22.9.6.8.1 Magnetic, Electromagnetic Detection for Buried Objects, UXO, Landmines

Chapter Contents (Back)
Walls. Magnetic. Electromagnetic. See also Through the Wall Imaging, Radar, Microwave Imaging. See also Ground Penetrating Radar, Buried Objects, UXO, Landmines.

Zhang, Y.[Yan], Collins, L., Yu, H.T.[Hai-Tao], Baum, C.E., Carin, L.,
Sensing of unexploded ordnance with magnetometer and induction data: theory and signal processing,
GeoRS(41), No. 5, May 2003, pp. 1005-1015.
IEEE Abstract. 0307
BibRef

Collins, L., Gao, P.[Ping], Schofield, D., Moulton, J.P., Makowsky, L.C., Reidy, D.M., Weaver, R.C.,
A statistical approach to landmine detection using broadband electromagnetic induction data,
GeoRS(40), No. 4, April 2002, pp. 950-962.
IEEE Top Reference. 0206
BibRef

Liao, X.J.[Xue-Jun], Carin, L.[Lawrence],
Application of the Theory of Optimal Experiments to Adaptive Electromagnetic-Induction Sensing of Buried Targets,
PAMI(26), No. 8, August 2004, pp. 961-972.
IEEE Abstract. 0407
EMI device senses magnetic objects. BibRef

Liu, D.H.[De-Hong], Krolik, J.[Jeffrey], Carin, L.[Lawrence],
Electromagnetic Target Detection in Uncertain Media: Time-Reversal and Minimum-Variance Algorithms,
GeoRS(45), No. 4, April 2007, pp. 934-944.
IEEE DOI 0704
BibRef

Chiu, C.C.[Chien-Ching], Chen, W.T.[Wei-Ting],
Inverse scattering of a buried imperfect conductor by the genetic algorithm,
IJIST(11), No. 6, 2000, pp. 355-360.
WWW Link. 0201
BibRef

Lin, C.J.[Chun Jen], Chiu, C.C.[Chien-Ching],
Image reconstruction of buried inhomogeneous dielectric cylinders coated on a conductor,
IJIST(15), No. 3, 2005, pp. 172-177.
DOI Link 0510
BibRef

Lin, C.J.[Chun Jen], Chou, C.Y.[Chun-Yuan], Chiu, C.C.[Chien-Ching],
Electromagnetic imaging for a conducting cylinder buried in a slab medium by the genetic algorithm,
IJIST(14), No. 1, 2004, pp. 1-7.
DOI Link 0406
BibRef

Chien, W.T.[Wei-Ting], Sun, C.H.[Chi-Hsien], Chiu, C.C.[Chien-Ching],
Image reconstruction for a partially immersed imperfectly conducting cylinder by genetic algorithm,
IJIST(19), No. 4, December 2009, pp. 299-305.
DOI Link 0912
BibRef

Huang, C.H.[Chung-Hsin], Lu, H.C.[Hung-Cheng], Chiu, C.C.[Chien-Ching], Wysocki, T.A.[Tadeusz A.], Wysocki, B.J.[Beata J.],
Image reconstruction of buried multiple conductors by genetic algorithms,
IJIST(18), No. 4, 2008, pp. 276-281.
DOI Link 0810
BibRef

Huang, C.H.[Chung-Hsin], Liu, C.L.[Chun-Liang], Lin, C.J.[Chun Jen], Chiu, C.C.[Chien-Ching],
Inverse scattering of buried inhomogeneous biaxial dielectric cylinders coated on a conductor,
IJIST(18), No. 4, 2008, pp. 228-236.
DOI Link 0810
BibRef

Won, I.J., Keiswetter, D.A., Bell, T.H.,
Electromagnetic induction spectroscopy for clearing landmines,
GeoRS(39), No. 4, April 2001, pp. 703-709.
IEEE Top Reference. 0105
BibRef

Firoozabadi, R., Miller, E.L., Rappaport, C.M., Morgenthaler, A.W.,
Subsurface Sensing of Buried Objects Under a Randomly Rough Surface Using Scattered Electromagnetic Field Data,
GeoRS(45), No. 1, January 2007, pp. 104-117.
IEEE DOI 0701
BibRef

Tarokh, A.B., Miller, E.L.,
Subsurface Sensing Under Sensor Positional Uncertainty,
GeoRS(45), No. 3, March 2007, pp. 675-688.
IEEE DOI 0703
BibRef

El-Shenawee, M.,
The multiple interaction model for nonshallow scatterers buried beneath 2-D random rough surfaces,
GeoRS(40), No. 4, April 2002, pp. 982-987.
IEEE Top Reference. 0206
BibRef

Hajihashemi, M.R., El-Shenawee, M.,
TE Versus TM for the Shape Reconstruction of 2-D PEC Targets Using the Level-Set Algorithm,
GeoRS(48), No. 3, March 2010, pp. 1159-1168.
IEEE DOI 1003
perfect electric conducting. BibRef

Hajihashemi, M.R., El-Shenawee, M.,
Level Set Algorithm for Shape Reconstruction of Non-Overlapping Three-Dimensional Penetrable Targets,
GeoRS(50), No. 1, January 2012, pp. 75-86.
IEEE DOI 1201
BibRef

Huang, H.P.[Hao-Ping], Won, I.J.,
Automated identification of buried landmines using normalized electromagnetic induction spectroscopy,
GeoRS(41), No. 3, March 2003, pp. 640-651.
IEEE Abstract. 0301
BibRef

Huang, H.P.[Hao-Ping], Won, I.J.,
Characterization of UXO-like targets using broadband electromagnetic induction sensors,
GeoRS(41), No. 3, March 2003, pp. 652-663.
IEEE Abstract. 0301
BibRef

Losada, V., Boix, R.R., Medina, F.,
Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space,
GeoRS(41), No. 5, May 2003, pp. 988-997.
IEEE Abstract. 0307
BibRef

Billings, S.D.,
Discrimination and Classification of Buried Unexploded Ordnance Using Magnetometry,
GeoRS(42), No. 6, June 2004, pp. 1241-1251.
IEEE Abstract. 0407
BibRef

Massa, A., Boni, A., Donelli, M.,
A Classification Approach Based on SVM for Electromagnetic Subsurface Sensing,
GeoRS(43), No. 9, September 2005, pp. 2084-2093.
IEEE DOI 0509
BibRef

Donelli, M., Franceschini, D., Rocca, P., Massa, A.,
Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization,
GeoRS(47), No. 5, May 2009, pp. 1467-1481.
IEEE DOI 0904
See also Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach. BibRef

Moss, C.D., Grzegorczyk, T.M., O'Neill, K., Kong, J.A.,
A Hybrid Time-Domain Model of Electromagnetic Induction From Conducting, Permeable Targets,
GeoRS(44), No. 10, October 2006, pp. 2916-2926.
IEEE DOI 0609
BibRef

Chen, X., O'Neill, K., Grzegorczyk, T.M., Kong, J.A.,
Spheroidal Mode Approach for the Characterization of Metallic Objects Using Electromagnetic Induction,
GeoRS(45), No. 3, March 2007, pp. 697-706.
IEEE DOI 0703
BibRef

Das, Y.,
Effects of Soil Electromagnetic Properties on Metal Detectors,
GeoRS(44), No. 6, June 2006, pp. 1444-1453.
IEEE DOI 0606
BibRef

Altuncu, Y., Yapar, A., Akduman, I.,
On the Scattering of Electromagnetic Waves by Bodies Buried in a Half-Space With Locally Rough Interface,
GeoRS(44), No. 6, June 2006, pp. 1435-1443.
IEEE DOI 0606
BibRef

Riggs, L.S., Mooney, J.E., Lawrence, D.E.,
Identification of metallic mine-like objects using low frequency magnetic fields,
GeoRS(39), No. 1, January 2001, pp. 56-66.
IEEE Top Reference. 0104
BibRef

Chilaka, S.V., Faircloth, D.L., Riggs, L.S., Nelson, H.H.,
Enhanced Discrimination Among UXO-Like Targets Using Extremely Low-Frequency Magnetic Fields,
GeoRS(44), No. 1, January 2006, pp. 10-21.
IEEE DOI 0601
BibRef

Hart, S.J., Shaffer, R.E., Rose-Pehrsson, S.L., McDonald, J.R.,
Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys,
GeoRS(39), No. 4, April 2001, pp. 797-804.
IEEE Top Reference. 0105
BibRef

Billings, S.D., Pasion, C., Walker, S., Beran, L.,
Magnetic Models of Unexploded Ordnance,
GeoRS(44), No. 8, August 2006, pp. 2115-2124.
IEEE DOI 0608
BibRef

Zhang, Y.H., Xiao, B.X., Zhu, G.Q.,
An Improved Weak-Form BCGS-FFT Combined With DCIM for Analyzing Electromagnetic Scattering by 3-D Objects in Planarly Layered Media,
GeoRS(44), No. 12, December 2006, pp. 3540-3546.
IEEE DOI 0701
BibRef

Zhang, Q., Al-Nuaimy, W., Huang, Y.,
Detection of Deeply Buried UXO Using CPT Magnetometers,
GeoRS(45), No. 2, February 2007, pp. 410-417.
IEEE DOI 0703
BibRef

Pettinelli, E.[Elena], Burghignoli, P.[Paolo], Pisani, A.R.[Anna Rita], Ticconi, F.[Francesca], Galli, A.[Alessandro], Vannaroni, G.[Giuliano], Bella, F.[Francesco],
Electromagnetic Propagation of GPR Signals in Martian Subsurface Scenarios Including Material Losses and Scattering,
GeoRS(45), No. 5, May 2007, pp. 1271-1281.
IEEE DOI 0704
BibRef

Zhdanov, M.S.[Michael S.], Dmitriev, V.I.[Vladimir I.], Gribenko, A.V.[Alexander V.],
Integral Electric Current Method in 3-D Electromagnetic Modeling for Large Conductivity Contrast,
GeoRS(45), No. 5, May 2007, pp. 1282-1290.
IEEE DOI 0704
BibRef

Ozdemir, O.[Ozgr], Akduman, I.[Ibrahim], Yapar, A.[Ali], Crocco, L.[Lorenzo],
Higher Order Inhomogeneous Impedance Boundary Conditions for Perfectly Conducting Objects,
GeoRS(45), No. 5, May 2007, pp. 1291-1297.
IEEE DOI 0704
BibRef

Sanchez, V., Li, Y., Nabighian, M.N., Wright, D.L.,
Numerical Modeling of Higher Order Magnetic Moments in UXO Discrimination,
GeoRS(46), No. 9, September 2008, pp. 2568-2583.
IEEE DOI 0810
BibRef

Ayuso, N., Cuchi, J.A., Lera, F., Villarroel, J.L.,
Accurately Locating a Vertical Magnetic Dipole Buried in a Conducting Earth,
GeoRS(48), No. 10, October 2010, pp. 3676-3685.
IEEE DOI 1003
BibRef

Druyts, P., Craeye, C., Acheroy, M.,
Volume of Influence for Magnetic Soils and Electromagnetic Induction Sensors,
GeoRS(48), No. 10, October 2010, pp. 3686-3697.
IEEE DOI 1003
BibRef

Zhai, Y.B., Ping, X.W., Zhou, X.Y., Zhang, J.F., Yu, W.M., Lu, W.B., Cui, T.J.,
Fast Computations to Electromagnetic Scattering Properties of Complex Bodies of Revolution Buried and Partly Buried in Layered Lossy Media,
GeoRS(49), No. 4, April 2011, pp. 1431-1440.
IEEE DOI 1104
BibRef

Grzegorczyk, T.M., Barrowes, B.E., Shubitidze, F., Fernandez, J.P., O'Neill, K.,
Simultaneous Identification of Multiple Unexploded Ordnance Using Electromagnetic Induction Sensors,
GeoRS(49), No. 7, July 2011, pp. 2507-2517.
IEEE DOI 1107
BibRef

Grzegorczyk, T.M., Barrowes, B.E.,
Real-Time Processing of Electromagnetic Induction Dynamic Data Using Kalman Filters for Unexploded Ordnance Detection,
GeoRS(51), No. 6, 2013, pp. 3439-3451.
IEEE DOI Kalman filters; magnetic fields; MetalMapper; UXO; electromagnetic induction; extended Kalman filter; unexploded ordnance detection 1307
BibRef

Lehmann-Horn, J.A., Hertrich, M., Greenhalgh, S.A., Green, A.G.,
Three-Dimensional Magnetic Field and NMR Sensitivity Computations Incorporating Conductivity Anomalies and Variable-Surface Topography,
GeoRS(49), No. 10, October 2011, pp. 3878-3891.
IEEE DOI 1110
BibRef

Song, L.P.[Lin-Ping], Pasion, L.R., Billings, S.D., Oldenburg, D.W.,
Nonlinear Inversion for Multiple Objects in Transient Electromagnetic Induction Sensing of Unexploded Ordnance: Technique and Applications,
GeoRS(49), No. 10, October 2011, pp. 4007-4020.
IEEE DOI 1110
BibRef

Song, L.P.[Lin-Ping], Oldenburg, D.W., Pasion, L.R., Billings, S.D., Beran, L.,
Temporal Orthogonal Projection Inversion for EMI Sensing of UXO,
GeoRS(53), No. 2, February 2015, pp. 1061-1072.
IEEE DOI 1411
buried object detection BibRef

Song, L.P.[Lin-Ping], Billings, S.D., Pasion, L.R., Oldenburg, D.W.,
Transient Electromagnetic Scattering of a Metallic Object Buried in Underwater Sediments,
GeoRS(54), No. 2, February 2016, pp. 1091-1102.
IEEE DOI 1601
Conductivity BibRef

Churchill, K.M., Link, C., Youmans, C.C.,
A Comparison of the Finite-Element Method and Analytical Method for Modeling Unexploded Ordnance Using Magnetometry,
GeoRS(50), No. 7, July 2012, pp. 2720-2732.
IEEE DOI 1208
BibRef

Bakr, S.A., Mannseth, T.,
An Approximate Hybrid Method for Electromagnetic Scattering From an Underground Target,
GeoRS(51), No. 1, January 2013, pp. 99-107.
IEEE DOI 1301
BibRef

Turlapaty, A.C., Du, Q., Younan, N.H.,
A Partially Supervised Approach for Detection and Classification of Buried Radioactive Metal Targets Using Electromagnetic Induction Data,
GeoRS(51), No. 1, January 2013, pp. 108-121.
IEEE DOI 1301
BibRef

Akhtar, M.J., Thumm, M.,
Measurement of Complex Permittivity of Cylindrical Objects in the E-Plane of a Rectangular Waveguide,
GeoRS(51), No. 1, January 2013, pp. 122-131.
IEEE DOI 1301
BibRef

McKenna, S.P., Parkman, K.B., Perren, L.J., McKenna, J.R.,
Automatic Detection of a Subsurface Wire Using an Electromagnetic Gradiometer,
GeoRS(51), No. 1, January 2013, pp. 132-139.
IEEE DOI 1301
BibRef

Chiu, C.C., Sun, C.H., Li, C.L., Huang, C.H.,
Comparative Study of Some Population-Based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Dielectric Slab Medium,
GeoRS(51), No. 4, April 2013, pp. 2302-2315.
IEEE DOI 1304
BibRef

Bouchette, G., Church, P., Mcfee, J.E., Adler, A.,
Imaging of Compact Objects Buried in Underwater Sediments Using Electrical Impedance Tomography,
GeoRS(52), No. 2, February 2014, pp. 1407-1417.
IEEE DOI 1402
buried object detection BibRef

Shubitidze, F., Fernandez, J.P., Barrowes, B.E., Shamatava, I., Bijamov, A., O'Neill, K., Karkashadze, D.,
The Orthonormalized Volume Magnetic Source Model for Discrimination of Unexploded Ordnance,
GeoRS(52), No. 8, August 2014, pp. 4658-4670.
IEEE DOI 1403
Arrays BibRef

Mogensen, G.T., Espinosa, H.G., Thiel, D.V.,
Surface Impedance Mapping Using Sferics,
GeoRS(52), No. 4, April 2014, pp. 2074-2080.
IEEE DOI 1403
atmospheric electromagnetic wave propagation BibRef

Bao, G., Lin, J., Mefire, S.,
Numerical Reconstruction of Electromagnetic Inclusions in Three Dimensions,
SIIMS(7), No. 1, 2014, pp. 558-577.
DOI Link 1404
BibRef

Moghadasi, S.M., Dehmollaian, M.,
Buried-Object Time-Reversal Imaging Using UWB Near-Ground Scattered Fields,
GeoRS(52), No. 11, November 2014, pp. 7317-7326.
IEEE DOI 1407
Clutter BibRef

Moghadasi, S.M., Dehmollaian, M., Rashed-Mohassel, J.,
Time Reversal Imaging of Deeply Buried Targets Under Moderately Rough Surfaces Using Approximate Transmitted Fields,
GeoRS(53), No. 7, July 2015, pp. 3897-3905.
IEEE DOI 1503
Arrays BibRef

Lucido, M.,
Electromagnetic Scattering by a Perfectly Conducting Rectangular Plate Buried in a Lossy Half-Space,
GeoRS(52), No. 10, October 2014, pp. 6368-6378.
IEEE DOI 1407
Current density BibRef

Pang, H.F.[Hong-Feng], Pan, M.C.[Meng-Chun], Wan, C.B.[Cheng-Biao], Chen, J.F.[Jin-Fei], Zhu, X.J.[Xue-Jun], Luo, F.[Feilu],
Integrated Compensation of Magnetometer Array Magnetic Distortion Field and Improvement of Magnetic Object Localization,
GeoRS(52), No. 9, Sept 2014, pp. 5670-5676.
IEEE DOI 1407
compensation BibRef

De Chiara, F.[Francesca], Fontul, S.[Simona], Fortunato, E.[Eduardo],
GPR Laboratory Tests For Railways Materials Dielectric Properties Assessment,
RS(6), No. 10, 2014, pp. 9712-9728.
DOI Link 1411
BibRef

Wahab, A.[Abdul],
Stability and Resolution Analysis of Topological Derivative Based Localization of Small Electromagnetic Inclusions,
SIIMS(8), No. 3, 2015, pp. 1687-1717.
DOI Link 1511
BibRef

Ege, Y., Nazlibilek, S., Kakilli, A., Çitak, H., Kalender, O., Erturk, K.L., Sengul, G., Karacor, D.,
A Magnetic Measurement System and Identification Method for Buried Magnetic Materials Within Wet and Dry Soils,
GeoRS(54), No. 3, March 2016, pp. 1803-1811.
IEEE DOI 1603
Humidity BibRef

Abrudan, T.E., Xiao, Z., Markham, A., Trigoni, N.,
Underground Incrementally Deployed Magneto-Inductive 3-D Positioning Network,
GeoRS(54), No. 8, August 2016, pp. 4376-4391.
IEEE DOI 1608
geophysical equipment BibRef

Kypris, O., Abrudan, T.E., Markham, A.,
Magnetic Induction-Based Positioning in Distorted Environments,
GeoRS(54), No. 8, August 2016, pp. 4605-4612.
IEEE DOI 1608
geophysical techniques BibRef

Li, W., Nie, Z., Sun, X.,
Wireless Transmission of MWD and LWD Signal Based on Guidance of Metal Pipes and Relay of Transceivers,
GeoRS(54), No. 8, August 2016, pp. 4855-4866.
IEEE DOI 1608
electromagnetic wave transmission BibRef

Yang, C., Shi, J., Liu, Q., Du, Y.,
Scattering From Inhomogeneous Dielectric Cylinders With Finite Length,
GeoRS(54), No. 8, August 2016, pp. 4555-4569.
IEEE DOI 1608
vegetation BibRef

Cho, S.H., Jung, H.K., Lee, H., Rim, H., Lee, S.K.,
Real-Time Underwater Object Detection Based on DC Resistivity Method,
GeoRS(54), No. 11, November 2016, pp. 6833-6842.
IEEE DOI 1610
Conductivity BibRef

Christiansen, A.V.[Anders Vest], Pedersen, J.B.[Jesper Bjergsted], Auken, E.[Esben], Søe, N.E.[Niels Emil], Holst, M.K.[Mads Kähler], Kristiansen, S.M.[Søren Munch],
Improved Geoarchaeological Mapping with Electromagnetic Induction Instruments from Dedicated Processing and Inversion,
RS(8), No. 12, 2016, pp. 1022.
DOI Link 1612
BibRef

Dalan, R.[Rinita], Sturdevant, J.[Jay], Wallace, R.[Rebecca], Schneider, B.[Blair], De Vore, S.[Steven],
Cutbank Geophysics: A New Method for Expanding Magnetic Investigations to the Subsurface Using Magnetic Susceptibility Testing at an Awatixa Hidatsa Village, North Dakota,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Ren, Y., Chen, Y., Zhan, Q., Niu, J., Liu, Q.H.,
A Higher Order Hybrid SIE/FEM/SEM Method for the Flexible Electromagnetic Simulation in Layered Medium,
GeoRS(55), No. 5, May 2017, pp. 2563-2574.
IEEE DOI 1705
Green's function methods, finite element analysis, geophysical prospecting, integral equations, Riemann type transmission condition, finite element method, flexible electromagnetic simulation, geophysical exploration, higher-order hybrid SIE-FEM-SEM method, interior dielectric subdomain, layered medium Green functions, nonconformal mesh, penetrable object, spectral element method, surface integral equation, Convergence, Electromagnetics, Finite element analysis, Integral equations, Mathematical model, Numerical models, Domain decomposition, finite-element method (FEM), hybrid method, layered medium (LM), spectral element method (SEM), surface, integral, equation, (SIE) BibRef

Zhou, Y., Shi, L., Liu, N., Zhu, C., Sun, Y., Liu, Q.H.,
Mixed Spectral-Element Method for Overcoming the Low-Frequency Breakdown Problem in Subsurface EM Exploration,
GeoRS(55), No. 6, June 2017, pp. 3488-3500.
IEEE DOI 1706
Electric breakdown, Electromagnetics, Finite element analysis, Linear systems, Mathematical model, Surface waves, Gauss' law, hydrocarbon exploration, low-frequency breakdown, mixed spectral element method (mixed SEM), surface-to-borehole, electromagnetic, (SBEM) BibRef

Cowan, D.C., Song, L.P., Oldenburg, D.W.,
Transient VRM Response From a Large Circular Loop Over a Conductive and Magnetically Viscous Half-Space,
GeoRS(55), No. 7, July 2017, pp. 3669-3678.
IEEE DOI 1706
Magnetic domains, Magnetic susceptibility, Magnetization, Numerical models, Soil, Transient analysis, Transmitters, Circular loop, crossover time, inductive response, magnetic soil, time-domain electromagnetic (TEM) systems, viscous, remanent, magnetization, (VRM) BibRef

Salucci, M.[Marco], Oliveri, G.[Giacomo], Anselmi, N.[Nicola], Viani, F.[Federico], Fedeli, A.[Alessandro], Pastorino, M.[Matteo], Randazzo, A.[Andrea],
Three-dimensional electromagnetic imaging of dielectric targets by means of the multiscaling inexact-Newton method,
JOSA-A(34), No. 7, July 2017, pp. 1119-1131.
DOI Link 1708
Inverse problems, Three-dimensional image processing, Inverse, scattering BibRef

Sigman, J.B., Barrowes, B.E., O'Neill, K., Wang, Y., Simms, J.E., Bennett, H.H., Yule, D.E., Shubitidze, F.,
High-Frequency Electromagnetic Induction Sensing of Nonmetallic Materials,
GeoRS(55), No. 9, September 2017, pp. 5254-5263.
IEEE DOI 1709
intermediate electrical conductivity, nonmetallic material, Ground penetrating radar. BibRef


Wang, C.L.[Cui-Lan], Newman, T.S.[Timothy S.], Gallagher, D.[Dennis],
Synthesis of 3D Model of a Magnetic Field-Influenced Body from a Single Image,
3DPVT06(1018-1025).
IEEE DOI 0606
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Through the Wall Imaging, Radar, Microwave Imaging .


Last update:Nov 11, 2017 at 13:31:57