21.9.3 Brain, Parkinson's Disease

Chapter Contents (Back)
Brain. Cortex. Parkinson's Disease.
See also Diffusion Tensor Imaging.

Oh, S.H.[Se-Hong], Jeong, H.J.[Hye-Jin], Kim, J.M.[Jong-Min], Kwon, D.H.[Dae-Hyuk], Park, S.Y.[Sung-Yeon], Park, J.H.[Joshua H.], Kim, Y.B.[Young-Bo], Chi, J.G.[Je-Geun], Park, C.W.[Chan-Woong], Jeon, B.S.[Beom S.], Cho, Z.H.[Zang-Hee],
Quantitative analysis of the SN in Parkinson's disease implementing 3D modeling at 7.0-T MRI,
IJIST(21), No. 3, September 2011, pp. 253-259.
DOI Link 1109
BibRef

Chauvie, S.[Stephane], Obertino, M.[Margherita], Papaleo, A.[Alberto], Ruspa, M.[Marta], Solano, A.[Ada], Gozzoli, L.[Luigi], Gagliano, A.[Attilio], Biggi, A.[Alberto],
A method for the visual analysis of early-stage Parkinson's disease based on virtual MRI-derived SPECT images,
IJIST(22), No. 3, September 2012, pp. 172-176.
DOI Link 1208
BibRef

Song, I.U.[In-Uk], Chung, Y.A.[Yong-An], Chung, S.W.[Sung-Woo], Huh, R.[Ryoong],
Clinical value of cardiac I-123 metaiodobenzylguanidine scintigraphy between Parkinson's disease and Parkinson's disease associated dementia,
IJIST(22), No. 4, December 2012, pp. 241-244.
DOI Link 1211
BibRef

Song, I.U.[In-Uk], Chung, Y.A.[Yong-An], Huh, R.[Ryoong],
Brain perfusion SPECT can differentiate clinical subtypes of Parkinson's diseases,
IJIST(23), No. 3, 2013, pp. 222-226.
DOI Link 1309
Parkinson's disease, tremor, perfusion SPECT BibRef

Song, I.U.[In-Uk], Chung, S.W.[Sung-Woo], Chung, Y.A.[Yong-An],
Efficacy of an NMDA receptor antagonist for Parkinson's disease dementia: A brain perfusion SPECT study,
IJIST(24), No. 4, 2014, pp. 326-331.
DOI Link 1411
Parkinson's disease, dementia, memantine, cerebral blood flow BibRef

Kim, T.W.[Tae-Won], Chung, Y.A.[Yong-An], Song, I.U.[In-Uk], Lee, K.S.[Kwang-Soo],
Analysis of cerebral blood flow in Parkinson's disease with dementia versus subcortical ischemic vascular dementia using single photon emission computed tomography,
IJIST(24), No. 4, 2014, pp. 306-312.
DOI Link 1411
Parkinson's disease with dementia BibRef

Ghayoumi, M.[Mehdi], Zhao, Y.[Ye],
Parkinson Data Analysis and Interpretation with Data Visualization Methods,
ISVC14(II: 884-893).
Springer DOI 1501
BibRef

Subasi, A.[Abdulhamit],
A decision support system for diagnosis of neuromuscular disorders using DWT and evolutionary support vector machines,
SIViP(9), No. 2, February 2015, pp. 399-408.
WWW Link. 1503
BibRef

Bailey, C.[Chris], Austin, J.[Jim], Hollier, G.[Garry], Moulds, A.[Anthony], Freeman, M.[Micheal], Fargus, A.[Alex], Lampert, T.[Tom],
Evaluating a Miniature Multisensor Biosignal Recorder for Unsupervised Parkinson's Disease Monitoring,
Sensors(184), No. 1, January 2015, pp. 66-76.
HTML Version. 1504
BibRef

Rana, B.[Bharti], Juneja, A.[Akanksha], Saxena, M.[Mohit], Gudwani, S.[Sunita], Kumaran, S.S.[S. Senthil], Behari, M.[Madhuri], Agrawal, R.K.,
Graph-theory-based spectral feature selection for computer aided diagnosis of Parkinson's disease using T1-weighted MRI,
IJIST(25), No. 3, 2015, pp. 245-255.
DOI Link 1509
Parkinson's disease BibRef

Song, I.U.[In-Uk], Kim, T.W.[Tae-Won], Yoo, I.[Ikdong], Chung, Y.A.[Yong-An], Lee, K.S.[Kwan-Sung],
Can COMT-inhibitor delay the clinical progression of Parkinson's disease? 2 years follow up pilot study,
IJIST(26), No. 1, 2016, pp. 38-42.
DOI Link 1604
Parkinson's disease BibRef

Kim, Y.D.[Young-Do], Jeong, H.S.[Hyeonseok S.], Kim, Y.D.[Yong-Duk],
Comparison of regional cerebral blood flow in Parkinson's disease with depression and major depression,
IJIST(27), No. 3, 2017, pp. 209-215.
DOI Link 1708
depression, Parkinson's disease, regional cerebral blood flow, , single, photon, emission, computed, tomography BibRef

Impedovo, D.,
Velocity-Based Signal Features for the Assessment of Parkinsonian Handwriting,
SPLetters(26), No. 4, April 2019, pp. 632-636.
IEEE DOI 1903
Writing, Task analysis, Diseases, Standards, Acceleration, Azimuth, Neuromuscular, Parkinson's disease, computer aided diagnosis, tremor BibRef

Qin, Z., Jiang, Z., Chen, J., Hu, C., Ma, Y.,
sEMG-Based Tremor Severity Evaluation for Parkinson's Disease Using a Light-Weight CNN,
SPLetters(26), No. 4, April 2019, pp. 637-641.
IEEE DOI 1903
Training, Testing, Parkinson's disease, Task analysis, Feature extraction, Hospitals, Muscles, Parkinson's Disease, similarity learning BibRef

Ariz, M., Abad, R.C., Castellanos, G., Martínez, M., Muńoz-Barrutia, A., Fernández-Seara, M.A., Pastor, P., Pastor, M.A., Ortiz-de-Solórzano, C.,
Dynamic Atlas-Based Segmentation and Quantification of Neuromelanin-Rich Brainstem Structures in Parkinson Disease,
MedImg(38), No. 3, March 2019, pp. 813-823.
IEEE DOI 1903
Image segmentation, Diseases, Brainstem, Nuclear magnetic resonance, Magnetic resonance imaging, neural network based classifier BibRef

Loconsole, C.[Claudio], Cascarano, G.D.[Giacomo Donato], Brunetti, A.[Antonio], Trotta, G.F.[Gianpaolo Francesco], Losavio, G.[Giacomo], Bevilacqua, V.[Vitoantonio], di Sciascio, E.[Eugenio],
A model-free technique based on computer vision and sEMG for classification in Parkinson's disease by using computer-assisted handwriting analysis,
PRL(121), 2019, pp. 28-36.
Elsevier DOI 1904
Handwriting analysis, Neurodegenerative disease, Parkinson's disease, Neural Network, SVM BibRef

Moetesum, M.[Momina], Siddiqi, I.[Imran], Vincent, N.[Nicole], Cloppet, F.[Florence],
Assessing visual attributes of handwriting for prediction of neurological disorders: A case study on Parkinson's disease,
PRL(121), 2019, pp. 19-27.
Elsevier DOI 1904
Handwriting, Parkinson's disease, Convolutional neural networks, Visual attributes BibRef

Liu, C., Wang, J., Deng, B., Li, H., Fietkiewicz, C., Loparo, K.A.,
Noise-Induced Improvement of the Parkinsonian State: A Computational Study,
Cyber(49), No. 10, October 2019, pp. 3655-3664.
IEEE DOI 1907
Neurons, Satellite broadcasting, Mathematical model, Computational modeling, Pathology, Biological neural networks, Parkinsonian state BibRef

Almeida, J.S.[Jefferson S.], Filho, P.P.R.[Pedro P. Rebouças], Carneiro, T.[Tiago], Wei, W.[Wei], Damaševicius, R.[Robertas], Maskeliunas, R.[Rytis], de Albuquerque, V.H.C.[Victor Hugo C.],
Detecting Parkinson's disease with sustained phonation and speech signals using machine learning techniques,
PRL(125), 2019, pp. 55-62.
Elsevier DOI 1909
Parkinson's disease, Speech processing, Phonological features, Feature extraction, Machine learning, Diagnosis BibRef

Bernardo, L.S.[Lucas S.], Quezada, A.[Angeles], Munoz, R.[Roberto], Maia, F.M.[Fernanda Martins], Pereira, C.R.[Clayton R.], Wu, W.Q.[Wan-Qing], de Albuquerque, V.H.C.[Victor Hugo C.],
Handwritten pattern recognition for early Parkinson's disease diagnosis,
PRL(125), 2019, pp. 78-84.
Elsevier DOI 1909
Parkinson's disease, machine learning, image processing BibRef

Parziale, A.[Antonio], Cioppa, A.D.[Antonio Della], Senatore, R.[Rosa], Marcelli, A.[Angelo],
A Decision Tree for Automatic Diagnosis of Parkinson's Disease from Offline Drawing Samples: Experiments and Findings,
CIAP19(I:196-206).
Springer DOI 1909
BibRef

Diaz, M.[Moises], Ferrer, M.A.[Miguel Angel], Impedovo, D.[Donato], Pirlo, G.[Giuseppe], Vessio, G.[Gennaro],
Dynamically enhanced static handwriting representation for Parkinson's disease detection,
PRL(128), 2019, pp. 204-210.
Elsevier DOI 1912
Parkinson's disease, e-Health, Computer aided diagnosis, Dynamically enhanced static handwriting, Convolutional neural networks BibRef

Kim, M., Won, J.H., Youn, J., Park, H.,
Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting Biomarkers of Parkinson's Disease,
MedImg(39), No. 1, January 2020, pp. 23-34.
IEEE DOI 2001
Genetics, Neuroimaging, Correlation, Diseases, Magnetic resonance imaging, Sparse matrices, Imaging genetics, single nucleotide polymorphism (SNP) BibRef

Naghsh, E.[Erfan], Sabahi, M.F.[Mohamad Farzan], Beheshti, S.[Soosan],
Spatial analysis of EEG signals for Parkinson's disease stage detection,
SIViP(14), No. 2, March 2020, pp. 397-405.
WWW Link. 2003
BibRef

Ashour, A.S.[Amira S.], El-Attar, A.[Amira], Dey, N.[Nilanjan], Abd El-Kader, H.[Hatem], Abd El-Naby, M.M.[Mostafa M.],
Long short term memory based patient-dependent model for FOG detection in Parkinson's disease,
PRL(131), 2020, pp. 23-29.
Elsevier DOI 2004
Parkinson's disease, Wearable sensors, Accelerometer sensor, Freezing of gait, Classification, Support vector machine, Long short term memory deep learning model BibRef

Kaur, S.[Sukhpal], Aggarwal, H.[Himanshu], Rani, R.[Rinkle],
Hyper-parameter optimization of deep learning model for prediction of Parkinson's disease,
MVA(31), No. 5, July 2020, pp. Article32.
WWW Link. 2006
BibRef

Wingate, J.[James], Kollia, I.[Ilianna], Bidaut, L.[Luc], Kollias, S.[Stefanos],
Unified deep learning approach for prediction of Parkinson's disease,
IET-IPR(14), No. 10, August 2020, pp. 1980-1989.
DOI Link 2008
BibRef

Afonso, L.C.S.[Luis C.S.], Pereira, C.R.[Clayton R.], Weber, S.A.T.[Silke A.T.], Hook, C.[Christian], Falcăo, A.X.[Alexandre X.], Papa, J.P.[Joăo P.],
Hierarchical Learning Using Deep Optimum-Path Forest,
JVCIR(71), 2020, pp. 102823.
Elsevier DOI 2009
Parkinson's disease, Optimum-path forest, Handwriting dynamics, Hierarchical representation
See also Active Learning Paradigms for CBIR Systems Based on Optimum-Path Forest Classification. BibRef

Afonso, L.C.S.[Luis C.S.], Pedronette, D.C.G., de Souza, A.N., Papa, J.P.[Joăo P.],
Improving Optimum-Path Forest Classification Using Unsupervised Manifold Learning,
ICPR18(560-565)
IEEE DOI 1812
Measurement, Manifolds, Prototypes, Training, Forestry, Task analysis, Vegetation BibRef

Zhou, Y., Tinaz, S., Tagare, H.D.,
Robust Bayesian Analysis of Early-Stage Parkinson's Disease Progression Using DaTscan Images,
MedImg(40), No. 2, February 2021, pp. 549-561.
IEEE DOI 2102
Mathematical model, Diseases, Brain modeling, Biological system modeling, Trajectory, Time series analysis, t-distribution BibRef

Khachnaoui, H.[Hajer], Mabrouk, R.[Rostom], Khlifa, N.[Nawres],
Machine learning and deep learning for clinical data and PET/SPECT imaging in Parkinson's disease: a review,
IET-IPR(14), No. 16, 19 December 2020, pp. 4013-4026.
DOI Link 2103
BibRef

Jiji, G.W.[G. Wiselin], Rajesh, A., Raj, P.J.D.[P. Johnson Durai],
Diagnosis of Parkinson's Disease Using SVM Classifier,
IJIG(21), No. 2 2021, pp. 2150011.
DOI Link 2105
BibRef

Jiang, Z.H.[Zhe-Heng], Zhou, F.X.[Fei-Xiang], Zhao, A.[Aite], Li, X.[Xin], Li, L.[Ling], Tao, D.C.[Da-Cheng], Li, X.L.[Xue-Long], Zhou, H.Y.[Hui-Yu],
Multi-View Mouse Social Behaviour Recognition With Deep Graphic Model,
IP(30), 2021, pp. 5490-5504.
IEEE DOI 2106
Mice, Feature extraction, Hidden Markov models, Computational modeling, Graphical models, Cameras, Video recording, Parkinson's disease (PD) BibRef

Gazda, M.[Matej], Hireš, M.[Máté], Drotár, P.[Peter],
Multiple-Fine-Tuned Convolutional Neural Networks for Parkinson's Disease Diagnosis From Offline Handwriting,
SMCS(52), No. 1, January 2022, pp. 78-89.
IEEE DOI 2112
Tuning, Task analysis, Writing, Spirals, Handwriting recognition, Diseases, Medical diagnosis, Convolutional neural network (CNN), transfer learning (TL) BibRef

Vásquez-Correa, J.C.[Juan Camilo], Rios-Urrego, C.D.[Cristian David], Arias-Vergara, T.[Tomás], Schuster, M.[Maria], Rusz, J.[Jan], Nöth, E.[Elmar], Orozco-Arroyave, J.R.[Juan Rafael],
Transfer learning helps to improve the accuracy to classify patients with different speech disorders in different languages,
PRL(150), 2021, pp. 272-279.
Elsevier DOI 2109
Pathological speech, Parkinson's disease, Huntington's disease, Deep learning, Convolutional neural networks, Transfer learning BibRef

Guo, R.[Rui], Shao, X.X.[Xiang-Xin], Zhang, C.C.[Chen-Cheng], Qian, X.H.[Xiao-Hua],
Multi-Scale Sparse Graph Convolutional Network For the Assessment of Parkinsonian Gait,
MultMed(24), 2022, pp. 1583-1594.
IEEE DOI 2204
Feature extraction, Deep learning, Pose estimation, Bones, Legged locomotion, Joints, Correlation, Parkinson's disease, model-driven deep learning BibRef

Guo, R.[Rui], Xie, Z.[Zheng], Zhang, C.[Chencheng], Qian, X.H.[Xiao-Hua],
Causality-Enhanced Multiple Instance Learning With Graph Convolutional Networks for Parkinsonian Freezing-of-Gait Assessment,
IP(33), 2024, pp. 3991-4001.
IEEE DOI 2407
Feature extraction, Videos, Motion segmentation, Legged locomotion, Skeleton, Transient analysis, Medical diagnostic imaging, causal inference BibRef

Zhao, A.[Aite], Li, J.B.[Jian-Bo], Dong, J.Y.[Jun-Yu], Qi, L.[Lin], Zhang, Q.[Qianni], Li, N.[Ning], Wang, X.[Xin], Zhou, H.Y.[Hui-Yu],
Multimodal Gait Recognition for Neurodegenerative Diseases,
Cyber(52), No. 9, September 2022, pp. 9439-9453.
IEEE DOI 2208
Feature extraction, Diseases, Gait recognition, Correlation, Hidden Markov models, Neural networks, Sensors, Parkinson's disease (PD) BibRef

Guo, R.[Rui], Sun, J.[Jie], Zhang, C.[Chencheng], Qian, X.H.[Xiao-Hua],
A Self-Supervised Metric Learning Framework for the Arising-From-Chair Assessment of Parkinsonians With Graph Convolutional Networks,
CirSysVideo(32), No. 9, September 2022, pp. 6461-6471.
IEEE DOI 2209
Videos, Task analysis, Bones, Convolution, Training, Representation learning, Sun, Parkinson's disease, graph convolutional network BibRef

Guo, R.[Rui], Sun, J.[Jie], Zhang, C.[Chencheng], Qian, X.H.[Xiao-Hua],
A Contrastive Graph Convolutional Network for Toe-Tapping Assessment in Parkinson's Disease,
CirSysVideo(32), No. 12, December 2022, pp. 8864-8874.
IEEE DOI 2212
Feature extraction, Videos, Task analysis, Deep learning, Parkinson's disease, Convolutional neural networks, graph convolutional network BibRef

Jose, S.[Shobha], Selvaraj, T.G.[Thomas George], Samuel, K.[Kenneth], Philip, J.T.[Jobin T.], Jothiraj, S.N.[Sairamya Nanjappan], Pandian, S.M.S.[Subathra Muthu Swamy], Handiru, V.S.[Vikram Shenoy], Suviseshamuthu, E.S.[Easter S.],
Intramuscular EMG classifier for detecting myopathy and neuropathy,
IJIST(33), No. 2, 2023, pp. 659-669.
DOI Link 2303
center symmetric local binary pattern, classification, electromyography, majority voting, neuromuscular disorders BibRef

Khaskhoussy, R.[Rania], Ben Ayed, Y.[Yassine],
Improving Parkinson's disease recognition through voice analysis using deep learning,
PRL(168), 2023, pp. 64-70.
Elsevier DOI 2304
Parkinson's disease, SVM, CNN, I-vector features, Speech BibRef

Wang, N.[Nana], Niu, X.S.[Xue-Sen], Yuan, Y.Y.[Yi-Yang], Sun, Y.Z.[Yun-Ze], Li, R.[Ran], You, G.L.[Guo-Liang], Zhao, A.[Aite],
A coordinate attention enhanced swin transformer for handwriting recognition of Parkinson's disease,
IET-IPR(17), No. 9, 2023, pp. 2686-2697.
DOI Link 2307
feature extraction, image classification BibRef

Salmanpour, M.R.[Mohammad R.], Hosseinzadeh, M.[Mahdi], Bakhtiyari, M.[Mahya], Maghsudi, M.[Mehdi], Rahmim, A.[Arman],
Prediction of drug amount in Parkinson's disease using hybrid machine learning systems and radiomics features,
IJIST(33), No. 4, 2023, pp. 1437-1449.
DOI Link 2307
dimension reduction algorithms, hybrid machine learning systems, Parkinson's disease, radiomics features BibRef

Zhong, C.K.[Can-Kun], Ng, W.W.Y.[Wing W. Y],
A Robust Frequency-Domain-Based Graph Adaptive Network for Parkinson's Disease Detection From Gait Data,
MultMed(25), 2023, pp. 7076-7088.
IEEE DOI 2311
BibRef

Huang, W.[Wei], Zhou, Y.[Yintao], Cheung, Y.M.[Yiu-Ming], Zhang, P.[Peng], Zha, Y.F.[Yu-Fei], Pang, M.[Meng],
Facial Expression Guided Diagnosis of Parkinson's Disease via High-Quality Data Augmentation,
MultMed(25), 2023, pp. 7037-7050.
IEEE DOI 2311
BibRef

Tang, X.[Xinlu], Guo, R.[Rui], Zhang, C.[Chencheng], Zhuang, X.[Xiahai], Qian, X.H.[Xiao-Hua],
A Causality-Driven Graph Convolutional Network for Postural Abnormality Diagnosis in Parkinsonians,
MedImg(42), No. 12, December 2023, pp. 3752-3763.
IEEE DOI Code:
WWW Link. 2312
BibRef

Tang, X.[Xinlu], Zhang, C.C.[Chen-Cheng], Guo, R.[Rui], Yang, X.L.[Xin-Ling], Qian, X.H.[Xiao-Hua],
A Causality-Aware Graph Convolutional Network Framework for Rigidity Assessment in Parkinsonians,
MedImg(43), No. 1, January 2024, pp. 229-240.
IEEE DOI Code:
WWW Link. 2401
BibRef

Ramzani, E.[Elias], Yadollahzadeh-Tabari, M.[Meisam], GolesorkhtabarAmiri, M.[Mehdi], Pouyan, A.A.[Ali A.],
Diagnosing of Parkinson's disease based on hand drawing analysis using Bi-Directional LSTM equipped with fuzzy inferential soft-max classifier,
IJIST(34), No. 1, 2024, pp. e22948.
DOI Link 2401
Bi-LSTM, fuzzy inference, hand drawing, Parkinson's disease BibRef

Olmos, J.[Juan], Manzanera, A.[Antoine], Martínez, F.[Fabio],
Riemannian SPD learning to represent and characterize fixational oculomotor Parkinsonian abnormalities,
PRL(177), 2024, pp. 157-163.
Elsevier DOI 2401
Oculomotor patterns, Parkinson's disease classification, Symmetric positive definite pooling, Riemannian manifold BibRef

Xie, Z.[Zheng], Guo, R.[Rui], Zhang, C.[Chencheng], Qian, X.H.[Xiao-Hua],
A Clinically Guided Graph Convolutional Network for Assessment of Parkinsonian Pronation-Supination Movements of Hands,
CirSysVideo(34), No. 5, May 2024, pp. 3687-3699.
IEEE DOI 2405
Feature extraction, Task analysis, Transient analysis, Skeleton, Convolution, Pose estimation, Convolutional neural networks, video-based assessment BibRef

Toumi, S.N.E.[Sihem Nour Elhouda], Belkhamsa, N.[Noureddine], Cherfa, Y.[Yazid], Bouzouad, A.C.[Assia Cherfa],
An interpretable deep learning Bayesian optimized random forest framework for the diagnosis of Parkinson's disease in structural magnetic resonance images,
IJIST(34), No. 4, 2024, pp. e23106.
DOI Link 2406
CNN, computer-aided diagnosis, feature extraction, grad-CAM, Parkinson's disease BibRef

Dong, S.[Shanyu], Liu, J.[Jin], Wang, J.X.[Jian-Xin],
Diagnosis of Parkinson's Disease Based on Hybrid Fusion Approach of Offline Handwriting Images,
SPLetters(31), 2024, pp. 3179-3183.
IEEE DOI 2411
Feature extraction, Diseases, Visualization, Vectors, Image color analysis, Convolutional neural networks, Accuracy, pre-trained CNN BibRef


Kim, K.[Kyungdo], Lyu, S.[Sihan], Mantri, S.[Sneha], Dunn, T.W.[Timothy W.],
TULIP: Multi-Camera 3D Precision Assessment of Parkinson's Disease,
CVPR24(22551-22562)
IEEE DOI 2410
Solid modeling, Parkinson's disease, Medical treatment, Manuals, Predictive models, Motors, Parkinson's Disease, Movement disorder, Multi-camera BibRef

Adeli, V.[Vida], Mehraban, S.[Soroush], Ballester, I.[Irene], Zarghami, Y.[Yasamin], Sabo, A.[Andrea], Iaboni, A.[Andrea], Taati, B.[Babak],
Benchmarking Skeleton-based Motion Encoder Models for Clinical Applications: Estimating Parkinson's Disease Severity in Walking Sequences,
FG24(1-10)
IEEE DOI 2408
Analytical models, Adaptation models, Codes, Parkinson's disease, Biological system modeling, Benchmark testing, Predictive models BibRef

Radouane, A.[Asmaa], Touil, M.[Mohamed], Kadil, Y.[Youness], Rahmoune, I.[Imane], Filali, H.[Houda],
Pioneering Pain Relief: Exploring Neuromodulation with Electrical Impulses and Mechanical Techniques for Effective Pain Management,
ISCV24(1-7)
IEEE DOI 2408
Somatosensory, Spinal cord, Pain, Reviews, Transcranial magnetic stimulation, Parkinson's disease, trigeminal nerve BibRef

Zhang, Y.C.[Yu-Chen], Lei, H.J.[Hai-Jun], Huang, Z.[Zhongwei], Li, Z.[Zhen], Liu, C.M.[Chuan-Ming], Lei, B.[Baiying],
Parkinson's Disease Classification with Self-supervised Learning and Attention Mechanism,
ICPR22(4601-4607)
IEEE DOI 2212
Training, Solid modeling, Parkinson's disease, Magnetic resonance imaging, magnetic resonance imaging BibRef

Parziale, A.[Antonio], Cioppa, A.D.[Antonio Della], Marcelli, A.[Angelo],
Mimicking the immune system to diagnose Parkinson's disease from handwriting,
ICPR22(2496-2502)
IEEE DOI 2212
Training, Support vector machines, Parkinson's disease, Sociology, Detectors, Feature extraction, Behavioral sciences BibRef

Nguyen, D.M.D.[Duc Minh Dimitri], Miah, M.[Mehdi], Bilodeau, G.A.[Guillaume-Alexandre], Bouachir, W.[Wassim],
Transformers for 1D signals in Parkinson's disease detection from gait,
ICPR22(5089-5095)
IEEE DOI 2212
Source coding, Memory management, Transformers, Feature extraction, Prediction algorithms, Stability analysis, Spatial databases BibRef

Zhao, M.L.[Meng-Lu], Lei, H.J.[Hai-Jun], Huang, Z.W.[Zhong-Wei], Zhang, Y.C.[Yu-Chen], Li, Z.[Zhen], Liu, C.M.[Chuan-Ming], Lei, B.Y.[Bai-Ying],
Attention-based Graph Neural Network for the Classification of Parkinson's Disease,
ICPR22(4608-4614)
IEEE DOI 2212
Biological system modeling, Filtering algorithms, Predictive models, Prediction algorithms, Information filters, phenotypic information BibRef

Mostafa, T.A.[Tahjid Ashfaque], Cheng, I.[Irene],
Image Prior Transfer and Ensemble Architectures for Parkinson's Disease Detection,
ISVC21(I:51-62).
Springer DOI 2112
BibRef

Mehta, D.[Deval], Asif, U.[Umar], Hao, T.[Tian], Bilal, E.[Erhan], von Cavallar, S.[Stefan], Harrer, S.[Stefan], Rogers, J.[Jeffrey],
Towards Automated and Marker-less Parkinson Disease Assessment: Predicting UPDRS Scores using Sit-stand videos,
CVPM21(3836-3844)
IEEE DOI 2109
Legged locomotion, Deep learning, Training, Telemedicine, Sociology, Task analysis BibRef

Gomez, L.F.[Luis F.], Morales, A.[Aythami], Orozco-Arroyave, J.R.[Juan R.], Daza, R.[Roberto], Fierrez, J.[Julian],
Improving Parkinson Detection using Dynamic Features from Evoked Expressions in Video,
AUVi21(1562-1570)
IEEE DOI 2109
Neurological diseases, Deep learning, Databases, Face recognition, Muscles, Feature extraction BibRef

Huang, Z.W.[Zhong-Wei], Lei, H.J.[Hai-Jun], Li, S.Q.[Shi-Qi], Xiao, X.H.[Xiao-Hua], Tan, E.L.[Ee-Leng], Lei, B.Y.[Bai-Ying],
Longitudinal Feature Selection and Feature Learning for Parkinson's Disease Diagnosis and Prediction,
ICPR21(5736-5743)
IEEE DOI 2105
Neuroimaging, Deep learning, Parkinson's disease, Diversity reception, Feature extraction, Data models, Data mining, multiple modalities and relation Classification and Regression BibRef

Ali, M.R., Hernandez, J., Dorsey, E.R., Hoque, E., McDuff, D.,
Spatio-Temporal Attention and Magnification for Classification of Parkinson's Disease from Videos Collected via the Internet,
FG20(207-214)
IEEE DOI 2102
Task analysis, Videos, Motion segmentation, Thumb, Handheld computers, Wearable sensors, Parkinson's, Segmentation BibRef

Guarin, D.L., Dempster, A., Bandini, A., Yunusova, Y., Taati, B.,
Estimation of Orofacial Kinematics in Parkinson's Disease: Comparison of 2D and 3D Markerless Systems for Motion Tracking,
FG20(540-543)
IEEE DOI 2102
Feature extraction, Task analysis, Mouth, Cameras, Diseases BibRef

Dias, S.B., Grammatikopoulou, A., Grammalidis, N., Diniz, J.A., Savvidis, T., Konstantinidis, E., Bamidis, P., Stadtschnitzer, M., Trivedi, D., Klingelhoefer, L., Katsarou, Z., Bostantzopoulou, S., Dimitropoulos, K., Hadjileontiadis, L.J.,
Motion Analysis on Depth Camera Data to Quantify Parkinson's Disease Patients' Motor Status Within the Framework of I-Prognosis Personalized Game Suite,
ICIP20(3264-3268)
IEEE DOI 2011
Cameras, Parkinson's disease, Games, Physics, Indexes, Predictive models, i-PROGNOSIS, Deep learning BibRef

Vlachostergiou, A., Tagaris, A., Stafylopatis, A., Kollias, S.,
Multi-Task Learning for Predicting Parkinson's Disease Based on Medical Imaging Information,
ICIP18(2052-2056)
IEEE DOI 1809
Task analysis, Parkinson's disease, Predictive models, Biomedical imaging, Handheld computers, Deep Neural Networks, Computer-Aided Diagnosis BibRef

Vlachostergiou, A., Tagaris, A., Stafylopatis, A., Kollias, S.,
Investigating the Best Performing Task Conditions of a Multi-Tasking Learning Model in Healthcare Using Convolutional Neural Networks: Evidence from a Parkinson'S Disease Database,
ICIP18(2047-2051)
IEEE DOI 1809
Task analysis, Parkinson's disease, Predictive models, Databases, Computational modeling, Convolutional Neural Networks, context BibRef

Spetsieris, P.G., Dhawan, V., Eidelberg, D.,
Visualizing Network Connectivity in Parkinson'S Disease,
ICIP18(724-728)
IEEE DOI 1809
Correlation, Diseases, Principal component analysis, Covariance matrices, Positron emission tomography, FDG PET BibRef

Oikonomou, V.P., Blekas, K., Astrakas, L.,
Functional Connectivity in Parkinson Disease Through Mixture Modelling,
IVMSP18(1-5)
IEEE DOI 1809
Functional magnetic resonance imaging, Time series analysis, Brain modeling, Task analysis, Analytical models, Mixture models, Data models BibRef

Przybyszewski, A.W.[Andrzej W.], Szlufik, S.[Stanislaw], Habela, P.[Piotr], Koziorowski, D.M.[Dariusz M.],
Rough Set Rules Determine Disease Progressions in Different Groups of Parkinson's Patients,
PReMI17(270-275).
Springer DOI 1711
BibRef

Pereira, C.R.[Clayton R.], Passos, L.A.[Leandro A.], Lopes, R.R.[Ricardo R.], Weber, S.A.T.[Silke A. T.], Hook, C.[Christian], Papa, J.P.[Joăo Paulo],
Parkinson's Disease Identification Using Restricted Boltzmann Machines,
CAIP17(II: 70-80).
Springer DOI 1708
BibRef

Gómez-Orozco, V., Cuellar, J., García, H.F.[Hernán F.], Álvarez, A.M., Álvarez, M.A., Orozco, A.A., Henao, O.A.,
A Kernel-Based Approach for DBS Parameter Estimation,
CIARP16(158-166).
Springer DOI 1703
deep brain stimulation. VTA: Volume of tissue activated. BibRef

Kao, J.Y.[Jiun-Yu], Nguyen, M.[Minh], Nocera, L.[Luciano], Shahabi, C.[Cyrus], Ortega, A.[Antonio], Winstein, C.[Carolee], Sorkhoh, I.[Ibrahim], Chung, Y.C.[Yu-Chen], Chen, Y.A.[Yi-An], Bacon, H.[Helen],
Validation of Automated Mobility Assessment Using a Single 3D Sensor,
ACVR16(II: 162-177).
Springer DOI 1611
More gait type analysis. BibRef

Adeli-Mosabbeb, E.[Ehsan], Wee, C.Y.[Chong-Yaw], An, L.[Le], Shi, F.[Feng], Shen, D.G.[Ding-Gang],
Joint Feature-Sample Selection and Robust Classification for Parkinson's Disease Diagnosis,
MCV15(127-136).
Springer DOI 1608
BibRef

Padilla, J.B.[José Bestier], Arango, R.[Ramiro], García, H.F.[Hernán F.], Cardona, H.D.V.[Hernán Darío Vargas], Orozco, Á.A.[Álvaro A.], Álvarez, M.A.[Mauricio A.], Guijarro, E.[Enrique],
NEURONAV: A Tool for Image-Guided Surgery - Application to Parkinson's Disease,
ISVC15(I: 349-358).
Springer DOI 1601
BibRef

Kubis, A.[Anna], Szymanski, A.[Artur], Przybyszewski, A.W.[Andrzej W.],
Fuzzy Rough Sets Theory Applied to Parameters of Eye Movements Can Help to Predict Effects of Different Treatments in Parkinson's Patients,
PReMI15(325-334).
Springer DOI 1511
BibRef

Spasojevic, S.[Sofija], Santos-Victor, J.[José], Ilic, T.[Tihomir], Milanovic, S.[Sladan], Potkonjak, V.[Veljko], Rodic, A.[Aleksandar],
A Vision-Based System for Movement Analysis in Medical Applications: The Example of Parkinson Disease,
CVS15(424-434).
Springer DOI 1507
BibRef

Morisi, R.[Rita], Gnecco, G.[Giorgio], Lanconelli, N.[Nico], Zanigni, S.[Stefano], Manners, D.N.[David Neil], Testa, C.[Claudia], Evangelisti, S.[Stefania], Gramegna, L.L.[Laura Ludovica], Bianchini, C.[Claudio], Cortelli, P.[Pietro], Tonon, C.[Caterina], Lodi, R.[Raffaele],
Binary and Multi-class Parkinsonian Disorders Classification Using Support Vector Machines,
IbPRIA15(379-386).
Springer DOI 1506
BibRef

Prashanth, R., Roy, S.D., Mandal, P.K., Ghosh, S.,
Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit,
NCVPRIPG13(1-4)
IEEE DOI 1408
diseases BibRef

Zhang, Y.Y.[Yu-Yao], Ogunbona, P.O., Li, W.Q.[Wan-Qing], Munro, B., Wallace, G.G.,
Pathological Gait Detection of Parkinson's Disease Using Sparse Representation,
DICTA13(1-8)
IEEE DOI 1402
diseases BibRef

Morales, J.M.[Juan-Miguel], Rodriguez, R.[Rafael], Carballo, M.[Maylen], Batista, K.[Karla],
Accuracy to Differentiate Mild Cognitive Impairment in Parkinson's Disease Using Cortical Features,
CIARP13(II:150-157).
Springer DOI 1311
BibRef

Rodriguez-Rojas, R.[Rafael], Sanabria, G.[Gretel], Melie, L.[Lester], Morales, J.M.[Juan-Miguel],
Using Graph Theory to Identify Aberrant Hierarchical Patterns in Parkinsonian Brain Networks,
CIARP13(II:134-141).
Springer DOI 1311
BibRef

Stawarz, M.[Magdalena], Polanski, A.[Andrzej], Kwiek, S.[Stanislaw], Boczarska-Jedynak, M.[Magdalena], Janik, L.[Lukasz], Przybyszewski, A.[Andrzej], Wojciechowski, K.[Konrad],
A System for Analysis of Tremor in Patients with Parkinson's Disease Based on Motion Capture Technique,
ICCVG12(618-625).
Springer DOI 1210
BibRef

Chen, L.[Lei], Seidel, G.[Gunter], Mertins, A.[Alfred],
Multiple feature extraction for early Parkinson risk assessment based on transcranial sonography image,
ICIP10(2277-2280).
IEEE DOI 1009
BibRef

Szilágyi, S.M.[Sándor M.], Szilágyi, L.[László], Görög, L.K.[Levente K.], Luca, C.T.[Constantin T.], Cozma, D.[Dragos], Ivanica, G.[Gabriel], Benyó, Z.[Zoltán],
An Enhanced Accessory Pathway Localization Method for Efficient Treatment of Wolff-Parkinson-White Syndrome,
CIARP08(269-276).
Springer DOI 0809
BibRef

Lee, J.D.[Jiann-Der], Huang, C.H.[Chung-Hsien], Chen, C.W.[Cheng-Wei], Weng, Y.H.[Yi-Hsin], Lin, K.J.[Kun-Ju], Chen, C.T.[Chin-Tu],
A Brain MRI/SPECT Registration System Using an Adaptive Similarity Metric: Application on the Evaluation of Parkinson's Disease,
MIRAGE07(235-246).
Springer DOI 0703
BibRef

Ericsson, A.[Anders], Lonsdale, M.N.[Markus Nowak], Astrom, K.[Kalle], Edenbrandt, L.[Lars], Friberg, L.[Lars],
Decision Support System for the Diagnosis of Parkinson's Disease,
SCIA05(740-749).
Springer DOI 0506
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Schizophrenia .


Last update:Nov 26, 2024 at 16:40:19