Carin, L.,
Kapoor, R.,
Baum, C.E.,
Polarimetric SAR Imaging of Buried Landmines,
GeoRS(36), No. 6, November 1998, pp. 1985.
IEEE Top Reference.
BibRef
9811
van der Merwe, A.,
Gupta, I.J.,
A Novel Signal Processing Technique for Clutter Reduction in GPR
Measurements of Small, Shallow Land Mines,
GeoRS(38), No. 6, November 2000, pp. 2627-2638.
IEEE Top Reference.
0011
BibRef
Gu, I.Y.H.[Irene Yu-Hua],
Tjahjadi, T.[Tardi],
Detecting and locating landmine fields from vehicle- and air-borne
measured IR Images,
PR(35), No. 12, December 2002, pp. 3001-3014.
Elsevier DOI
0209
BibRef
Sletten, M.A.,
Ultrawideband Radar Images of the Surface Disturbance Produced by a
Submerged, Mine-Like Object,
GeoRS(38), No. 6, November 2000, pp. 2506-2514.
IEEE Top Reference.
0011
Land Mines.
BibRef
Stanley, R.J.,
Gader, P.D.,
Ho, D.,
Feature and decision level sensor fusion of electromagnetic induction
and ground penetrating radar sensors for landmine detection
with hand-held units,
Information Fusion(3), No. 3, September 2002, pp. 215-223.
BibRef
0209
Gader, P.D.,
Nelson, B.N.,
Frigui, H.,
Vaillette, G.,
Keller, J.M.,
Fuzzy logic detection of landmines with ground penetrating radar,
SP(80), No. 6, June 2000, pp. 1069-1084.
0008
BibRef
Missaoui, O.,
Frigui, H.,
Gader, P.D.,
Land-Mine Detection With Ground-Penetrating Radar Using Multistream
Discrete Hidden Markov Models,
GeoRS(49), No. 6, June 2011, pp. 2080-2099.
IEEE DOI
1106
BibRef
Nelson, B.N.[Bruce N.],
Region of Interest Identification, Feature Extraction, and Information
Fusion in a Forward Looking Infrared Sensor Used in Landmine Detection,
CVBVS00(94).
IEEE DOI
0006
BibRef
Ho, K.C.,
Gader, P.D.,
A linear prediction land mine detection algorithm for hand held ground
penetrating radar,
GeoRS(40), No. 6, June 2002, pp. 1374-1384.
IEEE Top Reference.
0208
BibRef
Zhao, Y.X.[Yun-Xin],
Gader, P.D.,
Chen, P.[Ping],
Zhang, Y.[Yue],
Training DHMMs of mine and clutter to minimize landmine detection
errors,
GeoRS(41), No. 5, May 2003, pp. 1016-1024.
IEEE Abstract.
0307
BibRef
Hocaoglu, A.K.,
Gader, P.D.,
Generalizations of Morphological Shared Weight Networks Using Choquet
Integrals with Applications to Ground Penetrating Radar Based Land Mine
Detection,
CVBVS01(xx-yy).
0110
See also Morphological Shared-Weight Networks with Applications to Automatic Target Recognition.
BibRef
Gader, P.D.,
Pattern recognition for humanitarian de-mining,
ICPR02(II: 521-522).
IEEE DOI
0211
BibRef
Wilson, J.N.,
Gader, P.D.,
Lee, W.H.,
Frigui, H.,
Ho, K.C.,
A Large-Scale Systematic Evaluation of Algorithms Using
Ground-Penetrating Radar for Landmine Detection and Discrimination,
GeoRS(45), No. 8, August 2007, pp. 2560-2572.
IEEE DOI
0709
BibRef
Byrnes, J.[James], (Ed.)
Unexploded Ordnance Detection and Mitigation,
Springer2009, ISBN: 978-1-4020-9252-7
WWW Link.
Survey, UXO. NATO Advanced Study Institute on Unexploded Ordnance Detection and
Mitigation Il Ciocco 20 July - 2 August 2008.
Buy this book: Unexploded Ordnance Detection and Mitigation (NATO Science for Peace and Security Series B: Physics and Biophysics)
BibRef
0900
Beran, L.,
Oldenburg, D.W.,
Selecting a Discrimination Algorithm for Unexploded Ordnance
Remediation,
GeoRS(46), No. 9, September 2008, pp. 2547-2557.
IEEE DOI
0810
BibRef
Beran, L.,
Billings, S.,
Oldenburg, D.,
Incorporating Uncertainty in Unexploded Ordnance Discrimination,
GeoRS(49), No. 8, August 2011, pp. 3071-3080.
IEEE DOI
1108
BibRef
Liu, Q.,
Liao, X.,
Carin, L.,
Detection of Unexploded Ordnance via Efficient Semisupervised and
Active Learning,
GeoRS(46), No. 9, September 2008, pp. 2558-2567.
IEEE DOI
0810
BibRef
Anderson, D.T.[Derek T.],
Price, S.R.[Stanton R.],
Havens, T.C.[Timothy C.],
Pinar, A.J.[Anthony J.],
Computational intelligence in explosive hazard detection,
SPIE(Newsroom), December 24, 2015
DOI Link
1602
Computational intelligence enables forward-looking explosive hazard
detection at all stages in single- and multi-sensor signal processing.
BibRef
Malof, J.M.,
Reichman, D.,
Karem, A.,
Frigui, H.,
Ho, K.C.,
Wilson, J.N.,
Lee, W.,
Cummings, W.J.,
Collins, L.M.,
A Large-Scale Multi-Institutional Evaluation of Advanced
Discrimination Algorithms for Buried Threat Detection in Ground
Penetrating Radar,
GeoRS(57), No. 9, September 2019, pp. 6929-6945.
IEEE DOI
1909
Ground penetrating radar, Radar antennas, Antenna arrays, Sensors,
Machine learning algorithms, Arrays,
landmine detection
BibRef
Ng, W.,
Chan, T.C.T.,
So, H.C.,
Ho, K.C.,
Particle Filtering Based Approach for Landmine Detection Using Ground
Penetrating Radar,
GeoRS(46), No. 11, November 2008, pp. 3739-3755.
IEEE DOI
0812
BibRef
Ho, K.C.,
Carin, L.,
Gader, P.D.,
Wilson, J.N.,
An Investigation of Using the Spectral Characteristics From Ground
Penetrating Radar for Landmine/Clutter Discrimination,
GeoRS(46), No. 4, April 2008, pp. 1177-1191.
IEEE DOI
0803
BibRef
Xu, Y.[Yi],
Narayanan, R.M.,
Xu, X.J.[Xiao-Jian],
Curtis, J.O.,
Polarimetric processing of coherent random noise radar data for buried
object detection,
GeoRS(39), No. 3, March 2001, pp. 467-478.
IEEE Top Reference.
0104
Land Mines.
BibRef
Schroder, C.T.,
Scott, W.R.,
Larson, G.D.,
Elastic waves interacting with buried land mines:
A study using the FDTD method,
GeoRS(40), No. 6, June 2002, pp. 1405-1415.
IEEE Top Reference.
0208
BibRef
El-Shenawee, M.,
Rappaport, C.M.,
Monte carlo simulations for clutter statistics in minefields:
AP-mine-like-target buried near a dielectric object beneath 2-D random rough
ground surfaces,
GeoRS(40), No. 6, June 2002, pp. 1416-1426.
IEEE Top Reference.
0208
BibRef
Stiles, J.M.,
Apte, A.V.,
Beh, B.,
A group-theoretic analysis of symmetric target scattering with
application to landmine detection,
GeoRS(40), No. 8, August 2002, pp. 1802-1814.
IEEE Top Reference.
0210
BibRef
Milisavljevic, N.[Nada],
Bloch, I.[Isabelle],
van den Broek, S.[Sebastiaan],
Acheroy, M.[Marc],
Improving mine recognition through processing and Dempster-Shafer
fusion of ground-penetrating radar data,
PR(36), No. 5, May 2003, pp. 1233-1250.
Elsevier DOI
0301
BibRef
Milisavljevic, N.[Nada],
Bloch, I.[Isabelle],
Sensor fusion in anti-personnel mine detection using a two-level belief
function model,
SMC-C(33), No. 2, May 2003, pp. 269-283.
IEEE Abstract.
0308
BibRef
Milisavljevic, N.[Nada],
Bloch, I.[Isabelle],
Possibilistic Versus Belief Function Fusion for Antipersonnel Mine
Detection,
GeoRS(46), No. 5, May 2008, pp. 1488-1498.
IEEE DOI
0804
BibRef
Khanafer, K.,
Vafai, K.,
Baertlein, B.A.,
Effects of thin metal outer case and top air gap on thermal IR images
of buried antitank and antipersonnel land mines,
GeoRS(41), No. 1, January 2003, pp. 123-135.
IEEE Top Reference.
0304
BibRef
Batman, S.,
Goutsias, J.,
Unsupervised iterative detection of land mines in highly cluttered
environments,
IP(12), No. 5, May 2003, pp. 509-523.
IEEE DOI
0307
BibRef
Ho, K.C.,
Collins, L.M.,
Huettel, L.G.,
Gader, P.D.,
Discrimination Mode Processing for EMI and GPR Sensors for Hand-Held
Land Mine Detection,
GeoRS(42), No. 1, January 2004, pp. 249-263.
IEEE Abstract.
0402
BibRef
Zhu, Q.,
Collins, L.M.,
Application of Feature Extraction Methods for Landmine Detection Using
the Wichmann/Niitek Ground-Penetrating Radar,
GeoRS(43), No. 1, January 2005, pp. 81-85.
IEEE Abstract.
0501
BibRef
Song, J.,
Liu, Q.H.,
Torrione, P.,
Collins, L.M.,
Two-Dimensional and Three-Dimensional NUFFT Migration Method for
Landmine Detection Using Ground-Penetrating Radar,
GeoRS(44), No. 6, June 2006, pp. 1462-1469.
IEEE DOI
0606
BibRef
Torrione, P.,
Collins, L.M.,
Texture Features for Antitank Landmine Detection Using Ground
Penetrating Radar,
GeoRS(45), No. 7, July 2007, pp. 2374-2382.
IEEE DOI
0707
BibRef
Lee, W.H.,
Gader, P.D.,
Wilson, J.N.,
Optimizing the Area Under a Receiver Operating Characteristic Curve
With Application to Landmine Detection,
GeoRS(45), No. 2, February 2007, pp. 389-397.
IEEE DOI
0703
BibRef
Wang, T.,
Keller, J.M.,
Gader, P.D.,
Sjahputera, O.,
Frequency Subband Processing and Feature Analysis of Forward-Looking
Ground-Penetrating Radar Signals for Land-Mine Detection,
GeoRS(45), No. 3, March 2007, pp. 718-729.
IEEE DOI
0703
BibRef
Sai, B.,
Ligthart, L.P.,
GPR Phase-Based Techniques for Profiling Rough Surfaces and Detecting
Small, Low-Contrast Landmines Under Flat Ground,
GeoRS(42), No. 2, February 2004, pp. 318-326.
IEEE Abstract.
0403
BibRef
Kansal, S.,
Cook, G.,
Use of Fiducials and Unsurveyed Landmarks as Geolocation Tools in
Vehicular-Based Landmine Search,
GeoRS(43), No. 6, June 2005, pp. 1432-1439.
IEEE Abstract.
0506
BibRef
Sun, K.,
O'Neill, K.,
Shubitidze, F.,
Shamatava, I.,
Paulsen, K.D.,
Fast data-derived fundamental spheroidal excitation models with
application to UXO discrimination,
GeoRS(43), No. 11, November 2005, pp. 2573-2583.
IEEE DOI
0512
BibRef
Potin, D.,
Vanheeghe, P.,
Duflos, E.,
Davy, M.,
An Abrupt Change Detection Algorithm for Buried Landmines Localization,
GeoRS(44), No. 2, February 2006, pp. 260-272.
IEEE DOI
0602
BibRef
Potin, D.,
Duflos, E.,
Vanheeghe, P.,
Landmines Ground-Penetrating Radar Signal Enhancement by Digital
Filtering,
GeoRS(44), No. 9, September 2006, pp. 2393-2406.
IEEE DOI
0609
BibRef
Church, P.,
McFee, J.E.,
Gagnon, S.,
Wort, P.,
Electrical Impedance Tomographic Imaging of Buried Landmines,
GeoRS(44), No. 9, September 2006, pp. 2407-2420.
IEEE DOI
0609
BibRef
Fischer, C.,
Herschlein, A.,
Younis, M.,
Wiesbeck, W.,
Detection of Antipersonnel Mines by Using the Factorization Method on
Multistatic Ground-Penetrating Radar Measurements,
GeoRS(45), No. 1, January 2007, pp. 85-92.
IEEE DOI
0701
BibRef
Savelyev, T.G.,
van Kempen, L.,
Sahli, H.,
Sachs, J.,
Sato, M.,
Investigation of Time-Frequency Features for GPR Landmine
Discrimination,
GeoRS(45), No. 1, January 2007, pp. 118-129.
IEEE DOI
0701
BibRef
Thnh, N.T.,
Sahli, H.,
Ho, D.N.,
Finite-Difference Methods and Validity of a Thermal Model for Landmine
Detection With Soil Property Estimation,
GeoRS(45), No. 3, March 2007, pp. 656-674.
IEEE DOI
0703
BibRef
Thanh, N.T,
Sahli, H.,
Hao, D.N,
Infrared Thermography for Buried Landmine Detection:
Inverse Problem Setting,
GeoRS(46), No. 12, December 2008, pp. 3987-4004.
IEEE DOI
0812
BibRef
Lopera, O.,
Slob, E.C.,
Milisavljevic, N.,
Lambot, S.,
Filtering Soil Surface and Antenna Effects From GPR Data to Enhance
Landmine Detection,
GeoRS(45), No. 3, March 2007, pp. 707-717.
IEEE DOI
0703
BibRef
He, L.,
Ji, S.,
Scott, W.R.,
Carin, L.[Lawrence],
Adaptive Multimodality Sensing of Landmines,
GeoRS(45), No. 6, June 2007, pp. 1756-1774.
IEEE DOI
0706
BibRef
Williams, D.[David],
Wang, C.,
Liao, X.J.[Xue-Jun],
Carin, L.[Lawrence],
Classification of Unexploded Ordnance Using Incomplete Multisensor
Multiresolution Data,
GeoRS(45), No. 7, July 2007, pp. 2364-2373.
IEEE DOI
0707
See also On Classification with Incomplete Data.
BibRef
Masuyama, S.,
Hirose, A.,
Walled LTSA Array for Rapid, High Spatial Resolution, and
Phase-Sensitive Imaging to Visualize Plastic Landmines,
GeoRS(45), No. 8, August 2007, pp. 2536-2543.
IEEE DOI
0709
BibRef
Jin, T.,
Zhou, Z.,
Ultrawideband Synthetic Aperture Radar Landmine Detection,
GeoRS(45), No. 11, November 2007, pp. 3561-3573.
IEEE DOI
0709
BibRef
Jin, T.,
Zhou, Z.,
Feature Extraction and Discriminator Design for Landmine Detection on
Double-Hump Signature in Ultrawideband SAR,
GeoRS(46), No. 11, November 2008, pp. 3783-3791.
IEEE DOI
0812
BibRef
Zare, A.,
Bolton, J.[Jeremy],
Gader, P.D.[Paul D.],
Schatten, M.,
Vegetation Mapping for Landmine Detection Using Long-Wave Hyperspectral
Imagery,
GeoRS(46), No. 1, January 2008, pp. 172-178.
IEEE DOI
0712
BibRef
Frigui, H.,
Zhang, L.,
Gader, P.D.,
Context-Dependent Multisensor Fusion and Its Application to Land Mine
Detection,
GeoRS(48), No. 6, June 2010, pp. 2528-2543.
IEEE DOI
1006
BibRef
Thomas, A.M.,
Cathcart, J.M.,
Applications of Grid Pattern Matching to the Detection of Buried
Landmines,
GeoRS(48), No. 9, September 2010, pp. 3465-3470.
IEEE DOI
1008
BibRef
Ratto, C.R.,
Torrione, P.A.,
Collins, L.M.,
Exploiting Ground-Penetrating Radar Phenomenology in a
Context-Dependent Framework for Landmine Detection and Discrimination,
GeoRS(49), No. 5, May 2011, pp. 1689-1700.
IEEE DOI
1105
BibRef
Lou, J.[Jun],
Jin, T.[Tian],
Liang, F.[Fulai],
Zhou, Z.M.[Zhi-Min],
A Novel Prescreening Method for Land-Mine Detection in UWB SAR
Based on Feature Point Matching,
GeoRS(51), No. 6, 2013, pp. 3706-3714.
IEEE DOI
1307
landmine detection; clutter environments
BibRef
Weichman, P.B.,
Validation of Advanced EM Models for UXO Discrimination,
GeoRS(51), No. 7, 2013, pp. 3954-3967.
IEEE DOI
1307
Current measurement
BibRef
Li, Y.[Yaoguo],
Devriese, S.G.R.,
Krahenbuhl, R.A.,
Davis, K.,
Enhancement of Magnetic Data by Stable Downward Continuation
for UXO Application,
GeoRS(51), No. 6, 2013, pp. 3605-3614.
IEEE DOI
1307
UXO application; magnetic anomalies
BibRef
Takahashi, K.,
Igel, J.,
Preetz, H.,
Sato, M.,
Influence of Heterogeneous Soils and Clutter on the Performance of
Ground-Penetrating Radar for Landmine Detection,
GeoRS(52), No. 6, June 2014, pp. 3464-3472.
IEEE DOI
1403
Clutter
BibRef
Fandos, R.,
Zoubir, A.M.,
Siantidis, K.,
Unified Design of a Feature-Based ADAC System for Mine Hunting Using
Synthetic Aperture Sonar,
GeoRS(52), No. 5, May 2014, pp. 2413-2426.
IEEE DOI
1403
Clutter
BibRef
Esposito, S.,
Fallavollita, P.,
Corcione, M.,
Balsi, M.,
Experimental Validation of an Active Thermal Landmine Detection
Technique,
GeoRS(52), No. 4, April 2014, pp. 2040-2047.
IEEE DOI
1403
infrared detectors
BibRef
Torrione, P.A.,
Morton, K.D.,
Sakaguchi, R.,
Collins, L.M.,
Histograms of Oriented Gradients for Landmine Detection in
Ground-Penetrating Radar Data,
GeoRS(52), No. 3, March 2014, pp. 1539-1550.
IEEE DOI
1403
feature extraction
BibRef
Manandhar, A.,
Torrione, P.A.,
Collins, L.M.,
Morton, K.D.,
Multiple-Instance Hidden Markov Model for GPR-Based Landmine
Detection,
GeoRS(53), No. 4, April 2015, pp. 1737-1745.
IEEE DOI
1502
expectation-maximisation algorithm
BibRef
Malof, J.M.,
Morton, K.D.,
Collins, L.M.,
Torrione, P.A.,
A Probabilistic Model for Designing Multimodality Landmine Detection
Systems to Improve Rates of Advance,
GeoRS(54), No. 9, September 2016, pp. 5258-5270.
IEEE DOI
1609
geophysical equipment
BibRef
Sakaguchi, R.,
Morton, K.D.,
Collins, L.M.,
Torrione, P.A.,
A Comparison of Feature Representations for Explosive Threat
Detection in Ground Penetrating Radar Data,
GeoRS(55), No. 12, December 2017, pp. 6736-6745.
IEEE DOI
1712
Explosives, Feature extraction,
Ground penetrating radar, Histograms, Image edge detection,
machine learning
BibRef
Bijamov, A.,
Fernandez, J.P.,
Barrowes, B.E.,
Shamatava, I.,
O'Neill, K.,
Shubitidze, F.,
Camp Butner Live-Site UXO Classification Using Hierarchical
Clustering and Gaussian Mixture Modeling,
GeoRS(52), No. 8, August 2014, pp. 5218-5229.
IEEE DOI
1403
Arrays
BibRef
Schofield, J.,
Daniels, D.,
Hammerton, P.,
A Multiple Migration and Stacking Algorithm Designed for Land Mine
Detection,
GeoRS(52), No. 11, November 2014, pp. 6983-6988.
IEEE DOI
1407
Detectors
BibRef
Fei, T.[Tai],
Kraus, D.,
Zoubir, A.M.,
Contributions to Automatic Target Recognition Systems for Underwater
Mine Classification,
GeoRS(53), No. 1, January 2015, pp. 505-518.
IEEE DOI
1410
feature selection
BibRef
Núñez-Nieto, X.[Xavier],
Solla, M.[Mercedes],
Gómez-Pérez, P.[Paula],
Lorenzo, H.[Henrique],
GPR Signal Characterization for Automated Landmine and UXO Detection
Based on Machine Learning Techniques,
RS(6), No. 10, 2014, pp. 9729-9748.
DOI Link
1411
BibRef
Klesk, P.[Przemyslaw],
Godziuk, A.,
Kapruziak, M.[Mariusz],
Olech, B.[Bogdan],
Fast Analysis of C-Scans From Ground Penetrating Radar via 3-D
Haar-Like Features With Application to Landmine Detection,
GeoRS(53), No. 7, July 2015, pp. 3996-4009.
IEEE DOI
1503
Antennas
BibRef
Klesk, P.[Przemyslaw],
Kapruziak, M.[Mariusz],
Olech, B.[Bogdan],
Fast Extraction of 3D Fourier Moments via Multiple Integral Images: An
Application to Antitank Mine Detection in GPR C-Scans,
ICCVG16(206-220).
Springer DOI
1611
BibRef
Krueger, K.R.,
McClellan, J.H.,
Scott, W.R.,
Efficient Algorithm Design for GPR Imaging of Landmines,
GeoRS(53), No. 7, July 2015, pp. 4010-4021.
IEEE DOI
1503
Convolution
BibRef
Yuksel, S.E.,
Bolton, J.,
Gader, P.,
Multiple-Instance Hidden Markov Models With Applications to Landmine
Detection,
GeoRS(53), No. 12, December 2015, pp. 6766-6775.
IEEE DOI
1512
expectation-maximisation algorithm
BibRef
Giannakis, I.,
Giannopoulos, A.,
Yarovoy, A.,
Model-Based Evaluation of Signal-to-Clutter Ratio for Landmine
Detection Using Ground-Penetrating Radar,
GeoRS(54), No. 6, June 2016, pp. 3564-3573.
IEEE DOI
1606
finite difference methods
BibRef
Makki, I.[Ihab],
Younes, R.[Rafic],
Francis, C.[Clovis],
Bianchi, T.[Tiziano],
Zucchetti, M.[Massimo],
A survey of landmine detection using hyperspectral imaging,
PandRS(124), No. 1, 2017, pp. 40-53.
Elsevier DOI
1702
Hyperspectral imaging
BibRef
Comite, D.,
Ahmad, F.,
Liao, D.,
Dogaru, T.,
Amin, M.G.,
Multiview Imaging for Low-Signature Target Detection in Rough-Surface
Clutter Environment,
GeoRS(55), No. 9, September 2017, pp. 5220-5229.
IEEE DOI
1709
ground penetrating radar,
Landmine detection,
BibRef
El Moubtahij, R.[Redouane],
Merad, D.[Djamal],
Damoisaux, J.L.[Jean-Luc],
Drap, P.[Pierre],
Mine Detection Based on Adaboost and Polynomial Image Decomposition,
CIAP17(I:660-670).
Springer DOI
1711
BibRef
Nikulin, A.[Alex],
de Smet, T.S.[Timothy S.],
Baur, J.[Jasper],
Frazer, W.D.[William D.],
Abramowitz, J.C.[Jacob C.],
Detection and Identification of Remnant PFM-1 'Butterfly Mines' with
a UAV-Based Thermal-Imaging Protocol,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Song, X.J.[Xiao-Ji],
Liu, T.[Tao],
Xiang, D.L.[De-Liang],
Su, Y.[Yi],
GPR Antipersonnel Mine Detection Based on Tensor Robust Principal
Analysis,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Tivive, F.H.C.,
Bouzerdoum, A.,
Abeynayake, C.,
GPR Target Detection by Joint Sparse and Low-Rank Matrix
Decomposition,
GeoRS(57), No. 5, May 2019, pp. 2583-2595.
IEEE DOI
1905
explosives, ground penetrating radar, landmine detection,
matrix decomposition, object detection, radar clutter,
target detection
BibRef
Bechtel, T.[Timothy],
Truskavetsky, S.[Stanislav],
Pochanin, G.[Gennadiy],
Capineri, L.[Lorenzo],
Sherstyuk, A.[Alexander],
Viatkin, K.[Konstantin],
Byndych, T.[Tatyana],
Ruban, V.[Vadym],
Varyanitza-Roschupkina, L.[Liudmyla],
Orlenko, O.[Oleksander],
Kholod, P.[Pavlo],
Falorni, P.[Pierluigi],
Bulletti, A.[Andrea],
Bossi, L.[Luca],
Crawford, F.[Fronefield],
Characterization of Electromagnetic Properties of In Situ Soils for
the Design of Landmine Detection Sensors: Application in Donbass,
Ukraine,
RS(11), No. 10, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Manley, P.V.[Paul V.],
Sagan, V.[Vasit],
Fritschi, F.B.[Felix B.],
Burken, J.G.[Joel G.],
Remote Sensing of Explosives-Induced Stress in Plants: Hyperspectral
Imaging Analysis for Remote Detection of Unexploded Threats,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Garcia-Fernandez, M.[Maria],
Morgenthaler, A.[Ann],
Alvarez-Lopez, Y.[Yuri],
Heras, F.L.[Fernando Las],
Rappaport, C.[Carey],
Bistatic Landmine and IED Detection Combining Vehicle and Drone
Mounted GPR Sensors,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhou, Y.,
Chen, W.,
MCA-Based Clutter Reduction From Migrated GPR Data of Shallowly
Buried Point Target,
GeoRS(57), No. 1, January 2019, pp. 432-448.
IEEE DOI
1901
Clutter, Ground penetrating radar, Dictionaries, Transforms,
Morphology, Shape, Landmine detection, Clutter reduction, migration,
sparse representation
BibRef
Garcia-Fernandez, M.[Maria],
Alvarez-Lopez, Y.[Yuri],
Heras, F.L.[Fernando Las],
Autonomous Airborne 3D SAR Imaging System for Subsurface Sensing:
UWB-GPR on Board a UAV for Landmine and IED Detection,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Giovanneschi, F.,
Mishra, K.V.,
Gonzalez-Huici, M.A.,
Eldar, Y.C.,
Ender, J.H.G.,
Dictionary Learning for Adaptive GPR Landmine Classification,
GeoRS(57), No. 12, December 2019, pp. 10036-10055.
IEEE DOI
1912
Ground penetrating radar, Landmine detection,
Support vector machines, Training, Machine learning, Dictionaries,
sparse decomposition
BibRef
Baur, J.[Jasper],
Steinberg, G.[Gabriel],
Nikulin, A.[Alex],
Chiu, K.[Kenneth],
de Smet, T.S.[Timothy S.],
Applying Deep Learning to Automate UAV-Based Detection of Scatterable
Landmines,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Pambudi, A.D.,
Fauß, M.,
Ahmad, F.,
Zoubir, A.M.,
Minimax Robust Landmine Detection Using Forward-Looking
Ground-Penetrating Radar,
GeoRS(58), No. 7, July 2020, pp. 5032-5041.
IEEE DOI
2006
Landmine detection, Clutter, Rough surfaces, Surface roughness,
Light rail systems, Tomography, Detectors, Density band model,
robust statistic
BibRef
Tajdini, M.M.,
Gonzalez-Valdes, B.,
Martinez-Lorenzo, J.A.,
Morgenthaler, A.W.,
Rappaport, C.M.,
Real-Time Modeling of Forward-Looking Synthetic Aperture Ground
Penetrating Radar Scattering From Rough Terrain,
GeoRS(57), No. 5, May 2019, pp. 2754-2765.
IEEE DOI
1905
electromagnetic wave scattering, finite difference methods,
frequency-domain analysis, ground penetrating radar,
subsurface detection
BibRef
Tajdini, M.M.,
Morgenthaler, A.W.,
Rappaport, C.M.,
Multiview Synthetic Aperture Ground-Penetrating Radar Detection in
Rough Terrain Environment: A Real-Time 3-D Forward Model,
GeoRS(58), No. 5, May 2020, pp. 3400-3410.
IEEE DOI
2005
Computational electromagnetics (EMs),
ground-penetrating radar (GPR), landmine detection,
rough surface scattering
BibRef
Bestagini, P.,
Lombardi, F.,
Lualdi, M.,
Picetti, F.,
Tubaro, S.,
Landmine Detection Using Autoencoders on Multipolarization GPR
Volumetric Data,
GeoRS(59), No. 1, January 2021, pp. 182-195.
IEEE DOI
2012
Ground penetrating radar, Landmine detection, Anomaly detection,
Training, Machine learning, Soil,
machine learning
BibRef
Bajic, M.[Milan],
Bajic, M.[Milan],
Modeling and Simulation of Very High Spatial Resolution UXOs and
Landmines in a Hyperspectral Scene for UAV Survey,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Mu, Y.X.[Ya-Xin],
Xie, W.[Wupeng],
Zhang, X.J.[Xiao-Juan],
The Joint UAV-Borne Magnetic Detection System and Cart-Mounted Time
Domain Electromagnetic System for UXO Detection,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Ibraheem, I.M.[Ismael M.],
Aladad, H.[Hasan],
Alnaser, M.F.[Mohamad Faek],
Stephenson, R.[Randell],
IAS: A New Novel Phase-Based Filter for Detection of Unexploded
Ordnances,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Hammond, T.R.[Tim R.],
Midtgaard, Ø.[Øivind],
Connors, W.A.[Warren A.],
A Bayesian Network Approach to Evaluating the Effectiveness of Modern
Mine Hunting,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Kolster, M.E.[Mick Emil],
Wigh, M.D.[Mark David],
Lima Simões da Silva, E.[Eduardo],
Vilhelmsen, T.B.[Tobias Bjerg],
Døssing, A.[Arne],
High-Speed Magnetic Surveying for Unexploded Ordnance Using UAV
Systems,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Pryshchenko, O.A.[Oleksandr A.],
Plakhtii, V.[Vadym],
Dumin, O.M.[Oleksandr M.],
Pochanin, G.P.[Gennadiy P.],
Ruban, V.P.[Vadym P.],
Capineri, L.[Lorenzo],
Crawford, F.[Fronefield],
Implementation of an Artificial Intelligence Approach to GPR Systems
for Landmine Detection,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Bajic, M.[Milan],
Potocnik, B.[Božidar],
UAV Thermal Imaging for Unexploded Ordnance Detection by Using Deep
Learning,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Lee, J.[Junghan],
Lee, H.[Haengseon],
Ko, S.[Sunghyub],
Ji, D.[Daehyeong],
Hyeon, J.[Jongwu],
Modeling and Implementation of a Joint Airborne Ground Penetrating
Radar and Magnetometer System for Landmine Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Lee, J.[Junghan],
Lee, H.[Haengseon],
Ko, S.[Sunghyub],
Ji, D.[Daehyeong],
Hyeon, J.[Jongwu],
Modeling and Implementation of a Joint Airborne Ground Penetrating
Radar and Magnetometer System for Landmine Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Bi, F.Y.[Feng-Yi],
Yu, P.[Ping],
Jiao, J.[Jian],
Zhou, L.R.[Long-Ran],
Zeng, X.C.[Xiang-Cheng],
Zhou, S.[Shuai],
An Adaptive Modeling-Based Aeromagnetic Maneuver Noise Suppression
Method and Its Application in Mine Detection,
RS(15), No. 18, 2023, pp. 4590.
DOI Link
2310
BibRef
Vivoli, E.[Emanuele],
Bertini, M.[Marco],
Capineri, L.[Lorenzo],
Deep Learning-Based Real-Time Detection of Surface Landmines Using
Optical Imaging,
RS(16), No. 4, 2024, pp. 677.
DOI Link
2402
BibRef
Baur, J.[Jasper],
Ukraine is Riddled with Land Mines: Drones and AI Can Help,
Spectrum(61), No. 5, May 2024, pp. 42-49.
IEEE DOI
2405
Training, Landmine detection, Mortar, Roads, Machine learning,
Task analysis, Drones, Artificial intelligence
BibRef
Baur, J.[Jasper],
Dewey, K.[Kyle],
Steinberg, G.[Gabriel],
Nitsche, F.O.[Frank O.],
Modeling the Effect of Vegetation Coverage on Unmanned Aerial
Vehicles-Based Object Detection: A Study in the Minefield Environment,
RS(16), No. 12, 2024, pp. 2046.
DOI Link
2406
BibRef
Saliba, A.[Adib],
Tout, K.[Kifah],
Zaki, C.[Chamseddine],
Claramunt, C.[Christophe],
Bridging Human Expertise with Machine Learning and GIS for Mine Type
Prediction and Classification,
IJGI(13), No. 7, 2024, pp. 259.
DOI Link
2408
BibRef
Lee, J.[Junghan],
Lee, H.[Haengseon],
Modeling Residual Magnetic Anomalies of Landmines Using UAV-Borne
Vector Magnetometer: Flight Simulations and Experimental Validation,
RS(16), No. 16, 2024, pp. 2916.
DOI Link
2408
BibRef
Lekhak, S.[Sagar],
Ientilucci, E.J.[Emmett J.],
Brinkley, A.W.[Anthony Wayne],
Viability of Substituting Handheld Metal Detectors with an Airborne
Metal Detection System for Landmine and Unexploded Ordnance Detection,
RS(16), No. 24, 2024, pp. 4732.
DOI Link
2501
BibRef
Elkazaz, S.[Sahar],
Hussein, M.E.[Mohamed E.],
El-Mahdy, A.[Ahmed],
Ishikawa, H.[Hiroshi],
Towards Landmine Detection Using Ubiquitous Satellite Imaging,
ISVC16(I: 257-267).
Springer DOI
1701
BibRef
Krtalic, A.,
Analysis Of The Segmented Features Of Indicator Of Mine Presence,
ISPRS16(B3: 519-526).
DOI Link
1610
BibRef
Isaacs, J.C.[Jason C.],
Sonar automatic target recognition for underwater UXO remediation,
PBVS15(134-140)
IEEE DOI
1510
Apertures
BibRef
Anderson, D.T.,
Farrell, J.,
Stone, K.,
Keller, J.M.,
Spain, C.,
Fusion of anomaly algorithm decision maps and spectrum features for
detecting buried explosive Hazards in forward looking infrared imagery,
AIPR11(1-8).
IEEE DOI
1204
BibRef
Williams, D.P.[David P.],
Underwater Mine Classification with Imperfect Labels,
ICPR10(4157-4161).
IEEE DOI
1008
BibRef
Walker, B.B.[Blake Byron],
Qualitative Strategies for Landmine Location Estimation in Western
Sahara,
CGC10(323).
PDF File.
1006
BibRef
Mahar, K.M.[Khaled M.],
Ibrahim, M.S.[Mohamed S.],
Riad, M.Z.[Mary Zarif],
Landmines recognition system using thermovision techniques,
ICIP09(585-588).
IEEE DOI
0911
BibRef
Wang, T.S.[Tie-Sheng],
Gu, I.Y.H.[Irene Yu-Hua],
Tjahjadi, T.[Tardi],
Enhanced Landmine Detection from Low Resolution IR Image Sequences,
CAIP09(1236-1244).
Springer DOI
0909
BibRef
Saisan, P.[Payam],
Kadambe, S.[Shubha],
Shape normalized subspace analysis for underwater mine detection,
ICIP08(1892-1895).
IEEE DOI
0810
BibRef
Bhuiyan, A.[Alauddin],
Nath, B.[Baikunth],
Anti-personnel Mine Detection and Classification Using GPR Image,
ICPR06(II: 1082-1085).
IEEE DOI
0609
BibRef
Merler, S.[Stefano],
Furlanello, C.[Cesare],
Jurman, G.[Giuseppe],
Machine Learning on Historic Air Photographs for Mapping Risk of
Unexploded Bombs,
CIAP05(735-742).
Springer DOI
0509
BibRef
Sorensen, H.,
Jakobsen, K., and
Nymann, O.,
Identification of Mine-Shaped Objects Based on an
Efficient Phase Stepped-Frequency Radar Approach,
ICIP97(III: 142-145).
IEEE DOI
BibRef
9700
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Magnetic, Electromagnetic Detection for Buried Objects, UXO, Landmines .