Hydra:,
WWW Link. Real-time system to build 3D scene graphs from sensor data.
Code, Scene Graph.
Code, RGB-D.
Hulik, R.[Rostislav],
Spanel, M.[Michal],
Smrz, P.[Pavel],
Materna, Z.[Zdenek],
Continuous plane detection in point-cloud data based on 3D Hough
Transform,
JVCIR(25), No. 1, 2014, pp. 86-97.
Elsevier DOI
1502
Hough Transform. RGB-D sensor
BibRef
Stückler, J.[Jörg],
Behnke, S.[Sven],
Multi-resolution surfel maps for efficient dense 3D modeling and
tracking,
JVCIR(25), No. 1, 2014, pp. 137-147.
Elsevier DOI
1502
BibRef
And:
Corrigendum:
JVCIR(26), No. 1, 2015, pp. 349-.
Elsevier DOI
1502
3D multi-resolution RGB-D image representation
BibRef
Riaz, Z.[Zahid],
Linder, T.[Thorsten],
Behnke, S.[Sven],
Worst, R.[Rainer],
Surmann, H.[Hartmut],
Efficient Transmission and Rendering of RGB-D Views,
ISVC13(I:517-526).
Springer DOI
1310
BibRef
Liu, H.[Haowei],
Philipose, M.[Matthai],
Sun, M.T.[Ming-Ting],
Automatic objects segmentation with RGB-D cameras,
JVCIR(25), No. 4, 2014, pp. 709-718.
Elsevier DOI
1403
BibRef
Earlier:
Automatic object segmentation with 3-D cameras,
ICIP12(569-572).
IEEE DOI
1302
Boundary detection
See also Recognizing object manipulation activities using depth and visual cues.
BibRef
He, B.[Bei],
Wang, G.J.[Gui-Jin],
Zhang, C.[Cha],
Iterative transductive learning for automatic image segmentation and
matting with RGB-D data,
JVCIR(25), No. 5, 2014, pp. 1031-1043.
Elsevier DOI
1406
Image matting
BibRef
Camplani, M.[Massimo],
del Blanco, C.R.[Carlos Roberto],
Salgado, L.[Luis],
Jaureguizar, F.[Fernando],
García, N.[Narciso],
Advanced background modeling with RGB-D sensors through classifiers
combination and inter-frame foreground prediction,
MVA(25), No. 5, July 2014, pp. 1197-1210.
Springer DOI
1407
BibRef
Camplani, M.[Massimo],
Salgado, L.[Luis],
Background foreground segmentation with RGB-D Kinect data:
An efficient combination of classifiers,
JVCIR(25), No. 1, 2014, pp. 122-136.
Elsevier DOI
1502
RGB-D cameras
BibRef
Camplani, M.[Massimo],
del Blanco, C.R.[Carlos R.],
Salgado, L.[Luis],
Jaureguizar, F.[Fernando],
García, N.[Narciso],
Multi-sensor background subtraction by fusing multiple region-based
probabilistic classifiers,
PRL(50), No. 1, 2014, pp. 23-33.
Elsevier DOI
1410
Region-based background modeling
BibRef
Husain, F.,
Dellen, B.,
Torras, C.,
Consistent Depth Video Segmentation Using Adaptive Surface Models,
Cyber(45), No. 2, February 2015, pp. 266-278.
IEEE DOI
1502
image segmentation
BibRef
Abramov, A.[Alexey],
Pauwels, K.[Karl],
Papon, J.[Jeremie],
Worgotter, F.[Florentin],
Dellen, B.[Babette],
Depth-supported real-time video segmentation with the Kinect,
WACV12(457-464).
IEEE DOI
1203
Depth aided.
BibRef
Yang, J.,
Gan, Z.,
Li, K.,
Hou, C.,
Graph-Based Segmentation for RGB-D Data Using 3-D Geometry Enhanced
Superpixels,
Cyber(45), No. 5, May 2015, pp. 913-926.
IEEE DOI
1505
Color
BibRef
Wang, A.[Anran],
Lu, J.W.[Ji-Wen],
Cai, J.F.[Jian-Fei],
Wang, G.[Gang],
Cham, T.J.[Tat-Jen],
Unsupervised Joint Feature Learning and Encoding for RGB-D Scene
Labeling,
IP(24), No. 11, November 2015, pp. 4459-4473.
IEEE DOI
1509
BibRef
Earlier: A1, A2, A4, A3, A5:
Multi-modal Unsupervised Feature Learning for RGB-D Scene Labeling,
ECCV14(V: 453-467).
Springer DOI
1408
image coding
BibRef
Wang, A.[Anran],
Cai, J.F.[Jian-Fei],
Lu, J.W.[Ji-Wen],
Cham, T.J.[Tat-Jen],
Modality and Component Aware Feature Fusion for RGB-D Scene
Classification,
CVPR16(5995-6004)
IEEE DOI
1612
BibRef
Earlier:
MMSS: Multi-modal Sharable and Specific Feature Learning for RGB-D
Object Recognition,
ICCV15(1125-1133)
IEEE DOI
1602
Computer vision
BibRef
Wang, A.[Anran],
Lu, J.W.[Ji-Wen],
Cai, J.F.[Jian-Fei],
Cham, T.J.[Tat-Jen],
Wang, G.[Gang],
Large-Margin Multi-Modal Deep Learning for RGB-D Object Recognition,
MultMed(17), No. 11, November 2015, pp. 1887-1898.
IEEE DOI
1511
Correlation
BibRef
Tang, J.,
Jin, L.,
Li, Z.,
Gao, S.,
RGB-D Object Recognition via Incorporating Latent Data Structure and
Prior Knowledge,
MultMed(17), No. 11, November 2015, pp. 1899-1908.
IEEE DOI
1511
Data structures
BibRef
Beksi, W.J.[William J.],
Papanikolopoulos, N.[Nikolaos],
A topology-based descriptor for 3D point cloud modeling:
Theory and experiments,
IVC(88), 2019, pp. 84-95.
Elsevier DOI
1908
Topological data analysis, Persistent homology, Shape analysis,
Object classification
BibRef
Arshad, M.S.[Mohammad Samiul],
Beksi, W.J.[William J.],
IPVNet: Learning implicit point-voxel features for open-surface 3D
reconstruction,
JVCIR(97), 2023, pp. 103970.
Elsevier DOI
2312
BibRef
Earlier:
A Progressive Conditional Generative Adversarial Network for
Generating Dense and Colored 3D Point Clouds,
3DV20(712-722)
IEEE DOI
2102
3D reconstruction, Open surfaces, Implicit functions.
Image color analysis,
Generative adversarial networks, Geometry, Training, Generators, Shape
BibRef
Stückler, J.[Jörg],
Waldvogel, B.[Benedikt],
Schulz, H.[Hannes],
Behnke, S.[Sven],
Dense real-time mapping of object-class semantics from RGB-D video,
RealTimeIP(10), No. 4, December 2015, pp. 599-609.
Springer DOI
1512
BibRef
Sanchez-Riera, J.[Jordi],
Hua, K.L.[Kai-Lung],
Hsiao, Y.S.[Yuan-Sheng],
Lim, T.[Tekoing],
Hidayati, S.C.[Shintami C.],
Cheng, W.H.[Wen-Huang],
A comparative study of data fusion for RGB-D based visual recognition,
PRL(73), No. 1, 2016, pp. 1-6.
Elsevier DOI
1604
RGB-D
BibRef
Ahmed, N.[Naveed],
Khalifa, S.[Salam],
Time-coherent 3D animation reconstruction from RGB-D video,
SIViP(10), No. 4, April 2016, pp. 783-790.
Springer DOI
1604
BibRef
Thøgersen, M.[Mikkel],
Escalera, S.[Sergio],
Gonzàlez, J.[Jordi],
Moeslund, T.B.[Thomas B.],
Segmentation of RGB-D indoor scenes by stacking random forests and
conditional random fields,
PRL(80), No. 1, 2016, pp. 208-215.
Elsevier DOI
1609
RGB-D sematic segmentation
BibRef
Hasnat, M.A.[M. Abul],
Alata, O.[Olivier],
Trémeau, A.[Alain],
Joint Color-Spatial-Directional Clustering and Region Merging
(JCSD-RM) for Unsupervised RGB-D Image Segmentation,
PAMI(38), No. 11, November 2016, pp. 2255-2268.
IEEE DOI
1610
BibRef
Earlier:
Unsupervised Clustering of Depth Images Using Watson Mixture Model,
ICPR14(214-219)
IEEE DOI
1412
BibRef
Earlier:
Unsupervised RGB-D image segmentation using joint clustering and region
merging,
BMVC14(xx-yy).
HTML Version.
1410
Clustering methods
BibRef
Li, X.[Xiao],
Fang, M.[Min],
Zhang, J.J.[Ju-Jie],
Wu, J.Q.[Jin-Qiao],
Learning Coupled Classifiers with RGB images for RGB-D object
recognition,
PR(61), No. 1, 2017, pp. 433-446.
Elsevier DOI
1705
Object recognition
BibRef
Ibañez, R.[Rodrigo],
Soria, Á.[Álvaro],
Teyseyre, A.[Alfredo],
Rodríguez, G.[Guillermo],
Campo, M.[Marcelo],
Approximate string matching:
A lightweight approach to recognize gestures with Kinect,
PR(62), No. 1, 2017, pp. 73-86.
Elsevier DOI
1705
Natural user interfaces
BibRef
Deng, Z.[Zhuo],
Todorovic, S.[Sinisa],
Latecki, L.J.[Longin Jan],
Unsupervised object region proposals for RGB-D indoor scenes,
CVIU(154), No. 1, 2017, pp. 127-136.
Elsevier DOI
1612
BibRef
Earlier: A1, A3, Only:
Unsupervised Segmentation of RGB-D Images,
ACCV14(III: 423-435).
Springer DOI
1504
Object segmentation
BibRef
Zhao, L.J.[Li-Jun],
Bai, H.H.[Hui-Hui],
Wang, A.H.[An-Hong],
Zhao, Y.[Yao],
Zeng, B.[Bing],
Two-stage filtering of compressed depth images with Markov Random
Field,
SP:IC(54), No. 1, 2017, pp. 11-22.
Elsevier DOI
1704
BibRef
Earlier: A1, A2, A3, A4, Only:
Joint iterative guidance filtering for compressed depth images,
VCIP16(1-4)
IEEE DOI
1701
MRF
Color. Filter depth and color together.
BibRef
Moyà-Alcover, G.[Gabriel],
Elgammal, A.[Ahmed],
Jaume-i-Capó, A.[Antoni],
Varona, J.[Javier],
Modeling depth for nonparametric foreground segmentation using RGBD
devices,
PRL(96), No. 1, 2017, pp. 76-85.
Elsevier DOI
1709
Background, subtraction
BibRef
Trabelsi, R.[Rim],
Jabri, I.[Issam],
Smach, F.[Fethi],
Bouallegue, A.[Ammar],
Efficient and fast multi-modal foreground-background segmentation
using RGBD data,
PRL(97), No. 1, 2017, pp. 13-20.
Elsevier DOI
1709
Background, subtraction
BibRef
Zheng, Y.B.[Ying-Bin],
Ye, H.[Hao],
Wang, L.[Li],
Pu, J.[Jian],
Learning Multiviewpoint Context-Aware Representation for RGB-D Scene
Classification,
SPLetters(25), No. 1, January 2018, pp. 30-34.
IEEE DOI
1801
feature extraction, image classification, image colour analysis,
image representation, learning (artificial intelligence),
scene classification
BibRef
Tan, L.[Lu],
Pan, Z.K.[Zhen-Kuan],
Liu, W.Q.[Wan-Quan],
Duan, J.M.[Jin-Ming],
Wei, W.B.[Wei-Bo],
Wang, G.D.[Guo-Dong],
Image Segmentation with Depth Information via Simplified Variational
Level Set Formulation,
JMIV(60), No. 1, January 2018, pp. 1-17.
Springer DOI
1801
BibRef
Yu, Q.H.[Qing-Hua],
Liang, J.[Jie],
Xiao, J.H.[Jun-Hao],
Lu, H.M.[Hui-Min],
Zheng, Z.Q.[Zhi-Qiang],
A Novel perspective invariant feature transform for RGB-D images,
CVIU(167), 2018, pp. 109-120.
Elsevier DOI
1804
RGB-D images, Spatial invariant, Local visual feature
BibRef
Cai, Z.Y.[Zi-Yun],
Long, Y.[Yang],
Shao, L.[Ling],
Adaptive RGB Image Recognition by Visual-Depth Embedding,
IP(27), No. 5, May 2018, pp. 2471-2483.
IEEE DOI
1804
Cameras, Image recognition, Kernel, Linear programming,
Probability distribution, Task analysis, Training, RGB-D data,
visual categorization
BibRef
Cai, Z.Y.[Zi-Yun],
Long, Y.[Yang],
Jing, X.Y.[Xiao-Yuan],
Shao, L.[Ling],
Adaptive Visual-Depth Fusion Transfer,
ACCV18(IV:56-73).
Springer DOI
1906
BibRef
Karpushin, M.[Maxim],
Valenzise, G.[Giuseppe],
Dufaux, F.[Frédéric],
TRISK: A local features extraction framework for texture-plus-depth
content matching,
IVC(71), 2018, pp. 1-16.
Elsevier DOI
1804
Texture-plus-depth, RGBD, Local feature, Keypoint detector,
Descriptor, Viewpoint changes
BibRef
Junejo, I.N.[Imran N.],
Ahmed, N.[Naveed],
Foreground extraction for freely moving RGBD cameras,
IET-CV(12), No. 3, April 2018, pp. 322-331.
DOI Link
1804
BibRef
Slavcheva, M.[Miroslava],
Kehl, W.[Wadim],
Navab, N.[Nassir],
Ilic, S.[Slobodan],
SDF-2-SDF Registration for Real-Time 3D Reconstruction from RGB-D Data,
IJCV(126), No. 6, June 2018, pp. 615-636.
Springer DOI
1804
BibRef
Earlier:
SDF-2-SDF: Highly Accurate 3D Object Reconstruction,
ECCV16(I: 680-696).
Springer DOI
1611
3D from RGB-D
BibRef
Slavcheva, M.[Miroslava],
Ilic, S.[Slobodan],
SDF-TAR: Parallel Tracking and Refinement in RGB-D Data using
Volumetric Registration,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Lu, F.X.[Fei-Xiang],
Zhou, B.[Bin],
Zhang, Y.[Yu],
Zhao, Q.P.[Qin-Ping],
Real-time 3D scene reconstruction with dynamically moving object using
a single depth camera,
VC(34), No. 6-8, June 2018, pp. 753-763.
Springer DOI
1806
Moving scanner.
BibRef
Belter, D.[Dominik],
Nowicki, M.[Michal],
Skrzypczynski, P.[Piotr],
Modeling spatial uncertainty of point features in feature-based RGB-D
SLAM,
MVA(29), No. 5, July 2018, pp. 827-844.
WWW Link.
1808
BibRef
Lin, Y.[Yangbin],
Wang, C.[Cheng],
Zhai, D.W.[Da-Wei],
Li, W.[Wei],
Li, J.[Jonathan],
Toward better boundary preserved supervoxel segmentation for 3D point
clouds,
PandRS(143), 2018, pp. 39-47.
Elsevier DOI
1808
Supervoxel segmentation, Point clouds, Subset selection, Over-segmentation
BibRef
Kang, Z.Z.[Zhi-Zhong],
Yang, J.[Juntao],
A probabilistic graphical model for the classification of mobile
LiDAR point clouds,
PandRS(143), 2018, pp. 108-123.
Elsevier DOI
1808
Mobile LiDAR, Probabilistic graphical model, Classification,
Super-voxelization, Latent Dirichlet allocation
BibRef
Li, M.[Minglei],
Sun, C.M.[Chang-Ming],
Refinement of LiDAR point clouds using a super voxel based approach,
PandRS(143), 2018, pp. 213-221.
Elsevier DOI
1808
Point cloud, Octree, Super voxel, Data refinement
BibRef
Jeong, S.H.[Seung-Hwa],
Lee, J.J.[Jung-Jin],
Kim, B.[Bumki],
Kim, Y.[Young_Hui],
Noh, J.Y.[Jun-Yong],
Object Segmentation Ensuring Consistency Across Multi-Viewpoint
Images,
PAMI(40), No. 10, October 2018, pp. 2455-2468.
IEEE DOI
1809
Cameras, Image color analysis, Image segmentation,
Object segmentation, Optimization,
depth projection.
RGB-D Camera. Shape from motion.
BibRef
Teng, C.H.[Chin-Hung],
Chuo, K.Y.[Kai-Yuan],
Hsieh, C.Y.[Chen-Yuan],
Reconstructing three-dimensional models of objects using a Kinect
sensor,
VC(34), No. 11, November 2018, pp. 1507-1523.
WWW Link.
1810
BibRef
Song, X.,
Jiang, S.,
Herranz, L.,
Chen, C.,
Learning Effective RGB-D Representations for Scene Recognition,
IP(28), No. 2, February 2019, pp. 980-993.
IEEE DOI
1811
Videos, Image recognition, Training, Tuning, Feature extraction,
Databases, Data models, Scene recognition, deep learning, multimodal,
RNN
BibRef
Dai, J.T.[Ju-Ting],
Tang, X.Y.[Xin-Yi],
ResFusion: deeply fused scene parsing network for RGB-D images,
IET-CV(12), No. 8, December 2018, pp. 1171-1178.
DOI Link
1812
BibRef
Zou, C.H.[Chu-Hang],
Guo, R.Q.[Rui-Qi],
Li, Z.Z.[Zhi-Zhong],
Hoiem, D.[Derek],
Complete 3D Scene Parsing from an RGBD Image,
IJCV(127), No. 2, February 2019, pp. 143-162.
Springer DOI
1902
BibRef
Cheng, Y.H.[Yan-Hua],
Zhao, X.[Xin],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Semi-supervised learning and feature evaluation for RGB-D object
recognition,
CVIU(139), No. 1, 2015, pp. 149-160.
Elsevier DOI
1509
BibRef
Earlier:
Semi-supervised Learning for RGB-D Object Recognition,
ICPR14(2377-2382)
IEEE DOI
1412
RGB-D
Accuracy
BibRef
Wang, D.[Dong],
Yin, Q.Y.[Qi-Yue],
He, R.[Ran],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Semi-supervised subspace segmentation,
ICIP14(2854-2858)
IEEE DOI
1502
Clustering algorithms
BibRef
Li, Y.[Yabei],
Zhang, Z.[Zhang],
Cheng, Y.H.[Yan-Hua],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
MAPNet: Multi-modal attentive pooling network for RGB-D indoor scene
classification,
PR(90), 2019, pp. 436-449.
Elsevier DOI
1903
BibRef
And:
Corrigendum:
PR(94), 2019, pp. 250.
Elsevier DOI
1906
Indoor scene classification, Multi-modal fusion, RGB-D, Attentive pooling
BibRef
Malleson, C.,
Guillemaut, J.Y.[Jean-Yves],
Hilton, A.,
Hybrid Modeling of Non-Rigid Scenes From RGBD Cameras,
CirSysVideo(29), No. 8, August 2019, pp. 2391-2404.
IEEE DOI
1908
Image reconstruction, Surface reconstruction, Shape,
Cameras, Geometry, Dynamics,
video plus depth
BibRef
Siddiqua, A.[Ayesha],
Fan, G.L.[Guo-Liang],
Semantics-enhanced supervised deep autoencoder for depth image-based
3D model retrieval,
PRL(125), 2019, pp. 806-812.
Elsevier DOI
1909
BibRef
Earlier:
Supervised Deep-Autoencoder for Depth Image-Based 3D Model Retrieval,
WACV18(939-946)
IEEE DOI
1806
3D model retrieval, Shape matching, Cross-modal retrieval, Deep autoencoder.
feature extraction, image classification, image coding,
image retrieval, image segmentation,
Training
BibRef
Schops, T.[Thomas],
Sattler, T.[Torsten],
Pollefeys, M.[Marc],
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM,
CVPR19(134-144).
IEEE DOI
2002
BibRef
Xu, Z.,
Liu, S.,
Shi, J.,
Lu, C.,
Outdoor RGBD Instance Segmentation With Residual Regretting Learning,
IP(29), 2020, pp. 5301-5309.
IEEE DOI
2004
Image segmentation, Feature extraction, Proposals, Semantics,
Robot sensing systems, Robustness,
residual regretting
BibRef
Chang, Q.X.[Qiu-Xiang],
Xiong, Z.K.[Zhen-Kai],
Vision-aware target recognition toward autonomous robot by Kinect
sensors,
SP:IC(84), 2020, pp. 115810.
Elsevier DOI
2004
Target recognition, Kinect sensor, HSV
BibRef
Liu, G.H.[Guo-Hua],
Duan, J.C.[Jian-Chun],
RGB-D image segmentation using superpixel and multi-feature fusion
graph theory,
SIViP(14), No. 6, September 2020, pp. 1171-1179.
WWW Link.
2008
BibRef
Zhang, Z.Y.[Zhen-Yu],
Cui, Z.[Zhen],
Xu, C.Y.[Chun-Yan],
Jie, Z.Q.[Ze-Qun],
Li, X.[Xiang],
Yang, J.[Jian],
Joint Task-Recursive Learning for RGB-D Scene Understanding,
PAMI(42), No. 10, October 2020, pp. 2608-2623.
IEEE DOI
2009
Task analysis, Estimation, Semantics, Image segmentation,
Learning systems, Fuses, Cameras, Depth estimation,
RGB-D scene understanding
BibRef
Xiong, Z.,
Yuan, Y.,
Wang, Q.,
ASK: Adaptively Selecting Key Local Features for RGB-D Scene
Recognition,
IP(30), 2021, pp. 2722-2733.
IEEE DOI
2102
Feature extraction, Image recognition, Object detection, Training,
Correlation, Layout, Convolution, RGB-D recognition,
multi-modal feature learning
BibRef
Zhao, X.L.[Xiao-Li],
Chen, Z.[Zheng],
Hwang, J.N.[Jenq-Neng],
Shang, X.[Xiwu],
AFLNet:
Adversarial focal loss network for RGB-D salient object detection,
SP:IC(94), 2021, pp. 116224.
Elsevier DOI
2104
RGB-D saliency object detection, Class imbalance,
Adversarial focal loss, Inception fusion model
BibRef
Du, D.P.[Da-Peng],
Wang, L.M.[Li-Min],
Li, Z.Y.[Zhao-Yang],
Wu, G.S.[Gang-Shan],
Cross-Modal Pyramid Translation for RGB-D Scene Recognition,
IJCV(129), No. 8, August 2021, pp. 2309-2327.
Springer DOI
2108
BibRef
Du, D.P.[Da-Peng],
Wang, L.M.[Li-Min],
Wang, H.L.[Hui-Ling],
Zhao, K.[Kai],
Wu, G.S.[Gang-Shan],
Translate-to-Recognize Networks for RGB-D Scene Recognition,
CVPR19(11828-11837).
IEEE DOI
2002
BibRef
Yu, T.[Tao],
Zheng, Z.R.[Ze-Rong],
Guo, K.W.[Kai-Wen],
Liu, P.P.[Peng-Peng],
Dai, Q.H.[Qiong-Hai],
Liu, Y.B.[Ye-Bin],
Function4D: Real-time Human Volumetric Capture from Very Sparse
Consumer RGBD Sensors,
CVPR21(5742-5752)
IEEE DOI
2111
Hair, Geometry, Surface reconstruction,
Real-time systems, Sensor systems, Sensors
BibRef
Yang, X.[Xin],
Yuan, Z.[Zikang],
Zhu, D.[Dongfu],
Chi, C.[Cheng],
Li, K.[Kun],
Liao, C.Y.[Chun-Yuan],
Robust and Efficient RGB-D SLAM in Dynamic Environments,
MultMed(23), 2021, pp. 4208-4219.
IEEE DOI
2112
Dynamics, Simultaneous localization and mapping, Cameras,
Pose estimation, Robustness, simultaneous localization and mapping
BibRef
Yue, Y.C.[Yu-Chun],
Zhou, W.J.[Wu-Jie],
Lei, J.S.[Jing-Sheng],
Yu, L.[Lu],
RTLNet: Recursive Triple-Path Learning Network for Scene Parsing of
RGB-D Images,
SPLetters(29), 2022, pp. 429-433.
IEEE DOI
2202
Image segmentation, Semantics, Decoding, Training, Streaming media,
Sensors, Feature extraction, Scene parsing, cross-modality fusion,
deep learning
BibRef
Caglayan, A.[Ali],
Imamoglu, N.[Nevrez],
Can, A.B.[Ahmet Burak],
Nakamura, R.[Ryosuke],
When CNNs meet random RNNs:
Towards multi-level analysis for RGB-D object and scene recognition,
CVIU(217), 2022, pp. 103373.
Elsevier DOI
2203
Convolutional Neural Networks, Randomized neural networks,
Transfer learning, RGB-D object recognition, RGB-D scene recognition
BibRef
Joo, K.[Kyungdon],
Kim, P.[Pyojin],
Hebert, M.[Martial],
Kweon, I.S.[In So],
Kim, H.J.[Hyoun Jin],
Linear RGB-D SLAM for Structured Environments,
PAMI(44), No. 11, November 2022, pp. 8403-8419.
IEEE DOI
2210
Simultaneous localization and mapping, Optimization, Estimation,
Visualization, Kalman filters, Linear SLAM, manhattan world,
scene understanding
BibRef
Zhang, Y.[Ying],
Yin, M.[Maoliang],
Wang, H.[Heyong],
Hua, C.C.[Chang-Chun],
Cross-Level Multi-Modal Features Learning With Transformer for RGB-D
Object Recognition,
CirSysVideo(33), No. 12, December 2023, pp. 7121-7130.
IEEE DOI
2312
BibRef
Yang, J.[Jinyu],
Gao, M.Q.[Ming-Qi],
Zheng, F.[Feng],
Zhen, X.T.[Xian-Tong],
Ji, R.R.[Rong-Rong],
Shao, L.[Ling],
Leonardis, A.[Aleš],
Weakly-Supervised RGBD Video Object Segmentation,
IP(33), 2024, pp. 2158-2170.
IEEE DOI Code:
WWW Link.
2403
Annotations, Object segmentation, Training, Target tracking,
Task analysis, Object tracking, Benchmark testing, RGBD data, visual tracking
BibRef
Liu, X.R.[Xin-Ran],
Qi, L.[Lin],
Song, Y.X.[Yu-Xuan],
Wen, Q.[Qi],
Depth awakens: A depth-perceptual attention fusion network for RGB-D
camouflaged object detection,
IVC(143), 2024, pp. 104924.
Elsevier DOI Code:
WWW Link.
2403
Camouflaged object detection, RGB-D,
Convolutional neural networks, Feature fusion
BibRef
Zhang, Y.M.[Yu-Ming],
Zhou, W.[Wujie],
Ran, X.X.[Xiao-Xiao],
Fang, M.[Meixin],
Lightweight Dual Stream Network With Knowledge Distillation for RGB-D
Scene Parsing,
SPLetters(31), 2024, pp. 855-859.
IEEE DOI
2404
Streaming media, Semantic segmentation, Feature extraction,
Data mining, Convolution, Sun, RGB-D scene parsing, knowledge distillation
BibRef
Zhou, W.[Wujie],
Xu, G.[Gao],
Fang, M.X.[Mei-Xin],
Mao, S.S.[Shan-Shan],
Yang, R.W.[Rong-Wang],
Yu, L.[Lu],
PGGNet: Pyramid gradual-guidance network for RGB-D indoor scene
semantic segmentation,
SP:IC(128), 2024, pp. 117164.
Elsevier DOI
2409
Pyramid structure, RGB-D, Semantic segmentation,
Modality enhancement fusion, Feature refinement
BibRef
Li, C.[Chao],
Zhou, W.[Wujie],
Zhou, X.[Xi],
Yan, W.Q.[Wei-Qing],
Semantic Progressive Guidance Network for RGB-D Mirror Segmentation,
SPLetters(31), 2024, pp. 2780-2784.
IEEE DOI
2410
Feature extraction, Mirrors, Wavelet transforms, Convolution,
Correlation, Semantic segmentation, Convolutional codes,
self-knowledge distillation
BibRef
Li, Y.Q.[Yun-Qiang],
Huang, S.[Shuowen],
Chen, Y.[Ying],
Ding, Y.[Yong],
Zhao, P.C.[Peng-Cheng],
Hu, Q.W.[Qing-Wu],
Zhang, X.[Xujie],
RGBTSDF: An Efficient and Simple Method for Color Truncated Signed
Distance Field (TSDF) Volume Fusion Based on RGB-D Images,
RS(16), No. 17, 2024, pp. 3188.
DOI Link
2409
BibRef
Zhou, W.[Wujie],
Jian, B.[Bitao],
Fang, M.[Meixin],
Dong, X.[Xiena],
Liu, Y.Y.[Yuan-Yuan],
Jiang, Q.P.[Qiu-Ping],
DGPINet-KD: Deep Guided and Progressive Integration Network With
Knowledge Distillation for RGB-D Indoor Scene Analysis,
CirSysVideo(34), No. 9, September 2024, pp. 7844-7855.
IEEE DOI Code:
WWW Link.
2410
Semantics, Feature extraction, Computational modeling,
Circuits and systems, Convolution, Semantic segmentation, depth guidance
BibRef
Zhou, W.[Wujie],
Cai, Y.Q.[Yu-Qi],
Qiang, F.F.[Fang-Fang],
Morphology-Guided Network via Knowledge Distillation for RGB-D Mirror
Segmentation,
ITS(25), No. 11, November 2024, pp. 17382-17391.
IEEE DOI
2411
Feature extraction, Mirrors, Task analysis, Knowledge engineering,
Semantics, Computational modeling, morphology-guided network
BibRef
Zhou, W.[Wujie],
Cai, Y.Q.[Yu-Qi],
Zhang, L.[Liting],
Yan, W.Q.[Wei-Qing],
Yu, L.[Lu],
UTLNet: Uncertainty-Aware Transformer Localization Network for
RGB-Depth Mirror Segmentation,
MultMed(26), 2024, pp. 4564-4574.
IEEE DOI
2403
Mirrors, Image segmentation, Feature extraction, Transformers,
Uncertainty, Semantic segmentation, Semantics,
transformer
BibRef
Li, N.N.[Ning-Ning],
Wang, X.M.[Xiao-Min],
Zheng, Z.[Zhou],
Sun, Z.D.[Zhen-Dong],
Self-supervised fusion network for RGB-D interest point detection and
description,
PR(158), 2025, pp. 111040.
Elsevier DOI
2411
Interest point extraction in challenging indoor environment,
RGB-D cross-modal fusion network (RDFNet), Self-supervised,
Two-stage cross-modal reweighted feature fusion
BibRef
Ghanekar, B.[Bhargav],
Khan, S.S.[Salman Siddique],
Sharma, P.[Pranav],
Singh, S.[Shreyas],
Boominathan, V.[Vivek],
Mitra, K.[Kaushik],
Veeraraghavan, A.[Ashok],
Passive Snapshot Coded Aperture Dual-Pixel RGB-D Imaging,
CVPR24(25348-25357)
IEEE DOI
2410
Photography, Image sensors, Imaging, Apertures, Cameras, Sensors,
Computational Photography, RGB-D Imaging, Coded Aperture Imaging,
Dual-pixel camera
BibRef
Koneputugodage, C.H.[Chamin Hewa],
Ben-Shabat, Y.Z.[Yi-Zhak],
Campbell, D.[Dylan],
Gould, S.[Stephen],
Small Steps and Level Sets: Fitting Neural Surface Models with Point
Guidance,
CVPR24(21456-21465)
IEEE DOI
2410
Measurement, Geometry, Point cloud compression,
Surface reconstruction, Shape, Level set, Surface fitting,
point cloud reconstruction
BibRef
Xia, H.C.[Hong-Chi],
Fu, Y.[Yang],
Liu, S.[Sifei],
Wang, X.L.[Xiao-Long],
RGBD Objects in the Wild: Scaling Real-World 3D Object Learning from
RGB-D Videos,
CVPR24(22378-22389)
IEEE DOI Code:
WWW Link.
2410
Point cloud compression, Training, Surface reconstruction,
Annotations, Pose estimation
BibRef
Wang, H.Y.[Heng-Yi],
Wang, J.W.[Jing-Wen],
Agapito, L.[Lourdes],
MorpheuS: Neural Dynamic 360° Surface Reconstruction from Monocular
RGB-D Video,
CVPR24(20965-20976)
IEEE DOI Code:
WWW Link.
2410
Geometry, Surface reconstruction, Accuracy, Dynamics,
Reconstruction algorithms, Rendering (computer graphics),
neural field
BibRef
Wu, Y.[Yushuang],
Shi, L.[Luyue],
Cai, J.H.[Jun-Hao],
Yuan, W.H.[Wei-Hao],
Qiu, L.[Lingteng],
Dong, Z.L.[Zi-Long],
Bo, L.[Liefeng],
Cui, S.G.[Shu-Guang],
Han, X.G.[Xiao-Guang],
IPoD: Implicit Field Learning with Point Diffusion for Generalizable
3D Object Reconstruction from Single RGB-D Images,
CVPR24(20432-20442)
IEEE DOI Code:
WWW Link.
2410
Portable media players, Point cloud compression, Shape,
Noise reduction, Cooperative systems, Transformers
BibRef
Wang, J.W.[Jing-Wen],
Bleja, T.[Tymoteusz],
Agapito, L.[Lourdes],
GO-Surf: Neural Feature Grid Optimization for Fast, High-Fidelity
RGB-D Surface Reconstruction,
3DV22(433-442)
IEEE DOI Code:
WWW Link.
2408
Training, Surface reconstruction, Optimization methods,
Benchmark testing, Rendering (computer graphics), Filling
BibRef
Mohamed, M.[Mirgahney],
Agapito, L.[Lourdes],
DynamicSurf: Dynamic Neural RGB-D Surface Reconstruction With an
Optimizable Feature Grid,
3DV24(820-830)
IEEE DOI Code:
WWW Link.
2408
Geometry, Surface reconstruction, Solid modeling, Deformation,
Network topology, Dynamics,
Monocular RGB-D Sequences from static viewpoint
BibRef
Ainetter, S.[Stefan],
Stekovic, S.[Sinisa],
Fraundorfer, F.[Friedrich],
Lepetit, V.[Vincent],
HOC-Search: Efficient CAD Model and Pose Retrieval From RGB-D Scans,
3DV24(944-953)
IEEE DOI Code:
WWW Link.
2408
Training, Point cloud compression, Solid modeling,
Monte Carlo methods, Object detection, Search problems
BibRef
Sun, F.Y.[Feng-Yuan],
Karaoglu, S.[Sezer],
Gevers, T.[Theo],
Temporally Consistent Semantic Segmentation using Spatially Aware
Multi-view Semantic Fusion for Indoor RGB-D videos,
CVMeta23(4250-4259)
IEEE DOI
2401
BibRef
Ainetter, S.[Stefan],
Stekovic, S.[Sinisa],
Fraundorfer, F.[Friedrich],
Lepetit, V.[Vincent],
Automatically Annotating Indoor Images with CAD Models via RGB-D
Scans,
WACV23(3155-3163)
IEEE DOI
2302
Geometry, Solid modeling, Visualization, Annotations,
Computational modeling, Algorithms: 3D computer vision
BibRef
Irshad, M.Z.[Muhammad Zubair],
Zakharov, S.[Sergey],
Ambrus, R.[Rares],
Kollar, T.[Thomas],
Kira, Z.[Zsolt],
Gaidon, A.[Adrien],
ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and
Pose Optimization,
ECCV22(II:275-292).
Springer DOI
2211
BibRef
Liu, Y.Z.[Yun-Ze],
Chen, J.Y.[Jun-Yu],
Zhang, Z.[Zekai],
Huang, J.W.[Jing-Wei],
Yi, L.[Li],
LeaF: Learning Frames for 4D Point Cloud Sequence Understanding,
ICCV23(604-613)
IEEE DOI
2401
BibRef
Wen, H.[Hao],
Liu, Y.Z.[Yun-Ze],
Huang, J.W.[Jing-Wei],
Duan, B.[Bo],
Yi, L.[Li],
Point Primitive Transformer for Long-Term 4D Point Cloud Video
Understanding,
ECCV22(XXIX:19-35).
Springer DOI
2211
BibRef
Xiao, Z.B.[Zhi-Bin],
Xie, P.W.[Peng-Wei],
Wang, G.J.[Gui-Jin],
Multi-scale Cross-Modal Transformer Network for RGB-D Object Detection,
MMMod22(I:352-363).
Springer DOI
2203
BibRef
Hou, J.[Ji],
Xie, S.N.[Sai-Ning],
Graham, B.[Benjamin],
Dai, A.[Angela],
Nießner, M.[Matthias],
Pri3D: Can 3D Priors Help 2D Representation Learning?,
ICCV21(5673-5682)
IEEE DOI
2203
Representation learning, Measurement, Image segmentation, Shape,
Semantics, Stereo, 3D from multiview and other sensors,
3D from a single image and shape-from-x
BibRef
Clarke, J.[Joshua],
Mills, S.[Steven],
Sensor Evaluation for Voxel-Based RGB-D SLAM,
IVCNZ21(1-6)
IEEE DOI
2201
BibRef
Guo, L.[Lin],
Fan, G.L.[Guo-Liang],
Locop: Local Collaborative Object Presence for Semantic Labeling Via
Score Map Re-Inference,
ICIP21(2219-2223)
IEEE DOI
2201
Knowledge engineering, Image segmentation, Fuses, Semantics,
Collaboration, Detectors, semantic labeling of RGB-D, scene understanding
BibRef
Ferreri, A.[Andrea],
Bucci, S.[Silvia],
Tommasi, T.[Tatiana],
Multi-Modal RGB-D Scene Recognition Across Domains,
DeepMTL21(2199-2208)
IEEE DOI
2112
Target recognition, Robot vision systems, Benchmark testing, Cameras
BibRef
Fan, H.[Hehe],
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
Kankanhalli, M.[Mohan],
PointListNet: Deep Learning on 3D Point Lists,
CVPR23(17692-17701)
IEEE DOI
2309
BibRef
Fan, H.[Hehe],
Yang, Y.[Yi],
Kankanhalli, M.[Mohan],
Point 4D Transformer Networks for Spatio-Temporal Modeling in Point
Cloud Videos,
CVPR21(14199-14208)
IEEE DOI
2111
Solid modeling, Convolution, Tracking,
Computational modeling, Semantics, Transformers
BibRef
Bokhovkin, A.[Alexey],
Ishimtsev, V.[Vladislav],
Bogomolov, E.[Emil],
Zorin, D.[Denis],
Artemov, A.[Alexey],
Burnaev, E.[Evgeny],
Dai, A.[Angela],
Towards Part-Based Understanding of RGB-D Scans,
CVPR21(7480-7490)
IEEE DOI
2111
Geometry, Semantics, Buildings, Cognition, Autonomous agents
BibRef
Chen, R.,
Zhang, F.L.,
Rhee, T.,
Edge-Aware Convolution for RGB-D Image Segmentation,
IVCNZ20(1-6)
IEEE DOI
2012
Image segmentation, Convolution,
Image edge detection, Semantics, Feature extraction, Kernel, Edge-Aware
BibRef
Avetisyan, A.[Armen],
Khanova, T.[Tatiana],
Choy, C.[Christopher],
Dash, D.[Denver],
Dai, A.[Angela],
Nießner, M.[Matthias],
SceneCAD: Predicting Object Alignments and Layouts in RGB-D Scans,
ECCV20(XXII:596-612).
Springer DOI
2011
BibRef
Back, S.,
Kim, J.,
Kang, R.,
Choi, S.,
Lee, K.,
Segmenting Unseen Industrial Components In A Heavy Clutter Using
RGB-D Fusion And Synthetic Data,
ICIP20(828-832)
IEEE DOI
2011
Data models, Clutter, Solid modeling, Shape, Training,
Computational modeling, Machine learning, Synthetic Data
BibRef
Xing, Y.J.[Ya-Jie],
Wang, J.B.[Jing-Bo],
Zeng, G.[Gang],
Malleable 2.5d Convolution: Learning Receptive Fields Along the
Depth-axis for RGB-D Scene Parsing,
ECCV20(XIX:555-571).
Springer DOI
2011
BibRef
Fu, Y.P.[Yan-Ping],
Yan, Q.A.[Qing-An],
Liao, J.[Jie],
Xiao, C.X.[Chun-Xia],
Joint Texture and Geometry Optimization for RGB-D Reconstruction,
CVPR20(5949-5958)
IEEE DOI
2008
Cameras, Geometry, Image reconstruction,
Optimization, Solid modeling, Color
BibRef
Hou, J.,
Dai, A.,
Nießner, M.,
RevealNet: Seeing Behind Objects in RGB-D Scans,
CVPR20(2095-2104)
IEEE DOI
2008
Geometry, Semantics, Task analysis,
Feature extraction, Object detection
BibRef
Halber, M.,
Shi, Y.,
Xu, K.,
Funkhouser, T.,
Rescan: Inductive Instance Segmentation for Indoor RGBD Scans,
ICCV19(2541-2550)
IEEE DOI
2004
image colour analysis, image scanners, image segmentation,
object tracking, inductive instance segmentation, Cameras
BibRef
Yi, L.[Li],
Zhao, W.[Wang],
Wang, H.[He],
Sung, M.[Minhyuk],
Guibas, L.J.[Leonidas J.],
GSPN: Generative Shape Proposal Network for 3D Instance Segmentation in
Point Cloud,
CVPR19(3942-3951).
IEEE DOI
2002
BibRef
Mishima, M.[Masashi],
Uchiyama, H.[Hideaki],
Thomas, D.[Diego],
Taniguchi, R.I.[Rin-Ichiro],
Roberto, R.[Rafael],
Lima, J.P.[João Paulo],
Teichrieb, V.[Veronica],
RGB-D SLAM Based Incremental Cuboid Modeling,
3D-Wild18(I:414-429).
Springer DOI
1905
BibRef
Li, W.,
Xiao, X.,
Hahn, J.,
3D Reconstruction and Texture Optimization Using a Sparse Set of
RGB-D Cameras,
WACV19(1413-1422)
IEEE DOI
1904
cameras, image colour analysis, image reconstruction,
image registration, image sensors, image texture,
Sensors
BibRef
Park, J.J.,
Newcombe, R.A.,
Seitz, S.M.,
Surface Light Field Fusion,
3DV18(12-21)
IEEE DOI
1812
image colour analysis, image reconstruction, image sensors,
highly reflective objects, commodity RGBD sensor,
RGBD
BibRef
Kaiser, A.[Adrien],
Zepeda, J.A.Y.[Jose Alonso Ybanez],
Boubekeur, T.[Tamy],
Proxy Clouds for Live RGB-D Stream Processing and Consolidation,
ECCV18(VI: 255-271).
Springer DOI
1810
BibRef
Kim, P.[Pyojin],
Coltin, B.[Brian],
Kim, H.J.[H. Jin],
Linear RGB-D SLAM for Planar Environments,
ECCV18(II: 350-366).
Springer DOI
1810
BibRef
Shi, Y.F.[Yi-Fei],
Xu, K.[Kai],
Nießner, M.[Matthias],
Rusinkiewicz, S.[Szymon],
Funkhouser, T.[Thomas],
PlaneMatch: Patch Coplanarity Prediction for Robust RGB-D
Reconstruction,
ECCV18(VIII: 767-784).
Springer DOI
1810
BibRef
Stefanczyk, M.[Maciej],
Improving RGB Descriptors Using Depth Cues,
ICCVG18(251-262).
Springer DOI
1810
BibRef
Wang, W.[Weiyue],
Neumann, U.[Ulrich],
Depth-Aware CNN for RGB-D Segmentation,
ECCV18(XI: 144-161).
Springer DOI
1810
BibRef
Yi, R.,
Liu, Y.,
Lai, Y.,
Evaluation on the Compactness of Supervoxels,
ICIP18(2212-2216)
IEEE DOI
1809
Measurement, Videos, Shape, Correlation, Spatiotemporal phenomena,
Complexity theory, Color, Supervoxel, compactness,
metric evaluation
BibRef
Aakerberg, A.,
Nasrollahi, K.,
Heder, T.,
Improving a deep learning based RGB-D object recognition model by
ensemble learning,
IPTA17(1-6)
IEEE DOI
1804
convolution, feedforward neural nets, image colour analysis,
learning (artificial intelligence), object recognition,
RGB-D
BibRef
Chen, C.F.,
Bolas, M.,
Rosenberg, E.S.,
View-dependent virtual reality content from RGB-D images,
ICIP17(2931-2935)
IEEE DOI
1803
Cameras, Color, Computational modeling, Image color analysis,
Rendering (computer graphics), Solid modeling,
Virtual Reality
BibRef
Zhang, M.,
Kadam, P.,
Liu, S.,
Kuo, C.C.J.,
Unsupervised Feedforward Feature (UFF) Learning for Point Cloud
Classification and Segmentation,
VCIP20(144-147)
IEEE DOI
2102
Image segmentation, Correlation, Shape,
Visual communication, Feature extraction,
successive subspace learning
BibRef
Fu, X.,
Chen, C.,
Li, J.,
Wang, C.,
Kuo, C.C.J.,
Image segmentation using contour, surface, and depth cues,
ICIP17(81-85)
IEEE DOI
1803
Copper, Estimation, Image edge detection, Image segmentation,
Reliability,
Spectral Graph
BibRef
Trabelsi, R.[Rim],
Jabri, I.[Issam],
Melgani, F.[Farid],
Smach, F.[Fethi],
Conci, N.[Nicola],
Bouallegue, A.[Ammar],
Complex-Valued Representation for RGB-D Object Recognition,
PSIVT17(17-27).
Springer DOI
1802
BibRef
Ahmadi, S.S.,
Khotanlou, H.,
Enhance support relation extraction accuracy using improvement of
segmentation in RGB-D images,
IPRIA17(166-169)
IEEE DOI
1712
feature extraction, image colour analysis,
image enhancement, image segmentation,
Support relation extraction
BibRef
Hodan, T.[Tomáš],
Haluza, P.[Pavel],
Obdržálek, Š.[Štepán],
Matas, J.G.[Jirí G.],
Lourakis, M.[Manolis],
Zabulis, X.[Xenophon],
T-LESS:
An RGB-D Dataset for 6D Pose Estimation of Texture-Less Objects,
WACV17(880-888)
IEEE DOI
1609
Dataset, RBG-D.
WWW Link. (Slow response)
Image color analysis, Image sensors, Pose estimation, Sensors,
Solid modeling, Training
BibRef
Perez-Yus, A.[Alejandro],
Bermudez-Cameo, J.[Jesus],
Guerrero, J.J.[Jose J.],
Lopez-Nicolas, G.[Gonzalo],
Depth and Motion Cues with Phosphene Patterns for Prosthetic Vision,
ACVR17(1516-1525)
IEEE DOI
1802
Cameras, Image resolution, Navigation, Prosthetics,
Visualization
BibRef
Bermudez-Cameo, J.[Jesus],
Badias-Herbera, A.[Alberto],
Guerrero-Viu, M.[Manuel],
Lopez-Nicolas, G.[Gonzalo],
Guerrero, J.J.[Jose J.],
RGB-D Computer Vision Techniques for Simulated Prosthetic Vision,
IbPRIA17(427-436).
Springer DOI
1706
BibRef
Chen, B.,
Yang, J.H.[Jian-Hao],
Ding, M.[Mengru],
Liu, T.L.[Tian-Liang],
Zhang, X.P.[Xin-Peng],
Quaternion-type moments combining both color and depth information
for RGB-D object recognition,
ICPR16(704-708)
IEEE DOI
1705
Color, Face, Image color analysis, Neurons, Object recognition,
Quaternions, Redundancy, RGB-D object recognition, color image,
depth information, quaternion, moment
BibRef
Yang, C.L.[Cheng-Liang],
Sethi, M.[Manu],
Rangarajan, A.[Anand],
Ranka, S.[Sanjay],
Supervoxel-Based Segmentation of 3D Volumetric Images,
ACCV16(I: 37-53).
Springer DOI
1704
BibRef
Drozdov, G.[Gilad],
Shapiro, Y.[Yevgengy],
Gilboa, G.[Guy],
Robust Recovery of Heavily Degraded Depth Measurements,
3DV16(56-65)
IEEE DOI
1701
image colour analysis
BibRef
Seychell, D.[Dylan],
Debono, C.J.[Carl James],
Efficient object selection using depth and texture information,
VCIP16(1-4)
IEEE DOI
1701
Image color analysis
BibRef
Lombardi, S.,
Nishino, K.,
Radiometric Scene Decomposition: Scene Reflectance, Illumination, and
Geometry from RGB-D Images,
3DV16(305-313)
IEEE DOI
1701
computer vision
BibRef
Li, S.,
Handa, A.,
Zhang, Y.,
Calway, A.,
HDRFusion: HDR SLAM Using a Low-Cost Auto-Exposure RGB-D Sensor,
3DV16(314-322)
IEEE DOI
1701
SLAM (robots)
BibRef
Georgakis, G.,
Reza, M.A.,
Mousavian, A.,
Le, P.H.,
KošeckŽá, J.,
Multiview RGB-D Dataset for Object Instance Detection,
3DV16(426-434)
IEEE DOI
1701
Clutter
BibRef
Liu, C.[Chen],
Kohli, P.[Pushmeet],
Furukawa, Y.[Yasutaka],
Layered Scene Decomposition via the Occlusion-CRF,
CVPR16(165-173)
IEEE DOI
1612
BibRef
Sharma, A.[Abhishek],
Grau, O.[Oliver],
Fritz, M.[Mario],
VConv-DAE: Deep Volumetric Shape Learning Without Object Labels,
DeepLearn16(III: 236-250).
Springer DOI
1611
BibRef
Tzionas, D.[Dimitrios],
Gall, J.[Juergen],
Reconstructing Articulated Rigged Models from RGB-D Videos,
6DPose16(III: 620-633).
Springer DOI
1611
BibRef
Liu, X.D.[Xin-Da],
Wang, X.M.[Xue-Ming],
Jiang, S.Q.[Shu-Qiang],
RGB-D scene classification via heterogeneous model fusion,
ICIP16(499-503)
IEEE DOI
1610
Boolean functions
BibRef
Feng, J.[Jie],
Wang, Y.[Yan],
Chang, S.F.[Shih-Fu],
3D shape retrieval using a single depth image from low-cost sensors,
WACV16(1-9)
IEEE DOI
1606
Computational modeling. RGB-D sensors.
BibRef
Liu, S.,
Li, W.,
Ogunbona, P.,
Chow, Y.W.,
Creating Simplified 3D Models with High Quality Textures,
DICTA15(1-8)
IEEE DOI
1603
RGB-D data.
BibRef
Zaki, H.F.M.,
Shafait, F.,
Mian, A.,
Modeling 2D Appearance Evolution for 3D Object Categorization,
DICTA16(1-8)
IEEE DOI
1701
BibRef
Earlier:
Localized Deep Extreme Learning Machines for Efficient RGB-D Object
Recognition,
DICTA15(1-8)
IEEE DOI
1603
image classification
BibRef
Wetherall, J.,
Taylor, M.,
Hurley-Smith, D.,
Investigation into the effects of transmission-channel fidelity loss
in RGBD sensor data for SLAM,
WSSIP15(81-84)
IEEE DOI
1603
SLAM (robots)
BibRef
Pham, T.T.[Trung T.],
Reid, I.D.[Ian D.],
Latif, Y.[Yasir],
Gould, S.[Stephen],
Hierarchical Higher-Order Regression Forest Fields:
An Application to 3D Indoor Scene Labelling,
ICCV15(2246-2254)
IEEE DOI
1602
RGB-D.
Computational modeling
BibRef
Cheng, Y.,
Cai, R.,
Zhang, C.,
Li, Z.,
Zhao, X.,
Huang, K.,
Rui, Y.,
Query Adaptive Similarity Measure for RGB-D Object Recognition,
ICCV15(145-153)
IEEE DOI
1602
Art
BibRef
Hachama, M.,
Ghanem, B.,
Wonka, P.,
Intrinsic Scene Decomposition from RGB-D Images,
ICCV15(810-818)
IEEE DOI
1602
Coherence
BibRef
Soni, N.[Nishit],
Namboodiri, A.M.[Anoop M.],
Jawahar, C.V.,
Ramalingam, S.[Srikumar],
Semantic Classification of Boundaries of an RGBD Image,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Liu, J.[Jing],
Ren, T.[Tongwei],
Bei, J.[Jia],
Elastic Edge Boxes for Object Proposal on RGB-D Images,
MMMod16(I: 199-211).
Springer DOI
1601
BibRef
Petrelli, A.[Alioscia],
di Stefano, L.[Luigi],
Learning to Weight Color and Depth for RGB-D Visual Search,
CIAP17(I:648-659).
Springer DOI
1711
BibRef
Petrelli, A.[Alioscia],
Pau, D.[Danilo],
di Stefano, L.[Luigi],
Analysis of Compact Features for RGB-D Visual Search,
CIAP15(II:14-24).
Springer DOI
1511
BibRef
Geiger, A.[Andreas],
Wang, C.H.[Chao-Hui],
Joint 3D Object and Layout Inference from a Single RGB-D Image,
GCPR15(183-195).
Springer DOI
1511
Award, GCPR.
BibRef
Nakaguro, Y.[Yoichi],
Qureshi, W.S.[Waqar S.],
Dailey, M.N.[Matthew N.],
Ekpanyapong, M.[Mongkol],
Bunnun, P.[Pished],
Tungpimolrut, K.[Kanokvate],
Volumetric 3D Reconstruction and Parametric Shape Modeling from RGB-D
Sequences,
CIAP15(I:500-516).
Springer DOI
1511
BibRef
Zhu, C.[Chen],
Bilgeri, S.[Simon],
Günther, C.[Christoph],
Spatial Uncertainty Model of a Three-View RGB-D Camera System,
ISVC14(II: 117-128).
Springer DOI
1501
Combine 2 view stereo with RBG-D for more complete modeling.
BibRef
Fu, H.Z.[Hua-Zhu],
Xu, D.[Dong],
Lin, S.[Stephen],
Liu, J.[Jiang],
Object-based RGBD image co-segmentation with mutex constraint,
CVPR15(4428-4436)
IEEE DOI
1510
BibRef
Cinque, L.[Luigi],
Danani, A.[Alessandro],
Dondi, P.[Piercarlo],
Lombardi, L.[Luca],
Real-Time Foreground Segmentation with Kinect Sensor,
CIAP15(II:56-65).
Springer DOI
1511
BibRef
Wan, S.H.[Shao-Hua],
Aggarwal, J.K.,
Robust object recognition in RGB-D egocentric videos based on Sparse
Affine Hull Kernel,
PBVS15(97-104)
IEEE DOI
1510
Cameras
BibRef
Diebold, J.[Julia],
Demmel, N.[Nikolaus],
Hazirbas, C.[Caner],
Moeller, M.[Michael],
Cremers, D.[Daniel],
Interactive Multi-label Segmentation of RGB-D Images,
SSVM15(294-306).
Springer DOI
1506
BibRef
Nghiem, A.T.[Anh-Tuan],
Bremond, F.[Francois],
Background subtraction in people detection framework for RGB-D
cameras,
AVSS14(241-246)
IEEE DOI
1411
Cameras
BibRef
Trabelsi, R.[Rim],
Smach, F.[Fethi],
Jabri, I.[Issam],
Bouallegue, A.[Ammar],
Multimodal Background Modeling Using RGB-Depth Features,
CIARP14(884-892).
Springer DOI
1411
BibRef
Hickson, S.[Steven],
Essa, I.[Irfan],
Christensen, H.[Henrik],
Semantic Instance Labeling Leveraging Hierarchical Segmentation,
WACV15(1068-1075)
IEEE DOI
1503
Accuracy
BibRef
Hickson, S.[Steven],
Birchfield, S.[Stan],
Essa, I.[Irfan],
Christensen, H.[Henrik],
Efficient Hierarchical Graph-Based Segmentation of RGBD Videos,
CVPR14(344-351)
IEEE DOI
1409
4D Segmentation
BibRef
Barrera, F.[Fernando],
Padoy, N.[Nicolas],
Piecewise Planar Decomposition of 3D Point Clouds Obtained from
Multiple Static RGB-D Cameras,
3DV14(194-201)
IEEE DOI
1503
Cameras
BibRef
Lim, H.[Hyon],
Lim, J.W.[Jong-Woo],
Kim, H.J.[H. Jin],
Online 3D Reconstruction and 6-DoF Pose Estimation for RGB-D Sensors,
CVVT14(238-254).
Springer DOI
1504
BibRef
Zhang, Q.S.[Quan-Shi],
Song, X.[Xuan],
Shao, X.W.[Xiao-Wei],
Zhao, H.J.[Hui-Jing],
Shibasaki, R.[Ryosuke],
When 3D Reconstruction Meets Ubiquitous RGB-D Images,
CVPR14(700-707)
IEEE DOI
1409
3D reconstruction. Using category models. Rotation, 3D and texture.
BibRef
Kerl, C.[Christian],
Souiai, M.[Mohamed],
Sturm, J.[Jurgen],
Cremers, D.[Daniel],
Towards Illumination-Invariant 3D Reconstruction Using ToF RGB-D
Cameras,
3DV14(39-46)
IEEE DOI
1503
Cameras
BibRef
Perera, S.[Samunda],
Barnes, N.M.[Nick M.],
1-Point Rigid Motion Estimation and Segmentation with a RGB-D Camera,
DICTA13(1-8)
IEEE DOI
1402
BibRef
Earlier:
Maximal Cliques Based Rigid Body Motion Segmentation with a RGB-D
Camera,
ACCV12(II:120-133).
Springer DOI
1304
BibRef
Earlier:
A Simple and Practical Solution to the Rigid Body Motion Segmentation
Problem Using a RGB-D Camera,
DICTA11(494-500).
IEEE DOI
1205
cameras
BibRef
Steinbrucker, F.[Frank],
Kerl, C.[Christian],
Cremers, D.[Daniel],
Large-Scale Multi-resolution Surface Reconstruction from RGB-D
Sequences,
ICCV13(3264-3271)
IEEE DOI
1403
BibRef
Weikersdorfer, D.[David],
Schick, A.[Alexander],
Cremers, D.[Daniel],
Depth-adaptive supervoxels for RGB-D video segmentation,
ICIP13(2708-2712)
IEEE DOI
1402
RGB-D; Superpixels; Supervoxels; Video Analysis; Video Segmentation
BibRef
Guan, L.[Li],
Yu, T.[Ting],
Tu, P.[Peter],
Lim, S.N.[Ser-Nam],
Simultaneous image segmentation and 3D plane fitting for RGB-D sensors:
An iterative framework,
PCP12(49-56).
IEEE DOI
1207
BibRef
Srinivasan, N.[Natesh],
Dellaert, F.[Frank],
A Rao-Blackwellized MCMC algorithm for recovering piecewise planar 3D
models from multiple view RGBD images,
ICIP14(5392-5392)
IEEE DOI
1502
Bayes methods
BibRef
Dellaert, F.[Frank],
Factor Graphs for Fast and Scalable 3D Reconstruction and Mapping,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Erdogan, C.[Can],
Paluri, M.[Manohar],
Dellaert, F.[Frank],
Planar Segmentation of RGBD Images Using Fast Linear Fitting and Markov
Chain Monte Carlo,
CRV12(32-39).
IEEE DOI
1207
BibRef
Weikersdorfer, D.[David],
Gossow, D.[David],
Beetz, M.[Michael],
Depth-adaptive superpixels,
ICPR12(2087-2090).
WWW Link.
1302
BibRef
Kim, B.S.[Byung-Soo],
Kohli, P.[Pushmeet],
Savarese, S.[Silvio],
3D Scene Understanding by Voxel-CRF,
ICCV13(1425-1432)
IEEE DOI
1403
3D reconstruction; RGB-D; Scene understanding
BibRef
Sallem, N.K.[Nizar K.],
Devy, M.[Michel],
Extended GrabCut for 3D and RGB-D Point Clouds,
ACIVS13(354-365).
Springer DOI
1311
BibRef
Specht, A.R.,
Devy, M.,
Surface segmentation using a modified ball-pivoting algorithm,
ICIP04(III: 1931-1934).
IEEE DOI
0505
BibRef
Sappa, A.D.,
Devy, M.,
Fast range image segmentation by an edge detection strategy,
3DIM01(292-299).
IEEE DOI
0106
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
RGB-D Salient Object Segmentation and Detection .