21(3365-3375)
IEEE DOI
2203
Location awareness, Scalability, Computational modeling,
Benchmark testing, Task analysis, Standards,
Recognition and classification
BibRef
Qiu, H.Q.[He-Qian],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Cui, J.H.[Jian-Hua],
Song, Z.C.[Zi-Chen],
Wang, L.X.[Lan-Xiao],
Zhang, M.J.[Min-Jian],
CrossDet: Crossline Representation for Object Detection,
ICCV21(3175-3184)
IEEE DOI
2203
Training, Location awareness, Codes, Object detection, Interference,
Detectors, Detection and localization in 2D and 3D,
Scene analysis and understanding
BibRef
Gao, W.[Wei],
Wan, F.[Fang],
Pan, X.J.[Xing-Jia],
Peng, Z.L.[Zhi-Liang],
Tian, Q.[Qi],
Han, Z.J.[Zhen-Jun],
Zhou, B.[Bolei],
Ye, Q.X.[Qi-Xiang],
TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised
Object Localization,
ICCV21(2866-2875)
IEEE DOI
2203
Location awareness, Couplings, Visualization, Fuses, Convolution,
Semantics, Transformers, Detection and localization in 2D and 3D,
Recognition and classification
BibRef
Ki, M.S.[Min-Song],
Uh, Y.J.[Young-Jung],
Choe, J.[Junsuk],
Byun, H.R.[Hye-Ran],
Contrastive Attention Maps for Self-supervised Co-localization,
ICCV21(2783-2792)
IEEE DOI
2203
Training, Representation learning, Codes, Computational modeling,
Aggregates, Dogs, Detection and localization in 2D and 3D,
BibRef
Xie, J.H.[Jin-Heng],
Luo, C.[Cheng],
Zhu, X.P.[Xiang-Ping],
Jin, Z.Q.[Zi-Qi],
Lu, W.Z.[Wei-Zeng],
Shen, L.L.[Lin-Lin],
Online Refinement of Low-level Feature Based Activation Map for
Weakly Supervised Object Localization,
ICCV21(132-141)
IEEE DOI
2203
Location awareness, Uncertainty, Codes, Drives, Generators, Entropy,
Recognition and classification, Detection and localization in 2D and 3D
BibRef
Park, S.[Sanghun],
Kim, K.[Kunhee],
Lee, E.[Eunseop],
Kim, D.J.[Dai-Jin],
Localization Uncertainty-Based Attention for Object Detection,
ICIP21(2224-2228)
IEEE DOI
2201
Location awareness, Uncertainty, Detectors, Object detection,
Predictive models, Benchmark testing, Object detection,
Uncertainty attention module
BibRef
Roh, B.[Byungseok],
Shin, W.[Wuhyun],
Kim, I.[Ildoo],
Kim, S.[Sungwoong],
Spatially Consistent Representation Learning,
CVPR21(1144-1153)
IEEE DOI
2111
WWW Link.
Code, Classification. Location awareness, Learning systems, Image segmentation,
Codes, Object detection, Benchmark testing
BibRef
Li, X.[Xiang],
Wang, W.[Wenhai],
Hu, X.L.[Xiao-Lin],
Li, J.[Jun],
Tang, J.H.[Jin-Hui],
Yang, J.[Jian],
Generalized Focal Loss V2: Learning Reliable Localization Quality
Estimation for Dense Object Detection,
CVPR21(11627-11636)
IEEE DOI
2111
Location awareness, Training, Uncertainty,
Correlation, Estimation, Object detection
BibRef
Pan, X.J.[Xing-Jia],
Gao, Y.G.[Ying-Guo],
Lin, Z.W.[Zhi-Wen],
Tang, F.[Fan],
Dong, W.M.[Wei-Ming],
Yuan, H.[Haolei],
Huang, F.Y.[Fei-Yue],
Xu, C.S.[Chang-Sheng],
Unveiling the Potential of Structure Preserving for Weakly Supervised
Object Localization,
CVPR21(11637-11646)
IEEE DOI
2111
Location awareness, Convolutional codes,
Correlation, Aggregates, Random access memory, Benchmark testing
BibRef
Wei, J.[Jun],
Wang, Q.[Qin],
Li, Z.[Zhen],
Wang, S.[Sheng],
Zhou, S.K.[S. Kevin],
Cui, S.G.[Shu-Guang],
Shallow Feature Matters for Weakly Supervised Object Localization,
CVPR21(5989-5997)
IEEE DOI
2111
Location awareness, Image segmentation, Image color analysis,
Object detection, Interference, Predictive models, Feature extraction
BibRef
Huang, Z.Y.[Zhao-Yang],
Zhou, H.[Han],
Li, Y.J.[Yi-Jin],
Yang, B.B.[Bang-Bang],
Xu, Y.[Yan],
Zhou, X.W.[Xiao-Wei],
Bao, H.J.[Hu-Jun],
Zhang, G.F.[Guo-Feng],
Li, H.S.[Hong-Sheng],
VS-Net: Voting with Segmentation for Visual Localization,
CVPR21(6097-6107)
IEEE DOI
2111
Location awareness, Training, Visualization, Image segmentation,
Robot kinematics
BibRef
Guo, G.Y.[Guang-Yu],
Han, J.W.[Jun-Wei],
Wan, F.[Fang],
Zhang, D.W.[Ding-Wen],
Strengthen Learning Tolerance for Weakly Supervised Object
Localization,
CVPR21(7399-7408)
IEEE DOI
2111
Location awareness, Visualization,
Computational modeling, Semantics, Robustness, Pattern recognition
BibRef
Banik, S.[Soubarna],
Lauri, M.[Mikko],
Knoll, A.[Alois],
Frintrop, S.[Simone],
Object Localization with Attribute Preference Based on Top-Down
Attention,
CVS21(28-40).
Springer DOI
2109
BibRef
Kou, Z.Y.[Zi-Yi],
Cui, G.F.[Guo-Feng],
Wang, S.J.[Shao-Jie],
Zhao, W.T.[Wen-Tian],
Xu, C.L.[Chen-Liang],
Improve CAM with Auto-Adapted Segmentation and Co-Supervised
Augmentation,
WACV21(3597-3605)
IEEE DOI
2106
CAM: Class Activation Map.
Location awareness, Measurement, Image segmentation,
Computational modeling, Benchmark testing
BibRef
Zheng, Z.H.[Zhao-Heng],
Sadhu, A.[Arka],
Nevatia, R.[Ram],
Improving Object Detection and Attribute Recognition By Feature
Entanglement Reduction,
ICIP21(2214-2218)
IEEE DOI
2201
Visualization, Head, Image color analysis, Computational modeling,
Pipelines, Genomics, Object detection, Object Detection, Attribute Recognition
BibRef
Zhu, H.D.[Hai-Dong],
Sadhu, A.[Arka],
Zheng, Z.H.[Zhao-Heng],
Nevatia, R.[Ram],
Utilizing Every Image Object for Semi-supervised Phrase Grounding,
WACV21(2209-2218)
IEEE DOI
2106
Localize an object in the image given a referring expression.
Training, Grounding, Annotations,
Detectors, Task analysis
BibRef
Babar, S.[Sadbhavana],
Das, S.[Sukhendu],
Where to Look?: Mining Complementary Image Regions for Weakly
Supervised Object Localization,
WACV21(1009-1018)
IEEE DOI
2106
Location awareness, Training, Visualization,
Adaptation models, Fuses, Conferences
BibRef
Zhang, Z.F.[Zhen-Fei],
Bui, T.D.[Tien D.],
Attention-based Selection Strategy for Weakly Supervised Object
Localization,
ICPR21(10305-10311)
IEEE DOI
2105
Location awareness, Training, Image recognition,
Design methodology, Pattern recognition, Task analysis,
attention-based selection strategy
BibRef
Meethal, A.[Akhil],
Pedersoli, M.[Marco],
Belharbi, S.[Soufiane],
Granger, E.[Eric],
Convolutional STN for Weakly Supervised Object Localization,
ICPR21(10157-10164)
IEEE DOI
2105
Location awareness, Training, Object detection, Benchmark testing,
Recycling, Pattern recognition, Task analysis
BibRef
Bojko, A.[Adrian],
Dupont, R.[Romain],
Tamaazousti, M.[Mohamed],
Le Borgne, H.[Hervé],
Learning to Segment Dynamic Objects using SLAM Outliers,
ICPR21(9780-9787)
IEEE DOI
2105
Measurement, Training, Simultaneous localization and mapping,
Runtime, Motion estimation, Dynamics, Semantics
BibRef
Vanderschueren, A.[Antoine],
Joos, V.[Victor],
de Vleeschouwer, C.[Christophe],
Mutual Use of Semantics and Geometry for CNN-based Object Localization
in Tof Images,
CARE20(202-217).
Springer DOI
2103
BibRef
Ki, M.S.[Min-Song],
Uh, Y.J.[Young-Jung],
Lee, W.[Wonyoung],
Byun, H.R.[Hye-Ran],
In-sample Contrastive Learning and Consistent Attention for Weakly
Supervised Object Localization,
ACCV20(IV:3-18).
Springer DOI
2103
BibRef
Zhang, H.[Heng],
Fromont, E.[Elisa],
Lefevre, S.[Sébastien],
Avignon, B.[Bruno],
Localize to Classify and Classify to Localize:
Mutual Guidance in Object Detection,
ACCV20(IV:104-118).
Springer DOI
2103
BibRef
Bae, W.[Wonho],
Noh, J.[Junhyug],
Kim, G.[Gunhee],
Rethinking Class Activation Mapping for Weakly Supervised Object
Localization,
ECCV20(XV:618-634).
Springer DOI
2011
BibRef
Lu, W.Z.[Wei-Zeng],
Jia, X.[Xi],
Xie, W.C.[Wei-Cheng],
Shen, L.L.[Lin-Lin],
Zhou, Y.C.[Yi-Cong],
Duan, J.M.[Jin-Ming],
Geometry Constrained Weakly Supervised Object Localization,
ECCV20(XXVI:481-496).
Springer DOI
2011
BibRef
Wu, Y.,
Chen, Y.,
Yuan, L.,
Liu, Z.,
Wang, L.,
Li, H.,
Fu, Y.,
Rethinking Classification and Localization for Object Detection,
CVPR20(10183-10192)
IEEE DOI
2008
Proposals, Correlation, Task analysis, Convolution,
Feature extraction, Detectors, Robustness
BibRef
Spencer, J.,
Bowden, R.,
Hadfield, S.,
Same Features, Different Day: Weakly Supervised Feature Learning for
Seasonal Invariance,
CVPR20(6458-6467)
IEEE DOI
2008
Training, Measurement, Machine learning, Feature extraction,
Simultaneous localization and mapping, Task analysis
BibRef
Mai, J.,
Yang, M.,
Luo, W.,
Erasing Integrated Learning: A Simple Yet Effective Approach for
Weakly Supervised Object Localization,
CVPR20(8763-8772)
IEEE DOI
2008
Training, Visualization, Classification algorithms,
Supervised learning, Task analysis, Semantics
BibRef
Strecke, M.,
Stückler, J.,
Where Does It End?: Reasoning About Hidden Surfaces by Object
Intersection Constraints,
CVPR20(9589-9597)
IEEE DOI
2008
Surface reconstruction, Shape,
Image reconstruction, Simultaneous localization and mapping,
Minimization
BibRef
Cai, M.,
Reid, I.D.,
Reconstruct Locally, Localize Globally:
A Model Free Method for Object Pose Estimation,
CVPR20(3150-3160)
IEEE DOI
2008
Solid modeling, Head, Pose estimation,
Image reconstruction, Cameras
BibRef
Choe, J.[Junsuk],
Oh, S.J.[Seong Joon],
Lee, S.[Seungho],
Chun, S.[Sanghyuk],
Akata, Z.[Zeynep],
Shim, H.J.[Hyun-Jung],
Evaluating Weakly Supervised Object Localization Methods Right,
CVPR20(3130-3139)
IEEE DOI
2008
Task analysis, Protocols, Measurement, Training, Benchmark testing,
Predictive models
BibRef
Zhao, Y.,
Li, J.,
Zhang, Y.,
Tian, Y.,
Multi-Class Part Parsing With Joint Boundary-Semantic Awareness,
ICCV19(9176-9185)
IEEE DOI
2004
feature selection, image segmentation, object detection,
accurate part localization, high-level feature fusion, Decoding
BibRef
Visser, J.,
Corbetta, A.,
Menkovski, V.,
Toschi, F.,
Stampnet: Unsupervised Multi-Class Object Discovery,
ICIP19(2951-2955)
IEEE DOI
1910
object discovery, unsupervised learning, image localization, image clustering
BibRef
Kim, J.U.,
Park, S.,
Ro, Y.M.,
Towards Human-Like Interpretable Object Detection Via Spatial
Relation Encoding,
ICIP20(3284-3288)
IEEE DOI
2011
Visualization, Feature extraction, Detectors, Cognition,
Object detection, Birds, Visual interpretation,
human-like
BibRef
Kim, J.U.,
Ro, Y.M.[Y. Man],
Attentive Layer Separation for Object Classification and Object
Localization in Object Detection,
ICIP19(3995-3999)
IEEE DOI
1910
Object detection, Attention network, Object classification,
Object localization, Layer separation
BibRef
Kao, C.C.[Chieh-Chi],
Lee, T.Y.[Teng-Yok],
Sen, P.[Pradeep],
Liu, M.Y.[Ming-Yu],
Localization-Aware Active Learning for Object Detection,
ACCV18(VI:506-522).
Springer DOI
1906
BibRef
Jiang, B.R.[Bo-Rui],
Luo, R.X.[Rui-Xuan],
Mao, J.Y.[Jia-Yuan],
Xiao, T.[Tete],
Jiang, Y.N.[Yu-Ning],
Acquisition of Localization Confidence for Accurate Object Detection,
ECCV18(XIV: 816-832).
Springer DOI
1810
BibRef
Li, H.,
Liu, Y.,
Zhang, X.,
An, Z.,
Wang, J.,
Chen, Y.,
Tong, J.,
Do we really need more training data for object localization,
ICIP17(775-779)
IEEE DOI
1803
Feature extraction, Image resolution, Machine learning, Proposals,
Semantics, Training, Training data, Deep learning,
object localization
BibRef
Lu, Y.[Ya],
Zhao, J.[Ji],
Ma, J.Y.[Jia-Yi],
Object localization by density-based spatial clustering,
VCIP16(1-4)
IEEE DOI
1701
Clustering algorithms
BibRef
Lu, C.[Cewu],
Lu, Y.Y.[Yong-Yi],
Chen, H.[Hao],
Tang, C.K.[Chi-Keung],
Square Localization for Efficient and Accurate Object Detection,
ICCV15(2560-2568)
IEEE DOI
1602
Find square objects.
BibRef
Long, C.J.[Cheng-Jiang],
Wang, X.Y.[Xiao-Yu],
Hua, G.[Gang],
Yang, M.[Ming],
Lin, Y.Q.[Yuan-Qing],
Accurate Object Detection with Location Relaxation and Regionlets
Re-localization,
ACCV14(I: 260-275).
Springer DOI
1504
BibRef
Bilen, H.[Hakan],
Pedersoli, M.[Marco],
Tuytelaars, T.[Tinne],
Weakly supervised object detection with convex clustering,
CVPR15(1081-1089)
IEEE DOI
1510
BibRef
Earlier:
Weakly Supervised Detection with Posterior Regularization,
BMVC14(xx-yy).
HTML Version.
1410
object localization
BibRef
Shi, M.J.[Miao-Jing],
Caesar, H.,
Ferrari, V.[Vittorio],
Weakly Supervised Object Localization Using Things and Stuff Transfer,
ICCV17(3401-3410)
IEEE DOI
1802
image classification, image representation, image segmentation,
learning (artificial intelligence), object detection,
Training
BibRef
Shi, M.J.[Miao-Jing],
Ferrari, V.[Vittorio],
Weakly Supervised Object Localization Using Size Estimates,
ECCV16(V: 105-121).
Springer DOI
1611
BibRef
Zhang, Z.Q.[Zhi-Qi],
Cao, Y.[Yu],
Salvi, D.[Dhaval],
Oliver, K.[Kenton],
Waggoner, J.W.[Jarrell W.],
Wang, S.[Song],
Free-shape subwindow search for object localization,
CVPR10(1086-1093).
IEEE DOI
1006
BibRef
Yang, Y.C.[Yan-Chao],
Lai, B.[Brian],
Soatto, S.[Stefano],
DyStaB: Unsupervised Object Segmentation via Dynamic-Static
Bootstrapping*,
CVPR21(2825-2835)
IEEE DOI
2111
Training, Image segmentation, Motion segmentation,
Computational modeling, Object segmentation, Object detection, Turning
BibRef
Fulkerson, B.[Brian],
Vedaldi, A.[Andrea],
Soatto, S.[Stefano],
Class Segmentation and Object Localization with Superpixel
Neighborhoods,
ICCV09(670-677).
IEEE DOI
0909
BibRef
Earlier:
Localizing Objects with Smart Dictionaries,
ECCV08(I: 179-192).
Springer DOI
0810
Category and location of objects. First pixel classification with reduced
dictionary.
Combined results.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
One-Shot Object Detection, Single Shot Detector, and Segmentation .