Juell, P.[Paul],
Marsh, R.[Ron],
A Hierarchical Neural-Network for Human Face Detection,
PR(29), No. 5, May 1996, pp. 781-787.
Elsevier DOI
9605
BibRef
Lin, S.H.,
Kung, S.Y.,
Lin, L.J.,
Face Recognition/Detection by Probabilistic Decision-Based
Neural-Network,
TNN(8), No. 1, January 1997, pp. 114-132.
9701
BibRef
Kung, S.Y.[Sun-Yuan],
Lin, S.H.[Shang-Hung],
Lin, L.J.[Long-Ji],
Fang, M.[Ming],
Neural network for locating and recognizing a deformable object,
US_Patent5,850,470, Dec 15, 1998
WWW Link.
BibRef
9812
Kung, S.Y.,
Fang, M.,
Liou, S.P.,
Chiu, M.Y.,
Taur, J.S.,
Decision-based neural network for face recognition system,
ICIP95(I: 430-433).
IEEE DOI
9510
BibRef
Rowley, H.A.[Henry A.],
Baluja, S.[Shumeet],
Kanade, T.[Takeo],
Neural Network-Based Face Detection,
PAMI(20), No. 1, January 1998, pp. 23-38.
IEEE DOI
9803
BibRef
And:
CVPR96(203-208).
IEEE DOI
Award, Longuet-Higgins. Retinally connected NN looks at windows in the image. Uses multiple NNs.
BibRef
Rowley, H.A.[Henry A.],
Baluja, S.[Shumeet],
Kanade, T.[Takeo],
Rotation Invariant Neural Network-based Face Detection,
CVPR98(38-44).
IEEE DOI
BibRef
9800
And:
CVPR98(963-963).
IEEE DOI Demo paper.
BibRef
Earlier:
Human Face Detection in Visual Scenes,
CMU-CS-TR-95-158R, November 1995.
(Revised Version)
PS File.
BibRef
Baluja, S.,
Sahami, M.,
Rowley, H.A.,
Efficient face orientation discrimination,
ICIP04(I: 589-592).
IEEE DOI
0505
BibRef
Ng, J.[Jeffrey],
Gong, S.G.[Shao-Gang],
Composite Support Vector Machines for Detection of Faces Across Views
and Pose Estimation,
IVC(20), No. 5-6, 15 April 2002, pp. 359-368.
Elsevier DOI
0204
BibRef
Earlier:
Multi-View Face Detection and Pose Estimation Using a Composite Support
Vector Machine across the View Sphere,
RATFG99(xx-yy).
See also Human Pose Estimation Using Structural Support Vector Machines.
BibRef
Li, Y.M.[Yong-Min],
Gong, S.G.[Shao-Gang],
Sherrah, J.[Jamie],
Liddell, H.[Heather],
Support Vector Machine Based Multi-View Face Detection and Recognition,
IVC(22), No. 5, 1 May 2004, pp. 413-427.
Elsevier DOI
0403
See also Human Pose Estimation Using Structural Support Vector Machines.
BibRef
Li, Y.M.[Yong-Min],
Gong, S.G.[Shao-Gang],
Liddell, H.[Heather],
Support Vector Regression and Classification Based Multi-view Face
Detection and Recognition,
AFGR00(300-305).
IEEE DOI
0003
BibRef
Kwong, J.N.S.,
Gong, S.G.,
Learning Support Vector Machines for A Multi-View Face Model,
BMVC99(Face Models and Recognition).
PDF File.
BibRef
9900
Romdhani, S.,
Psarrou, A.[Alexandra],
Gong, S.G.[Shao-Gang],
Learning a Single Active Face Shape Model across Views,
RATFG99(xx-yy).
BibRef
9900
Huang, L.L.[Lin-Lin],
Shimizu, A.[Akinobu],
Hagihara, Y.[Yoshihoro],
Kobatake, H.[Hidefumi],
Gradient feature extraction for classification-based face detection,
PR(36), No. 11, November 2003, pp. 2501-2511.
Elsevier DOI
0309
BibRef
Earlier:
Face Detection from Cluttered Images Using a Polynomial Neural Network,
ICIP01(II: 669-672).
IEEE DOI
0108
BibRef
Huang, L.L.[Lin-Lin],
Shimizu, A.[Akinobu],
Kobatake, H.[Hidefumi],
Robust face detection using Gabor filter features,
PRL(26), No. 11, August 2005, pp. 1641-1649.
Elsevier DOI
0506
BibRef
Earlier:
Classification-based face detection using Gabor filter features,
AFGR04(397-402).
IEEE DOI
0411
BibRef
Earlier:
Face detection using a modified radial basis function neural network,
ICPR02(II: 342-345).
IEEE DOI
0211
BibRef
Ko, J.[Jaepil],
Byun, H.R.[Hye-Ran],
N-division output coding method applied to face recognition,
PRL(24), No. 16, December 2003, pp. 3115-3123.
Elsevier DOI
0310
BibRef
And:
Empirical remarks on output coding methods for face recognition,
AFGR04(333-338).
IEEE DOI
0411
BibRef
Ko, J.[Jaepil],
Byun, H.R.[Hye-Ran],
Combining SVM Classifiers for Multiclass Problem:
Its Application to Face Recognition,
AVBPA03(531-539).
Springer DOI
0310
BibRef
And:
Multi-class Support Vector Machines with Case-Based Combination for
Face Recognition,
CAIP03(623-629).
Springer DOI
0311
BibRef
Lee, K.H.[Kyung-Hee],
Chung, Y.W.[Yong-Wha],
Byun, H.R.[Hye-Ran],
Face Recognition Using Support Vector Machines with the Feature Set
Extracted by Genetic Algorithms,
AVBPA01(32).
Springer DOI
0310
BibRef
Liu, J.Z.[Jian-Zhuang],
Tang, X.[Xiaoou],
Evolutionary search for faces from line drawings,
PAMI(27), No. 6, June 2005, pp. 861-872.
IEEE Abstract.
0506
BibRef
Earlier:
Efficient search of faces from complex line drawings,
CVPR04(II: 791-796).
IEEE DOI
0408
BibRef
Tang, X.[Xiaoou],
Li, Z.F.[Zhi-Feng],
Audio-Guided Video-Based Face Recognition,
CirSysVideo(19), No. 7, July 2009, pp. 955-964.
IEEE DOI
0909
BibRef
Li, Z.F.[Zhi-Feng],
Tang, X.[Xiaoou],
Bayesian face recognition using support vector machine and face
clustering,
CVPR04(II: 374-380).
IEEE DOI
0408
BibRef
Tang, X.[Xiaoou],
Li, Z.F.[Zhi-Feng],
Video based face recognition using multiple classifiers,
AFGR04(345-355).
IEEE DOI
0411
BibRef
Yan, S.,
Xu, D.,
Tang, X.,
Face Verification With Balanced Thresholds,
IP(16), No. 1, January 2007, pp. 262-268.
IEEE DOI
0701
BibRef
Xu, D.,
Yan, S.,
Luo, J.,
Face Recognition Using Spatially Constrained Earth Mover's Distance,
IP(17), No. 11, November 2008, pp. 1-5.
IEEE DOI
0810
BibRef
Huang, C.[Chang],
Ai, H.Z.[Hai-Zhou],
Li, Y.[Yuan],
Lao, S.H.[Shi-Hong],
High-Performance Rotation Invariant Multiview Face Detection,
PAMI(29), No. 4, April 2007, pp. 671-686.
IEEE DOI
0703
BibRef
Earlier:
Learning Sparse Features in Granular Space for Multi-View Face
Detection,
FGR06(401-407).
IEEE DOI
0604
BibRef
Earlier:
Vector Boosting for Rotation Invariant Multi-View Face Detection,
ICCV05(I: 446-453).
IEEE DOI
0510
See also Boosting Associated Pairing Comparison Features for pedestrian detection.
BibRef
Li, Y.[Yuan],
Huang, C.[Chang],
Ai, H.Z.[Hai-Zhou],
Tsinghua Face Detection and Tracking for CLEAR 2007 Evaluation,
MTPH07(xx-yy).
Springer DOI
0705
BibRef
Huang, C.[Chang],
Ai, H.Z.[Hai-Zhou],
Wu, B.[Bo],
Lao, S.H.[Shi-Hong],
Boosting nested cascade detector for multi-view face detection,
ICPR04(II: 415-418).
IEEE DOI
0409
BibRef
And: A3, A2, A1, A4:
Fast rotation invariant multi-view face detection based on real
adaboost,
AFGR04(79-84).
IEEE DOI
0411
BibRef
Earlier: A1, A3, A2, A4:
Omni-directional face detection based on real adaboost,
ICIP04(I: 593-596).
IEEE DOI
0505
BibRef
Yao, B.P.[Bang-Peng],
Ai, H.Z.[Hai-Zhou],
Lao, S.H.[Shi-Hong],
Person-specific face recognition in unconstrained environments:
A combination of offline and online learning,
FG08(1-8).
IEEE DOI
0809
BibRef
Yao, B.P.[Bang-Peng],
Ai, H.Z.[Hai-Zhou],
Ijiri, Y.[Yoshihisa],
Lao, S.H.[Shi-Hong],
Domain-Partitioning Rank-Boost for Face Recognition,
ICIP07(I: 129-132).
IEEE DOI
0709
BibRef
Ai, H.Z.[Hai-Zhou],
Ying, L.H.[Li-Hang],
Xu, G.Y.[Guang-You],
A subspace approach to face detection with support vector machines,
ICPR02(I: 45-48).
IEEE DOI
0211
BibRef
Earlier:
Face Detection Based on Template Matching and Support Vector Machines,
ICIP01(I: 1006-1009).
IEEE DOI
0108
BibRef
Meynet, J.[Julien],
Popovici, V.[Vlad],
Thiran, J.P.[Jean-Philippe],
Face detection with boosted Gaussian features,
PR(40), No. 8, August 2007, pp. 2283-2291.
Elsevier DOI
0704
Face detection; AdaBoost; Gaussian features
BibRef
Meynet, J.[Julien],
Popovici, V.[Vlad],
Thiran, J.P.[Jean-Philippe],
Mixtures of boosted classifiers for frontal face detection,
SIViP(1), No. 1, April 2007, pp. 29-38.
Springer DOI
0706
BibRef
Antonini, G.[Gianluca],
Popovici, V.[Vlad],
Thiran, J.P.[Jean-Philippe],
Independent Component Analysis and Support Vector Machine for Face
Feature Extraction,
AVBPA03(111-118).
Springer DOI
0310
BibRef
Meynet, J.[Julien],
Popovici, V.[Vlad],
Thiran, J.P.[Jean-Philippe],
Face Class Modeling Using Mixture of SVMs,
ICIAR04(II: 709-716).
Springer DOI
0409
BibRef
Popovici, V.[Vlad],
Thiran, J.P.[Jean-Philippe],
Face Detection Using an SVM Trained in Eigenfaces Space,
AVBPA03(190-198).
Springer DOI
0310
BibRef
Qiu, G.P.[Guo-Ping],
Fang, J.Z.[Jian-Zhong],
Classification in an informative sample subspace,
PR(41), No. 3, March 2008, pp. 949-960.
Elsevier DOI
0711
Information theory; Mutual information; Subspace methods; Representation;
Classification; Object detection
BibRef
Earlier: A2, A1:
Learning sample subspace with application to face detection,
ICPR04(II: 423-426).
IEEE DOI
0409
BibRef
Earlier: A2, A1:
Human face detection using angular radial transform and support vector
machines,
ICIP03(I: 669-672).
IEEE DOI
0312
BibRef
Curran, K.[Kevin],
McCaughley, N.[Neil],
Li, X.L.[Xue-Long],
Addressing The Problems Of Detecting Faces With Neural Networks,
IJIG(7), No. 4, October 2007, pp. 617-640.
0710
BibRef
Hotta, K.[Kazuhiro],
Robust face recognition under partial occlusion based on support vector
machine with local Gaussian summation kernel,
IVC(26), No. 11, 1 November 2008, pp. 1490-1498.
Elsevier DOI
0804
BibRef
Earlier:
Support Vector Machine with Weighted Summation Kernel Obtained by
Adaboost,
AVSBS06(11-11).
IEEE DOI
0611
BibRef
Earlier:
Support vector machine with local summation kernel for robust face
recognition,
ICPR04(III: 482-485).
IEEE DOI
0409
Support vector machine; Local kernel; Occlusion; Robust and face recognition
See also View independent face detection based on horizontal rectangular features and accuracy improvement using combination kernel of various sizes.
BibRef
Hotta, K.[Kazuhiro],
Adaptive weighting of local classifiers by particle filters for robust
tracking,
PR(42), No. 5, May 2009, pp. 619-628.
Elsevier DOI
0902
Adaptive; Weighting; Combination of local classifiers; Particle
filter; Partial occlusion; Robust; Tracking
BibRef
Hotta, K.[Kazuhiro],
Local normalized linear summation kernel for fast and robust
recognition,
PR(43), No. 3, March 2010, pp. 906-913.
Elsevier DOI
1001
Local kernel; Normalized kernel; Summation kernel; Fast; Robust;
Partial occlusion; Face detection; Face recognition
BibRef
Yang, L.P.[Li-Ping],
Gong, W.G.[Wei-Guo],
Gu, X.H.[Xiao-Hua],
Li, W.H.[Wei-Hong],
Liu, Y.F.[Yan-Fei],
Bagging null space locality preserving discriminant classifiers for
face recognition,
PR(42), No. 9, September 2009, pp. 1853-1858.
Elsevier DOI
0905
Locality preserving; Bagging; Discriminant analysis; Small sample size
problem; Face recognition
BibRef
Gu, X.H.[Xiao-Hua],
Gong, W.G.[Wei-Guo],
Yang, L.P.[Li-Ping],
Li, W.H.[Wei-Hong],
Regularized Kernel Locality Preserving Discriminant Analysis for Face
Recognition,
ACIVS10(II: 284-291).
Springer DOI
1012
BibRef
Yang, L.P.[Li-Ping],
Gong, W.G.[Wei-Guo],
Gu, X.H.[Xiao-Hua],
Extended Locality Preserving Discriminant Analysis for Face Recognition,
ICPR10(539-542).
IEEE DOI
1008
BibRef
Li, W.H.[Wei-Hong],
Gong, W.G.[Wei-Guo],
Yang, L.P.[Li-Ping],
Chen, W.M.[Wei-Min],
Gu, X.H.[Xiao-Hua],
Facial Feature Selection Based on SVMs by Regularized Risk Minimization,
ICPR06(III: 540-543).
IEEE DOI
0609
BibRef
Melin, P.,
Mendoza, O.,
Castillo, O.,
Face Recognition With an Improved Interval Type-2 Fuzzy Logic Sugeno
Integral and Modular Neural Networks,
SMC-A(41), No. 5, September 2011, pp. 1001-1012.
IEEE DOI
1109
BibRef
Hou, X.N.[Xiao-Nan],
Ding, S.H.[Shou-Hong],
Ma, L.Z.[Li-Zhuang],
Wang, C.J.[Cheng-Jie],
Li, J.L.[Ji-Lin],
Huang, F.Y.[Fei-Yue],
Similarity metric learning for face verification using sigmoid decision
function,
VC(32), No. 4, April 2016, pp. 479-490.
Springer DOI
1604
BibRef
Xu, L.[Lele],
Wu, X.[Xia],
Chen, K.W.[Ke-Wei],
Yao, L.[Li],
Supervised within-class-similar discriminative dictionary learning
for face recognition,
JVCIR(38), No. 1, 2016, pp. 561-572.
Elsevier DOI
1605
Discriminative dictionary learning
BibRef
Wu, X.[Xia],
Li, Q.[Qing],
Xu, L.[Lele],
Chen, K.W.[Ke-Wei],
Yao, L.[Li],
Multi-Feature Kernel Discriminant Dictionary Learning for Face
Recognition,
PR(66), No. 1, 2017, pp. 404-411.
Elsevier DOI
1704
Multi-feature kernel discriminative dictionary learning
See also Multi-Feature Kernel Discriminant Dictionary Learning for Classification in Alzheimer's Disease.
BibRef
Rikhtegar, A.,
Pooyan, M.,
Manzuri-Shalmani, M.T.[Mohammad T.],
Genetic algorithm-optimised structure of convolutional neural network
for face recognition applications,
IET-CV(10), No. 6, 2016, pp. 559-566.
DOI Link
1609
face recognition
BibRef
Aslan, M.S.[Melih S.],
Hailat, Z.[Zeyad],
Alafif, T.K.[Tarik K.],
Chen, X.W.[Xue-Wen],
Multi-channel multi-model feature learning for face recognition,
PRL(85), No. 1, 2017, pp. 79-83.
Elsevier DOI
1612
Unsupervised learning
BibRef
Chen, Y.F.[Ye-Fei],
Su, J.B.[Jian-Bo],
Sparse embedded dictionary learning on face recognition,
PR(64), No. 1, 2017, pp. 51-59.
Elsevier DOI
1701
Face recognition
BibRef
Dong, X.[Xiao],
Zhang, H.X.[Hua-Xiang],
Sun, J.[Jiande],
Wan, W.B.[Wen-Bo],
A two-stage learning approach to face recognition,
JVCIR(43), No. 1, 2017, pp. 21-29.
Elsevier DOI
1702
Collaborative representation
BibRef
Zheng, J.,
Yang, P.,
Chen, S.,
Shen, G.,
Wang, W.,
Iterative Re-Constrained Group Sparse Face Recognition With Adaptive
Weights Learning,
IP(26), No. 5, May 2017, pp. 2408-2423.
IEEE DOI
1704
Databases
See also Comments on Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning.
BibRef
Pan, Y.Q.[Yu-Qi],
Jiang, M.Y.[Ming-Yan],
LRR-TTK DL for face recognition,
IET-Bio(6), No. 3, May 2017, pp. 165-172.
DOI Link
1704
Low-Rank Representation based on Twin Tensor Kernel.
Dictionary learning.
BibRef
Fang, C.[Cong],
Zhao, Z.Y.[Zhen-Yu],
Zhou, P.[Pan],
Lin, Z.C.[Zhou-Chen],
Feature learning via partial differential equation with applications
to face recognition,
PR(69), No. 1, 2017, pp. 14-25.
Elsevier DOI
1706
Feature learning
BibRef
Zhong, Y.,
Chen, J.,
Huang, B.,
Toward End-to-End Face Recognition Through Alignment Learning,
SPLetters(24), No. 8, August 2017, pp. 1213-1217.
IEEE DOI
1708
face recognition, learning (artificial intelligence),
LFW dataset, alignment learning, automatic learning,
end-to-end face recognition, face recognition methods,
geometric transformations, human face structure,
recognition feature extraction, Convolution, Face, Face detection,
Face recognition, Feature extraction, Training,
End-to-end (e2e) training,
face alignment, face recognition, spatial, transformer
BibRef
Li, H.,
Hu, H.,
Yip, C.,
Comments on 'Iterative Re-Constrained Group Sparse Face Recognition
With Adaptive Weights Learning',
IP(26), No. 11, November 2017, pp. 5475-5476.
IEEE DOI
1709
Adaptation models, Convergence, Face recognition,
Image reconstruction, Lagrangian functions, Probes, Xenon
See also Iterative Re-Constrained Group Sparse Face Recognition With Adaptive Weights Learning.
BibRef
Lin, L.[Liang],
Wang, K.[Keze],
Meng, D.Y.[De-Yu],
Zuo, W.M.[Wang-Meng],
Zhang, L.[Lei],
Active Self-Paced Learning for Cost-Effective and Progressive Face
Identification,
PAMI(40), No. 1, January 2018, pp. 7-19.
IEEE DOI
1712
Face, Face recognition, Feature extraction, Neural networks,
Noise measurement, Optimization, Training, Cost-effective model,
self-paced learning
See also Joint Learning of Multiple Regressors for Single Image Super-Resolution.
BibRef
Wang, F.Q.[Fa-Qiang],
Zuo, W.M.[Wang-Meng],
Lin, L.[Liang],
Zhang, D.[David],
Zhang, L.[Lei],
Joint Learning of Single-Image and Cross-Image Representations for
Person Re-identification,
CVPR16(1288-1296)
IEEE DOI
1612
BibRef
Cao, G.Q.[Guan-Qun],
Iosifidis, A.[Alexandros],
Gabbouj, M.[Moncef],
Neural class-specific regression for face verification,
IET-Bio(7), No. 1, January 2018, pp. 63-70.
DOI Link
1712
BibRef
Tran, D.T.,
Kiranyaz, S.,
Gabbouj, M.,
Iosifidis, A.,
Knowledge Transfer for Face Verification Using Heterogeneous
Generalized Operational Perceptrons,
ICIP19(1168-1172)
IEEE DOI
1910
Face Verification, Generalized Operational Perceptron,
Progressive Neural Network Learning
BibRef
Zheng, L.[Lilei],
Duffner, S.,
Idrissi, K.,
Garcia, C.,
Baskurt, A.,
Pairwise Identity Verification via Linear Concentrative Metric
Learning,
Cyber(48), No. 1, January 2018, pp. 324-335.
IEEE DOI
1801
BibRef
Earlier: A1, A3, A4, A2, A5:
Triangular similarity metric learning for face verification,
FG15(1-7)
IEEE DOI
1508
Cost function, Data models, Face, Learning systems, Measurement,
Training, Training data, Face verification, identity verification,
speaker verification
BibRef
Ranjan, R.,
Sankaranarayanan, S.,
Bansal, A.,
Bodla, N.,
Chen, J.C.,
Patel, V.M.,
Castillo, C.D.,
Chellappa, R.,
Deep Learning for Understanding Faces:
Machines May Be Just as Good, or Better, than Humans,
SPMag(35), No. 1, January 2018, pp. 66-83.
IEEE DOI
1801
Biometrics, Detectors, Face recognition, Feature extraction,
Graphics processing, Machine learning, Neural networks,
Videos
BibRef
Lu, Z.[Ze],
Jiang, X.D.[Xu-Dong],
Kot, A.C.[Alex C.],
Color space construction by optimizing luminance and chrominance
components for face recognition,
PR(83), 2018, pp. 456-468.
Elsevier DOI
1808
BibRef
Earlier:
Enhance deep learning performance in face recognition,
ICIVC17(244-248)
IEEE DOI
1708
Color face recognition, Color space, Color sensor analysis,
Chrominance subspace, Discriminant analysis, Covariance analysis.
Databases, Face, Face recognition, Feature extraction,
Image representation, Principal component analysis, Training, CNNs,
VGG-face, fine-tuning, raw pixels
BibRef
Banerjee, S.,
Das, S.,
LR-GAN for degraded Face Recognition,
PRL(116), 2018, pp. 246-253.
Elsevier DOI
1812
BibRef
Earlier:
Soft-Margin Learning for Multiple Feature-Kernel Combinations with
Domain Adaptation, for Recognition in Surveillance Face Datasets,
Biometrics16(237-242)
IEEE DOI
1612
GAN, Face Recognition, DA, Nash equilibrium, PMSE, Jensen-Shannon divergence
BibRef
Yu, B.,
Tao, D.,
Anchor Cascade for Efficient Face Detection,
IP(28), No. 5, May 2019, pp. 2490-2501.
IEEE DOI
1903
convolutional neural nets, face recognition,
image classification, learning (artificial intelligence),
cascade face detection
BibRef
Villamizar, M.[Michael],
Sanfeliu, A.[Alberto],
Moreno-Noguer, F.[Francesc],
Online learning and detection of faces with low human supervision,
VC(35), No. 3, March 2019, pp. 349-370.
WWW Link.
1906
BibRef
Wu, W.Q.[Wen-Qi],
Yin, Y.J.[Ying-Jie],
Wang, X.G.[Xin-Gang],
Xu, D.[De],
Face Detection With Different Scales Based on Faster R-CNN,
Cyber(49), No. 11, November 2019, pp. 4017-4028.
IEEE DOI
1908
convolutional neural nets, face recognition, feature extraction,
learning (artificial intelligence),
Faster R-CNN
BibRef
Kefi-Fatteh, T.[Takoua],
Ksantini, R.[Riadh],
Kaâniche, M.B.[Mohamed-Bécha],
Bouhoula, A.[Adel],
Human Face Detection Improvement Using Incremental Learning Based on
Low Variance Directions,
SIViP(13), No. 8, November 2019, pp. 1503-1510.
Springer DOI
1911
BibRef
Earlier:
ACIVS17(170-179).
Springer DOI
1712
BibRef
Massoli, F.V.[Fabio Valerio],
Amato, G.[Giuseppe],
Falchi, F.[Fabrizio],
Cross-resolution learning for Face Recognition,
IVC(99), 2020, pp. 103927.
Elsevier DOI
2006
Deep learning, Low resolution Face Recognition,
Cross resolution Face Recognition
BibRef
Zhou, Z.X.[Ze-Xun],
He, Z.S.[Zhong-Shi],
Jia, Y.Y.[Yuan-Yuan],
Du, J.L.[Jing-Long],
Wang, L.[Lulu],
Chen, Z.Y.[Zi-Yu],
Context prior-based with residual learning for face detection:
A deep convolutional encoder-decoder network,
SP:IC(88), 2020, pp. 115948.
Elsevier DOI
2009
Context prior, Residual learning,
Deep convolutional neural network, Encoder-decoder, Face detection
BibRef
Huang, Y.[Yuge],
Shen, P.C.[Peng-Cheng],
Tai, Y.[Ying],
Li, S.X.[Shao-Xin],
Liu, X.M.[Xiao-Ming],
Li, J.L.[Ji-Lin],
Huang, F.Y.[Fei-Yue],
Ji, R.R.[Rong-Rong],
Improving Face Recognition from Hard Samples via Distribution
Distillation Loss,
ECCV20(XXX: 138-154).
Springer DOI
2010
BibRef
Huang, Y.H.[Yu-Hsuan],
Chen, H.H.[Homer H.],
Deep face recognition for dim images,
PR(126), 2022, pp. 108580.
Elsevier DOI
2204
BibRef
Earlier:
Face Recognition Under Low Illumination Via Deep Feature
Reconstruction Network,
ICIP20(2161-2165)
IEEE DOI
2011
Face recognition, Dim image, Rank-1 identification accuracy,
Two-branch network, Convolutional neural network.
illumination-invariant, illumination-robust,
reconstruction network, illumination pre-processing.
BibRef
Zhang, S.F.[Shi-Feng],
Chi, C.[Cheng],
Lei, Z.[Zhen],
Li, S.Z.[Stan Z.],
RefineFace:
Refinement Neural Network for High Performance Face Detection,
PAMI(43), No. 11, November 2021, pp. 4008-4020.
IEEE DOI
2110
Face, Detectors, Face detection, Feature extraction, Task analysis,
Proposals, Neural networks, Face detection, refinement network, high performance
BibRef
Yang, X.B.[Xian-Ben],
Zhang, W.[Wei],
Heterogeneous face detection based on multi-task cascaded
convolutional neural network,
IET-IPR(16), No. 1, 2022, pp. 207-215.
DOI Link
2112
BibRef
Chen, B.J.[Bei-Jing],
Liu, X.[Xin],
Zheng, Y.H.[Yu-Hui],
Zhao, G.Y.[Guo-Ying],
Shi, Y.Q.[Yun-Qing],
A Robust GAN-Generated Face Detection Method Based on Dual-Color
Spaces and an Improved Xception,
CirSysVideo(32), No. 6, June 2022, pp. 3527-3538.
IEEE DOI
2206
Faces, Feature extraction, Image color analysis, Convolution,
Face detection, Robustness, Convolutional neural networks, color space
BibRef
Zhou, J.C.[Jian-Can],
Jia, X.[Xi],
Li, Q.[Qiufu],
Shen, L.L.[Lin-Lin],
Duan, J.M.[Jin-Ming],
UniFace: Unified Cross-Entropy Loss for Deep Face Recognition,
ICCV23(20673-20682)
IEEE DOI
2401
BibRef
Jiang, C.C.[Chen-Chen],
Ma, H.B.[Hong-Bing],
Li, L.L.[Liang-Liang],
IRNet: An Improved RetinaNet Model for Face Detection,
ICIVC22(129-134)
IEEE DOI
2301
Training, Manuals, Feature extraction, Real-time systems, Hardware,
Face detection, Faces, face detection, RetinaNet, feature fusion,
weight decay
BibRef
Liu, Y.[Yang],
Wang, F.[Fei],
Deng, J.K.[Jian-Kang],
Zhou, Z.P.[Zhi-Peng],
Sun, B.[Baigui],
Li, H.[Hao],
MogFace: Towards a Deeper Appreciation on Face Detection,
CVPR22(4083-4092)
IEEE DOI
2210
Codes, Face recognition, Detectors, Object detection,
Feature extraction, Face detection, Data mining, Face and gestures,
retrieval
BibRef
Liu, S.L.[Shi-Long],
Zhang, L.[Lei],
Yang, X.[Xiao],
Su, H.[Hang],
Zhu, J.[Jun],
Unsupervised Part Segmentation through Disentangling Appearance and
Shape,
CVPR21(8351-8360)
IEEE DOI
2111
Geometry, Shape, Annotations, Face recognition,
Semantics, Neural networks
BibRef
Xiao, Z.H.[Zi-Hao],
Gao, X.F.[Xian-Feng],
Fu, C.L.[Chi-Lin],
Dong, Y.P.[Yin-Peng],
Gao, W.[Wei],
Zhang, X.L.[Xiao-Lu],
Zhou, J.[Jun],
Zhu, J.[Jun],
Improving Transferability of Adversarial Patches on Face Recognition
with Generative Models,
CVPR21(11840-11849)
IEEE DOI
2111
Manifolds, Face recognition, Perturbation methods,
Authentication, Robustness, Security
BibRef
Yang, X.[Xiao],
Wei, F.Y.[Fang-Yun],
Zhang, H.Y.[Hong-Yang],
Zhu, J.[Jun],
Design and Interpretation of Universal Adversarial Patches in Face
Detection,
ECCV20(XVII:174-191).
Springer DOI
2011
BibRef
Ghosh, S.S.,
Hua, Y.,
Mukherjee, S.S.,
Robertson, N.M.,
Improving Detection And Recognition Of Degraded Faces By
Discriminative Feature Restoration Using GAN,
ICIP20(2146-2150)
IEEE DOI
2011
Face recognition, Faces, Facial features, Image recognition,
Image restoration, CNN, GAN, detection, recognition,
degraded face image
BibRef
Zhu, J.S.[Jia-Shu],
Li, D.[Dong],
Han, T.T.[Tian-Tian],
Tian, L.[Lu],
Shan, Y.[Yi],
Progressface: Scale-aware Progressive Learning for Face Detection,
ECCV20(VI:344-360).
Springer DOI
2011
BibRef
Sanchez Tapia, L.,
Pattichis, M.S.,
Celedón-Pattichis, S.,
López Leiva, C.,
The Importance of the Instantaneous Phase for Face Detection using
Simple Convolutional Neural Networks,
SSIAI20(1-4)
IEEE DOI
2009
channel bank filters, convolutional neural nets,
face recognition, image filtering, image representation,
low-complexity neural networks
BibRef
Huang, Y.,
Wang, Y.,
Tai, Y.,
Liu, X.,
Shen, P.,
Li, S.,
Li, J.,
Huang, F.,
CurricularFace: Adaptive Curriculum Learning Loss for Deep Face
Recognition,
CVPR20(5900-5909)
IEEE DOI
2008
Training, Face recognition, Modulation, Convergence, Face,
Adaptation models, Tuning
BibRef
Winter, M.[Martin],
Bailer, W.[Werner],
Incremental Training for Face Recognition,
MMMod19(I:289-299).
Springer DOI
1901
BibRef
Lezama, J.,
Qiu, Q.,
Musé, P.,
Sapiro, G.,
OLE: Orthogonal Low-rank Embedding, A Plug and Play Geometric Loss
for Deep Learning,
CVPR18(8109-8118)
IEEE DOI
1812
Training, Standards, Neural networks, Face, Measurement, Optimization
BibRef
Kortylewski, A.,
Egger, B.,
Schneider, A.,
Gerig, T.,
Morel-Forster, A.,
Vetter, T.,
Empirically Analyzing the Effect of Dataset Biases on Deep Face
Recognition Systems,
AMFG18(2174-217409)
IEEE DOI
1812
Face, Face recognition, Lighting, Generators, Training data,
Computer architecture, Task analysis
BibRef
Siddiqui, S.,
Vatsa, M.,
Singh, R.,
Face Recognition for Newborns, Toddlers, and Pre-School Children:
A Deep Learning Approach,
ICPR18(3156-3161)
IEEE DOI
1812
Pediatrics, Databases, Face, Face recognition, Feature extraction,
Principal component analysis, Iris recognition
BibRef
Jamal, M.A.,
Li, H.,
Gong, B.,
Deep Face Detector Adaptation Without Negative Transfer or
Catastrophic Forgetting,
CVPR18(5608-5618)
IEEE DOI
1812
Detectors, Face, Training, Adaptation models, Cost function, Face detection
BibRef
Song, G.,
Liu, Y.,
Jiang, M.,
Wang, Y.,
Yan, J.,
Leng, B.,
Beyond Trade-Off: Accelerate FCN-Based Face Detector with Higher
Accuracy,
CVPR18(7756-7764)
IEEE DOI
1812
Face, Face detection, Proposals, Acceleration, Detectors, Estimation,
Feature extraction
BibRef
Le, C.,
Ma, H.,
Wang, X.,
Li, X.,
Key Parts Context and Scene Geometry in Human Head Detection,
ICIP18(1897-1901)
IEEE DOI
1809
Head, Detectors, Geometry, Task analysis, Training, Shape,
Head detection, key parts context, scene geometry,
convolutional neural network
BibRef
Sun, Z.,
Peng, D.,
Cai, Z.,
Chen, Z.,
Jin, L.,
Scale Mapping and Dynamic Re-Detecting in Dense Head Detection,
ICIP18(1902-1906)
IEEE DOI
1809
Head, Proposals, Training, Task analysis, Testing, Object detection,
Complexity theory, Object detection, convolutional neural network
BibRef
Shi, W.,
Pattichis, M.S.,
Celedón-Pattichis, S.,
López Leiva, C.,
Robust Head Detection in Collaborative Learning Environments Using
AM-FM Representations,
Southwest18(1-4)
IEEE DOI
1809
Hair, Frequency modulation, Face, Detectors, Robustness,
Image color analysis, head detection, face detection, AM-FM representations
BibRef
Chen, J.,
Lin, W.,
Zheng, J.,
Chellappa, R.,
A Real-Time Multi-Task Single Shot Face Detector,
ICIP18(176-180)
IEEE DOI
1809
Face, Task analysis, Detectors, Pose estimation, Face detection,
face detection, fiducial detection, head pose estimation
BibRef
Filali, H.,
Riffi, J.,
Mahraz, A.M.,
Tairi, H.,
Multiple face detection based on machine learning,
ISCV18(1-8)
IEEE DOI
1807
Gabor filters, face recognition, feature extraction,
image classification, learning (artificial intelligence),
Machine Learning
BibRef
Nguyen-Meidine, L.T.,
Granger, E.,
Kiran, M.,
Blais-Morin, L.A.,
A comparison of CNN-based face and head detectors for real-time video
surveillance applications,
IPTA17(1-7)
IEEE DOI
1804
computational complexity, face recognition,
feedforward neural nets, image resolution, object detection,
Video Surveillance
BibRef
Zhang, H.,
Liu, H.,
Guo, D.,
Sun, F.,
From foot to head: Active face finding using deep Q-learning,
ICIP17(1862-1866)
IEEE DOI
1803
Cameras, Face, Learning (artificial intelligence), Manipulators,
Testing, Training, Active face finding, Deep Q-learning
BibRef
Zhang, G.,
Tu, E.,
Cui, D.,
Stable and improved generative adversarial nets (GANS):
A constructive survey,
ICIP17(1871-1875)
IEEE DOI
1803
Convolution, Face, Generators, Pipelines,
Task analysis, Training, GAN, generative adversarial networks,
stable GAN
BibRef
Hsu, G.S.,
Hsieh, C.H.,
Multi-dropout regression for wide-angle landmark localization,
ICIP17(3830-3834)
IEEE DOI
1803
Convolution, Databases, Detectors, Face, Face detection,
Feature extraction, Training, Convolutional Neural Network,
Face Alignment
BibRef
Hu, G.S.[Guo-Sheng],
Hua, Y.[Yang],
Yuan, Y.,
Zhang, Z.,
Lu, Z.,
Mukherjee, S.S.,
Hospedales, T.M.,
Robertson, N.M.[Neil M.],
Yang, Y.,
Attribute-Enhanced Face Recognition with Neural Tensor Fusion
Networks,
ICCV17(3764-3773)
IEEE DOI
1802
face recognition, feature extraction, image fusion,
learning (artificial intelligence), neural nets, optimisation,
Tensile stress
BibRef
Zhang, K.,
Zhang, Z.,
Wang, H.,
Li, Z.,
Qiao, Y.,
Liu, W.,
Detecting Faces Using Inside Cascaded Contextual CNN,
ICCV17(3190-3198)
IEEE DOI
1802
convolution, face recognition, image classification,
image enhancement, learning (artificial intelligence),
Training
BibRef
Wang, J.,
Wang, B.,
Zheng, Y.,
Liu, W.,
Research and Implementation on Face Detection Approach Based on
Cascaded Convolutional Neural Networks,
ICVISP17(34-39)
IEEE DOI
1712
Erbium, Signal processing, deep learning, face detection, multi-task learning
BibRef
Khadhraoui, T.[Taher],
Amiri, H.[Hamid],
Face Recognition with Single Training Sample per Subject,
CIAP17(II:202-212).
Springer DOI
1711
BibRef
Deng, J.K.[Jian-Kang],
Zhou, Y.X.[Yu-Xiang],
Zafeiriou, S.P.[Stefanos P.],
Marginal Loss for Deep Face Recognition,
FaceWild17(2006-2014)
IEEE DOI
1709
Databases, Face, Face recognition, Robustness, Standards, Training,
Training, data
BibRef
Mao, M.[Minqi],
Zheng, Z.L.[Zhong-Long],
Chen, Z.Y.[Zhong-Yu],
Liu, H.W.[Hua-Wen],
He, X.W.[Xiao-Wei],
Ye, R.H.[Rong-Hua],
Group and collaborative dictionary pair learning for face recognition,
ICPR16(4107-4111)
IEEE DOI
1705
Algorithm design and analysis, Collaboration, Databases,
Dictionaries, Encoding, Face recognition, Training, Collaborative,
Dictionary Pair Learning, Face Recognition, Group
BibRef
Yang, Z.[Zhenheng],
Nevatia, R.,
A multi-scale cascade fully convolutional network face detector,
ICPR16(633-638)
IEEE DOI
1705
Detectors, Face, Face detection, Heating systems, Proposals,
Streaming media, Training
BibRef
Chariton, A.[Alexandros],
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Bag-Of-Features-Based Knowledge Distillation For Lightweight
Convolutional Neural Networks,
ICIP22(1541-1545)
IEEE DOI
2211
Knowledge engineering, Convolution, Neural networks, Pipelines,
Network architecture, Feature extraction,
Convolutional Neural Networks
BibRef
Passalis, N.[Nikolaos],
Tefas, A.[Anastasios],
Learning Deep Representations with Probabilistic Knowledge Transfer,
ECCV18(XI: 283-299).
Springer DOI
1810
BibRef
Earlier:
Learning Discriminative Representations for Big Data Clustering Using
Similarity-Based Dimensionality Reduction,
IVMSP18(1-5)
IEEE DOI
1809
BibRef
Earlier:
Learning Bag-of-Features Pooling for Deep Convolutional Neural
Networks,
ICCV17(5766-5774)
IEEE DOI
1802
Task analysis, Optimization, Clustering algorithms,
Dimensionality reduction, Robustness, Clustering methods, Linear programming.
convolution, feature extraction,
image classification, image representation,
Training
BibRef
Tzelepi, M.,
Tefas, A.,
Fully Unsupervised Optimization of CNN Features Towards Content Based
Image Retrieval,
IVMSP18(1-5)
IEEE DOI
1809
Task analysis, Image retrieval, Feature extraction,
Adaptation models, Image representation, Computer architecture,
Deep Learning
BibRef
Triantafyllidou, D.,
Tefas, A.,
Face detection based on deep convolutional neural networks exploiting
incremental facial part learning,
ICPR16(3560-3565)
IEEE DOI
1705
Computational modeling, Convolution, Detectors, Face, Face detection,
Neural networks, Training
BibRef
Guan, Y.,
Lu, T.,
Zhang, Y.,
Wang, B.,
Li, X.,
Xiong, Z.,
Efficient low-rank supported extreme learning machine for robust face
recognition,
VCIP16(1-4)
IEEE DOI
1701
Algorithm design and analysis
BibRef
Wang, K.,
Dong, Y.,
Bai, H.,
Zhao, Y.,
Hu, K.,
Use fast R-CNN and cascade structure for face detection,
VCIP16(1-4)
IEEE DOI
1701
Calibration
BibRef
Vizilter, Y.,
Gorbatsevich, V.,
Vorotnikov, A.,
Kostromov, N.,
Real-Time Face Identification via CNN and Boosted Hashing Forest,
Biometrics16(146-154)
IEEE DOI
1612
BibRef
Ghazi, M.M.,
Ekenel, H.K.,
A Comprehensive Analysis of Deep Learning Based Representation for
Face Recognition,
Biometrics16(102-109)
IEEE DOI
1612
BibRef
Qin, H.W.[Hong-Wei],
Yan, J.J.[Jun-Jie],
Li, X.[Xiu],
Hu, X.L.[Xiao-Lin],
Joint Training of Cascaded CNN for Face Detection,
CVPR16(3456-3465)
IEEE DOI
1612
BibRef
Li, Y.Z.[Yun-Zhu],
Sun, B.Y.[Ben-Yuan],
Wu, T.F.[Tian-Fu],
Wang, Y.Z.[Yi-Zhou],
Face Detection with End-to-End Integration of a ConvNet and a 3D Model,
ECCV16(III: 420-436).
Springer DOI
1611
BibRef
Lin, S.,
Su, F.,
FCFD: Teach the machine to accomplish face detection step by step,
ICIP16(3214-3218)
IEEE DOI
1610
Detectors
BibRef
Chowdhury, A.R.,
Lin, T.Y.,
Maji, S.,
Learned-Miller, E.G.[Erik G.],
One-to-many face recognition with bilinear CNNs,
WACV16(1-9)
IEEE DOI
1606
Benchmark testing
BibRef
Iosifidis, A.[Alexandros],
Tefas, A.[Anastasios],
Pitas, I.[Ioannis],
Large-scale nonlinear facial image classification based on
approximate kernel Extreme Learning Machine,
ICIP15(2449-2453)
IEEE DOI
1512
Approximate Methods
BibRef
Li, H.X.[Hao-Xiang],
Lin, Z.[Zhe],
Shen, X.H.[Xiao-Hui],
Brandt, J.[Jonathan],
Hua, G.[Gang],
A convolutional neural network cascade for face detection,
CVPR15(5325-5334)
IEEE DOI
1510
BibRef
Shao, M.[Ming],
Ding, Z.M.[Zheng-Ming],
Fu, Y.[Yun],
Sparse low-rank fusion based deep features for missing modality face
recognition,
FG15(1-6)
IEEE DOI
1508
face recognition
Not all modalities in learning.
BibRef
Thakur, S.,
Sing, J.K.,
Basu, D.K.,
Nasipuri, M.,
Face Recognition Using Posterior Distance Model Based Radial Basis
Function Neural Networks,
PReMI09(470-475).
Springer DOI
0912
BibRef
Zhuang, S.S.[Shin-Shan],
Lai, S.H.[Shang-Hong],
Face detection directly from h.264 compressed video with convolutional
neural network,
ICIP09(2485-2488).
IEEE DOI
0911
BibRef
Zhang, Y.[Yan],
Zhang, T.[Tao],
Combining Variation in the Bayesian Face Recognition,
CISP09(1-4).
IEEE DOI
0910
BibRef
Onis, S.,
Sanson, H.,
Garcia, C.,
Iterative unsupervised object detection system,
WSSIP08(397-400).
IEEE DOI
0806
Apply to faces. Give a few expamples, learn.
BibRef
Tian, C.[Chunna],
Fan, G.L.[Guo-Liang],
Gao, X.B.[Xin-Bo],
Multi-view face recognition by nonlinear tensor decomposition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Tian, C.[Chunna],
Gao, X.B.[Xin-Bo],
Li, J.[Jie],
A Valid Multi-View Face Detection Tree Based on Floatboost Learning,
ICIP06(2653-2656).
IEEE DOI
0610
BibRef
Bredin, H.[Herve],
Dehak, N.[Najim],
Chollet, G.[Gerard],
GMM-based SVM for face recognition,
ICPR06(III: 1111-1114).
IEEE DOI
0609
BibRef
He, X.G.[Xiao-Guang],
Tian, J.[Jie],
He, Y.L.[Yu-Liang],
Yang, X.[Xin],
Face Recognition with Relative Difference Space and SVM,
ICPR06(III: 527-531).
IEEE DOI
0609
BibRef
Abeni, P.,
Baltatu, M.[Madalina],
d'Alessandro, R.[Rosalia],
User Authentication based on Face Recognition with Support Vector
Machines,
CRV06(42-42).
IEEE DOI
0607
BibRef
Gates, K.E.,
Fast and Accurate Face Recognition Using Support Vector Machines,
FRGC05(III: 163-163).
IEEE DOI
0507
BibRef
Jin, H.L.[Hong-Liang],
Liu, Q.S.[Qing-Shan],
Lu, H.Q.[Han-Qing],
Face detection using one-class-based support vectors,
AFGR04(457-462).
IEEE DOI
0411
BibRef
Chen, J.[Jie],
Chen, X.L.[Xi-Lin],
Gao, W.[Wen],
Expand training set for face detection by GA re-sampling,
AFGR04(73-78).
IEEE DOI
0411
BibRef
And:
Resampling for face detection by self-adaptive genetic algorithm,
ICPR04(III: 822-825).
IEEE DOI
0409
BibRef
Fang, J.,
Qiu, G.,
Face Detection Based on Multiple Regression and Recognition Support
Vector Machines,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Penev, P.S.[Penio S.],
Learning a Synchronous MAP for Improved Face Recognition,
LCV04(106).
IEEE DOI
0406
BibRef
Wu, Y.M.[Yi-Ming],
Chan, K.L.[Kap Luk],
Wang, L.[Lei],
Face recognition based on discriminative manifold learning,
ICPR04(IV: 171-174).
IEEE DOI
0409
BibRef
Cui, G.Q.[Guo-Qin],
Gao, W.[Wen],
Support vector machines for face recognition with two-layer generated
virtual data,
ICPR04(III: 570-573).
IEEE DOI
0409
BibRef
Sun, J.[Jie],
Rehg, J.M.,
Bobick, A.F.,
Automatic cascade training with perturbation bias,
CVPR04(II: 276-283).
IEEE DOI
0408
Cascade learning for face detection.
BibRef
Fransens, R.,
DePrins, J.,
Van Gool, L.J.,
SVM-based nonparametric discriminant analysis, an application to face
detection,
ICCV03(1289-1296).
IEEE DOI
0311
BibRef
Zhang, B.L.[Bai-Ling],
Guo, Y.[Yan],
Face Recognition by Auto-associative Radial Basis Function Network,
AVBPA01(52).
Springer DOI
0310
BibRef
Ma, Y.[Yong],
Ding, X.Q.[Xiao-Qing],
Face detection based on hierarchical support vector machines,
ICPR02(I: 222-225).
IEEE DOI
0211
BibRef
Ma, Y.[Yong],
Ding, X.Q.[Xiao-Qing],
Real-time rotation invariant face detection based on cost-sensitive
AdaBoost,
ICIP03(III: 921-924).
IEEE DOI
0312
BibRef
Kim, T.K.[Tae-Kyun],
Kong, D.G.[Dong-Geon],
Kim, S.R.[Sang-Ryong],
Learning a decision boundary for face detection,
ICIP02(I: 920-923).
IEEE DOI
0210
BibRef
Sahbi, H.,
Boujemaa, N.,
Coarse-to-fine support vector classifiers for face detection,
ICPR02(III: 359-362).
IEEE DOI
0211
BibRef
Sahbi, H.,
Boujemaa, N.,
Robust Matching by Dynamic Space Warping for Accurate Face Recognition,
ICIP01(I: 1010-1013).
IEEE DOI
0108
BibRef
Sahbi, H.,
Geman, D.,
Boujemaa, N.,
Face detection using coarse-to-fine support vector classifiers,
ICIP02(III: 925-928).
IEEE DOI
0210
BibRef
Kotropoulos, C.,
Bassiou, N.,
Kosmidis, T.,
Pitas, I.,
Frontal Face Detection Using Support Vector Machines and
Back-Propagation Neural Networks,
SCIA01(O-Th1).
0206
BibRef
And: A2, A1, A3, A4:
ICIP01(I: 1026-1029).
IEEE DOI
0108
BibRef
Liu, C.[Ce],
Zhu, S.C.[Song Chun],
Shum, H.Y.[Heung-Yeung],
Learning Inhomogeneous Gibbs Model of Faces by Minimax Entropy,
ICCV01(I: 281-287).
IEEE DOI
0106
BibRef
El-Bakry, H.,
Fast Cooperative Modular Neural Nets for Human Face Detection,
ICIP01(I: 1002-1005).
IEEE DOI
0108
BibRef
Terrillon, J.C.,
Shirazi, M.N.,
Sadek, M.,
Fukamachi, H.,
Akamatsu, S.,
Invariant Face Detection with Support Vector Machines,
ICPR00(Vol IV: 210-217).
IEEE DOI
0009
BibRef
Duta, N.[Nicolae],
Jain, A.K.[Anil K.],
Learning the Human Face Concept from Black and White Images,
ICPR98(Vol II: 1365-1367).
IEEE DOI
9808
BibRef
Duta, N.[Nicolae],
Learning based Detection, segmentation and matching of objects,
Ph.D.thesis, Michigan State University, 2000.
BibRef
0001
Weber, M.[Markus],
Einhaeuser, W.[Wolfgang],
Welling, M.[Max],
Perona, P.[Pietro],
Viewpoint-Invariant Learning and Detection of Human Heads,
AFGR00(20-27).
IEEE DOI
0003
BibRef
Carreño, D.[David],
Ginesta, X.[Xavier],
Facial image recognition using neural networks and genetic algorithms,
CAIP97(605-612).
Springer DOI
9709
BibRef
Song, Y.[Yang],
Leung, T.[Thomas],
Context-Aided Human Recognition: Clustering,
ECCV06(III: 382-395).
Springer DOI
0608
BibRef
Leung, T.[Thomas],
Burl, M.[Mike],
Perona, P.[Pietro],
Finding Faces in Cluttered Scenes Using
Labelled Random Graph Matching,
ICCV95(637-644).
IEEE DOI Find face features.
BibRef
9500
Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Face Detection in Video .