Video Mining,
2000
WWW Link.
Vendor, Surveillance. Primary market is market analysis (i.e. tracking shoppers in a store to
analyze shopping patterns).
Conrad, G.L.[Gary L.],
Denenberg, B.A.[Byron A.],
Kramerich, G.L.[George L.],
Video traffic monitor for retail establishments and the like,
US_Patent5,465,115, Nov 7, 1995
WWW Link.
BibRef
9511
Popa, M.C.[Mirela C.],
Rothkrantz, L.J.M.[Leon J.M.],
Shan, C.F.[Cai-Feng],
Gritti, T.[Tommaso],
Wiggers, P.,
Semantic assessment of shopping behavior using trajectories, shopping
related actions, and context information,
PRL(34), No. 7, 1 May 2013, pp. 809-819.
Elsevier DOI
1303
BibRef
Earlier: A1, A4, A2, A3, A5:
Detecting Customers' Buying Events on a Real-Life Database,
CAIP11(I: 17-25).
Springer DOI
1109
Shopping behavior; Semantic analysis; Trajectory analysis; Action
recognition; Hidden Markov Models
BibRef
Popa, M.C.,
Rothkrantz, L.J.M.,
Shan, C.,
Wiggers, P.,
Assessment of customers' level of interest,
ICIP12(41-44).
IEEE DOI
1302
BibRef
Popa, M.C.,
Rothkrantz, L.J.M.,
Wiggers, P.,
Shan, C.,
Shopping behavior recognition using a language modeling analogy,
PRL(34), No. 15, 2013, pp. 1879-1889.
Elsevier DOI
1309
Shopping behavior
BibRef
Ahn, H.I.[Hyung-Il],
Picard, R.W.,
Measuring Affective-Cognitive Experience and Predicting Market
Success,
AffCom(5), No. 2, April 2014, pp. 173-186.
IEEE DOI
1411
cognition
BibRef
Popa, M.C.[Mirela Carmia],
Multimodal Assessment of Shopping Behavior,
ELCVIA(14), No. 3, 2015, pp. xx-yy.
DOI Link
1601
Thesis summary.
BibRef
Liu, S.[Song],
Li, W.Q.[Wan-Qing],
Davis, S.[Stephen],
Ritz, C.[Christian],
Tian, H.[Hongda],
Planogram Compliance Checking Based on Detection of Recurring
Patterns,
MultMedMag(23), No. 2, April 2016, pp. 54-63.
IEEE DOI
1605
Companies. Retail store layout analysis.
BibRef
Pereira, E.M.[Eduardo Marques],
Cardoso, J.S.[Jaime S.],
Morla, R.[Ricardo],
Long-range trajectories from global and local motion representations,
JVCIR(40, Part A), No. 1, 2016, pp. 265-287.
Elsevier DOI
1609
BibRef
Earlier:
Motion Flow Tracking in Unconstrained Videos for Retail Scenario,
IbPRIA13(340-349).
Springer DOI
1307
Long trajectories
BibRef
Quintana, M.,
Menendez, J.M.,
Alvarez, F.,
Lopez, J.P.,
Improving retail efficiency through sensing technologies: A survey,
PRL(81), No. 1, 2016, pp. 3-10.
Elsevier DOI
1609
Survey, Retail. Intelligent retail
BibRef
Merad, D.[Djamal],
Aziz, K.E.[Kheir-Eddine],
Iguernaissi, R.[Rabah],
Fertil, B.[Bernard],
Drap, P.[Pierre],
Tracking multiple persons under partial and global occlusions:
Application to customers' behavior analysis,
PRL(81), No. 1, 2016, pp. 11-20.
Elsevier DOI
1609
Multiple-people tracking
See also People's Re-identification Across Multiple Non-overlapping Cameras by Local Discriminative Patch Matching.
BibRef
Merad, D.[Djamal],
Drap, P.[Pierre],
Lufimpu-Luviya, Y.[Yannick],
Iguernaissi, R.[Rabah],
Fertil, B.[Bernard],
Purchase behavior analysis through gaze and gesture observation,
PRL(81), No. 1, 2016, pp. 21-29.
Elsevier DOI
1609
Purchase behavior
BibRef
Sturari, M.[Mirco],
Liciotti, D.[Daniele],
Pierdicca, R.[Roberto],
Frontoni, E.[Emanuele],
Mancini, A.[Adriano],
Contigiani, M.[Marco],
Zingaretti, P.[Primo],
Robust and affordable retail customer profiling by vision and radio
beacon sensor fusion,
PRL(81), No. 1, 2016, pp. 30-40.
Elsevier DOI
1609
Sensor fusion
BibRef
Ananthanarayanan, G.,
Bahl, P.,
Bodík, P.,
Chintalapudi, K.,
Philipose, M.,
Ravindranath, L.,
Sinha, S.,
Real-Time Video Analytics: The Killer App for Edge Computing,
Computer(50), No. 10, 2017, pp. 58-67.
IEEE DOI
1710
cloud computing, software architecture, video signal processing,
edge computing, geographically distributed architecture,
real-time video analytics, Automobiles, Bandwidth, Cameras,
Cloud computing, Streaming media, Surveillance, Video analytics,
BibRef
Ji, C.B.[Cui-Bin],
Duan, G.J.[Gui-Jiang],
Ma, H.Y.[Han-Yong],
Zhang, L.[Long],
Xu, H.Y.[Huan-Yun],
Modeling of image, video and text fusion quality data packet system
for aerospace complex products based on business intelligence,
JVCIR(59), 2019, pp. 439-447.
Elsevier DOI
1903
Balanced scorecard, Business intelligence, Data warehouse,
Quality data package, Polymorphic data, Complex product
BibRef
Santra, B.[Bikash],
Mukherjee, D.P.[Dipti Prasad],
A comprehensive survey on computer vision based approaches for
automatic identification of products in retail store,
IVC(86), 2019, pp. 45-63.
Elsevier DOI
1906
Survey, Product detection, Product recognition,
Planogram compliance, Multiple object detection, Out-of-stock detection
BibRef
Adan, A.[Antonio],
de la Rubia, D.[David],
Reconstruction of As-is Semantic 3D Models of Unorganised Storehouses,
3DV19(367-375)
IEEE DOI
1911
Image color analysis, Solid modeling,
Semantics, IEEE merchandise, Classification algorithms, Monitoring, Object recognition
BibRef
Kirkpatrick, K.[Keith],
Tracking Shoppers,
CACM(63), No. 1, January 2020, pp. 19-21.
DOI Link
2001
BibRef
Schrijvers, R.[Robin],
Puttemans, S.[Steven],
Callemein, T.,
Goedemé, T.[Toon],
Real-time Embedded Person Detection and Tracking for Shopping Behaviour
Analysis,
ACIVS20(541-553).
Springer DOI
2003
BibRef
Cao, Z.H.[Zhi-Hao],
Mu, S.M.[Shao-Min],
Dong, M.P.[Meng-Ping],
Two-attribute e-commerce image classification based on a convolutional
neural network,
VC(36), No. 8, August 2020, pp. 1619-1634.
WWW Link.
2007
BibRef
Wang, K.[Kai],
Zhang, T.T.[Tian-Tian],
Xue, T.Q.[Tian-Qiao],
Lu, Y.[Yu],
Na, S.G.[Sang-Gyun],
E-commerce personalized recommendation analysis by deeply-learned
clustering,
JVCIR(71), 2020, pp. 102735.
Elsevier DOI
2009
Clustering algorithm, Deep learning, Recommendation system
BibRef
Santra, B.[Bikash],
Shaw, A.K.[Avishek Kumar],
Mukherjee, D.P.[Dipti Prasad],
Graph-based non-maximal suppression for detecting products on the
rack,
PRL(140), 2020, pp. 73-80.
Elsevier DOI
2012
Detection, Grocery products, Non maximal suppression,
Directed acyclic graph, R-CNN
BibRef
Pei, T.[Tao],
Liu, Y.X.[Ya-Xi],
Shu, H.[Hua],
Ou, Y.[Yang],
Wang, M.[Meng],
Xu, L.M.[Lian-Ming],
What Influences Customer Flows in Shopping Malls:
Perspective from Indoor Positioning Data,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Spera, E.,
Furnari, A.,
Battiato, S.,
Farinella, G.M.,
EgoCart: A Benchmark Dataset for Large-Scale Indoor Image-Based
Localization in Retail Stores,
CirSysVideo(31), No. 4, April 2021, pp. 1253-1267.
IEEE DOI
2104
Cameras, Pose estimation, Robot vision systems,
Benchmark testing, Task analysis,
shopping cart localization
BibRef
Santra, B.[Bikash],
Shaw, A.K.[Avishek Kumar],
Mukherjee, D.P.[Dipti Prasad],
Part-based annotation-free fine-grained classification of images of
retail products,
PR(121), 2022, pp. 108257.
Elsevier DOI
2109
Fine-grained classification, Reconstruction-classification network,
Retail product detection
BibRef
Wang, J.K.[Jia-Kai],
Liu, A.[Aishan],
Bai, X.[Xiao],
Liu, X.L.[Xiang-Long],
Universal Adversarial Patch Attack for Automatic Checkout Using
Perceptual and Attentional Bias,
IP(31), 2022, pp. 598-611.
IEEE DOI
2112
Deep learning, Visualization, Perturbation methods,
Feature extraction, Training, Prototypes, Uncertainty,
bias-based attack
BibRef
Zhang, L.[Lu],
Shen, J.[Jialie],
Zhang, J.[Jian],
Xu, J.S.[Jing-Song],
Li, Z.B.[Zhi-Bin],
Yao, Y.Z.[Ya-Zhou],
Yu, L.T.[Li-Tao],
Multimodal Marketing Intent Analysis for Effective Targeted
Advertising,
MultMed(24), No. 2022, pp. 1830-1843.
IEEE DOI
2204
Media, Advertising, Feature extraction, Social networking (online),
Task analysis, Springs, Visualization, Multimodal, targeted advertising
BibRef
Chen, H.[Hao],
Zhou, Y.Z.[Yang-Zhun],
Li, J.[Jun],
Wei, X.S.[Xiu-Shen],
Xiao, L.[Liang],
Self-Supervised Multi-Category Counting Networks for Automatic
Check-Out,
IP(31), 2022, pp. 3004-3016.
IEEE DOI
2205
Task analysis, Training, Annotations, Testing, Object detection,
Feature extraction, Deep learning, Automatic check-out,
multi-category counting
BibRef
Santra, B.[Bikash],
Ghosh, U.[Udita],
Mukherjee, D.P.[Dipti Prasad],
Graph-based modelling of superpixels for automatic identification of
empty shelves in supermarkets,
PR(127), 2022, pp. 108627.
Elsevier DOI
2205
Gap detection, Retail store, Graph convolutional network,
Siamese network, Structural support vector machine
BibRef
Guo, Z.Y.[Zhao-Yu],
Zhao, Z.[Zhou],
Jin, W.[Weike],
Wang, D.Z.[Da-Zhou],
Liu, R.T.[Rui-Tao],
Yu, J.[Jun],
TaoHighlight: Commodity-Aware Multi-Modal Video Highlight Detection
in E-Commerce,
MultMed(24), 2022, pp. 2606-2616.
IEEE DOI
2205
Task analysis, Visualization, Feature extraction, Data models,
Streaming media, Linguistics, Convolution, multi-modal learning
BibRef
Siddiqui, T.[Tarique],
Luh, P.[Paul],
Wang, Z.[Zesheng],
Karahalios, K.[Karrie],
Parameswaran, A.G.[Aditya G.],
Expressive Querying for Accelerating Visual Analytics,
CACM(65), No. 7, July 2022, pp. 85-94.
DOI Link
2205
BibRef
Dong, X.[Xiao],
Zhang, G.[Gengwei],
Zhan, X.[Xunlin],
Ding, Y.[Yi],
Wei, Y.C.[Yun-Chao],
Lu, M.[Minlong],
Liang, X.D.[Xiao-Dan],
Caption-Aided Product Detection via Collaborative Pseudo-Label
Harmonization,
MultMed(25), 2023, pp. 1916-1927.
IEEE DOI
2306
Training, Detectors, Electronic commerce, Noise measurement, Head,
Proposals, Object detection, Product detection, pseudo-label, positive mining
BibRef
Li, H.Y.[Hao-Yuan],
Jiang, H.[Hao],
Jin, T.[Tao],
Li, M.Y.[Meng-Yan],
Chen, Y.[Yan],
Lin, Z.J.[Zhi-Jie],
Zhao, Y.[Yang],
Zhao, Z.[Zhou],
DATE: Domain Adaptive Product Seeker for E-Commerce,
CVPR23(19315-19324)
IEEE DOI
2309
BibRef
Chen, H.[Hao],
Wei, X.S.[Xiu-Shen],
Xiao, L.[Liang],
Prototype Learning for Automatic Check-Out,
MultMed(25), 2023, pp. 9147-9160.
IEEE DOI
2312
BibRef
Chen, H.[Hao],
Wei, X.S.[Xiu-Shen],
Zhang, F.[Faen],
Shen, Y.[Yang],
Xu, H.[Hui],
Xiao, L.[Liang],
Automatic Check-Out via Prototype-Based Classifier Learning from
Single-Product Exemplars,
ECCV22(XXV:277-293).
Springer DOI
2211
BibRef
Liu, Y.[Yuan],
Product Image Recommendation with Transformer Model Using Deep
Reinforcement Learning,
IJIG(23), No. 6 2023, pp. 2550020.
DOI Link
2312
BibRef
Kikuchi, T.[Takashi],
Takeuchi, S.[Shun],
Self-supervised Human-Object Interaction of Complex Scenes with
Context-aware Mixing: Towards In-store Consumer Behavior Analysis,
SmallData24(744-751)
IEEE DOI
2404
Analytical models, Consumer behavior, Computational modeling,
Self-supervised learning, Transformers
BibRef
Bhattacharya, G.[Gaurab],
Sharma, G.[Gaurav],
Chatterjee, K.[Kallol],
Chakrapani,
Lakshmi, V.B.[V. Bagya],
Gubbi, J.[Jayavardhana],
Pal, A.[Arpan],
Rajagopalan, R.[Ramachandran],
PMTL: A Progressive Multi-Level Training Framework for Retail
Taxonomy Classification,
SmallData24(736-743)
IEEE DOI
2404
Training, Taxonomy, Decision making, Manuals, Feature extraction
BibRef
Chen, F.[Fulu],
Wei, X.W.[Xiao-Wei],
Yu, S.S.[Sai-Sai],
Ma, P.F.[Peng-Fei],
He, S.Q.[Shu-Qing],
Customer Churn Prediction based on Stacking Model,
CVIDL23(518-521)
IEEE DOI
2403
Logistic regression, Computational modeling, Stacking, Companies,
Predictive models, Credit cards, Stacking model, logistic regression
BibRef
Tolja, K.[Katarina],
Subašic, M.[Marko],
Kalafatic, Z.[Zoran],
Loncaric, S.[Sven],
Enhancing Retail Product Recognition: Fine-Grained Bottle Size
Classification,
MVA23(1-5)
DOI Link
2403
Machine vision, Data models
BibRef
Bai, X.H.[Xue-Han],
Li, Y.[Yan],
Cheng, Y.H.[Yan-Hua],
Yang, W.J.[Wen-Jie],
Chen, Q.[Quan],
Li, H.[Han],
Cross-Domain Product Representation Learning for Rich-Content
E-Commerce,
ICCV23(5674-5683)
IEEE DOI
2401
BibRef
Yang, W.J.[Wen-Jie],
Chen, Y.[Yiyi],
Li, Y.[Yan],
Cheng, Y.H.[Yan-Hua],
Liu, X.D.[Xu-Dong],
Chen, Q.[Quan],
Li, H.[Han],
Cross-view Semantic Alignment for Livestreaming Product Recognition,
ICCV23(13358-13367)
IEEE DOI Code:
WWW Link.
2401
BibRef
de Simone, G.[Giuseppe],
Foggia, P.[Pasquale],
Saggese, A.[Alessia],
Vento, M.[Mario],
Autonomous mobile robot for automatic out of stock detection in a
supermarket,
ACVR23(1821-1830)
IEEE DOI
2401
BibRef
Li, Z.X.[Zhi-Xuan],
Ye, W.N.[Wei-Ning],
Terven, J.[Juan],
Bennett, Z.[Zachary],
Zheng, Y.[Ying],
Jiang, T.T.[Ting-Ting],
Huang, T.J.[Tie-Jun],
MUVA: A New Large-Scale Benchmark for Multi-view Amodal Instance
Segmentation in the Shopping Scenario,
ICCV23(23447-23456)
IEEE DOI
2401
BibRef
Strohmayer, J.[Julian],
Kampel, M.[Martin],
Domain-adaptive Data Synthesis for Large-scale Supermarket Product
Recognition,
CAIP23(I:239-250).
Springer DOI
2312
BibRef
Morán, E.F.[Emmanuel F.],
Vintimilla, B.X.[Boris X.],
Realpe, M.A.[Miguel A.],
Towards a Robust Solution for the Supermarket Shelf Audit Problem:
Obsolete Price Tags in Shelves,
CIARP23(I:257-271).
Springer DOI
2312
BibRef
Strohmayer, J.[Julian],
Kampel, M.[Martin],
Real-Time Supermarket Product Recognition on Mobile Devices Using
Scalable Pipelines,
ICIP23(420-424)
IEEE DOI
2312
BibRef
Ma, Z.L.[Ze-Liang],
Liu, D.[Delong],
Cui, Z.[Zhe],
Zhao, Y.[Yanyun],
AdaptCD: An Adaptive Target Region-based Commodity Detection System,
AICity23(5486-5495)
IEEE DOI
2309
BibRef
Cai, Y.C.[Yi-Chen],
Jiao, A.[Aoran],
DACNet: A Deep Automated Checkout Network with Selective Deblurring,
AICity23(5278-5286)
IEEE DOI
2309
BibRef
Jin, Y.[Yang],
Li, Y.Z.[Yong-Zhi],
Yuan, Z.H.[Ze-Huan],
Mu, Y.D.[Ya-Dong],
Learning Instance-Level Representation for Large-Scale Multi-Modal
Pretraining in E-Commerce,
CVPR23(11060-11069)
IEEE DOI
2309
BibRef
Shi, Z.Q.[Zi-Qiang],
Liu, Z.L.[Zhong-Ling],
Liu, L.[Liu],
Liu, R.J.[Ru-Jie],
Yamamoto, T.[Takuma],
Mi, X.Y.[Xiao-Yu],
Uchida, D.[Daisuke],
CheckSORT: Refined Synthetic Data Combination and Optimized SORT for
Automatic Retail Checkout,
AICity23(5391-5398)
IEEE DOI
2309
BibRef
Dhonde, A.[Anudeep],
Guntur, P.[Prabhudev],
Palani, V.[Vinitha],
Adaptive RoI with pretrained models for Automated Retail Checkout,
AICity23(5507-5510)
IEEE DOI
2309
BibRef
Vats, A.[Arpita],
Anastasiu, D.C.[David C.],
Enhancing Retail Checkout through Video Inpainting, YOLOv8 Detection,
and DeepSort Tracking,
AICity23(5530-5537)
IEEE DOI
2309
BibRef
Ghosh, P.[Pushpendu],
Wang, N.[Nancy],
Yenigalla, P.[Promod],
D-Extract: Extracting Dimensional Attributes From Product Images,
WACV23(3630-3638)
IEEE DOI
2302
Computational modeling, Computer network reliability,
Transformers, Information filters, Data models,
Vision + language and/or other modalities
BibRef
Wang, J.[Jing],
Liu, J.[Jun],
Xia, Z.W.[Zhi-Wei],
Chen, P.[Peng],
Li, X.[Xin],
Chen, X.[Xiao],
Semi-supervised Labeling Model Based on Gaussian Mixture in the
Context of E-commerce Price Fraud,
ICRVC22(300-304)
IEEE DOI
2301
Interpolation, Annotations, Computational modeling, Data models,
Regulation, Fraud, Labeling, price fraud, multiple imputations, CDBN network
BibRef
Chen, F.Y.[Fang-Yi],
Zhang, H.[Han],
Li, Z.W.[Zai-Wang],
Dou, J.C.[Jia-Chen],
Mo, S.T.[Shen-Tong],
Chen, H.[Hao],
Zhang, Y.X.[Yong-Xin],
Ahmed, U.[Uzair],
Zhu, C.C.[Chen-Chen],
Savvides, M.[Marios],
Unitail: Detecting, Reading, and Matching in Retail Scene,
ECCV22(VII:705-722).
Springer DOI
2211
BibRef
Wu, J.[Junde],
Zhang, Y.[Yu],
Fu, R.[Rao],
Liu, Y.P.[Yuan-Pei],
Gao, J.[Jing],
An Efficient Person Clustering Algorithm for Open Checkout-free
Groceries,
ECCV22(XXXVIII:17-33).
Springer DOI
2211
BibRef
Bartl, V.[Vojtech],
Španhel, J.[Jakub],
Herout, A.[Adam],
PersonGONE: Image Inpainting for Automated Checkout Solution,
AICity22(3114-3122)
IEEE DOI
2210
Deep learning, Image segmentation, Image recognition,
Urban areas, Neural networks, Detectors
BibRef
Pham, L.H.[Long Hoang],
Tran, D.N.N.[Duong Nguyen-Ngoc],
Nguyen, H.H.[Huy-Hung],
Jeon, H.J.[Hyung-Joon],
Tran, T.H.P.[Tai Huu-Phuong],
Jeon, H.M.[Hyung-Min],
Jeon, J.W.[Jae Wook],
Improving Deep Learning-based Automatic Checkout System Using Image
Enhancement Techniques,
AICity23(5333-5340)
IEEE DOI
2309
BibRef
Earlier: A1, A2, A3, A5, A4, A6, A7:
DeepACO: A Robust Deep Learning-based Automatic Checkout System,
AICity22(3106-3113)
IEEE DOI
2210
Training, Image resolution, Tracking, Pipelines, Urban areas, Benchmark testing
BibRef
Shihab, M.I.H.[Md. Istiak Hossain],
Tasnim, N.[Nazia],
Zunair, H.[Hasib],
Rupty, L.K.[Labiba Kanij],
Mohammed, N.[Nabeel],
VISTA: Vision Transformer enhanced by U-Net and Image Colorfulness
Frame Filtration for Automatic Retail Checkout,
AICity22(3182-3190)
IEEE DOI
2210
Measurement, Training, Image segmentation, Urban areas,
Video sequences, Transformers, Entropy
BibRef
Shoman, M.[Maged],
Aboah, A.[Armstrong],
Morehead, A.[Alex],
Duan, Y.[Ye],
Daud, A.[Abdulateef],
Adu-Gyamfi, Y.[Yaw],
A Region-Based Deep Learning Approach to Automated Retail Checkout,
AICity22(3209-3214)
IEEE DOI
2210
Deep learning, Training, Runtime, Shape, Urban areas, Pipelines, Reliability
BibRef
Wan, J.F.[Jun-Feng],
Qian, S.H.[Shu-Hao],
Tian, Z.H.[Zi-Han],
Zhao, Y.Y.[Yan-Yun],
An Effective Framework of Multi-Class Product Counting and
Recognition for Automated Retail Checkout,
AICity22(3281-3289)
IEEE DOI
2210
Training, Codes, Training data, Trajectory, Pattern recognition
BibRef
Pietrini, R.[Rocco],
Rossi, L.[Luca],
Mancini, A.[Adriano],
Zingaretti, P.[Primo],
Frontoni, E.[Emanuele],
Paolanti, M.[Marina],
A Deep Learning-Based System for Product Recognition in Intelligent
Retail Environment,
CIAP22(II:371-382).
Springer DOI
2205
BibRef
Greco, A.[Antonio],
Saggese, A.[Alessia],
Vento, B.[Bruno],
A Robust and Efficient Overhead People Counting System for Retail
Applications,
CIAP22(II:139-150).
Springer DOI
2205
BibRef
Mata, C.[Cristina],
Locascio, N.[Nick],
Sheikh, M.A.[Mohammed Azeem],
Kihara, K.[Kenny],
Fischetti, D.[Dan],
StandardSim: A Synthetic Dataset for Retail Environments,
CIAP22(II:65-76).
Springer DOI
2205
BibRef
He, Z.L.[Zhao-Liang],
Wang, Y.[Yuan],
Tang, C.[Chen],
Wang, Z.[Zhi],
Zhu, W.W.[Wen-Wu],
Guo, C.Y.[Chen-Yang],
Chen, Z.B.[Zhi-Bo],
AdaConfigure: Reinforcement Learning-Based Adaptive Configuration for
Video Analytics Services,
MMMod22(I:245-257).
Springer DOI
2203
BibRef
Das, N.[Nilotpal],
Joshi, A.[Aniket],
Yenigalla, P.[Promod],
Agrwal, G.[Gourav],
MAPS: Multimodal Attention for Product Similarity,
WACV22(2988-2996)
IEEE DOI
2202
Training, Representation learning, Measurement,
Scalability, Training data, Benchmark testing, Vision and Languages
BibRef
Jain, S.[Shubham],
Schweiss, T.[Thomas],
Bender, S.[Simon],
Werth, D.[Dirk],
Omnichannel Retail Customer Experience with Mixed-Reality Shopping
Assistant Systems,
ISVC21(I:504-517).
Springer DOI
2112
BibRef
Allegra, D.[Dario],
Litrico, M.[Mattia],
Spatafora, M.A.N.[Maria Ausilia Napoli],
Stanco, F.[Filippo],
Farinella, G.M.[Giovanni Maria],
Exploiting Egocentric Vision on Shopping Cart for Out-Of-Stock
Detection in Retail Environments,
ACVR21(1735-1740)
IEEE DOI
2112
Deep learning, Annotations, Pipelines,
Benchmark testing
BibRef
Tomas, H.[Henri],
Reyes, M.[Marcus],
Dionido, R.[Raimarc],
Ty, M.[Mark],
Mirando, J.[Jonric],
Casimiro, J.[Joel],
Atienza, R.[Rowel],
Guinto, R.[Richard],
GOO: A Dataset for Gaze Object Prediction in Retail Environments,
Gaze21(3119-3127)
IEEE DOI
2109
Training, Adaptation models,
Estimation, Benchmark testing
BibRef
Ciocca, G.[Gianluigi],
Napoletano, P.[Paolo],
Locatelli, S.G.[Simone Giuseppe],
Multi-task Learning for Supervised and Unsupervised Classification of
Grocery Images,
VTIUR20(325-338).
Springer DOI
2103
BibRef
Ciocca, G.[Gianluigi],
Napoletano, P.[Paolo],
Locatelli, S.G.[Simone Giuseppe],
Iconic-based Retrieval of Grocery Images via Siamese Neural Network,
VTIUR20(269-281).
Springer DOI
2103
BibRef
Wen, J.H.[Jia-Hao],
Guillen, L.[Luis],
Amrizal, M.A.[Muhammad Alfian],
Abe, T.[Toru],
Suganuma, T.[Takuo],
An Event-based Hierarchical Method for Customer Activity Recognition in
Retail Stores,
ISVC20(I:263-275).
Springer DOI
2103
BibRef
Sciucca, L.D.[Laura Della],
Manco, D.[Davide],
Contigiani, M.[Marco],
Pietrini, R.[Rocco],
di Bello, L.[Luigi],
Placidi, V.[Valerio],
Shoppers Detection Analysis in an Intelligent Retail Environment,
DEEPRETAIL20(534-546).
Springer DOI
2103
BibRef
Marinelli, L.[Luca],
Paolanti, M.[Marina],
Nardi, L.[Lorenzo],
Gabellini, P.[Patrizia],
Frontoni, E.[Emanuele],
Gregori, G.L.[Gian Luca],
Data-driven Knowledge Discovery in Retail: Evidences from the Vending
Machine's Industry,
DEEPRETAIL20(508-520).
Springer DOI
2103
BibRef
Milella, A.[Annalisa],
Marani, R.[Roberto],
Petitti, A.[Antonio],
Cicirelli, G.[Grazia],
d'Orazio, T.[Tiziana],
3d Vision-based Shelf Monitoring System for Intelligent Retail,
DEEPRETAIL20(447-459).
Springer DOI
2103
BibRef
Bruno, A.[Alessandro],
Lancette, S.[Stéphane],
Zhang, J.L.[Jing-Lu],
Moore, M.[Morgan],
Ward, V.P.[Ville P.],
Chang, J.[Jian],
A Saliency-based Technique for Advertisement Layout Optimisation to
Predict Customers' Behaviour,
DEEPRETAIL20(495-507).
Springer DOI
2103
BibRef
Hong, Y.,
Shi-Qiang, G.,
Application Research of Interactive Packaging Design Based on
Computer Graphics Technology and GIS Model,
CVIDL20(550-553)
IEEE DOI
2102
data mining, data visualisation, design engineering,
geographic information systems, image representation,
GIS model
BibRef
Han, W.,
Huang, Z.,
kuerban, A.,
Yan, M.,
Fu, H.,
A Mask Detection Method for Shoppers Under the Threat of COVID-19
Coronavirus,
CVIDL20(442-447)
IEEE DOI
2102
convolutional neural nets, feature extraction,
image classification, image representation,
spatial separable convolution
BibRef
Liu, A.[Aishan],
Wang, J.K.[Jia-Kai],
Liu, X.L.[Xiang-Long],
Cao, B.[Bowen],
Zhang, C.Z.[Chong-Zhi],
Yu, H.[Hang],
Bias-based Universal Adversarial Patch Attack for Automatic Check-out,
ECCV20(XI:395-410).
Springer DOI
2011
BibRef
Nguyen, M.[Minh],
Le, H.[Huy],
Yan, W.Q.[Wei Qi],
Red-green-blue Augmented Reality Tags for Retail Stores,
ACIVS20(467-479).
Springer DOI
2003
BibRef
Shahriari Mehr, G.,
Delavar, M.R.,
Claramunt, C.,
Araabi, B.N.,
Dehaqani, M.R.A.,
Discover Points of Interest Based On Users' Internet Searches Through
An Online Shopping Website,
SMPR19(975-980).
DOI Link
1912
BibRef
Zhao, L.,
Yao, J.,
Du, H.,
Zhao, J.,
Zhang, R.,
A Unified Object Detection Framework for Intelligent Retail Container
Commodities,
ICIP19(3891-3895)
IEEE DOI
1910
Intelligent retail, object detection, non-maximum suppression
BibRef
de Souza Junior, N.F.[Nelson Forte],
da Silva, L.A.[Leandro Augusto],
Marengoni, M.[Mauricio],
Product Recommendation Through Real-Time Object Recognition on Image
Classifiers,
ICIAR19(II:40-51).
Springer DOI
1909
BibRef
Allegrino, F.[Fioravante],
Gabellini, P.[Patrizia],
di Bello, L.[Luigi],
Contigiani, M.[Marco],
Placidi, V.[Valerio],
The Vending Shopper Science Lab: Deep Learning for Consumer Research,
NTIAP19(307-317).
Springer DOI
1909
BibRef
Paolanti, M.[Marina],
Pierdicca, R.[Roberto],
Martini, M.[Massimo],
di Stefano, F.[Francesco],
Morbidoni, C.[Christian],
Mancini, A.[Adriano],
Malinverni, E.S.[Eva Savina],
Frontoni, E.[Emanuele],
Zingaretti, P.[Primo],
Semantic 3D Object Maps for Everyday Robotic Retail Inspection,
NTIAP19(263-274).
Springer DOI
1909
BibRef
Porta, S.L.[Salvatore La],
Marconi, F.[Fabrizio],
Lazzini, I.[Isabella],
Collecting Retail Data Using a Deep Learning Identification Experience,
NTIAP19(275-284).
Springer DOI
1909
BibRef
Gabellini, P.[Patrizia],
d'Aloisio, M.[Mauro],
Fabiani, M.[Matteo],
Placidi, V.[Valerio],
A Large Scale Trajectory Dataset for Shopper Behaviour Understanding,
NTIAP19(285-295).
Springer DOI
1909
BibRef
Klasson, M.,
Zhang, C.,
Kjellström, H.,
A Hierarchical Grocery Store Image Dataset With Visual and Semantic
Labels,
WACV19(491-500)
IEEE DOI
1904
convolutional neural nets, electronic commerce, handicapped aids,
image classification, learning (artificial intelligence)
BibRef
Gonzalves Vieira, M.,
Moreira, J.,
Classification of E-Commerce-Related Images Using Hierarchical
Classification with Deep Neural Networks,
WVC17(114-119)
IEEE DOI
1804
electronic commerce, image classification, neural nets,
Hierarchical Classification, Hierarchical Classifier,
image classification
BibRef
Torcinovich, A.[Alessandro],
Fratton, M.[Marco],
Pelillo, M.[Marcello],
Pravato, A.[Alberto],
Roncato, A.[Alessandro],
A Computer Vision System for Monitoring Ice-Cream Freezers,
CIAP17(II:333-342).
Springer DOI
1711
Track how much is there, sales, etc.
BibRef
Aksah, S.[Saliza],
Taslim, J.[Jamaliah],
Aziz, M.A.[Maslina Abdul],
Hamzah, P.[Paezah],
Manaf, N.A.[Norehan Abdul],
Nasruddin, Z.A.[Zan Azma],
Understanding the Atmospheric Cues Effects on Consumer Emotions:
A Case Study on Lazada Malaysia,
IVIC17(423-432).
Springer DOI
1711
BibRef
Yamamoto, J.,
Inoue, K.,
Yoshioka, M.,
Investigation of Customer Behavior Analysis Based on Top-View Depth
Camera,
HAAHDC17(67-74)
IEEE DOI
1609
behavioural sciences computing, cameras,
consumer behaviour, feature extraction, support vector machines,
PSA based features, SVM, book store situation,
customer behavior analysis, depth information,
human behavior analysis, pattern recognition,
pixel state analysis, support vector machines,
surveillance camera, top-view depth camera, Cameras,
Estimation, Feature extraction, Security,
Support vector machines, Surveillance
BibRef
Song, Y.,
Xue, Y.,
Li, C.,
Zhao, X.,
Liu, S.,
Zhuo, X.,
Zhang, K.,
Yan, B.,
Ning, X.,
Wang, Y.,
Feng, X.,
Online Cost Efficient Customer Recognition System for Retail
Analytics,
SoftBio17(9-16)
IEEE DOI
1609
cloud computing, consumer behaviour,
feature extraction, image recognition,
learning (artificial intelligence), neural nets,
object detection, object tracking, purchasing,
retail data processing, age estimation, business strategy,
chain stores, change sales strategy, client management,
cloud computing resources,
customer behavior data procurement, customer detection,
deep learning, feature extraction, fully automated system,
gender estimation, local computation resources,
online cost efficient customer recognition system,
purchase information collection,
real-time customer analytic system, retail business, Cameras,
Computational modeling, Estimation, Face, Feature extraction, Target, tracking
BibRef
Yashima, T.[Takuya],
Okazaki, N.[Naoaki],
Inui, K.[Kentaro],
Yamaguchi, K.[Kota],
Okatani, T.[Takayuki],
Learning to Describe E-Commerce Images from Noisy Online Data,
ACCV16(V: 85-100).
Springer DOI
1704
BibRef
Santarcangelo, V.[Vito],
Farinella, G.M.[Giovanni Maria],
Battiato, S.[Sebastiano],
Egocentric Vision for Visual Market Basket Analysis,
Egocentric16(I: 518-531).
Springer DOI
1611
BibRef
Saran, A.[Anurag],
Hassan, E.[Ehtesham],
Maurya, A.K.[Avinash Kumar],
Robust visual analysis for planogram compliance problem,
MVA15(576-579)
IEEE DOI
1507
Accuracy. Retail store shelf inspection.
BibRef
Aryafar, K.[Kamelia],
Lynch, C.[Corey],
Attenberg, J.[Josh],
Exploring User Behaviour on Etsy through Dominant Colors,
ICPR14(1437-1442)
IEEE DOI
1412
Entropy
BibRef
Ravnik, R.[Robert],
Solina, F.[Franc],
Zabkar, V.[Vesna],
Modelling In-Store Consumer Behaviour Using Machine Learning and
Digital Signage Audience Measurement Data,
VAAM14(123-133).
Springer DOI
1411
BibRef
Testori, M.[Matteo],
The Applications of Video Analytics in Media Planning, Trade and
Shopper Marketing,
VAAM14(3-20).
Springer DOI
1411
BibRef
Mäkelä, S.M.[Satu-Marja],
Järvinen, S.[Sari],
Keränen, T.[Tommi],
Lindholm, M.[Mikko],
Vildjiounaite, E.[Elena],
Shopper Behaviour Analysis Based on 3D Situation Awareness Information,
VAAM14(134-145).
Springer DOI
1411
BibRef
Pane, C.[Carlo],
Gasparini, M.[Marco],
Prati, A.[Andrea],
Gualdi, G.[Giovanni],
Cucchiara, R.[Rita],
A people counting system for business analytics,
AVSS13(135-140)
IEEE DOI
1311
Accuracy
BibRef
Carullo, M.[Mariarosaria],
Cavaliere, G.[Gianluca],
Stock Control through Video Surveillance in Logistics,
CIAP13(II:740-748).
Springer DOI
1309
BibRef
Liciotti, D.[Daniele],
Contigiani, M.[Marco],
Frontoni, E.[Emanuele],
Mancini, A.[Adriano],
Zingaretti, P.[Primo],
Placidi, V.[Valerio],
Shopper Analytics: A Customer Activity Recognition System Using a
Distributed RGB-D Camera Network,
VAAM14(146-157).
Springer DOI
1411
BibRef
Frontoni, E.[Emanuele],
Raspa, P.[Paolo],
Mancini, A.[Adriano],
Zingaretti, P.[Primo],
Placidi, V.[Valerio],
Customers' Activity Recognition in Intelligent Retail Environments,
SBA13(509-516).
Springer DOI
1309
BibRef
Trinh, H.[Hoang],
Fan, Q.F.[Quan-Fu],
Gabbur, P.[Prasad],
Pankanti, S.[Sharath],
Hand tracking by binary quadratic programming and its application to
retail activity recognition,
CVPR12(1902-1909).
IEEE DOI
1208
BibRef
Trinh, H.[Hoang],
Pankanti, S.[Sharath],
Fan, Q.F.[Quan-Fu],
Multimodal ranking for non-compliance detection in retail surveillance,
WACV12(241-246).
IEEE DOI
1203
BibRef
Bobbitt, R.[Russell],
Connell, J.[Jonathan],
Haas, N.[Norman],
Otto, C.[Charles],
Pankanti, S.[Sharath],
Payne, J.[Jason],
Visual item verification for fraud prevention in retail self-checkout,
WACV11(585-590).
IEEE DOI
1101
Self checkout systems. Augment weight with visual check.
BibRef
Pan, J.Y.[Ji-Yan],
Fan, Q.F.[Quan-Fu],
Pankanti, S.[Sharath],
Trinh, H.[Hoang],
Gabbur, P.[Prasad],
Miyazawa, S.[Sachiko],
Soft margin keyframe comparison: Enhancing precision of fraud detection
in retail surveillance,
WACV11(549-556).
IEEE DOI
1101
BibRef
Park, U.S.[Un-Sang],
Otto, C.A.,
Pankanti, S.,
Cart Auditor: A Compliance and Training Tool for Cashiers at Checkout,
PSIVT10(151-155).
IEEE DOI
1011
BibRef
Onishi, M.[Masaki],
Yoda, I.[Ikushi],
Visualization of Customer Flow in an Office Complex over a Long Period,
ICPR10(1747-1750).
IEEE DOI
1008
BibRef
Senior, A.W.,
Brown, L.,
Hampapur, A.,
Shu, C.F.,
Zhai, Y.,
Feris, R.S.,
Tian, Y.L.,
Borger, S.,
Carlson, C.,
Video analytics for retail,
AVSBS07(423-428).
IEEE DOI
0709
BibRef
Leykin, A.[Alex],
Tuceryan, M.[Mihran],
Detecting shopper groups in video sequences,
AVSBS07(417-422).
IEEE DOI
0709
BibRef
Zhang, Z.[Zhong],
Scanlon, A.[Andrew],
Yin, W.H.[Wei-Hong],
Yu, L.[Li],
Venetianer, P.L.[Peter L.],
Video Surveillance using a Multi-Camera Tracking and Fusion System,
M2SFA208(xx-yy).
0810
BibRef
Venetianer, P.L.,
Zhang, Z.,
Scanlon, A.,
Hu, Y.,
Lipton, A.J.,
Video verification of point of sale transactions,
AVSBS07(411-416).
IEEE DOI
0709
BibRef
Zimmerman, T.G.[Thomas G.],
Tracking Shopping Carts Using Mobile Cameras Viewing Ceiling-Mounted
Retro-Reflective Bar Codes,
CVS06(36).
IEEE DOI
0602
BibRef
Mustafa, A.,
Sethi, I.,
Detecting retail events using moving edges,
AVSBS05(626-631).
IEEE DOI
0602
BibRef
Haritaoglu, I.,
Flickner, M.D.,
Detection and Tracking of Shopping Groups in Stores,
CVPR01(I:431-438).
IEEE DOI
0110
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Surveillance Systems, Applied to Fire and Flame Detection .