Haralick, R.M.[Robert M.],
Caspall, F., and
Simonett, D.S.,
Using Radar Imagery for Crop Discrimination:
A Statistical and Conditional Probability Study,
RSE(1), 1970, pp. 131-142.
BibRef
7000
Soares, J.V.,
Renno, C.D.,
Formaggio, A.R.,
Yanasse, C.D.C.F.,
Frery, A.C.,
An Investigation of the Selection of Texture Features
for Crop Discrimination Using SAR Imagery,
RSE(59), No. 2, February 1997, pp. 234-247.
9704
BibRef
Mandal, D.,
Ratha, D.,
Bhattacharya, A.,
Kumar, V.,
McNairn, H.,
Rao, Y.S.,
Frery, A.C.,
A Radar Vegetation Index for Crop Monitoring Using Compact
Polarimetric SAR Data,
GeoRS(58), No. 9, September 2020, pp. 6321-6335.
IEEE DOI
2008
Agriculture, Vegetation mapping, Synthetic aperture radar,
Scattering, Indexes, Monitoring, Compact-pol, crop,
vegetation index
BibRef
Karjalainen, M.[Mika],
Kaartinen, H.[Harri],
Hyyppä, J.[Juha],
Agricultural Monitoring Using Envisat Alternating Polarization SAR
Images,
PhEngRS(74), No. 1, January 2008, pp. 117-128
WWW Link.
0803
Satellite images will improve yield estimation in the future because
they can provide objective information about crop growth over large
areas; in this context SAR images are extremely useful due to their
high revisit imaging capability.
BibRef
Richards, J.A.[John A.],
Remote Sensing with Imaging Radar,
Springer2009, ISBN: 978-3-642-02019-3
WWW Link.
Radar.
SAR.
Buy this book: Remote Sensing with Imaging Radar (Signals and Communication Technology)
0911
BibRef
Waske, B.[Bjorn],
Braun, M.[Matthias],
Classifier ensembles for land cover mapping using multitemporal SAR
imagery,
PandRS(64), No. 5, September 2009, pp. 450-457.
Elsevier DOI
0910
Decision tree; Random forests; Boosting; Multitemporal SAR data; Land
cover classification
BibRef
Bargiel, D.,
Herrmann, S.,
Multi-Temporal Land-Cover Classification of Agricultural Areas in Two
European Regions with High Resolution Spotlight TerraSAR-X Data,
RS(3), No. 5, May 2011, pp. 859-877.
DOI Link
1203
BibRef
Laurila, H.,
Karjalainen, M.,
Hyyppä, J.,
Kleemola, J.,
Integrating Vegetation Indices Models and Phenological Classification
with Composite SAR and Optical Data for Cereal Yield Estimation in
Finland (Part I),
RS(2), No. 1, January 2010, pp. 76-114.
DOI Link
1203
BibRef
Esch, T.,
Schenk, A.,
Ullmann, T.,
Thiel, M.,
Roth, A.,
Dech, S.,
Characterization of Land Cover Types in TerraSAR-X Images by Combined
Analysis of Speckle Statistics and Intensity Information,
GeoRS(49), No. 6, June 2011, pp. 1911-1925.
IEEE DOI
1106
See also Delineation of Urban Footprints From TerraSAR-X Data by Analyzing Speckle Characteristics and Intensity Information.
BibRef
Longepe, N.,
Rakwatin, P.,
Isoguchi, O.,
Shimada, M.,
Uryu, Y.,
Yulianto, K.,
Assessment of ALOS PALSAR 50 m Orthorectified FBD Data for Regional
Land Cover Classification by Support Vector Machines,
GeoRS(49), No. 6, June 2011, pp. 2135-2150.
IEEE DOI
1106
BibRef
Burgin, M.,
Clewley, D.,
Lucas, R.M.,
Moghaddam, M.,
A Generalized Radar Backscattering Model Based on Wave Theory for
Multilayer Multispecies Vegetation,
GeoRS(49), No. 12, December 2011, pp. 4832-4845.
IEEE DOI
1201
BibRef
Clewley, D.[Daniel],
Bunting, P.[Peter],
Shepherd, J.[James],
Gillingham, S.[Sam],
Flood, N.[Neil],
Dymond, J.[John],
Lucas, R.[Richard],
Armston, J.[John],
Moghaddam, M.[Mahta],
A Python-Based Open Source System for Geographic Object-Based Image
Analysis (GEOBIA) Utilizing Raster Attribute Tables,
RS(6), No. 7, 2014, pp. 6111-6135.
DOI Link
1408
BibRef
Laurila, H.,
Karjalainen, M.,
Kleemola, J.,
Hyyppä, J.,
Cereal Yield Modeling in Finland Using Optical and Radar Remote Sensing,
RS(2), No. 9, September 2010, pp. 2185-2239.
DOI Link
1203
BibRef
Bagan, H.,
Kinoshita, T.,
Yamagata, Y.,
Combination of AVNIR-2, PALSAR, and Polarimetric Parameters for Land
Cover Classification,
GeoRS(50), No. 4, April 2012, pp. 1318-1328.
IEEE DOI
1204
BibRef
Li, G.Y.[Gui-Ying],
Lu, D.S.[Deng-Sheng],
Moran, E.[Emilio],
Dutra, L.[Luciano],
Batistella, M.[Mateus],
A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data
for land-cover classification in a tropical moist region,
PandRS(70), No. 1, June 2012, pp. 26-38.
Elsevier DOI
1206
ALOS PALSAR; RADARSAT; Texture; Land-cover classification; Amazon
BibRef
Loosvelt, L.,
Peters, J.,
Skriver, H.,
de Baets, B.,
Verhoest, N.E.C.,
Impact of Reducing Polarimetric SAR Input on the Uncertainty of Crop
Classifications Based on the Random Forests Algorithm,
GeoRS(50), No. 10, October 2012, pp. 4185-4200.
IEEE DOI
1210
BibRef
Skriver, H.,
Crop Classification by Multitemporal C- and L-Band Single- and
Dual-Polarization and Fully Polarimetric SAR,
GeoRS(50), No. 6, June 2012, pp. 2138-2149.
IEEE DOI
1205
BibRef
Chen, Q.,
Kuang, G.,
Li, J.,
Sui, L.,
Li, D.,
Unsupervised Land Cover/Land Use Classification Using PolSAR Imagery
Based on Scattering Similarity,
GeoRS(51), No. 3, March 2013, pp. 1817-1825.
IEEE DOI
1303
BibRef
Shi, L.[Lei],
Zhang, L.F.[Le-Fei],
Zhao, L.L.[Ling-Li],
Yang, J.[Jie],
Li, P.X.[Ping-Xiang],
Zhang, L.P.[Liang-Pei],
The potential of linear discriminative Laplacian eigenmaps
dimensionality reduction in polarimetric SAR classification for
agricultural areas,
PandRS(86), No. 1, 2013, pp. 124-135.
Elsevier DOI
1312
Polarimetric synthetic aperture radar
BibRef
Mishra, P.,
Singh, D.,
A Statistical-Measure-Based Adaptive Land Cover Classification
Algorithm by Efficient Utilization of Polarimetric SAR Observables,
GeoRS(52), No. 5, May 2014, pp. 2889-2900.
IEEE DOI
1403
Backscatter
BibRef
Arnaubec, A.,
Roueff, A.,
Dubois-Fernandez, P.C.,
Refregier, P.,
Vegetation Height Estimation Precision With Compact PolInSAR and
Homogeneous Random Volume Over Ground Model,
GeoRS(52), No. 3, March 2014, pp. 1879-1891.
IEEE DOI
1403
radar interferometry
BibRef
Cable, J.W.[Jeffrey W.],
Kovacs, J.M.[John M.],
Jiao, X.F.[Xian-Feng],
Shang, J.L.[Jia-Li],
Agricultural Monitoring in Northeastern Ontario, Canada, Using
Multi-Temporal Polarimetric RADARSAT-2 Data,
RS(6), No. 3, 2014, pp. 2343-2371.
DOI Link
1404
BibRef
Jiao, X.F.[Xian-Feng],
Kovacs, J.M.[John M.],
Shang, J.L.[Jia-Li],
McNairn, H.[Heather],
Walters, D.[Dan],
Ma, B.[Baoluo],
Geng, X.Y.[Xiao-Yuan],
Object-Oriented Crop Mapping and Monitoring Using Multi-Temporal
Polarimetric RADARSAT-2 Data,
PandRS(96), No. 1, 2014, pp. 38-46.
Elsevier DOI
1410
Crops
See also Multiyear Crop Monitoring Using Polarimetric RADARSAT-2 Data.
BibRef
Cable, J.W.[Jeffrey W.],
Kovacs, J.M.[John M.],
Shang, J.L.[Jia-Li],
Jiao, X.F.[Xian-Feng],
Multi-Temporal Polarimetric RADARSAT-2 for Land Cover Monitoring in
Northeastern Ontario, Canada,
RS(6), No. 3, 2014, pp. 2372-2392.
DOI Link
1404
BibRef
Gao, W.[Wei],
Yang, J.[Jian],
Ma, W.T.[Wen-Ting],
Land Cover Classification for Polarimetric SAR Images Based on
Mixture Models,
RS(6), No. 5, 2014, pp. 3770-3790.
DOI Link
1407
BibRef
Wang, H.M.[Hong-Miao],
Xing, C.[Cheng],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
Land Cover Classification for Polarimetric SAR Images Based on Vision
Transformer,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Uslu, E.[Erkan],
Albayrak, S.[Songul],
Synthetic Aperture Radar Image Clustering with Curvelet Subband Gauss
Distribution Parameters,
RS(6), No. 6, 2014, pp. 5497-5519.
DOI Link
1407
BibRef
Forkuor, G.[Gerald],
Conrad, C.[Christopher],
Thiel, M.[Michael],
Ullmann, T.[Tobias],
Zoungrana, E.[Evence],
Integration of Optical and Synthetic Aperture Radar Imagery for
Improving Crop Mapping in Northwestern Benin, West Africa,
RS(6), No. 7, 2014, pp. 6472-6499.
DOI Link
1408
BibRef
Forkuor, G.[Gerald],
Conrad, C.[Christopher],
Thiel, M.[Michael],
Zoungrana, B.J.B.[Benewinde J.B.],
Tondoh, J.E.[Jérôme E.],
Multiscale Remote Sensing to Map the Spatial Distribution and Extent
of Cropland in the Sudanian Savanna of West Africa,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Cremon, É.H.[Édipo Henrique],
de Fátima Rossetti, D.[Dilce],
Zani, H.[Hiran],
Classification of Vegetation over a Residual Megafan Landform in the
Amazonian Lowland Based on Optical and SAR Imagery,
RS(6), No. 11, 2014, pp. 10931-10946.
DOI Link
1412
BibRef
Alonso-Gonzalez, A.,
Lopez-Martinez, C.,
Salembier, P.,
PolSAR Time Series Processing With Binary Partition Trees,
GeoRS(52), No. 6, June 2014, pp. 3553-3567.
IEEE DOI
1403
Covariance matrices
BibRef
Alonso-González, A.,
López-Martínez, C.,
Papathanassiou, K.P.,
Hajnsek, I.,
Polarimetric SAR Time Series Change Analysis Over Agricultural Areas,
GeoRS(58), No. 10, October 2020, pp. 7317-7330.
IEEE DOI
2009
Synthetic aperture radar, Scattering, Agriculture,
Spaceborne radar, Monitoring, Time series analysis, Agriculture,
time series
BibRef
Alonso-Gonzalez, A.,
Jagdhuber, T.,
Hajnsek, I.,
Agricultural monitoring with polarimetric SAR time series,
MultiTemp15(1-4)
IEEE DOI
1511
radar imaging
BibRef
Alonso-Gonzalez, A.,
Lopez-Martinez, C.,
Hajnsek, I.,
Processing polarimetric SAR time series over urban areas with binary
partition trees,
MultiTemp15(1-4)
IEEE DOI
1511
geophysical techniques
BibRef
Alonso-Gonzalez, A.,
Valero, S.,
Chanussot, J.,
Lopez-Martinez, C.,
Salembier, P.,
Processing Multidimensional SAR and Hyperspectral Images With Binary
Partition Tree,
PIEEE(100), No. 3, March 2013, pp. 723-747.
IEEE DOI
1303
BibRef
Valero, S.[Silvia],
Salembier, P.[Philippe],
Chanussot, J.[Jocelyn],
Hyperspectral Image Representation and Processing With Binary Partition
Trees,
IP(22), No. 4, April 2013, pp. 1430-1443.
IEEE DOI
1303
BibRef
Earlier:
Hyperspectral image segmentation using Binary Partition Trees,
ICIP11(1273-1276).
IEEE DOI
1201
BibRef
Earlier:
Comparison of merging orders and pruning strategies for Binary
Partition Tree in hyperspectral data,
ICIP10(2565-2568).
IEEE DOI
1009
See also Binary Partition Tree as an Efficient Representation for Image Processing, Segmentation, and Information Retrieval.
See also Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation.
BibRef
Valero, S.[Silvia],
Salembier, P.[Philippe],
Chanussot, J.[Jocelyn],
Object recognition in hyperspectral images using Binary Partition
Tree representation,
PRL(56), No. 1, 2015, pp. 45-51.
Elsevier DOI
1503
Object based image analysis
BibRef
Kweon, S.K.[Soon-Koo],
Oh, Y.[Yisok],
A Modified Water-Cloud Model With Leaf Angle Parameters for Microwave
Backscattering From Agricultural Fields,
GeoRS(53), No. 5, May 2015, pp. 2802-2809.
IEEE DOI
1502
geophysical techniques
scattering model for radar backscatters of agricultural fields.
BibRef
Masjedi, A.,
Zoej, M.J.V.[M.J. Valadan],
Maghsoudi, Y.,
Classification of Polarimetric SAR Images Based on Modeling
Contextual Information and Using Texture Features,
GeoRS(54), No. 2, February 2016, pp. 932-943.
IEEE DOI
1601
Accuracy
BibRef
Dargahi, A.,
Maghsoudi, Y.,
Abkar, A.A.,
Supervised Classification of Polarimetric SAR Imagery Using Temporal
and Contextual Information,
SMPR13(107-110).
DOI Link
1311
BibRef
Larrañaga, A.[Arantzazu],
Álvarez-Mozos, J.[Jesús],
On the Added Value of Quad-Pol Data in a Multi-Temporal Crop
Classification Framework Based on RADARSAT-2 Imagery,
RS(8), No. 4, 2016, pp. 335.
DOI Link
1604
BibRef
Anghel, A.[Andrei],
Vasile, G.[Gabriel],
Boudon, R.[Rémy],
d'Urso, G.[Guy],
Girard, A.[Alexandre],
Boldo, D.[Didier],
Bost, V.[Véronique],
Combining spaceborne SAR images with 3D point clouds for
infrastructure monitoring applications,
PandRS(111), No. 1, 2016, pp. 45-61.
Elsevier DOI
1601
Synthetic aperture radar (SAR)
BibRef
Hütt, C.[Christoph],
Koppe, W.[Wolfgang],
Miao, Y.X.[Yu-Xin],
Bareth, G.[Georg],
Best Accuracy Land Use/Land Cover (LULC) Classification to Derive
Crop Types Using Multitemporal, Multisensor, and Multi-Polarization
SAR Satellite Images,
RS(8), No. 8, 2016, pp. 684.
DOI Link
1609
BibRef
Mascolo, L.[Lucio],
Lopez-Sanchez, J.M.[Juan M.],
Vicente-Guijalba, F.,
Nunziata, F.,
Migliaccio, M.,
Mazzarella, G.,
A Complete Procedure for Crop Phenology Estimation With PolSAR Data
Based on the Complex Wishart Classifier,
GeoRS(54), No. 11, November 2016, pp. 6505-6515.
IEEE DOI
1610
Agriculture
BibRef
Mascolo, L.[Lucio],
Martinez-Marin, T.[Tomas],
Lopez-Sanchez, J.M.[Juan M.],
Optimal Grid-Based Filtering for Crop Phenology Estimation with
Sentinel-1 SAR Data,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Duguay, Y.[Yannick],
Bernier, M.[Monique],
Lévesque, E.[Esther],
Domine, F.[Florent],
Land Cover Classification in SubArctic Regions Using Fully
Polarimetric RADARSAT-2 Data,
RS(8), No. 9, 2016, pp. 697.
DOI Link
1610
BibRef
Pepe, A.[Antonio],
Bonano, M.[Manuela],
Zhao, Q.[Qing],
Yang, T.L.[Tian-Liang],
Wang, H.[Hanmei],
The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for
the Study of Shanghai's Ocean-Reclaimed Lands through the SBAS-DInSAR
Technique,
RS(8), No. 11, 2016, pp. 911.
DOI Link
1612
BibRef
Jiang, M.[Mi],
Yong, B.[Bin],
Tian, X.[Xin],
Malhotra, R.[Rakesh],
Hu, R.[Rui],
Li, Z.W.[Zhi-Wei],
Yu, Z.B.[Zhong-Bo],
Zhang, X.X.[Xin-Xin],
The potential of more accurate InSAR covariance matrix estimation for
land cover mapping,
PandRS(126), No. 1, 2017, pp. 120-128.
Elsevier DOI
1704
Urban remote sensing
BibRef
Tian, X.[Xin],
Jiang, M.[Mi],
Xiao, R.[Ruya],
Malhotra, R.[Rakesh],
Bias Removal for Goldstein Filtering Power Using a Second Kind
Statistical Coherence Estimator,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Capodici, F.[Fulvio],
Maltese, A.[Antonino],
Ciraolo, G.[Giuseppe],
d'Urso, G.[Guido],
La Loggia, G.[Goffredo],
Power Sensitivity Analysis of Multi-Frequency, Multi-Polarized,
Multi-Temporal SAR Data for Soil-Vegetation System Variables
Characterization,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Kenduiywo, B.K.,
Bargiel, D.,
Soergel, U.,
Higher Order Dynamic Conditional Random Fields Ensemble for Crop Type
Classification in Radar Images,
GeoRS(55), No. 8, August 2017, pp. 4638-4654.
IEEE DOI
1708
Agriculture, Backscatter, Context, Data models, Radar imaging, Sensors,
Classifier ensemble, conditional random fields (CRFs),
dynamic CRFs (DCRFs), phenology, radar,
spatial-temporal/multitemporal, classification
BibRef
Qi, Z.X.[Zhi-Xin],
Yeh, A.G.O.[Anthony Gar-On],
Li, X.[Xia],
A crop phenology knowledge-based approach for monthly monitoring of
construction land expansion using polarimetric synthetic aperture
radar imagery,
PandRS(133), No. Supplement C, 2017, pp. 1-17.
Elsevier DOI
1711
Knowledge-based approach, Crop phenology,
Construction land expansion, Monthly detection, Polarimetric SAR
BibRef
Li, D.,
Yang, C.,
Du, Y.,
Efficient Method for Scattering From Cylindrical Components of
Vegetation and Its Potential Application to the Determination of
Effective Permittivity,
GeoRS(55), No. 11, November 2017, pp. 6120-6127.
IEEE DOI
1711
Dielectrics, Nonhomogeneous media, Permittivity,
Scattering, Vegetation, Vegetation mapping, Cylindric component,
T-matrix, effective permittivity, orientation, distribution
BibRef
Hagensieker, R.[Ron],
Waske, B.[Björn],
Evaluation of Multi-Frequency SAR Images for Tropical Land Cover
Mapping,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Guarnieri, A.M.[A. Monti],
Leanza, A.,
Recchia, A.,
Tebaldini, S.,
Venuti, G.,
Atmospheric Phase Screen in GEO-SAR: Estimation and Compensation,
GeoRS(56), No. 3, March 2018, pp. 1668-1679.
IEEE DOI
1804
atmospheric techniques, atmospheric turbulence,
remote sensing by radar, spaceborne radar,
synthetic aperture radar (SAR)
BibRef
Kim, H.,
Hirose, A.,
Unsupervised Fine Land Classification Using Quaternion
Autoencoder-Based Polarization Feature Extraction and Self-Organizing
Mapping,
GeoRS(56), No. 3, March 2018, pp. 1839-1851.
IEEE DOI
1804
feature extraction, geophysical image processing,
image classification, radar imaging, radar polarimetry,
unsupervised classification
BibRef
Kim, H.,
Hirose, A.,
Unsupervised Hierarchical Land Classification Using Self-Organizing
Feature Codebook for Decimeter-Resolution PolSAR,
GeoRS(57), No. 4, April 2019, pp. 1894-1905.
IEEE DOI
1904
airborne radar, forestry, geophysical image processing,
image classification, land cover, radar imaging, radar polarimetry,
unsupervised land classification
BibRef
Ohki, M.,
Shimada, M.,
Large-Area Land Use and Land Cover Classification With Quad, Compact,
and Dual Polarization SAR Data by PALSAR-2,
GeoRS(56), No. 9, September 2018, pp. 5550-5557.
IEEE DOI
1809
Synthetic aperture radar, Feature extraction, Polarimetry,
Satellites, Polarization, Data mining, Image classification,
synthetic aperture radar (SAR)
BibRef
Vaduva, C.[Corina],
Danisor, C.[Cosmin],
Datcu, M.[Mihai],
Joint SAR Image Time Series and PSInSAR Data Analytics:
An LDA Based Approach,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
SAR not dependend on sunlight and weather.
BibRef
Giordano, S.,
Mercier, G.,
Rudant, J.,
Unmixing Polarimetric Radar Images Based on Land Cover Type
Identified by Higher Resolution Optical Data Before Target
Decomposition: Application to Forest and Bare Soil,
GeoRS(56), No. 10, October 2018, pp. 5850-5862.
IEEE DOI
1810
Radar polarimetry, Radar imaging, Laser radar, Optical imaging,
Optical scattering, Cooperative fusion, low-level fusion,
unmixing
BibRef
Molijn, R.A.[Ramses A.],
Iannini, L.[Lorenzo],
Dekker, P.L.[Paco López],
Magalhães, P.S.G.[Paulo S.G.],
Hanssen, R.F.[Ramon F.],
Vegetation Characterization through the Use of Precipitation-Affected
SAR Signals,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
And:
Erratum:
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Chang, J.G.,
Shoshany, M.,
Oh, Y.,
Polarimetric Radar Vegetation Index for Biomass Estimation in Desert
Fringe Ecosystems,
GeoRS(56), No. 12, December 2018, pp. 7102-7108.
IEEE DOI
1812
Biomass, Radar, Vegetation mapping, L-band, Correlation, Indexes,
Biological system modeling, ALOS-PALSAR, degree of polarization,
shrublands
BibRef
d'Hondt, O.[Olivier],
Hänsch, R.[Ronny],
Wagener, N.[Nicolas],
Hellwich, O.[Olaf],
Exploiting SAR Tomography for Supervised Land-Cover Classification,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Szigarski, C.[Christoph],
Jagdhuber, T.[Thomas],
Baur, M.[Martin],
Thiel, C.[Christian],
Parrens, M.[Marie],
Wigneron, J.P.[Jean-Pierre],
Piles, M.[Maria],
Entekhabi, D.[Dara],
Analysis of the Radar Vegetation Index and Potential Improvements,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Li, X.M.[Xiao-Ming],
Zhang, T.Y.[Tian-Yu],
Huang, B.Q.[Bing-Qing],
Jia, T.[Tong],
Capabilities of Chinese Gaofen-3 Synthetic Aperture Radar in Selected
Topics for Coastal and Ocean Observations,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Wei, S.[Sisi],
Zhang, H.[Hong],
Wang, C.[Chao],
Wang, Y.Y.[Yuan-Yuan],
Xu, L.[Lu],
Multi-Temporal SAR Data Large-Scale Crop Mapping Based on U-Net Model,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Liu, S.J.[Sheng-Jie],
Qi, Z.X.[Zhi-Xin],
Li, X.[Xia],
Yeh, A.G.O.[Anthony Gar-On],
Integration of Convolutional Neural Networks and Object-Based
Post-Classification Refinement for Land Use and Land Cover Mapping
with Optical and SAR Data,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ustuner, M.[Mustafa],
Sanli, F.B.[Fusun Balik],
Polarimetric Target Decompositions and Light Gradient Boosting
Machine for Crop Classification: A Comparative Evaluation,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Mohammadimanesh, F.[Fariba],
Salehi, B.[Bahram],
Mahdianpari, M.[Masoud],
Gill, E.[Eric],
Molinier, M.[Matthieu],
A new fully convolutional neural network for semantic segmentation of
polarimetric SAR imagery in complex land cover ecosystem,
PandRS(151), 2019, pp. 223-236.
Elsevier DOI
1904
Deep learning, Land cover, Wetland,
Convolutional Neural Network (CNN),
Polarimetric Synthetic Aperture Radar (PolSAR)
BibRef
Xie, Q.H.[Qing-Hua],
Wang, J.F.[Jin-Fei],
Liao, C.H.[Chun-Hua],
Shang, J.L.[Jia-Li],
Lopez-Sanchez, J.M.[Juan M.],
Fu, H.Q.[Hai-Qiang],
Liu, X.[Xiuguo],
On the Use of Neumann Decomposition for Crop Classification Using
Multi-Temporal RADARSAT-2 Polarimetric SAR Data,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Teimouri, N.[Nima],
Dyrmann, M.[Mads],
Jørgensen, R.N.[Rasmus Nyholm],
A Novel Spatio-Temporal FCN-LSTM Network for Recognizing Various Crop
Types Using Multi-Temporal Radar Images,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Ni, K.[Kang],
Wu, Y.Q.[Yi-Quan],
Wang, P.[Peng],
Scene Classification from Synthetic Aperture Radar Images Using
Generalized Compact Channel-Boosted High-Order Orderless Pooling
Network,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Sonobe, R.[Rei],
Parcel-Based Crop Classification Using Multi-Temporal TerraSAR-X Dual
Polarimetric Data,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Mahdianpari, M.[Masoud],
Mohammadimanesh, F.[Fariba],
McNairn, H.[Heather],
Davidson, A.[Andrew],
Rezaee, M.[Mohammad],
Salehi, B.[Bahram],
Homayouni, S.[Saeid],
Mid-season Crop Classification Using Dual-, Compact-, and
Full-Polarization in Preparation for the Radarsat Constellation
Mission (RCM),
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Valcarce-Diñeiro, R.[Rubén],
Arias-Pérez, B.[Benjamín],
Lopez-Sanchez, J.M.[Juan M.],
Sánchez, N.[Nilda],
Multi-Temporal Dual- and Quad-Polarimetric Synthetic Aperture Radar
Data for Crop-Type Mapping,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Yang, R.,
Xu, X.,
Xu, Z.,
Dong, H.,
Gui, R.,
Pu, F.,
Dynamic Fractal Texture Analysis for PolSAR Land Cover Classification,
GeoRS(57), No. 8, August 2019, pp. 5991-6002.
IEEE DOI
1908
fractals, geophysical image processing, geophysical techniques,
image classification, image sequences, image texture, land cover,
polarimetric synthetic-aperture radar (PolSAR)
BibRef
La Rosa, L.E.C.[Laura Elena Cué],
Feitosa, R.Q.[Raul Queiroz],
Happ, P.N.[Patrick Nigri],
Sanches, I.D.[Ieda Del'Arco],
da Costa, G.A.O.P.[Gilson Alexandre Ostwald Pedro],
Combining Deep Learning and Prior Knowledge for Crop Mapping in
Tropical Regions from Multitemporal SAR Image Sequences,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Sunaga, Y.,
Natsuaki, R.,
Hirose, A.,
Land Form Classification and Similar Land-Shape Discovery by Using
Complex-Valued Convolutional Neural Networks,
GeoRS(57), No. 10, October 2019, pp. 7907-7917.
IEEE DOI
1910
convolutional neural nets, feature extraction,
geophysical signal processing, image classification,
interferometric synthetic aperture radar (InSAR)
BibRef
Guo, J.[Jiao],
Li, H.H.[Heng-Hui],
Ning, J.F.[Ji-Feng],
Han, W.T.[Wen-Ting],
Zhang, W.T.[Wei-Tao],
Zhou, Z.S.[Zheng-Shu],
Feature Dimension Reduction Using Stacked Sparse Auto-Encoders for
Crop Classification with Multi-Temporal, Quad-Pol SAR Data,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Zhang, W.T.[Wei-Tao],
Wang, M.[Min],
Guo, J.[Jiao],
Lou, S.T.[Shun-Tian],
Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders
with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Qadir, A.[Abdul],
Mondal, P.[Pinki],
Synergistic Use of Radar and Optical Satellite Data for Improved
Monsoon Cropland Mapping in India,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Oré, G.[Gian],
Alcântara, M.S.[Marlon S.],
Góes, J.A.[Juliana A.],
Oliveira, L.P.[Luciano P.],
Yepes, J.[Jhonnatan],
Teruel, B.[Bárbara],
Castro, V.[Valquíria],
Bins, L.S.[Leonardo S.],
Castro, F.[Felicio],
Luebeck, D.[Dieter],
Moreira, L.F.[Laila F.],
Gabrielli, L.H.[Lucas H.],
Hernandez-Figueroa, H.E.[Hugo E.],
Crop Growth Monitoring with Drone-Borne DInSAR,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Liao, C.H.[Chun-Hua],
Wang, J.F.[Jin-Fei],
Xie, Q.H.[Qing-Hua],
Baz, A.A.[Ayman Al],
Huang, X.D.[Xiao-Dong],
Shang, J.L.[Jia-Li],
He, Y.J.[Yong-Jun],
Synergistic Use of Multi-Temporal RADARSAT-2 and VENµS Data for Crop
Classification Based on 1D Convolutional Neural Network,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Dias Soares, M.[Marinalva],
Dutra, L.V.[Luciano Vieira],
Pedro da Costa, G.A.O.[Gilson Alexandre Ostwald],
Queiroz Feitosa, R.[Raul],
Galante Negri, R.[Rogério],
Diaz, P.M.A.[Pedro M. A.],
A Meta-Methodology for Improving Land Cover and Land Use
Classification with SAR Imagery,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Ren, B.,
Hou, B.,
Chanussot, J.,
Jiao, L.,
PolSAR Feature Extraction Via Tensor Embedding Framework for Land
Cover Classification,
GeoRS(58), No. 4, April 2020, pp. 2337-2351.
IEEE DOI
2004
Feature extraction, Matrix decomposition,
Synthetic aperture radar, Task analysis, Scattering,
tensor embedding framework
BibRef
Busquier, M.[Mario],
Lopez-Sanchez, J.M.[Juan M.],
Mestre-Quereda, A.[Alejandro],
Navarro, E.[Elena],
González-Dugo, M.P.[María P.],
Mateos, L.[Luciano],
Exploring TanDEM-X Interferometric Products for Crop-Type Mapping,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Liu, C.S.[Chun-Sheng],
Wang, Z.M.[Zhong-Mei],
Efficient complex ISAR object recognition using adaptive deep relation
learning,
IET-CV(14), No. 5, August 2020, pp. 185-191.
DOI Link
2007
inverse synthetic aperture radar
BibRef
Monti-Guarnieri, A.[Andrea],
Manzoni, M.[Marco],
Giudici, D.[Davide],
Recchia, A.[Andrea],
Tebaldini, S.[Stefano],
Vegetated Target Decorrelation in SAR and Interferometry:
Models, Simulation, and Performance Evaluation,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Hong, D.F.[Dan-Feng],
Yokoya, N.[Naoto],
Xia, G.S.[Gui-Song],
Chanussot, J.[Jocelyn],
Zhu, X.X.[Xiao Xiang],
X-ModalNet: A semi-supervised deep cross-modal network for
classification of remote sensing data,
PandRS(167), 2020, pp. 12-23.
Elsevier DOI
2008
Adversarial, Cross-modality, Deep learning, Deep neural network,
Fusion, Hyperspectral, Multispectral, Mutual learning,
Synthetic aperture radar
BibRef
Quan, Y.H.[Ying-Hui],
Tong, Y.P.[Ying-Ping],
Feng, W.[Wei],
Dauphin, G.[Gabriel],
Huang, W.J.[Wen-Jiang],
Xing, M.D.[Meng-Dao],
A Novel Image Fusion Method of Multi-Spectral and SAR Images for Land
Cover Classification,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Ajadi, O.A.[Olaniyi A.],
Liao, H.M.[He-Ming],
Jaacks, J.[Jason],
Santos, A.D.[Alfredo Delos],
Kumpatla, S.P.[Siva P.],
Patel, R.[Rinkal],
Swatantran, A.[Anu],
Landscape-Scale Crop Lodging Assessment across Iowa and Illinois
Using Synthetic Aperture Radar (SAR) Images,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Sun, Z.S.[Zhen-Sheng],
Liu, M.[Miao],
Liu, P.[Peng],
Li, J.[Juan],
Yu, T.[Tao],
Gu, X.F.[Xing-Fa],
Yang, J.[Jian],
Mi, X.F.[Xiao-Fei],
Cao, W.J.[Wei-Jia],
Zhang, Z.W.[Zhou-Wei],
SAR Image Classification Using Fully Connected Conditional Random
Fields Combined with Deep Learning and Superpixel Boundary Constraint,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Sun, Z.S.[Zhen-Sheng],
Li, J.[Juan],
Liu, P.[Peng],
Cao, W.J.[Wei-Jia],
Yu, T.[Tao],
Gu, X.F.[Xing-Fa],
SAR Image Classification Using Greedy Hierarchical Learning With
Unsupervised Stacked CAEs,
GeoRS(59), No. 7, July 2021, pp. 5721-5739.
IEEE DOI
2106
Synthetic aperture radar, Remote sensing, Feature extraction,
Training, Convolution, Speckle, Machine learning,
synthetic aperture radar (SAR)
BibRef
Wu, Z.,
Hou, B.,
Jiao, L.,
Multiscale CNN With Autoencoder Regularization Joint Contextual
Attention Network for SAR Image Classification,
GeoRS(59), No. 2, February 2021, pp. 1200-1213.
IEEE DOI
2101
Radar polarimetry, Feature extraction, Synthetic aperture radar,
Image reconstruction, Training, Decoding, Deep learning,
synthetic aperture radar (SAR)
BibRef
Liang, W.K.[Wen-Kai],
Wu, Y.[Yan],
Li, M.[Ming],
Cao, Y.[Yice],
Hu, X.[Xin],
High-Resolution SAR Image Classification Using Multi-Scale Deep
Feature Fusion and Covariance Pooling Manifold Network,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Gella, G.W.[Getachew Workineh],
Bijker, W.[Wietske],
Belgiu, M.[Mariana],
Mapping crop types in complex farming areas using SAR imagery with
dynamic time warping,
PandRS(175), 2021, pp. 171-183.
Elsevier DOI
2105
Crop type mapping, Decision level fusion, Sentinel-1,
TerraSAR-X, Time Weighted Dynamic Time Warping
BibRef
Zhang, B.[Bin],
Chang, L.[Ling],
Stein, A.[Alfred],
Spatio-temporal linking of multiple SAR satellite data from medium
and high resolution Radarsat-2 images,
PandRS(176), 2021, pp. 222-236.
Elsevier DOI
2106
BibRef
And:
Corrigendum:
PandRS(180), 2021, pp. 335.
Elsevier DOI
2109
Spatio-temporal data integration, Geolocation uncertainty,
Monte Carlo methods, Multiple Hypothesis Testing, InSAR time series analysis
BibRef
Cheng, J.[Jianda],
Zhang, F.[Fan],
Xiang, D.L.[De-Liang],
Yin, Q.[Qiang],
Zhou, Y.S.[Yong-Sheng],
Wang, W.[Wei],
PolSAR Image Land Cover Classification Based on Hierarchical Capsule
Network,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Serafino, F.[Francesco],
Bianco, A.[Andrea],
Use of X-Band Radars to Monitor Small Garbage Islands,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, Y.Q.[Yi-Qing],
Zhao, W.Z.[Wen-Zhi],
Chen, S.[Shuo],
Ye, T.[Tao],
Mapping Crop Rotation by Using Deeply Synergistic Optical and SAR
Time Series,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Ofori-Ampofo, S.[Stella],
Pelletier, C.[Charlotte],
Lang, S.[Stefan],
Crop Type Mapping from Optical and Radar Time Series Using
Attention-Based Deep Learning,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Agbona, A.[Afolabi],
Teare, B.[Brody],
Ruiz-Guzman, H.[Henry],
Dobreva, I.D.[Iliyana D.],
Everett, M.E.[Mark E.],
Adams, T.[Tyler],
Montesinos-Lopez, O.A.[Osval A.],
Kulakow, P.A.[Peter A.],
Hays, D.B.[Dirk B.],
Prediction of Root Biomass in Cassava Based on Ground Penetrating
Radar Phenomics,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Arii, M.[Motofumi],
Yamada, H.[Hiroyoshi],
Sakamoto, H.[Hitoshi],
Kojima, S.[Shoichiro],
Sensitivity Study of X-Band Multiparametric SAR Data From Cabbage
Fields,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Scattering, Synthetic aperture radar, Backscatter, Urban areas,
Radar polarimetry, Radar, Vegetation mapping, Cabbage field,
multiparametric synthetic aperture radar (SAR)
BibRef
Ghosh, S.S.[Swarnendu Sekhar],
Dey, S.[Subhadip],
Bhogapurapu, N.[Narayanarao],
Homayouni, S.[Saeid],
Bhattacharya, A.[Avik],
McNairn, H.[Heather],
Gaussian Process Regression Model for Crop Biophysical Parameter
Retrieval from Multi-Polarized C-Band SAR Data,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Jin, H.[Huiran],
Mountrakis, G.[Giorgos],
Fusion of optical, radar and waveform LiDAR observations for land
cover classification,
PandRS(187), 2022, pp. 171-190.
Elsevier DOI
2205
Fusion, Land cover classification, Optical, SAR, Waveform LiDAR, Accuracy
BibRef
Xie, Q.H.[Qing-Hua],
Dou, Q.[Qi],
Peng, X.[Xing],
Wang, J.F.[Jin-Fei],
Lopez-Sanchez, J.M.[Juan M.],
Shang, J.L.[Jia-Li],
Fu, H.Q.[Hai-Qiang],
Zhu, J.J.[Jian-Jun],
Crop Classification Based on the Physically Constrained General
Model-Based Decomposition Using Multi-Temporal RADARSAT-2 Data,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Li, H.P.[He-Ping],
Lu, J.[Jing],
Tian, G.X.[Gui-Xiang],
Yang, H.J.[Hui-Jin],
Zhao, J.H.[Jian-Hui],
Li, N.[Ning],
Crop Classification Based on GDSSM-CNN Using Multi-Temporal
RADARSAT-2 SAR with Limited Labeled Data,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yang, M.J.[Mei-Juan],
Jiao, L.C.[Li-Cheng],
Liu, F.[Fang],
Hou, B.[Biao],
Yang, S.Y.[Shu-Yuan],
Zhang, Y.[Yake],
Wang, J.L.[Jian-Long],
Coarse-to-Fine Contrastive Self-Supervised Feature Learning for
Land-Cover Classification in SAR Images With Limited Labeled Data,
IP(31), 2022, pp. 6502-6516.
IEEE DOI
2211
Task analysis, Feature extraction, Radar polarimetry, Semantics,
Decoding, Synthetic aperture radar, Self-supervised learning,
land-cover classification
BibRef
Qin, X.L.[Xing-Li],
Zhao, L.L.[Ling-Li],
Yang, J.[Jie],
Li, P.X.[Ping-Xiang],
Wu, B.F.[Bing-Fang],
Sun, K.[Kaimin],
Xu, Y.B.[Yu-Bin],
Active Pairwise Constraint Learning in Constrained Time-Series
Clustering for Crop Mapping from Airborne SAR Imagery,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Pepe, A.[Antonio],
A 3D Space-Time Non-Local Mean Filter (NLMF) for Land Changes
Retrieval with Synthetic Aperture Radar Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yuan, Y.[Yuan],
Lin, L.[Lei],
Zhou, Z.G.[Zeng-Guang],
Jiang, H.J.[Hou-Jun],
Liu, Q.S.[Qing-Shan],
Bridging optical and SAR satellite image time series via contrastive
feature extraction for crop classification,
PandRS(195), 2023, pp. 222-232.
Elsevier DOI
2301
Contrastive learning, Crop classification, Feature extraction,
Satellite image time series (SITS), Synthetic aperture radar (SAR)
BibRef
Wang, H.X.[Hong-Xia],
Yang, H.R.[Hao-Ran],
Huang, Y.[Yabo],
Wu, L.[Lin],
Guo, Z.W.[Zheng-Wei],
Li, N.[Ning],
Classification of Land Cover in Complex Terrain Using Gaofen-3 SAR
Ascending and Descending Orbit Data,
RS(15), No. 8, 2023, pp. 2177.
DOI Link
2305
BibRef
Huang, Y.[Yabo],
Meng, M.M.[Meng-Meng],
Hou, Z.[Zhuoyan],
Wu, L.[Lin],
Guo, Z.W.[Zheng-Wei],
Shen, X.[Xiajiong],
Zheng, W.[Wenkui],
Li, N.[Ning],
Land Cover Classification of SAR Based on 1DCNN-MRF Model Using
Improved Dual-Polarization Radar Vegetation Index,
RS(15), No. 13, 2023, pp. 3221.
DOI Link
2307
BibRef
Pasternak, M.[Marta],
Pawluszek-Filipiak, K.[Kamila],
Evaluation of C and X-Band Synthetic Aperture Radar Derivatives for
Tracking Crop Phenological Development,
RS(15), No. 20, 2023, pp. 4996.
DOI Link
2310
BibRef
Zhang, W.T.[Wei-Tao],
Liu, L.[Lu],
Bai, Y.[Yv],
Li, Y.B.[Yi-Bang],
Guo, J.[Jiao],
Crop classification based on multi-temporal PolSAR images with a
single tensor network,
PR(143), 2023, pp. 109773.
Elsevier DOI
2310
Polarimetric synthetic aperture radar (PolSAR),
Crop classification, Tensor affine transformation network (TATN)
BibRef
Han, Z.[Zhu],
Zhang, C.[Ce],
Gao, L.[Lianru],
Zeng, Z.Q.[Zhi-Qiang],
Zhang, B.[Bing],
Atkinson, P.M.[Peter M.],
Spatio-temporal multi-level attention crop mapping method using
time-series SAR imagery,
PandRS(206), 2023, pp. 293-310.
Elsevier DOI Code:
WWW Link.
2312
Crop mapping, Time-series imagery,
Spatio-temporal self-attention, Multi-scale cross-attention, Deep learning
BibRef
Mirzaei, A.[Ali],
Bagheri, H.[Hossein],
Khosravi, I.[Iman],
Enhancing Crop Classification Accuracy through Synthetic SAR-Optical
Data Generation Using Deep Learning,
IJGI(12), No. 11, 2023, pp. xx-yy.
DOI Link
2312
BibRef
Quan, Y.J.[Yu-Jun],
Zhang, R.R.[Rong-Rong],
Li, J.[Jian],
Ji, S.[Song],
Guo, H.[Hengliang],
Yu, A.[Anzhu],
Learning SAR-Optical Cross Modal Features for Land Cover
Classification,
RS(16), No. 2, 2024, pp. 431.
DOI Link
2402
BibRef
Kwak, G.H.[Geun-Ho],
Park, N.W.[No-Wook],
Assessing the Potential of Multi-Temporal Conditional Generative
Adversarial Networks in SAR-to-Optical Image Translation for
Early-Stage Crop Monitoring,
RS(16), No. 7, 2024, pp. 1199.
DOI Link
2404
BibRef
Wang, Y.Y.[Yang-Yang],
Zhang, W.G.[Wen-Gang],
Chen, W.D.[Wei-Dong],
Chen, C.[Chang],
BSDSNet: Dual-Stream Feature Extraction Network Based on Segment
Anything Model for Synthetic Aperture Radar Land Cover Classification,
RS(16), No. 7, 2024, pp. 1150.
DOI Link
2404
BibRef
Wang, Y.Y.[Yang-Yang],
Zhang, W.G.[Wen-Gang],
Chen, W.D.[Wei-Dong],
Chen, C.[Chang],
Liang, Z.Y.[Zhen-Yu],
MFFnet: Multimodal Feature Fusion Network for Synthetic Aperture
Radar and Optical Image Land Cover Classification,
RS(16), No. 13, 2024, pp. 2459.
DOI Link
2407
BibRef
Moharrami, M.[Meysam],
Attarchi, S.[Sara],
Gloaguen, R.[Richard],
Alavipanah, S.K.[Seyed Kazem],
Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample
Migration for Multi-Temporal Land Cover Mapping,
RS(16), No. 9, 2024, pp. 1566.
DOI Link
2405
BibRef
Sorokin, A.[Aleksei],
Stepanov, A.[Alexey],
Dubrovin, K.[Konstantin],
Verkhoturov, A.[Andrey],
Enhancement of Comparative Assessment Approaches for Synthetic
Aperture Radar (SAR) Vegetation Indices for Crop Monitoring and
Identification: Khabarovsk Territory (Russia) Case Study,
RS(16), No. 14, 2024, pp. 2532.
DOI Link
2408
BibRef
Wittstruck, L.[Lucas],
Jarmer, T.[Thomas],
Waske, B.[Björn],
Multi-Stage Feature Fusion of Multispectral and SAR Satellite Images
for Seasonal Crop-Type Mapping at Regional Scale Using an Adapted 3D
U-Net Model,
RS(16), No. 17, 2024, pp. 3115.
DOI Link
2409
BibRef
Schmitz, S.,
Weinmann, M.,
Thiele, A.,
Incorporating Interferometric Coherence Into LULC Classification Of
Airborne Polsar-images Using Fully Convolutional Networks,
ISPRS20(B1:115-122).
DOI Link
2012
BibRef
Wang, W.,
Tian, Z.,
Tian, B.,
Zhang, J.,
Supervised Manifold-learning Algorithm for Polsar Feature Extraction
and LULC Classification,
ISPRS20(B3:345-350).
DOI Link
2012
BibRef
Kiana, E.,
Homayouni, S.,
Sharifi, M.A.,
Farid-Rohani, M.R.,
Comparison of Decomposition Methods Over Agricultural Fields Using The
Uavsar Polarimetric Synthetic Aperture Radar,
SMPR19(649-653).
DOI Link
1912
BibRef
Park, S.,
Im, J.,
Classification Of Croplands Through Fusion Of Optical And Sar Time
Series Data,
ISPRS16(B7: 703-704).
DOI Link
1610
BibRef
Bougarradh, A.[Ahlem],
Mhiri, S.[Slim],
Ghorbel, F.[Faouzi],
Unsupervised Classification of Synthetic Aperture Radar Imagery Using a
Bootstrap Version of the Generalized Mixture Expectation Maximization
Algorithm,
ICISP16(273-282).
WWW Link.
1606
BibRef
Dehghan-Soraki, Y.,
Saha, S.K.,
Kumari, M.,
A Modified Polarimetric Decompostion for Applicabilty in Complex
Agricultural Environment,
SMPR13(133-137).
DOI Link
1311
BibRef
Mahdian, M.,
Homayouni, S.,
Fazel, M.A.,
Mohammadimanesh, F.,
Agricultural Land Classification Based on Statistical Analysis of Full
Polarimetric SAR Data,
SMPR13(257-261).
DOI Link
1311
BibRef
Khabazan, S.,
Motagh, M.,
Hosseini, M.,
Evaluation of Radar Backscattering Models IEM, OH, and Dubois using L
and C-Bands SAR Data over different vegetation canopy covers and soil
depths,
SMPR13(225-230).
DOI Link
1311
BibRef
Xu, J.,
Li, Z.,
Tian, B.,
Chen, Q.,
Zhang, P.,
Classification of Polarimetric SAR Image Based on the Subspace Method,
IWIDF13(145-148).
DOI Link
1311
BibRef
Li, P.X.,
Sun, W.D.,
Yang, J.,
Shi, L.,
Lang, F.K.,
Jiang, W.,
High Resolution POLSAR Image Classification Based on Genetic Algorithm
and Support Vector Machine,
IWIDF13(67-71).
DOI Link
1311
BibRef
Fu, H.Q.[Hai-Qiang],
Zhu, J.J.[Jian-Jun],
Wang, C.C.[Chang-Cheng],
Xie, Q.H.[Qing-Hua],
Zhao, R.[Rong],
A Robust PCT Method Based on Complex Least Squares Adjustment Method,
IWIDF13(29-32).
DOI Link
1311
PCT: Polarization Coherence Tomography. Vegetation heights.
BibRef
Singh, D.,
Chamundeeswari, V.V.[V. Vijaya],
Labeling of Clusters Based on Critical Analysis of Texture Measures,
Hannover13(317-320).
DOI Link
1308
BibRef
Mishra, B.[Bhogendra],
Susaki, J.[Junichi],
Generation of pseudo-fully polarimetric data from dual polarimetric
data for land cover classification,
CVRS12(262-267).
IEEE DOI
1302
BibRef
Qin, X.X.[Xian-Xiang],
Zhou, S.L.[Shi-Lin],
Zou, H.X.[Huan-Xin],
Gao, G.[Gui],
Statistical modeling of sea clutter in high-resolution SAR images using
generalized gamma distribution,
CVRS12(306-310).
IEEE DOI
1302
BibRef
Chu, H.T.,
Ge, L.,
Combination Of Genetic Algorithm And Dempster-shafer Theory Of Evidence
For Land Cover Classification Using Integration of SAR and Optical
Satellite Imagery,
ISPRS12(XXXIX-B7:173-178).
DOI Link
1209
BibRef
Mcnairn, H.,
Shang, J.,
Jiao, X.,
Deschamps, B.,
Establishing Crop Productivity Using Radarsat-2,
ISPRS12(XXXIX-B8:283-287).
DOI Link
1209
BibRef
Recio, J.A.,
Ruiz, L.Á.[Luis Á.],
Hermosilla, T.[Txomin],
Herrera-Cruz, V.,
Fernández-Sarría, A.,
Combination of TERRASAR-X and Optical Imagery for LU/LC Mapping using
an Object-Based Approach,
HighRes11(xx-yy).
PDF File.
1106
Also use backscattering informaton.
BibRef
Liu, Z.Y.[Zhen-Yu],
Yu, J.[Jie],
Jan, Q.[Qin],
Zhao, Z.[Zheng],
Yang, J.[Jie],
Investigation of Vegetation Phases Extraction Based on Polarmetric SAR
Interferometry,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Power, D.[Desmond],
Adlakha, P.[Paul],
Dragosevic, M.[Marina],
McGuire, P.[Peter],
Vachon, P.[Paris],
Meunier, P.[Pierre],
Critical infrastructure monitoring using high resolution SAR satellites,
CGC10(164).
PDF File.
1006
BibRef
Lohmann, P.[Peter],
Soergel, U.,
Tavakkoli, M.,
Farghaly, D.,
Multi-temporal Classification for Crop Discrimination using TerraSAR-X
Spotlight images,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Riedel, T.,
Thiel, C.,
Schmullius, C.,
An object-based classification procedure for the derivation of broad
land cover classes using both optical and SAR data,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Sentinel-1, -2, -3 for Land Cover, Remote Sensing .