22.2.2.3 Irrigation Monitoring, Irrigated Field Detection, Land Use Analysis

Chapter Contents (Back)
Irrigation.

Barbosa, P.M., Casterad, M.A., Herrero, J.,
Performance of Several Landsat-5 Thematic Mapper (TM) Image Classification Methods for Crop Extent Estimates in an Irrigation District,
JRS(17), No. 18, December 1996, pp. 3665-3674. 9701
BibRef

Velpuri, N.M., Thenkabail, P.S., Gumma, M.K., Biradar, C., Dheeravath, V., Noojipady, P., Yuanjie, L.,
Influence of Resolution in Irrigated Area Mapping and Area Estimation,
PhEngRS(75), No. 12, December 2009, pp. 1383-1396.
WWW Link. 1001
A comparison of irrigated areas derived from four different spatial resolutions is performed to ascertain the influence of resolution on irrigated area mapping and area estimation. BibRef

Conrad, C., Fritsch, S., Zeidler, J., Rücker, G., Dech, S.,
Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data,
RS(2), No. 4, April 2010, pp. 1035-1056.
DOI Link 1203
BibRef

Ozdogan, M., Yang, Y., Allez, G., Cervantes, C.,
Remote Sensing of Irrigated Agriculture: Opportunities and Challenges,
RS(2), No. 9, September 2010, pp. 2274-2304.
DOI Link 1203
BibRef

Pervez, M., Brown, J.,
Mapping Irrigated Lands at 250-m Scale by Merging MODIS Data and National Agricultural Statistics,
RS(2), No. 10, October 2010, pp. 2388-2412.
DOI Link 1203
BibRef

Cuenca, R.H.[Richard H.], Ciotti, S.P.[Shannon P.], Edlinger, J., Conrad, C., Lamers, J., Khasankhanova, G., Koellner, T.,
Reconstructing the Spatio-Temporal Development of Irrigation Systems in Uzbekistan Using Landsat Time Series,
RS(4), No. 12, December 2012, pp. 3972-3994.
DOI Link 1211
BibRef

Hagimoto, Y.[Yutaka],
Application of Landsat to Evaluate Effects of Irrigation Forbearance,
RS(5), No. 8, 2013, pp. 3776-3802.
DOI Link 1309
BibRef

Akdim, N.[Nadia], Alfieri, S.M.[Silvia Maria], Habib, A.[Adnane], Choukri, A.[Abdeloihab], Cheruiyot, E.[Elijah], Labbassi, K.[Kamal], Menenti, M.[Massimo],
Monitoring of Irrigation Schemes by Remote Sensing: Phenology versus Retrieval of Biophysical Variables,
RS(6), No. 6, 2014, pp. 5815-5851.
DOI Link 1407
BibRef

Hagolle, O.[Olivier], Tavernier, A.[Adrien], Kharrou, M.H.[M. Hakim], Er-Raki, S.[Salah], Huc, M.[Mireille], Kasbani, M.[Mohamed], El Moutamanni, A.[Abdelilah], Yousfi, M.[Mohamed], Jarlan, L.[Lionel],
A Life-Size and Near Real-Time Test of Irrigation Scheduling with a Sentinel-2 Like Time Series (SPOT4-Take5) in Morocco,
RS(6), No. 11, 2014, pp. 11182-11203.
DOI Link 1412
BibRef

Saadi, S.[Sameh], Simonneaux, V.[Vincent], Boulet, G.[Gilles], Raimbault, B.[Bruno], Mougenot, B.[Bernard], Fanise, P.[Pascal], Ayari, H.[Hassan], Lili-Chabaane, Z.[Zohra],
Monitoring Irrigation Consumption Using High Resolution NDVI Image Time Series: Calibration and Validation in the Kairouan Plain (Tunisia),
RS(7), No. 10, 2015, pp. 13005.
DOI Link 1511
BibRef

Dubovyk, O.[Olena], Menz, G.[Gunter], Lee, A.[Alexander], Schellberg, J.[Juergen], Thonfeld, F.[Frank], Khamzina, A.[Asia],
SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands,
RS(7), No. 6, 2015, pp. 6763.
DOI Link 1507
BibRef

Jin, Q.J.[Qin-Jian], Wei, J.F.[Jiang-Feng], Yang, Z.L.[Zong-Liang], Lin, P.R.[Pei-Rong],
Irrigation-Induced Environmental Changes around the Aral Sea: An Integrated View from Multiple Satellite Observations,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Pun, M.[Mahesh], Mutiibwa, D.[Denis], Li, R.[Ruopu],
Land Use Classification: A Surface Energy Balance and Vegetation Index Application to Map and Monitor Irrigated Lands,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Chance, E.W.[Eric W.], Cobourn, K.M.[Kelly M.], Thomas, V.A.[Valerie A.], Dawson, B.C.[Blaine C.], Flores, A.N.[Alejandro N.],
Identifying Irrigated Areas in the Snake River Plain, Idaho: Evaluating Performance across Composting Algorithms, Spectral Indices, and Sensors,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef
And: Erratum: RS(9), No. 7, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Chance, E.W.[Eric W.], Cobourn, K.M.[Kelly M.], Thomas, V.A.[Valerie A.],
Trend Detection for the Extent of Irrigated Agriculture in Idaho's Snake River Plain, 1984-2016,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Sharma, A.K.[Amit Kumar], Hubert-Moy, L.[Laurance], Buvaneshwari, S.[Sriramulu], Sekhar, M.[Muddu], Ruiz, L.[Laurent], Bandyopadhyay, S.[Soumya], Corgne, S.[Samuel],
Irrigation History Estimation Using Multitemporal Landsat Satellite Images: Application to an Intensive Groundwater Irrigated Agricultural Watershed in India,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Nhamo, L.[Luxon], van Dijk, R.[Ruben], Magidi, J.[James], Wiberg, D.[David], Tshikolomo, K.[Khathu],
Improving the Accuracy of Remotely Sensed Irrigated Areas Using Post-Classification Enhancement Through UAV Capability,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Piedelobo, L.[Laura], Ortega-Terol, D.[Damián], del Pozo, S.[Susana], Hernández-López, D.[David], Ballesteros, R.[Rocío], Moreno, M.A.[Miguel A.], Molina, J.L.[José-Luis], González-Aguilera, D.[Diego],
HidroMap: A New Tool for Irrigation Monitoring and Management Using Free Satellite Imagery,
IJGI(7), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Gumma, M., Thenkabail, P., Hideto, F., Nelson, A., Dheeravath, V., Busia, D., Rala, A.,
Mapping Irrigated Areas of Ghana Using Fusion of 30m and 250m Resolution Remote-Sensing Data,
RS(3), No. 4, April 2011, pp. 816-835.
DOI Link 1203
BibRef

Ferrant, S.[Sylvain], Selles, A.[Adrien], Le Page, M.[Michel], Herrault, P.A.[Pierre-Alexis], Pelletier, C.[Charlotte], Al-Bitar, A.[Ahmad], Mermoz, S.[Stéphane], Gascoin, S.[Simon], Bouvet, A.[Alexandre], Saqalli, M.[Mehdi], Dewandel, B.[Benoit], Caballero, Y.[Yvan], Ahmed, S.[Shakeel], Maréchal, J.C.[Jean-Christophe], Kerr, Y.[Yann],
Detection of Irrigated Crops from Sentinel-1 and Sentinel-2 Data to Estimate Seasonal Groundwater Use in South India,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link 1712
BibRef

Gao, Q.[Qi], Zribi, M.[Mehrez], Escorihuela, M.J.[Maria Jose], Baghdadi, N.[Nicolas], Segui, P.Q.[Pere Quintana],
Irrigation Mapping Using Sentinel-1 Time Series at Field Scale,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Ghebreamlak, A.Z.[Araya Z.], Tanakamaru, H.[Haruya], Tada, A.[Akio], Adam, B.M.A.[Bashir M. Ahmed], Elamin, K.A.E.[Khalid A. E.],
Satellite-Based Mapping of Cultivated Area in Gash Delta Spate Irrigation System, Sudan,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Akhtar, F.[Fazlullah], Awan, U.K.[Usman Khalid], Tischbein, B.[Bernhard], Liaqat, U.W.[Umar Waqas],
Assessment of Irrigation Performance in Large River Basins under Data Scarce Environment: A Case of Kabul River Basin, Afghanistan,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Blatchford, M.L.[Megan Leigh], Karimi, P.[Poolad], Bastiaanssen, W.G.M., Nouri, H.[Hamideh],
From Global Goals to Local Gains: A Framework for Crop Water Productivity,
IJGI(7), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Kiptala, J.K.[Jeremiah K.], Mul, M.[Marloes], Mohamed, Y.[Yasir], Bastiaanssen, W.G.M.[Wim G.M.], van der Zaag, P.[Pieter],
Mapping Ecological Production and Benefits from Water Consumed in Agricultural and Natural Landscapes: A Case Study of the Pangani Basin,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Ragettli, S.[Silvan], Herberz, T.[Timo], Siegfried, T.[Tobias],
An Unsupervised Classification Algorithm for Multi-Temporal Irrigated Area Mapping in Central Asia,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Bousbih, S.[Safa], Zribi, M.[Mehrez], El Hajj, M.[Mohammad], Baghdadi, N.[Nicolas], Lili-Chabaane, Z.[Zohra], Gao, Q.[Qi], Fanise, P.[Pascal],
Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Xu, T.[Tianfang], Deines, J.M.[Jillian M.], Kendall, A.D.[Anthony D.], Basso, B.[Bruno], Hyndman, D.W.[David W.],
Addressing Challenges for Mapping Irrigated Fields in Subhumid Temperate Regions by Integrating Remote Sensing and Hydroclimatic Data,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Vogels, M.F.A.[Marjolein F.A.], de Jong, S.M.[Steven M.], Sterk, G.[Geert], Douma, H.[Harke], Addink, E.A.[Elisabeth A.],
Spatio-Temporal Patterns of Smallholder Irrigated Agriculture in the Horn of Africa Using GEOBIA and Sentinel-2 Imagery,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Demarez, V.[Valérie], Helen, F.[Florian], Marais-Sicre, C.[Claire], Baup, F.[Frédéric],
In-Season Mapping of Irrigated Crops Using Landsat 8 and Sentinel-1 Time Series,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Bazzi, H.[Hassan], Baghdadi, N.[Nicolas], Ienco, D.[Dino], El Hajj, M.[Mohammad], Zribi, M.[Mehrez], Belhouchette, H.[Hatem], Escorihuela, M.J.[Maria Jose], Demarez, V.[Valérie],
Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Pageot, Y.[Yann], Baup, F.[Frédéric], Inglada, J.[Jordi], Baghdadi, N.[Nicolas], Demarez, V.[Valérie],
Detection of Irrigated and Rainfed Crops in Temperate Areas Using Sentinel-1 and Sentinel-2 Time Series,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Xiang, K.L.[Kun-Lun], Ma, M.[Minna], Liu, W.[Wei], Dong, J.[Jie], Zhu, X.F.[Xiu-Fang], Yuan, W.P.[Wen-Ping],
Mapping Irrigated Areas of Northeast China in Comparison to Natural Vegetation,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Liu, Q.S.[Qing-Sheng], Song, H.W.[Hong-Wei], Liu, G.[Gaohuan], Huang, C.[Chong], Li, H.[He],
Evaluating the Potential of Multi-Seasonal CBERS-04 Imagery for Mapping the Quasi-Circular Vegetation Patches in the Yellow River Delta Using Random Forest,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Traoré, F.[Farid], Bonkoungou, J.[Joachim], Compaoré, J.[Jérôme], Kouadio, L.[Louis], Wellens, J.[Joost], Hallot, E.[Eric], Tychon, B.[Bernard],
Using Multi-Temporal Landsat Images and Support Vector Machine to Assess the Changes in Agricultural Irrigated Areas in the Mogtedo Region, Burkina Faso,
RS(11), No. 12, 2019, pp. xx-yy.
DOI Link 1907
BibRef

de C Teixeira, A.H., de Miranda, F.R., Leivas, J.F., Pacheco, E.P., Garçon, E.A.M.,
Water productivity assessments for dwarf coconut by using Landsat 8 images and agrometeorological data,
PandRS(155), 2019, pp. 150-158.
Elsevier DOI 1908
Evapotranspiration, Biomass production, Irrigation management, Remote sensing, L. BibRef

Lovell, R.J.[Robin J.],
Identifying Alternative Wetting and Drying (AWD) Adoption in the Vietnamese Mekong River Delta: A Change Detection Approach,
IJGI(8), No. 7, 2019, pp. xx-yy.
DOI Link 1908
Water saving practice for rice growing. BibRef

Gobbo, S.[Stefano], Presti, S.L.[Stefano Lo], Martello, M.[Marco], Panunzi, L.[Lorenza], Berti, A.[Antonio], Morari, F.[Francesco],
Integrating SEBAL with in-Field Crop Water Status Measurement for Precision Irrigation Applications: A Case Study,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Hao, Z.[Zhen], Zhao, H.L.[Hong-Li], Zhang, C.[Chi], Wang, H.[Hao], Jiang, Y.Z.[Yun-Zhong],
Detecting Winter Wheat Irrigation Signals Using SMAP Gridded Soil Moisture Data,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Coakley, C.[Corrine], Munro-Stasiuk, M.[Mandy], Tyner, J.A.[James A.], Kimsroy, S.[Sokvisal], Chhay, C.[Chhunly], Rice, S.[Stian],
Extracting Khmer Rouge Irrigation Networks from Pre-Landsat 4 Satellite Imagery Using Vegetation Indices,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Saraiva, M.[Marciano], Protas, É.[Églen], Salgado, M.[Moisés], Souza, C.[Carlos],
Automatic Mapping of Center Pivot Irrigation Systems from Satellite Images Using Deep Learning,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Bolognesi, S.F.[Salvatore Falanga], Pasolli, E.[Edoardo], Belfiore, O.R.[Oscar Rosario], de Michele, C.[Carlo], d'Urso, G.[Guido],
Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Bazzi, H.[Hassan], Baghdadi, N.[Nicolas], Fayad, I.[Ibrahim], Zribi, M.[Mehrez], Belhouchette, H.[Hatem], Demarez, V.[Valérie],
Near Real-Time Irrigation Detection at Plot Scale Using Sentinel-1 Data,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Fayad, I.[Ibrahim], Baghdadi, N.[Nicolas], Bazzi, H.[Hassan], Zribi, M.[Mehrez],
Near Real-Time Freeze Detection over Agricultural Plots Using Sentinel-1 Data,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Le Page, M.[Michel], Jarlan, L.[Lionel], El Hajj, M.M.[Marcel M.], Zribi, M.[Mehrez], Baghdadi, N.[Nicolas], Boone, A.[Aaron],
Potential for the Detection of Irrigation Events on Maize Plots Using Sentinel-1 Soil Moisture Products,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Ronchetti, G.[Giulia], Mayer, A.[Alice], Facchi, A.[Arianna], Ortuani, B.[Bianca], Sona, G.[Giovanna],
Crop Row Detection through UAV Surveys to Optimize On-Farm Irrigation Management,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Olino de Albuquerque, A.[Anesmar], de Carvalho Júnior, O.A.[Osmar Abílio], Ferreira de Carvalho, O.L.[Osmar Luiz], de Bem, P.P.[Pablo Pozzobon], Ferreira, P.H.G.[Pedro Henrique Guimarães], dos Santos de Moura, R.[Rebeca], Silva, C.R.[Cristiano Rosa], Gomes, R.A.T.[Roberto Arnaldo Trancoso], Guimarães, R.F.[Renato Fontes],
Deep Semantic Segmentation of Center Pivot Irrigation Systems from Remotely Sensed Data,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Ketchum, D.[David], Jencso, K.[Kelsey], Maneta, M.P.[Marco P.], Melton, F.[Forrest], Jones, M.O.[Matthew O.], Huntington, J.[Justin],
IrrMapper: A Machine Learning Approach for High Resolution Mapping of Irrigated Agriculture Across the Western U.S.,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Dari, J.[Jacopo], Brocca, L.[Luca], Quintana-Seguí, P.[Pere], Escorihuela, M.J.[María José], Stefan, V.[Vivien], Morbidelli, R.[Renato],
Exploiting High-Resolution Remote Sensing Soil Moisture to Estimate Irrigation Water Amounts over a Mediterranean Region,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Du, J.X.[Jia-Xin], Fu, B.H.[Bi-Hong], Guo, Q.A.[Qi-Ang], Shi, P.L.[Pi-Long],
Monitoring and Assessment of the Oasis Ecological Resilience Improved by Rational Water Dispatching Using Multiple Remote Sensing Data: A Case Study of the Heihe River Basin, Silk Road,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Sawadogo, A.[Alidou], Kouadio, L.[Louis], Traoré, F.[Farid], Zwart, S.J.[Sander J.], Hessels, T.[Tim], Gündogdu, K.S.[Kemal Sulhi],
Spatiotemporal Assessment of Irrigation Performance of the Kou Valley Irrigation Scheme in Burkina Faso Using Satellite Remote Sensing-Derived Indicators,
IJGI(9), No. 8, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Blatchford, M.[Megan], Mannaerts, C.M.[Chris M.], Zeng, Y.J.[Yi-Jian], Nouri, H.[Hamideh], Karimi, P.[Poolad],
Influence of Spatial Resolution on Remote Sensing-Based Irrigation Performance Assessment Using WaPOR Data,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Wang, L.P.[Li-Ping], Wang, S.[Shufang], Zhang, L.[Liudong], Salahou, M.K.[Mohamed Khaled], Jiao, X.[Xiyun], Sang, H.H.[Hong-Hui],
Assessing the Spatial Pattern of Irrigation Demand under Climate Change in Arid Area,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Garrido-Rubio, J.[Jesús], Calera, A.[Alfonso], Arellano, I.[Irene], Belmonte, M.[Mario], Fraile, L.[Lorena], Ortega, T.[Tatiana], Bravo, R.[Raquel], González-Piqueras, J.[José],
Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Paciolla, N.[Nicola], Corbari, C.[Chiara], Bitar, A.A.[Ahmad Al], Kerr, Y.[Yann], Mancini, M.[Marco],
Irrigation and Precipitation Hydrological Consistency with SMOS, SMAP, ESA-CCI, Copernicus SSM1km, and AMSR-2 Remotely Sensed Soil Moisture Products,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Bradley, S.[Stuart], Radionova, A.[Anna], Ghimire, C.[Chandra], Grundy, L.[Laura], Laurenson, S.[Seth], Snow, V.[Val],
Irrigation Control through Acoustic Proximal Sensing of the Onset of Surface Water,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Graf, L.[Lukas], Bach, H.[Heike], Tiede, D.[Dirk],
Semantic Segmentation of Sentinel-2 Imagery for Mapping Irrigation Center Pivots,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Bazzi, H.[Hassan], Baghdadi, N.[Nicolas], Fayad, I.[Ibrahim], Charron, F.[François], Zribi, M.[Mehrez], Belhouchette, H.[Hatem],
Irrigation Events Detection over Intensively Irrigated Grassland Plots Using Sentinel-1 Data,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Coleman, R.W.[Red Willow], Stavros, N.[Natasha], Hulley, G.[Glynn], Parazoo, N.[Nicholas],
Comparison of Thermal Infrared-Derived Maps of Irrigated and Non-Irrigated Vegetation in Urban and Non-Urban Areas of Southern California,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Xiang, K.[Kunlun], Yuan, W.P.[Wen-Ping], Wang, L.[Liwen], Deng, Y.[Yujiao],
An LSWI-Based Method for Mapping Irrigated Areas in China Using Moderate-Resolution Satellite Data,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Tang, J.W.[Ji-Wen], Zhang, Z.[Zheng], Zhao, L.J.[Li-Jun], Tang, P.[Ping],
Increasing Shape Bias to Improve the Precision of Center Pivot Irrigation System Detection,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Wasonga, D.O.[Daniel O.], Yaw, A.[Afrane], Kleemola, J.[Jouko], Alakukku, L.[Laura], Mäkelä, P.S.A.[Pirjo S.A.],
Red-Green-Blue and Multispectral Imaging as Potential Tools for Estimating Growth and Nutritional Performance of Cassava under Deficit Irrigation and Potassium Fertigation,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Magidi, J.[James], Nhamo, L.[Luxon], Mpandeli, S.[Sylvester], Mabhaudhi, T.[Tafadzwanashe],
Application of the Random Forest Classifier to Map Irrigated Areas Using Google Earth Engine,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Wellington, M.J.[Michael J.], Renzullo, L.J.[Luigi J.],
High-Dimensional Satellite Image Compositing and Statistics for Enhanced Irrigated Crop Mapping,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Johansen, K.[Kasper], Lopez, O.[Oliver], Tu, Y.H.[Yu-Hsuan], Li, T.[Ting], McCabe, M.F.[Matthew Francis],
Center pivot field delineation and mapping: A satellite-driven object-based image analysis approach for national scale accounting,
PandRS(175), 2021, pp. 1-19.
Elsevier DOI 2105
Geographic object-based image analysis, Agricultural center pivot fields, Landsat, Time-series, NDVI, Edge detection BibRef

Norton, C.L.[Cynthia L.], Dannenberg, M.P.[Matthew P.], Yan, D.[Dong], Wallace, C.S.A.[Cynthia S. A.], Rodriguez, J.R.[Jesus R.], Munson, S.M.[Seth M.], van Leeuwen, W.J.D.[Willem J. D.], Smith, W.K.[William K.],
Climate and Socioeconomic Factors Drive Irrigated Agriculture Dynamics in the Lower Colorado River Basin,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Sharma, A.K.[Amit Kumar], Hubert-Moy, L.[Laurence], Buvaneshwari, S.[Sriramulu], Sekhar, M.[Muddu], Ruiz, L.[Laurent], Moger, H.[Hemanth], Bandyopadhyay, S.[Soumya], Corgne, S.[Samuel],
Identifying Seasonal Groundwater-Irrigated Cropland Using Multi-Source NDVI Time-Series Images,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Ren, J.[Jie], Shao, Y.[Yang], Wan, H.[Heng], Xie, Y.H.[Yan-Hua], Campos, A.[Adam],
A two-step mapping of irrigated corn with multi-temporal MODIS and Landsat analysis ready data,
PandRS(176), 2021, pp. 69-82.
Elsevier DOI 2106
Multi-temporal classification, Landsat ARD, Gap-filling, Annual irrigation mapping BibRef

Zhu, L.M.[Li-Ming], Zhu, A.X.[A-Xing],
Extraction of Irrigation Signals by Using SMAP Soil Moisture Data,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Bazzi, H.[Hassan], Baghdadi, N.[Nicolas], Amin, G.[Ghaith], Fayad, I.[Ibrahim], Zribi, M.[Mehrez], Demarez, V.[Valérie], Belhouchette, H.[Hatem],
An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Ouaadi, N.[Nadia], Jarlan, L.[Lionel], Khabba, S.[Saïd], Ezzahar, J.[Jamal], Page, M.L.[Michel Le], Merlin, O.[Olivier],
Irrigation Amounts and Timing Retrieval through Data Assimilation of Surface Soil Moisture into the FAO-56 Approach in the South Mediterranean Region,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

den Besten, N.[Nadja], Steele-Dunne, S.[Susan], de Jeu, R.[Richard], van der Zaag, P.[Pieter],
Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Belaqziz, S.[Salwa], Khabba, S.[Saïd], Kharrou, M.H.[Mohamed Hakim], Bouras, E.[El_Houssaine], Er-Raki, S.[Salah], Chehbouni, A.[Abdelghani],
Optimizing the Sowing Date to Improve Water Management and Wheat Yield in a Large Irrigation Scheme, through a Remote Sensing and an Evolution Strategy-Based Approach,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef


Razakova, M.G., Ainakulov, Z.Z., Kuzmin, A.G., Fedorov, I.0., Yergaliev, R.K.,
Development of Hardware and Software Architecture for Analysis And Processing of the Field Data,
ISPRS20(B2:1253-1258).
DOI Link 2012
measuring humidity of the surface air layer above the soya field in order to control the irrigation quality. BibRef

Lu, Y., Song, W., Su, Z., Lü, J., Liu, Y., Li, M.,
Mapping Irrigated Areas Using Random Forest Based on Gf-1 Multi-spectral Data,
ISPRS20(B2:697-702).
DOI Link 2012
BibRef

Wang, C.H.,
Using Remote Sensing Technology on the Delimitation of the Conservation Area for the Jianan Irrigation System Cultural Landsccape,
CIPA15(443-448).
DOI Link 1508
BibRef

Wittamperuma, I., Hafeez, M., Pakparvar, M., Louis, J.,
Remote-sensing-based Biophysical Models For Estimating LAI of Irrigated Crops In Murry Darling Basin,
ISPRS12(XXXIX-B8:367-373).
DOI Link 1209
BibRef

Abuzar, M., Mcallister, A., Whitfield, D., Sheffield, K.,
Satellite-based Measurements For Benchmarking Regional Irrigation Performance In Goulburn-murray Catchment,
ISPRS12(XXXIX-B8:221-223).
DOI Link 1209
BibRef

Dong, T.T.[Ting-Ting], Wang, Z.Y.[Zhen-Ying],
A new method to distinguish between irrigated dry land and rain-fed dry land using multi-temporal MODIS and ancillary data: An application example in China,
IASP10(393-398).
IEEE DOI 1004
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Water Use Analysis, Water Stress .


Last update:Oct 16, 2021 at 11:54:21