22.4.1.1 Human Posture, or Human Pose, Learning, Neural Networks

Chapter Contents (Back)
Human Pose. Human Posture. Body Pose. Posture. Pose. Neural Networks. CNN. Learning.

Pourdamghani, N.[Nima], Rabiee, H.R.[Hamid R.], Faghri, F.[Fartash], Rohban, M.H.[Mohammad Hossein],
Graph based semi-supervised human pose estimation: When the output space comes to help,
PRL(33), No. 12, 1 September 2012, pp. 1529-1535.
Elsevier DOI 1208
Human pose estimation; Graph based; Semi-supervised; Manifold regularization BibRef

Pourdamghani, N.[Nima], Rabiee, H.R.[Hamid R.], Zolfaghari, M.[Mohammadreza],
Metric learning for graph based semi-supervised human pose estimation,
ICPR12(3386-3389).
WWW Link. 1302
BibRef

Li, S.J.[Si-Jin], Liu, Z.Q.[Zhi-Qiang], Chan, A.B.[Antoni B.],
Heterogeneous Multi-Task Learning for Human Pose Estimation with Deep Convolutional Neural Network,
IJCV(113), No. 1, May 2015, pp. 19-36.
Springer DOI 1506
BibRef
Earlier: DeepLearn14(488-495)
IEEE DOI 1409
BibRef
And: A1, A3, Only:
3D Human Pose Estimation from Monocular Images with Deep Convolutional Neural Network,
ACCV14(II: 332-347).
Springer DOI 1504
deep learning; human pose estimation; multi-task learning BibRef

Unzueta, L., Aranjuelo, N., Goenetxea, J., Rodriguez, M., Linaza, M.T.,
Contextualised learning-free three-dimensional body pose estimation from two-dimensional body features in monocular images,
IET-CV(10), No. 4, 2016, pp. 299-306.
DOI Link 1608
cameras BibRef

Gouiaa, R.[Rafik], Meunier, J.[Jean],
Learning cast shadow appearance for human posture recognition,
PRL(97), No. 1, 2017, pp. 54-60.
Elsevier DOI 1709
Cast shadows BibRef

Jammalamadaka, N.[Nataraj], Zisserman, A.[Andrew], Jawahar, C.V.,
Human pose search using deep networks,
IVC(59), No. 1, 2017, pp. 31-43.
Elsevier DOI 1704
BibRef
Earlier:
Human pose search using deep poselets,
FG15(1-8)
IEEE DOI 1508
Pose retrieval. image representation BibRef

Ning, G., Zhang, Z., He, Z.,
Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation,
MultMed(20), No. 5, May 2018, pp. 1246-1259.
IEEE DOI 1805
Biological system modeling, Fractals, Knowledge engineering, Neural networks, Pose estimation, Training, Human pose estimation, knowledge-guided learning BibRef

Lim, J.[Jongin], Yoo, Y.J.[Young-Joon], Heo, B.[Byeongho], Choi, J.Y.[Jin Young],
Pose transforming network: Learning to disentangle human posture in variational auto-encoded latent space,
PRL(112), 2018, pp. 91-97.
Elsevier DOI 1809
Human pose transform, Disentangle hidden factors in latent space, Generative model, Variational auto-encoder BibRef

Wang, S., Xin, Y., Kong, D., Yin, B.,
Unsupervised Learning of Human Pose Distance Metric via Sparsity Locality Preserving Projections,
MultMed(21), No. 2, February 2019, pp. 314-327.
IEEE DOI 1902
Measurement, Robots, Resource management, Image recognition, Databases, Learning systems, Skeleton, Pose similarity, locality preserving projection BibRef

Liu, J.[Jian], Rahmani, H.[Hossein], Akhtar, N.[Naveed], Mian, A.S.[Ajmal S.],
Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition,
IJCV(127), No. 10, October 2019, pp. 1545-1564.
Springer DOI 1909
BibRef

Nie, X., Feng, J., Xing, J., Xiao, S., Yan, S.,
Hierarchical Contextual Refinement Networks for Human Pose Estimation,
IP(28), No. 2, February 2019, pp. 924-936.
IEEE DOI 1811
Pose estimation, Complexity theory, Heating systems, Biological system modeling, Predictive models, Iterative methods, hierarchical contextual refinement network BibRef

Cha, G.[Geonho], Lee, M.[Minsik], Cho, J.C.[Jung-Chan], Oh, S.H.[Song-Hwai],
Deep pose consensus networks,
CVIU(182), 2019, pp. 64-70.
Elsevier DOI 1905
3D human pose estimation, Single-image-based 3D human pose estimation, Multiple-partial-hypothesis-based scheme. BibRef

Chen, Y.C.[Yu-Cheng], Tian, Y.[Yingli], He, M.Y.[Ming-Yi],
Monocular human pose estimation: A survey of deep learning-based methods,
CVIU(192), 2020, pp. 102897.
Elsevier DOI 2002
Deep learning, Human pose estimation, Survey BibRef

Zheng, X.T.[Xiang-Tao], Chen, X.M.[Xiu-Mei], Lu, X.Q.[Xiao-Qiang],
A Joint Relationship Aware Neural Network for Single-Image 3D Human Pose Estimation,
IP(29), 2020, pp. 4747-4758.
IEEE DOI 2003
Pose estimation, Feature extraction, dual attention module BibRef

Wang, K.[Keze], Lin, L.[Liang], Jiang, C.H.[Chen-Han], Qian, C.[Chen], Wei, P.X.[Peng-Xu],
3D Human Pose Machines with Self-Supervised Learning,
PAMI(42), No. 5, May 2020, pp. 1069-1082.
IEEE DOI 2004
Pose estimation, Solid modeling, Task analysis, Deep learning, geometric deep learning BibRef

de Bem, R.[Rodrigo], Ghosh, A.[Arnab], Ajanthan, T.[Thalaiyasingam], Miksik, O.[Ondrej], Boukhayma, A.[Adnane], Siddharth, N., Torr, P.H.S.[Philip H.S.],
DGPose: Deep Generative Models for Human Body Analysis,
IJCV(128), No. 5, May 2020, pp. 1537-1563.
Springer DOI 2005
BibRef
Earlier: A1, A2, A3, A4, A6, A7, Only:
A Semi-supervised Deep Generative Model for Human Body Analysis,
HBU18(II:500-517).
Springer DOI 1905
BibRef

Bin, Y.R.[Yan-Rui], Chen, Z.M.[Zhao-Min], Wei, X.S.[Xiu-Shen], Chen, X.[Xinya], Gao, C.X.[Chang-Xin], Sang, N.[Nong],
Structure-aware human pose estimation with graph convolutional networks,
PR(106), 2020, pp. 107410.
Elsevier DOI 2006
Human pose estimation, Graph convolutional networks, Key points structural relations BibRef

Rogez, G.[Grégory], Schmid, C.[Cordelia],
Image-Based Synthesis for Deep 3D Human Pose Estimation,
IJCV(126), No. 9, September 2018, pp. 993-1008.
Springer DOI 1809
BibRef

Rogez, G.[Grégory], Weinzaepfel, P.[Philippe], Schmid, C.[Cordelia],
LCR-Net++: Multi-Person 2D and 3D Pose Detection in Natural Images,
PAMI(42), No. 5, May 2020, pp. 1146-1161.
IEEE DOI 2004
BibRef
Earlier:
LCR-Net: Localization-Classification-Regression for Human Pose,
CVPR17(1216-1224)
IEEE DOI 1711
Pose estimation, Proposals, Joints, Heating systems, Training data, CNN. Computer architecture, Standards, Training. BibRef

Leroy, V., Weinzaepfel, P.[Philippe], Brégier, R., Combaluzier, H., Rogez, G.[Grégory],
SMPLy Benchmarking 3D Human Pose Estimation in the Wild,
3DV20(301-310)
IEEE DOI 2102
Pose estimation, Benchmark testing, Videos, Shape, Pipelines, dataset BibRef

Baradel, F.[Fabien], Brégier, R.[Romain], Groueix, T.[Thibault], Weinzaepfel, P.[Philippe], Kalantidis, Y.[Yannis], Rogez, G.[Grégory],
PoseBERT: A Generic Transformer Module for Temporal 3D Human Modeling,
PAMI(45), No. 11, November 2023, pp. 12798-12815.
IEEE DOI 2310
BibRef

Sridhar Raj, S., Prasad, M.V.N.K.[Munaga V.N.K.], Balakrishnan, R.[Ramadoss],
Deep manifold clustering based optimal pseudo pose representation (DMC-OPPR) for unsupervised person re-identification,
IVC(101), 2020, pp. 103956.
Elsevier DOI 2009
Person re-identification, Clustering, Pose estimation, Representation, Deep learning BibRef

Tian, L.[Lei], Wang, P.[Peng], Liang, G.Q.[Guo-Qiang], Shen, C.H.[Chun-Hua],
An adversarial human pose estimation network injected with graph structure,
PR(115), 2021, pp. 107863.
Elsevier DOI 2104
Human pose estimation, Cascade feature network, Graph structure network, Generative adversarial network BibRef

Chen, Y.[Yu], Shen, C.H.[Chun-Hua], Wei, X.S.[Xiu-Shen], Liu, L.Q.[Ling-Qiao], Yang, J.[Jian],
Adversarial PoseNet: A Structure-Aware Convolutional Network for Human Pose Estimation,
ICCV17(1221-1230)
IEEE DOI 1802
feedforward neural nets, learning (artificial intelligence), pose estimation, Adversarial PoseNet, Training BibRef

Gochoo, M.[Munkhjargal], Akhter, I.[Israr], Jalal, A.[Ahmad], Kim, K.[Kibum],
Stochastic Remote Sensing Event Classification over Adaptive Posture Estimation via Multifused Data and Deep Belief Network,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Kamel, A.[Aouaidjia], Sheng, B.[Bin], Li, P.[Ping], Kim, J.M.[Jin-Man], Feng, D.D.[David Dagan],
Hybrid Refinement-Correction Heatmaps for Human Pose Estimation,
MultMed(23), 2021, pp. 1330-1342.
IEEE DOI 2105
Pose estimation, Heating systems, Feature extraction, Predictive models, Convolutional neural networks, Detectors, heatmaps fusion BibRef

Nie, Q.A.[Qi-Ang], Liu, Y.H.[Yun-Hui],
View Transfer on Human Skeleton Pose: Automatically Disentangle the View-Variant and View-Invariant Information for Pose Representation Learning,
IJCV(129), No. 1, January 2021, pp. 1-22.
Springer DOI 2101
BibRef

Nie, Q.A.[Qi-Ang], Liu, Z.W.[Zi-Wei], Liu, Y.H.[Yun-Hui],
Unsupervised 3d Human Pose Representation with Viewpoint and Pose Disentanglement,
ECCV20(XIX:102-118).
Springer DOI 2011
BibRef

Benzine, A.[Abdallah], Luvison, B.[Bertrand], Pham, Q.C.[Quoc Cuong], Achard, C.[Catherine],
Single-shot 3D multi-person pose estimation in complex images,
PR(112), 2021, pp. 107534.
Elsevier DOI 2102
BibRef
Earlier:
Deep, Robust and Single Shot 3D Multi-Person Human Pose Estimation from Monocular Images,
ICIP19(584-588)
IEEE DOI 1910
Multi-person, 3D, Human pose, Deep learning BibRef

Benzine, A.[Abdallah], Chabot, F., Luvison, B.[Bertrand], Pham, Q.C.[Quoc Cuong], Achard, C.[Catherine],
PandaNet: Anchor-Based Single-Shot Multi-Person 3D Pose Estimation,
CVPR20(6855-6864)
IEEE DOI 2008
Pose estimation, Heating systems, Image resolution, Solid modeling, Skeleton. BibRef

Zhao, L.[Lin], Wang, N.N.[Nan-Nan], Gong, C.[Chen], Yang, J.[Jian], Gao, X.B.[Xin-Bo],
Estimating Human Pose Efficiently by Parallel Pyramid Networks,
IP(30), 2021, pp. 6785-6800.
IEEE DOI 2108
Semantics, Pose estimation, Computational modeling, Heating systems, Task analysis, Graphical models, human pose estimation BibRef

Wang, H.[Hao], Luo, D.[Dingli], Ikenaga, T.[Takeshi],
Image Information Assistance Neural Network for VideoPose3D-based Monocular 3D Pose Estimation,
MVA21(1-4)
DOI Link 2109
Human computer interaction, Pose estimation, Neural networks, Cameras BibRef

Wang, J.D.[Jing-Dong], Sun, K.[Ke], Cheng, T.H.[Tian-Heng], Jiang, B.[Borui], Deng, C.R.[Chao-Rui], Zhao, Y.[Yang], Liu, D.[Dong], Mu, Y.D.[Ya-Dong], Tan, M.K.[Ming-Kui], Wang, X.G.[Xing-Gang], Liu, W.Y.[Wen-Yu], Xiao, B.[Bin],
Deep High-Resolution Representation Learning for Visual Recognition,
PAMI(43), No. 10, October 2021, pp. 3349-3364.
IEEE DOI 2109
Spatial resolution, Semantics, Object detection, Pose estimation, Convolutional codes, Indexes, Image segmentation, HRNet, object detection BibRef

Sun, K.[Ke], Xiao, B.[Bin], Liu, D.[Dong], Wang, J.D.[Jing-Dong],
Deep High-Resolution Representation Learning for Human Pose Estimation,
CVPR19(5686-5696).
IEEE DOI 2002
BibRef

Ben Gamra, M.[Miniar], Akhloufi, M.A.[Moulay A.],
A review of deep learning techniques for 2D and 3D human pose estimation,
IVC(114), 2021, pp. 104282.
Elsevier DOI 2109
2D and 3D human pose estimation, Single-person and multi-person pose estimation, BibRef

Fan, Z.[Zhen], Li, X.[Xiu], Li, Y.P.[Yi-Peng],
Multi-Agent Deep Reinforcement Learning for Online 3D Human Poses Estimation,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

McLaughlin, N.[Niall], Martinez-del-Rincon, J.[Jesus], Miller, P.[Paul],
3-D Human Pose Estimation Using Iterative Conditional Squeeze and Excitation Networks,
Cyber(52), No. 1, January 2022, pp. 687-699.
IEEE DOI 2201
Pose estimation, Network architecture, Space heating, Task analysis, Optimization, Joints, Iterative methods, human pose estimation BibRef

Yu, H.[Han], Du, C.[Congju], Yu, L.[Li],
Scale-aware heatmap representation for human pose estimation,
PRL(154), 2022, pp. 1-6.
Elsevier DOI 2202
Human pose estimation, Multi-person, Heatmap representation BibRef

Du, C.[Congju], Yu, H.[Han], Yu, L.[Li],
A scale-sensitive heatmap representation for multi-person pose estimation,
IET-IPR(16), No. 4, 2022, pp. 1194-1207.
DOI Link 2203
BibRef

Yang, K.B.[Kai-Bing], Gu, R.[Renshu], Wang, M.[Maoyu], Toyoura, M.[Masahiro], Xu, G.[Gang],
LASOR: Learning Accurate 3D Human Pose and Shape via Synthetic Occlusion-Aware Data and Neural Mesh Rendering,
IP(31), 2022, pp. 1938-1948.
IEEE DOI 2202
Shape, Training data, Training, Cameras, Biological system modeling, Solid modeling, 3D human pose and shape estimation, 2D keypoint BibRef

Luo, Y.M.[Yan-Min], Ou, Z.L.[Zhi-Long], Wan, T.J.[Tian-Jun], Guo, J.M.[Jing-Ming],
FastNet: Fast high-resolution network for human pose estimation,
IVC(119), 2022, pp. 104390.
Elsevier DOI 2202
Human pose estimation, FastNet, Asymmetric bottleneck module, Waterfall module BibRef

Zhang, K.[Ke], Li, Y.Q.[Yuan-Qing], Wang, J.Y.[Jing-Yu], Cambria, E.[Erik], Li, X.L.[Xue-Long],
Real-Time Video Emotion Recognition Based on Reinforcement Learning and Domain Knowledge,
CirSysVideo(32), No. 3, March 2022, pp. 1034-1047.
IEEE DOI 2203
Emotion recognition, Real-time systems, Streaming media, Brain modeling, Reinforcement learning, Visualization, real-time video conversation BibRef

Xu, X.Y.[Xiang-Yu], Chen, H.[Hao], Moreno-Noguer, F.[Francesc], Jeni, L.A.[László A.], de la Torre, F.[Fernando],
3D Human Pose, Shape and Texture From Low-Resolution Images and Videos,
PAMI(44), No. 9, September 2022, pp. 4490-4504.
IEEE DOI 2208
BibRef
Earlier:
3d Human Shape and Pose from a Single Low-resolution Image with Self-supervised Learning,
ECCV20(IX:284-300).
Springer DOI 2011
Image resolution, Shape, Estimation, Training, Solid modeling, Videos, 3D human pose and shape, low-resolution, neural network, video BibRef

Xu, X.Y.[Xiang-Yu], Change, C.[Chen],
3D Human Texture Estimation from a Single Image with Transformers,
ICCV21(13829-13838)
IEEE DOI 2203
Image color analysis, Estimation, Transformers, Convolutional neural networks, Image reconstruction, 3D from a single image and shape-from-x BibRef

Lee, K.[Kyoungoh], Kim, W.[Woojae], Lee, S.H.[Sang-Hoon],
From Human Pose Similarity Metric to 3D Human Pose Estimator: Temporal Propagating LSTM Networks,
PAMI(45), No. 2, February 2023, pp. 1781-1797.
IEEE DOI 2301
Measurement, Pose estimation, Correlation, Solid modeling, Entropy, Analytical models, Human perceptual characteristics, temporal propagating LSTM networks BibRef

Lan, G.[Gongjin], Wu, Y.[Yu], Hu, F.[Fei], Hao, Q.[Qi],
Vision-Based Human Pose Estimation via Deep Learning: A Survey,
HMS(53), No. 1, February 2023, pp. 253-268.
IEEE DOI 2301
Survey, Human Pose. Heating systems, Task analysis, Measurement, Deep learning, Pose estimation, Pipelines, Action recognition, human pose estimation (HPE) BibRef

Jiang, C.[Chenru], Huang, K.Z.[Kai-Zhu], Zhang, S.F.[Shu-Fei], Wang, X.H.[Xin-Heng], Xiao, J.[Jimin], Goulermas, Y.[Yannis],
Aggregated pyramid gating network for human pose estimation without pre-training,
PR(138), 2023, pp. 109429.
Elsevier DOI 2303
Pyramid gating system, Stabilization, Human pose estimation BibRef

Papaioannidis, C.[Christos], Mademlis, I.[Ioannis], Pitas, I.[Ioannis],
Fast CNN-Based Single-Person 2D Human Pose Estimation for Autonomous Systems,
CirSysVideo(33), No. 3, March 2023, pp. 1262-1275.
IEEE DOI 2303
Pose estimation, Head, Task analysis, Feature extraction, Training, Biological system modeling, 2D human pose estimation, autonomous systems BibRef

Liu, D.J.[Dong-Jingdian], Gao, S.[Shouwan], Chen, P.P.[Peng-Peng], Cheng, L.[Lei],
A generality hard channel pruning with adaptive compression rate selection for HRNet,
PRL(168), 2023, pp. 107-114.
Elsevier DOI 2304
Human pose estimation, Network slimming, Convolution networks, Optimization algorithm BibRef

Liu, W.K.[Wen-Kai], Qin, C.Z.[Cui-Zhu], Wu, M.L.[Meng-Long], Bai, W.L.[Wen-Le], Dong, H.X.[Hong-Xia],
Selective Learning of Human Pose Estimation Based on Multi-Scale Convergence Network,
IEICE(E106-D), No. 5, May 2023, pp. 1081-1084.
WWW Link. 2305
BibRef

Hua, G.L.[Guo-Liang], Liu, H.[Hong], Li, W.H.[Wen-Hao], Zhang, Q.[Qian], Ding, R.[Runwei], Xu, X.[Xin],
Weakly-Supervised 3D Human Pose Estimation With Cross-View U-Shaped Graph Convolutional Network,
MultMed(25), 2023, pp. 1832-1843.
IEEE DOI 2306
Cameras, Pose estimation, Solid modeling, Pipelines, Correlation, Training, 3D human pose estimation, cross-view, weakly-supervised learning BibRef

Guan, S.[Shannan], Lu, H.Y.[Hai-Yan], Zhu, L.C.[Lin-Chao], Fang, G.[Gengfa],
PoseGU: 3D human pose estimation with novel human pose generator and unbiased learning,
CVIU(233), 2023, pp. 103715.
Elsevier DOI 2307
3D pose estimation, Unbiased learning, Counterfactual risk minimization BibRef

Zheng, C.[Ce], Wu, W.H.[Wen-Han], Chen, C.[Chen], Yang, T.J.N.[Tao-Jian-Nan], Zhu, S.J.[Si-Jie], Shen, J.[Ju], Kehtarnavaz, N.[Nasser], Shah, M.[Mubarak],
Deep Learning-Based Human Pose Estimation: A Survey,
Surveys(56), No. 1, August 2023, pp. 11.
DOI Link 2310
Survey, Pose Estimation. deep learning-based pose estimation, pose estimation datasets, Survey of human pose estimation, pose estimation metrics, 2D and 3D pose estimation BibRef

Zheng, C.[Ce], Wu, W.H.[Wen-Han], Yang, T.J.N.[Tao-Jian-Nan], Zhu, S.J.[Si-Jie], Chen, C.[Chen], Liu, R.X.[Rui-Xu], Shen, J.[Ju], Kehtarnavaz, N.[Nasser], Shah, M.[Mubarak],
Deep Learning-Based Human Pose Estimation,
OnlineJanuary 2021.
PDF File. 2101
BibRef

Lv, X.Q.[Xue-Qiang], Hao, W.[Wei], Tian, L.[Lianghai], Han, J.[Jing], Chen, Y.Z.[Yu-Zhong], Cai, Z.[Zangtai],
LiteDEKR: End-to-end lite 2D human pose estimation network,
IET-IPR(17), No. 12, 2023, pp. 3392-3400.
DOI Link 2310
convolutional neural nets, pose estimation BibRef

Du, S.[Songlin], Yuan, Z.W.[Zhi-Wei], Lai, P.[Peifu], Ikenaga, T.[Takeshi],
JoyPose: Jointly learning evolutionary data augmentation and anatomy-aware global-local representation for 3D human pose estimation,
PR(147), 2024, pp. 110116.
Elsevier DOI 2312
3D human pose estimation, Evolutionary data augmentation, Global-local representation, Anatomy-awareness, Joint optimization BibRef

Yang, Z.D.[Zhen-Dong], Zeng, A.[Ailing], Yuan, C.[Chun], Li, Y.[Yu],
Effective Whole-body Pose Estimation with Two-stages Distillation,
CVMeta23(4212-4222)
IEEE DOI Code:
WWW Link. 2401
BibRef

Peng, Q.C.[Qu-Cheng], Zheng, C.[Ce], Chen, C.[Chen],
Source-free Domain Adaptive Human Pose Estimation,
ICCV23(4803-4813)
IEEE DOI Code:
WWW Link. 2401
BibRef

Zhang, Z.W.[Zhe-Wei], Liu, M.[Mingen], Shen, J.Y.[Jun-Yu], Cheng, Y.J.[Yu-Jun], Wang, S.J.[Sheng-Jin],
Lightweight Whole-Body Human Pose Estimation With Two-Stage Refinement Training Strategy,
HMS(54), No. 1, February 2024, pp. 121-130.
IEEE DOI 2402
Training, Pose estimation, Heating systems, Real-time systems, Task analysis, Faces, Human-machine systems, Deep learning, whole-body pose estimation BibRef

Zheng, Q.[Qian], Guo, H.L.[Hua-Ling], Yin, Y.[Yunhua], Zheng, B.[Bin], Jiang, H.X.[Hong-Xu],
LFSimCC: Spatial fusion lightweight network for human pose estimation,
JVCIR(99), 2024, pp. 104093.
Elsevier DOI 2403
Lightweight model, SimCC, Self attention mechanism, Spatial information fusion BibRef

Kim, D.H.[Dong-Hwi], Lee, D.H.[Dong-Hun], Kim, A.[Aro], Jeong, J.[Jinwoo], Lee, J.T.[Jong Taek], Kim, S.J.[Sung-Jei], Park, S.H.[Sang-Hyo],
Pruning-guided feature distillation for an efficient transformer-based pose estimation model,
IET-CV(18), No. 6, 2024, pp. 745-758.
DOI Link 2409
computational complexity, learning (artificial intelligence), pose estimation BibRef

Gonzalez-Cely, A.X.[Aura Ximena], Blanco-Diaz, C.F.[Cristian Felipe], Bastos-Filho, T.[Teodiano], Rodriguez-Diaz, C.A.[Camilo Arturo],
Real-Time Posture Identification System for Wheelchair Users Preventing the Generation of Pressure Ulcers,
HMS(54), No. 5, October 2024, pp. 546-553.
IEEE DOI 2410
Wheelchairs, Sensors, Pressure sensors, Real-time systems, Monitoring, Photodetectors, Sensor systems, wheelchair BibRef

Bao, W.X.[Wen-Xia], Lin, A.[An], Huang, H.[Hua], Yang, X.J.[Xian-Jun], Chen, H.[Hemu],
Multi-Scale Contrastive Learning for Human Pose Estimation,
IEICE(E108-D), No. 10, October 2024, pp. 1332-1341.
WWW Link. 2410
BibRef

Altindis, S.F.[Said Fahri], Meric, A.[Adil], Dalva, Y.[Yusuf], Güdükbay, U.[Ugur], Dundar, A.[Aysegul],
Refining 3D Human Texture Estimation From a Single Image,
PAMI(46), No. 12, December 2024, pp. 11464-11475.
IEEE DOI 2411
Estimation, Image reconstruction, Convolution, Solid modeling, Training, Rendering (computer graphics), Texture estimation, uncertainty estimation BibRef


Purkrabek, M.[Miroslav], Matas, J.[Jiri],
Improving 2D Human Pose Estimation in Rare Camera Views with Synthetic Data,
FG24(1-9)
IEEE DOI Code:
WWW Link. 2408
Space vehicles, Training, Pose estimation, Gesture recognition, Data models, Orbits BibRef

Feng, C.[Cun], Zhang, R.[Rong], Guo, L.J.[Li-Jun],
HR-xNet: A Novel High-Resolution Network for Human Pose Estimation with Low Resource Consumption,
FG24(1-7)
IEEE DOI 2408
Adaptation models, Convolution, Pose estimation, Semantics, Transforms, Gesture recognition, Feature extraction BibRef

Hardy, P.[Peter], Kim, H.S.[Han-Sung],
LInKs 'Lifting Independent Keypoints' - Partial Pose Lifting for Occlusion Handling with Improved Accuracy in 2D-3D Human Pose Estimation,
WACV24(3414-3423)
IEEE DOI 2404
Training, Pose estimation, Kinematics, Skeleton, Stability analysis, Task analysis, Algorithms, 3D computer vision, Algorithms BibRef

Raychaudhuri, D.S.[Dripta S.], Ta, C.K.[Calvin-Khang], Dutta, A.[Arindam], Lal, R.[Rohit], Roy-Chowdhury, A.K.[Amit K.],
Prior-guided Source-free Domain Adaptation for Human Pose Estimation,
ICCV23(14950-14960)
IEEE DOI 2401
BibRef

Yuan, Z.X.[Zhi-Xiang], Zhang, X.[Xitie], Wu, S.[Suping], Zhang, B.Y.[Bo-Yang], Peng, Y.X.[Yu-Xin], Wang, B.[Bing],
Multi Hybrid Extractor Network for 3D Human Pose Estimation,
ICIP23(3170-3174)
IEEE DOI 2312
BibRef

Cao, H.[Hu], Jia, M.[Meining], Wu, S.[Suping],
Frame-level Feature Tokenization Learning for Human Body Pose and Shape Estimation,
FG21(1-8)
IEEE DOI 2303
Correlation, Shape, Face recognition, Estimation, Gesture recognition, Feature extraction BibRef

Yang, C.Y.[Cheng-Yen], Luo, J.J.[Jia-Jia], Xia, L.[Lu], Sun, Y.[Yuyin], Qiao, N.[Nan], Zhang, K.[Ke], Jiang, Z.Y.[Zhong-Yu], Hwang, J.N.[Jenq-Neng], Kuo, C.H.[Cheng-Hao],
CameraPose: Weakly-Supervised Monocular 3D Human Pose Estimation by Leveraging In-the-wild 2D Annotations,
WACV23(2923-2932)
IEEE DOI 2302
Training, Solid modeling, Annotations, Pose estimation, Pipelines, Predictive models, 3D computer vision BibRef

Sárándi, I.[István], Hermans, A.[Alexander], Leibe, B.[Bastian],
Learning 3D Human Pose Estimation from Dozens of Datasets using a Geometry-Aware Autoencoder to Bridge Between Skeleton Formats,
WACV23(2955-2965)
IEEE DOI 2302
Training, Dimensionality reduction, Solid modeling, Codes, Pose estimation, Redundancy, Algorithms: Biometrics, face, gesture, 3D computer vision BibRef

Dong, H.[Hao], Wang, G.D.[Guo-Dong], Zhang, X.Y.[Xin-Yue],
Aggregation Transformer for Human Pose Estimation,
ICPR22(3660-3667)
IEEE DOI 2212
Training, Head, Costs, Convolution, Pose estimation, Predictive models, Transformers BibRef

Lutz, S.[Sebastian], Blythman, R.[Richard], Ghosal, K.[Koustav], Moynihan, M.[Matthew], Simms, C.[Ciaran], Smolic, A.[Aljosa],
Jointformer: Single-Frame Lifting Transformer with Error Prediction and Refinement for 3D Human Pose Estimation,
ICPR22(1156-1163)
IEEE DOI 2212
Convolutional codes, Pose estimation, Manuals, Kinematics, Transformers, Multitasking BibRef

Li, Y.[Yang], Jiao, P.[Peng], Wang, H.Q.[Hao-Qian],
Pyramid Knowledge Distillation for Efficient Human Pose Estimation,
ICIP22(2177-2181)
IEEE DOI 2211
Image coding, Correlation, Costs, Computational modeling, Pose estimation, Benchmark testing, Real-time systems, Human pose estimation BibRef

Gong, K.[Kehong], Li, B.B.[Bing-Bing], Zhang, J.F.[Jian-Feng], Wang, T.[Tao], Huang, J.[Jing], Mi, M.B.[Michael Bi], Feng, J.S.[Jia-Shi], Wang, X.C.[Xin-Chao],
PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision,
CVPR22(11007-11017)
IEEE DOI 2210
Training, Tracking, Pose estimation, Transforms, Benchmark testing, Pose estimation and tracking BibRef

Chu, S.W.[Shek Wai], Zhang, C.Y.[Chao-Yi], Song, Y.[Yang], Cai, W.D.[Wei-Dong],
Channel-Position Self-Attention with Query Refinement Skeleton Graph Neural Network in Human Pose Estimation,
ICIP22(971-975)
IEEE DOI 2211
Computational modeling, Pose estimation, Refining, Predictive models, Deep learning, Convolution Neural Network, Human Pose Estimation BibRef

He, Y.N.[Yan-Nan], Tiwari, G.[Garvita], Birdal, T.[Tolga], Lenssen, J.E.[Jan Eric], Pons-Moll, G.[Gerard],
NRDF: Neural Riemannian Distance Fields for Learning Articulated Pose Priors,
CVPR24(1661-1671)
IEEE DOI 2410
Manifolds, Backpropagation, Animals, Computational modeling, Pose estimation, Kinematics, pose prior, distance field, Riemannian manifold BibRef

Tiwari, G.[Garvita], Antic, D.[Dimitrije], Lenssen, J.E.[Jan Eric], Sarafianos, N.[Nikolaos], Tung, T.[Tony], Pons-Moll, G.[Gerard],
Pose-NDF: Modeling Human Pose Manifolds with Neural Distance Fields,
ECCV22(V:572-589).
Springer DOI 2211
BibRef

Azizi, N.[Niloofar], Possegger, H.[Horst], Rodolŕ, E.[Emanuele], Bischof, H.[Horst],
3D Human Pose Estimation Using Möbius Graph Convolutional Networks,
ECCV22(I:160-178).
Springer DOI 2211
BibRef

Wan, Z.[Ziniu], Li, Z.J.[Zheng-Jia], Tian, M.Q.[Mao-Qing], Liu, J.B.[Jian-Bo], Yi, S.[Shuai], Li, H.S.[Hong-Sheng],
Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation,
ICCV21(13013-13022)
IEEE DOI 2203
Training, Shape, Network topology, Pose estimation, Kinematics, Topology, 3D from a single image and shape-from-x, Gestures and body pose BibRef

Chen, H.Y.[Hao-Yu], Tang, H.[Hao], Shi, H.L.[Heng-Lin], Peng, W.[Wei], Sebe, N.[Nicu], Zhao, G.Y.[Guo-Ying],
Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer,
ICCV21(8610-8619)
IEEE DOI 2203
Training, Interpolation, Solid modeling, Codes, Laplace equations, Shape, Transfer/Low-shot/Semi/Unsupervised Learning, Gestures and body pose BibRef

Garau, N.[Nicola], Bisagno, N.[Niccolň], Bródka, P.[Piotr], Conci, N.[Nicola],
DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders,
ICCV21(11657-11666)
IEEE DOI 2203
Training, Deep learning, Codes, Pose estimation, Routing, Gestures and body pose, Vision applications and systems BibRef

Li, Y.J.[Yan-Jie], Zhang, S.K.[Shou-Kui], Wang, Z.C.[Zhi-Cheng], Yang, S.[Sen], Yang, W.K.[Wan-Kou], Xia, S.T.[Shu-Tao], Zhou, E.[Erjin],
TokenPose: Learning Keypoint Tokens for Human Pose Estimation,
ICCV21(11293-11302)
IEEE DOI 2203
Visualization, Codes, Pose estimation, Computer architecture, Transformers, Computational efficiency, Gestures and body pose, BibRef

Zhang, X.H.[Xi-Heng], Wong, Y.K.[Yong-Kang], Wu, X.F.[Xiao-Fei], Lu, J.W.[Ju-Wei], Kankanhalli, M.S.[Mohan S.], Li, X.D.[Xiang-Dong], Geng, W.D.[Wei-Dong],
Learning Causal Representation for Training Cross-Domain Pose Estimator via Generative Interventions,
ICCV21(11250-11260)
IEEE DOI 2203
Training, Representation learning, Deep learning, Visualization, Correlation, Pose estimation, Gestures and body pose, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Hinojosa, C.[Carlos], Niebles, J.C.[Juan Carlos], Arguello, H.[Henry],
Learning Privacy-preserving Optics for Human Pose Estimation,
ICCV21(2553-2562)
IEEE DOI 2203
Integrated optics, Visualization, Privacy, Pose estimation, Prototypes, Optical computing, Computational photography, Fairness, Gestures and body pose BibRef

Kitamura, T.[Takumi], Teshima, H.[Hitoshi], Thomas, D.[Diego], Kawasaki, H.[Hiroshi],
Refining OpenPose with a new sports dataset for robust 2D pose estimation,
WinterSports22(672-681)
IEEE DOI 2202
Training, Head, Pose estimation, Refining, Data collection, Robustness
See also OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. BibRef

Chu, S.W.[Shek Wai], Zhang, C.Y.[Chao-Yi], Song, Y.[Yang], Cai, W.D.[Wei-Dong],
Iterative Subnetwork With Linear Hierarchical Ordering for Human Pose Estimation,
ICIP21(514-518)
IEEE DOI 2201
Wrist, Heating systems, Convolution, Image processing, Computational modeling, Deep learning, human pose estimation BibRef

Zhang, W.Q.[Wu-Qiang], Guo, Z.J.[Zi-Jie], Zhi, R.[Rong], Wang, B.F.[Bao-Feng],
Deep Active Learning for Human Pose Estimation Via Consistency Weighted Core-Set Approach,
ICIP21(909-913)
IEEE DOI 2201
Uncertainty, Image processing, Heuristic algorithms, Pose estimation, Network architecture, Velocity measurement, Human pose estimation BibRef

Banik, S.[Soubarna], GarcÍa, A.M.[Alejandro Mendoza], Knoll, A.[Alois],
3D Human Pose Regression Using Graph Convolutional Network,
ICIP21(924-928)
IEEE DOI 2201
Adaptation models, Solid modeling, Adaptive systems, Convolution, Pose estimation, Throughput, 3D Human pose regression, CNN BibRef

Thinh, P.T.D.[Phan Tran Dac], Hung, H.M.[Hoang Manh], Yang, H.J.[Hyung-Jeong], Kim, S.H.[Soo-Hyung], Lee, G.S.[Guee-Sang],
Emotion Recognition With Sequential Multi-task Learning Technique,
ABAW21(3586-3589)
IEEE DOI 2112
Training, Emotion recognition, Computer architecture, Task analysis, Faces BibRef

Mihajlovic, M.[Marko], Zhang, Y.[Yan], Black, M.J.[Michael J.], Tang, S.[Siyu],
LEAP: Learning Articulated Occupancy of People,
CVPR21(10456-10466)
IEEE DOI 2111
Deformable models, Solid modeling, Shape, Biological system modeling, NASA, Estimation BibRef

Liu, Z.G.[Zhen-Guang], Chen, H.M.[Hao-Ming], Feng, R.Y.[Run-Yang], Wu, S.[Shuang], Ji, S.L.[Shou-Ling], Yang, B.L.[Bai-Lin], Wang, X.[Xun],
Deep Dual Consecutive Network for Human Pose Estimation,
CVPR21(525-534)
IEEE DOI 2111
Recurrent neural networks, Corporate acquisitions, Pose estimation, Video sequences, Refining, Detectors BibRef

Tran, T.Q.[Trung Q.], Nguyen, G.V.[Giang V.], Kim, D.[Daeyoung],
Simple Multi-Resolution Representation Learning for Human Pose Estimation,
ICPR21(511-518)
IEEE DOI 2105
Heating systems, Image segmentation, Image resolution, Image recognition, Surveillance, Pose estimation, Computer architecture BibRef

Tripathi, S., Ranade, S., Tyagi, A., Agrawal, A.,
PoseNet3D: Learning Temporally Consistent 3D Human Pose via Knowledge Distillation,
3DV20(311-321)
IEEE DOI 2102
Training, Solid modeling, Skeleton, Predictive models, Semantics, 3DPW BibRef

Pramerdorfer, C., Strohmayer, J., Kampel, M.,
SDT: A Synthetic Multi-Modal Dataset For Person Detection And Pose Classification,
ICIP20(1611-1615)
IEEE DOI 2011
Thermal sensors, Image sensors, Sensor phenomena and characterization, deep learning BibRef

Dani, M.[Meghal], Narain, K.[Karan], Hebbalaguppe, R.[Ramya],
3DPoseLite: A Compact 3D Pose Estimation Using Node Embeddings,
WACV21(1877-1886)
IEEE DOI 2106
Solid modeling, Computational modeling, Pose estimation, Neural networks BibRef

Zhang, Y.H.[Ya-Hui], You, S.D.[Shao-Di], Gevers, T.[Theo],
Orthographic Projection Linear Regression for Single Image 3D Human Pose Estimation,
ICPR21(8109-8116)
IEEE DOI 2105
Linear regression, Pose estimation, Neural networks, Imaging BibRef

Makantasis, K.[Konstantinos], Voulodimos, A.[Athanasios], Doulamis, A.[Anastasios], Bakalos, N.[Nikolaos], Doulamis, N.[Nikolaos],
Space-Time Domain Tensor Neural Networks: An Application on Human Pose Classification,
ICPR21(4688-4695)
IEEE DOI 2105
Training, Solid modeling, Protocols, Tensors, Neural networks, Data models BibRef

Liu, H.[Hong], Guan, L.[Lisi],
Efficient High-Resolution High-Level-Semantic Representation Learning for Human Pose Estimation,
ICPR21(7862-7867)
IEEE DOI 2105
Convolution, Semantics, Pose estimation, Benchmark testing, Feature extraction, Computational efficiency, Data mining BibRef

Qammaz, A.[Ammar], Argyros, A.[Antonis],
Occlusion-tolerant and personalized 3D human pose estimation in RGB images,
ICPR21(6904-6911)
IEEE DOI 2105
Pose estimation, Neural networks, Kinematics, Color, Real-time systems BibRef

Bulat, A., Kossaifi, J., Tzimiropoulos, G., Pantic, M.,
Toward fast and accurate human pose estimation via soft-gated skip connections,
FG20(8-15)
IEEE DOI 2102
Pose estimation, Computer architecture, Neural networks, Training, Network architecture, Convolution, Logic gates, Convolutional Neural Networks BibRef

Zhou, L.[Lu], Chen, Y.Y.[Ying-Ying], Gao, Y.Z.[Yun-Ze], Wang, J.Q.[Jin-Qiao], Lu, H.Q.[Han-Qing],
Occlusion-aware Siamese Network for Human Pose Estimation,
ECCV20(XX:396-412).
Springer DOI 2011
BibRef

Wang, J.[Jian], Long, X.[Xiang], Gao, Y.[Yuan], Ding, E.R.[Er-Rui], Wen, S.L.[Shi-Lei],
Graph-pcnn: Two Stage Human Pose Estimation with Graph Pose Refinement,
ECCV20(XI:492-508).
Springer DOI 2011
BibRef

Hwang, D., Kim, S., Monet, N., Koike, H., Bae, S.,
Lightweight 3D Human Pose Estimation Network Training Using Teacher-Student Learning,
WACV20(468-477)
IEEE DOI 2006
Pose estimation, Solid modeling, Heating systems, Training, Real-time systems BibRef

Das, S., Kishore, P.S.R., Bhattacharya, U.,
An End-To-End Framework For Pose Estimation of Occluded Pedestrians,
ICIP20(1446-1450)
IEEE DOI 2011
Pose estimation, Feature extraction, Training, Image segmentation, Detectors, Benchmark testing, Pose Estimation, Adversarial Learning BibRef

Zhang, K.[Kun], He, P.[Peng], Yao, P.[Ping], Chen, G.[Ge], Wu, R.[Rui], Du, M.[Min], Li, H.M.[Hui-Min], Fu, L.[Li], Zheng, T.Y.[Tian-Yao],
Learning Enhanced Resolution-Wise Features For Human Pose Estimation,
ICIP20(2256-2260)
IEEE DOI 2011
Pose estimation, Heating systems, Ground penetrating radar, Feature extraction, Random access memory, Training, Task analysis, Attention Mechanism BibRef

Scott, J.[Jesse], Ravichandran, B.[Bharadwaj], Funk, C.[Christopher], Collins, R.T.[Robert T.], Liu, Y.X.[Yan-Xi],
From Image to Stability: Learning Dynamics from Human Pose,
ECCV20(XXIII:536-554).
Springer DOI 2011
BibRef

Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.,
HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation,
CVPR20(5385-5394)
IEEE DOI 2008
Heating systems, Pose estimation, Convolution, Spatial resolution, Deconvolution, Training BibRef

Ryou, S.[Serim], Jeong, S.G.[Seong-Gyun], Perona, P.[Pietro],
Anchor Loss: Modulating Loss Scale Based on Prediction Difficulty,
ICCV19(5991-6000)
IEEE DOI 2004
entropy, image classification, Modulation, learning (artificial intelligence), neural nets, pose estimation. BibRef

Duan, H., Lin, K., Jin, S., Liu, W., Qian, C., Ouyang, W.,
TRB: A Novel Triplet Representation for Understanding 2D Human Body,
ICCV19(9478-9487)
IEEE DOI 2004
image capture, image representation, learning (artificial intelligence), message passing, Convolution BibRef

Sharma, S., Varigonda, P.T., Bindal, P., Sharma, A., Jain, A.,
Monocular 3D Human Pose Estimation by Generation and Ordinal Ranking,
ICCV19(2325-2334)
IEEE DOI 2004
Code, Human Pose.
WWW Link. learning (artificial intelligence), neural nets, pose estimation, solid modelling, stereo image processing, Heating systems BibRef

Kocabas, M.[Muhammed], Karagoz, S.[Salih], Akbas, E.[Emre],
Self-Supervised Learning of 3D Human Pose Using Multi-View Geometry,
CVPR19(1077-1086).
IEEE DOI 2002
BibRef

Martin, J.B.[Jesus Bujalance], Moutarde, F.[Fabien],
Real-time Gestural Control of Robot Manipulator Through Deep Learning Human-pose Inference,
CVS19(565-572).
Springer DOI 1912
BibRef

Tang, S., Tan, F., Cheng, K., Li, Z., Zhu, S., Tan, P.,
A Neural Network for Detailed Human Depth Estimation From a Single Image,
ICCV19(7749-7758)
IEEE DOI 2004
cameras, feature extraction, image colour analysis, learning (artificial intelligence), Skeleton BibRef

Cai, Y.J.[Yu-Jun], Ge, L.H.[Liu-Hao], Liu, J.[Jun], Cai, J.F.[Jian-Fei], Cham, T.J.[Tat-Jen], Yuan, J.S.[Jun-Song], Magnenat-Thalmann, N.[Nadia],
Exploiting Spatial-Temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks,
ICCV19(2272-2281)
IEEE DOI 2004
convolutional neural nets, feature extraction, graph theory, image representation, image sequences, Kernel BibRef

Wang, B., Adeli, E., Chiu, H., Huang, D., Niebles, J.C.[Juan Carlos],
Imitation Learning for Human Pose Prediction,
ICCV19(7123-7132)
IEEE DOI 2004
image motion analysis, neural net architecture, pose estimation, recurrent neural nets, supervised learning, BibRef

Martinez, G.H., Raaj, Y., Idrees, H., Xiang, D., Joo, H., Simon, T., Sheikh, Y.,
Single-Network Whole-Body Pose Estimation,
ICCV19(6981-6990)
IEEE DOI 2004
Code, Human Pose.
WWW Link. computational complexity, face recognition, image resolution, learning (artificial intelligence), pose estimation BibRef

Iskakov, K., Burkov, E., Lempitsky, V., Malkov, Y.,
Learnable Triangulation of Human Pose,
ICCV19(7717-7726)
IEEE DOI 2004
Gaussian processes, object tracking, pose estimation, user interfaces, human pose, multiview 3D, triangulation methods, Detectors BibRef

Chen, C.H.[Ching-Hang], Tyagi, A.[Ambrish], Agrawal, A.[Amit], Drover, D.[Dylan], Rohith, M.V., Stojanov, S.[Stefan], Rehg, J.M.[James M.],
Unsupervised 3D Pose Estimation With Geometric Self-Supervision,
CVPR19(5707-5717).
IEEE DOI 2002
3D human pose from 2D skeletal joints. BibRef

Yang, L.[Lu], Song, Q.[Qing], Wang, Z.H.[Zhi-Hui], Jiang, M.[Ming],
Parsing R-CNN for Instance-Level Human Analysis,
CVPR19(364-373).
IEEE DOI 2002
BibRef

Zhao, L.[Long], Peng, X.[Xi], Tian, Y.[Yu], Kapadia, M.[Mubbasir], Metaxas, D.N.[Dimitris N.],
Semantic Graph Convolutional Networks for 3D Human Pose Regression,
CVPR19(3420-3430).
IEEE DOI 2002
BibRef

Chu, S.W., Song, Y., Zouo, J.J., Cai, W.,
Human Pose Estimation Using Deep Convolutional Densenet Hourglass Network with Intermediate Points Voting,
ICIP19(594-598)
IEEE DOI 1910
Deep learning, convolution neural network, human pose estimation. BibRef

Peng, X., Tang, Z.Q., Yang, F., Feris, R.S., Metaxas, D.,
Jointly Optimize Data Augmentation and Network Training: Adversarial Data Augmentation in Human Pose Estimation,
CVPR18(2226-2234)
IEEE DOI 1812
Training, Pose estimation, Generators, Neural networks, Task analysis, Data models BibRef

Rakhimov, R.[Ruslan], Bogomolov, E.[Emil], Notchenko, A.[Alexandr], Mao, F.[Fung], Artemov, A.[Alexey], Zorin, D.[Denis], Burnaev, E.[Evgeny],
Making DensePose fast and light,
WACV21(1868-1876)
IEEE DOI 2106
Performance evaluation, Computational modeling, Pipelines, Neural networks, Graphics processing units, Estimation BibRef

Gochoo, M., Tan, T.H., Alnajjar, F., Hsieh, J.W., Chen, P.Y.,
Lownet: Privacy Preserved Ultra-Low Resolution Posture Image Classification,
ICIP20(663-667)
IEEE DOI 2011
Vegetation, Indexes, Privacy, Ultra-low resolution, CNN, thermal image, posture classification, privacy preserving BibRef

Spurlock, S., Souvenir, R.,
Multimodal 3D Human Pose Estimation from a Single Image,
3DV19(663-670)
IEEE DOI 1806
Training, Mutual information, Pose estimation, Solid modeling, CNN BibRef

Rafi, U.[Umer], Leibe, B.[Bastian], Gall, J.[Juergen], Kostrikov, I.[Ilya],
An Efficient Convolutional Network for Human Pose Estimation,
BMVC16(xx-yy).
HTML Version. 1805
BibRef

Tanabe, S.[Satoshi], Yamanaka, R.[Ryosuke], Tomono, M.[Mitsuru], Ito, M.[Makiko], Ishihara, T.[Teruo],
Real-Time Human Pose Estimation via Cascaded Neural Networks Embedded with Multi-task Learning,
CAIP17(II: 241-252).
Springer DOI 1708
BibRef

Marras, I.[Ioannis], Palasek, P.[Petar], Patras, I.[Ioannis],
Deep Mixture of MRFs for Human Pose Estimation,
ACCV18(III:717-733).
Springer DOI 1906
BibRef
And:
Deep Globally Constrained MRFs for Human Pose Estimation,
ICCV17(3486-3495)
IEEE DOI 1802
BibRef
Earlier:
Deep Refinement Convolutional Networks for Human Pose Estimation,
FG17(446-453)
IEEE DOI 1707
Markov processes, convolution, neural net architecture, pose estimation, random processes, ConvNet, Markov Random Field. Adaptation models, Data models, Heating systems, Image resolution, Pose estimation BibRef

Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.,
3D Human Pose Estimation in the Wild by Adversarial Learning,
CVPR18(5255-5264)
IEEE DOI 1812
Pose estimation, Generators, Heating systems, Joints, Task analysis BibRef

Tang, W.[Wei], Yu, P.[Pei], Wu, Y.[Ying],
Deeply Learned Compositional Models for Human Pose Estimation,
ECCV18(III: 197-214).
Springer DOI 1810
BibRef

Tekin, B., Márquez-Neila, P., Salzmann, M., Fua, P.,
Learning to Fuse 2D and 3D Image Cues for Monocular Body Pose Estimation,
ICCV17(3961-3970)
IEEE DOI 1802
image fusion, learning (artificial intelligence), motion estimation, pose estimation, 2D joint locations, BibRef

Ronchi, M.R.[Matteo Ruggero], Perona, P.[Pietro],
Benchmarking and Error Diagnosis in Multi-instance Pose Estimation,
ICCV17(369-378)
IEEE DOI 1802
estimation theory, learning (artificial intelligence), pose estimation, Wrist BibRef

Wang, H., Liang, W., Yu, L.F.,
Transferring Objects: Joint Inference of Container and Human Pose,
ICCV17(2952-2960)
IEEE DOI 1802
inference mechanisms, learning (artificial intelligence), pose estimation, BibRef

Liu, B., Ferrari, V.,
Active Learning for Human Pose Estimation,
ICCV17(4373-4382)
IEEE DOI 1802
learning (artificial intelligence), pose estimation, active learning framework, active learning process, Uncertainty BibRef

Sun, K., Lan, C., Xing, J., Zeng, W., Liu, D., Wang, J.,
Human Pose Estimation Using Global and Local Normalization,
ICCV17(5600-5608)
IEEE DOI 1802
convolution, learning (artificial intelligence), neural nets, pose estimation, articulated pose estimation, Wrist BibRef

Yang, W.[Wei], Li, S.[Shuang], Ouyang, W.L.[Wan-Li], Li, H.S.[Hong-Sheng], Wang, X.G.[Xiao-Gang],
Learning Feature Pyramids for Human Pose Estimation,
ICCV17(1290-1299)
IEEE DOI 1802
convolution, feature extraction, image classification, image representation, Visualization BibRef

Ai, B., Zhou, Y.[Yu], Yu, Y.[Yao], Du, S.[Sidan],
Human Pose Estimation Using Deep Structure Guided Learning,
WACV17(1224-1231)
IEEE DOI 1609
Biological system modeling, Feature extraction, Heating systems, Kernel, Neural networks, Pose, estimation
See also Markerless Motion Capture of Human Body Using PSO with Single Depth Camera. BibRef

Azrour, S.[Samir], Piérard, S.[Sébastien], Geurts, P.[Pierre], van Droogenbroeck, M.[Marc],
A Two-Step Methodology for Human Pose Estimation Increasing the Accuracy and Reducing the Amount of Learning Samples Dramatically,
ACIVS17(3-14).
Springer DOI 1712
BibRef

Ghezelghieh, M.F., Kasturi, R., Sarkar, S.,
Learning Camera Viewpoint Using CNN to Improve 3D Body Pose Estimation,
3DV16(685-693)
IEEE DOI 1701
cameras BibRef

Brau, E., Jiang, H.,
3D Human Pose Estimation via Deep Learning from 2D Annotations,
3DV16(582-591)
IEEE DOI 1701
cameras BibRef

Kwak, S.[Suha], Cho, M.S.[Min-Su], Laptev, I.[Ivan],
Thin-Slicing for Pose: Learning to Understand Pose without Explicit Pose Estimation,
CVPR16(4938-4947)
IEEE DOI 1612
BibRef

Zhou, X.Y.[Xing-Yi], Sun, X.[Xiao], Zhang, W.[Wei], Liang, S.[Shuang], Wei, Y.C.[Yi-Chen],
Deep Kinematic Pose Regression,
DeepLearn16(III: 186-201).
Springer DOI 1611
BibRef

Wang, L.[Lei], Zhao, X.[Xu], Liu, Y.C.[Yun-Cai],
Adaptive appearance learning for human pose estimation,
ICIP15(1125-1129)
IEEE DOI 1512
BibRef

Singh, S.[Saurabh], Hoiem, D.[Derek], Forsyth, D.A.[David A.],
Learning a sequential search for landmarks,
CVPR15(3422-3430)
IEEE DOI 1510
humans or birds. BibRef

Tompson, J.[Jonathan], Goroshin, R.[Ross], Jain, A.[Arjun], Le Cun, Y.L.[Yann L.], Bregler, C.[Christoph],
Efficient object localization using Convolutional Networks,
CVPR15(648-656)
IEEE DOI 1510
BibRef

Fan, X.C.[Xiao-Chuan], Zheng, K.[Kang], Lin, Y.W.[Yue-Wei], Wang, S.[Song],
Combining local appearance and holistic view: Dual-Source Deep Neural Networks for human pose estimation,
CVPR15(1347-1355)
IEEE DOI 1510
BibRef

Lehrmann, A.M.[Andreas M.], Gehler, P.V.[Peter V.], Nowozin, S.[Sebastian],
A Non-parametric Bayesian Network Prior of Human Pose,
ICCV13(1281-1288)
IEEE DOI 1403
Bayesian network BibRef

Joo, J.[Jungseock], Wang, S.[Shuo], Zhu, S.C.[Song-Chun],
Human Attribute Recognition by Rich Appearance Dictionary,
ICCV13(721-728)
IEEE DOI 1403
Fine-grained Recognition; Human Attribute; Weakly-Supervised Learning BibRef

Gong, W.J.[Wen-Juan], Brauer, J.[Jurgen], Arens, M.[Michael], Gonzalez, J.[Jordi],
Modeling vs. learning approaches for monocular 3D human pose estimation,
PEAction11(1287-1294).
IEEE DOI 1201
BibRef
And: A2, A1, A4, A3:
On the effect of temporal information on monocular 3d human pose estimation,
ARTEMIS11(906-913).
IEEE DOI 1201

See also Voting Strategies for Anatomical Landmark Localization Using the Implicit Shape Model. BibRef

Hur, D.C.[Dong-Cheol], Wallraven, C.[Christian], Lee, S.W.[Seong-Whan],
View Invariant Body Pose Estimation Based on Biased Manifold Learning,
ICPR10(3866-3869).
IEEE DOI 1008
BibRef

Guo, W.W.[Wei-Wei], Patras, I.[Ioannis],
Learning Output-kernel-dependent Regression for Human Pose Estimation,
BMVCWS10(xx-yy).
HTML Version. 1009
BibRef
Earlier:
Discriminative 3D human pose estimation from monocular images via topological preserving hierarchical affinity clustering,
S3DV09(9-15).
IEEE DOI 0910
BibRef

Navaratnam, R.[Ramanan], Fitzgibbon, A.W.[Andrew W.],
Semi-supervised Learning of Joint Density Models for Human Pose Estimation,
BMVC06(II:79).
PDF File. 0609
BibRef

Hua, G.[Gang], Yang, M.H.[Ming-Hsuan], Wu, Y.[Ying],
Learning to Estimate Human Pose with Data Driven Belief Propagation,
CVPR05(II: 747-754).
IEEE DOI 0507
BibRef

Nakajima, C.,
Posture recognition of nuclear power plant operators by supervised learning,
ICIP04(II: 877-880).
IEEE DOI 0505
BibRef

Shakhnarovich, G.[Gregory], Viola, P.A.[Paul A.], Darrell, T.J.[Trevor J.],
Fast Pose Estimation with Parameter-Sensitive Hashing,
ICCV03(750-757).
IEEE DOI 0311
BibRef
And: MIT AIMAIM-2003-009, April 18, 2003.
WWW Link. learns a set of hashing functions that efficiently index examples relevant to a particular estimation task. 0306
BibRef

Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Human Posture, or Human Pose, Transformers, ViT .


Last update:Nov 26, 2024 at 16:40:19