14.5.7.2 Neural Networks Combinations and Evaluations

Chapter Contents (Back)
Evaluation, Neural Networks. Neural Networks.

Hansen, L.K., Salamon, P.,
Neural network ensembles,
PAMI(12), No. 10, October 1990, pp. 993-1001.
IEEE DOI 0401
BibRef

Bourlard, H., Wellekens, C.J.,
Links between Markov models and multilayer perceptrons,
PAMI(12), No. 12, December 1990, pp. 1167-1178.
IEEE DOI 0401
BibRef

Fu, L.M.[Li-Min],
Analysis of the dimensionality of neural networks for pattern recognition,
PR(23), No. 10, 1990, pp. 1131-1140.
WWW Link. 0401
BibRef

Musavi, M.T., Chan, K.H., Hummels, D.M., Kalantri, K., Ahmed, W.,
A probabilistic model for evaluation of neural network classifiers,
PR(25), No. 10, October 1992, pp. 1241-1251.
WWW Link. 0401
BibRef

Ruck, D.W., Rogers, S.K., Kabrisky, M., Maybeck, P.S., Oxley, M.E.,
Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons,
PAMI(14), No. 6, June 1992, pp. 686-691.
IEEE DOI 0401
BibRef

Schmidt, W.A.C., Davis, J.P.,
Pattern recognition properties of various feature spaces for higher order neural networks,
PAMI(15), No. 8, August 1993, pp. 795-801.
IEEE DOI 0401
BibRef

Jou, I.C.[I. Chang], You, S.S.[Shih-Shien], Chang, L.W.[Long-Wen],
Analysis of hidden nodes for multi-layer perceptron neural networks,
PR(27), No. 6, June 1994, pp. 859-864.
WWW Link. 0401
BibRef

Hamamoto, Y., Uchimura, S., Tomita, S.,
On the Behavior of Artificial Neural-Network Classifiers in High-Dimensional Spaces,
PAMI(18), No. 5, May 1996, pp. 571-574.
IEEE DOI 9606
Neural Networks. BibRef

Hamamoto, Y., Matsuura, Y., Kanaoka, T., and Tomita, S.,
A Note on the Orthonormal Discriminant Vector Method for Feature Extraction,
PR(24), No. 7, 1991, pp. 681-684.
WWW Link. BibRef 9100

Hamamoto, Y.[Yoshihiko], Kanaoka, T.[Taiho], Tomita, S.[Shingo],
On a theoretical comparison between the orthonormal discriminant vector method and discriminant analysis,
PR(26), No. 12, December 1993, pp. 1863-1867.
WWW Link. 0401
BibRef
Earlier:
Orthogonal discriminant analysis for interactive pattern analysis,
ICPR90(I: 424-427).
IEEE DOI 9006
BibRef

Hamamoto, Y., Ohama, A., Kanaoka, T., Tomita, S.,
Orthogonal discriminant analysis based on a modified Fisher criterion,
ICPR92(II:363-366).
IEEE DOI 9208
feature extraction BibRef

Archer, N.P., Wang, S.,
Learning bias in neural networks and an approach to controlling its effect in monotonic classification,
PAMI(15), No. 9, September 1993, pp. 962-966.
IEEE DOI 0401
BibRef

Park, Y.T.[Young-Tae],
A comparison of neural net classifiers and linear tree classifiers: Their similarities and differences,
PR(27), No. 11, November 1994, pp. 1493-1503.
WWW Link. 0401
BibRef

Sarat Chandran, P.,
Comments on 'Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons',
PAMI(16), No. 8, August 1994, pp. 862-863.
IEEE DOI 0401
See also Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons. BibRef

Cho, S.B., Kim, J.H.,
Combining Multiple Neural Networks by Fuzzy Integral for Robust Classification,
SMC(25), No. 2, 1995, pp. 380-384. BibRef 9500

Cho, S.B., Kim, J.H.,
Multiple Network Fusion Using Fuzzy Logic,
TNN(6), No. 2, 1995, pp. 497-501. BibRef 9500

Hashem, Schmeiser, B.,
Improving Model Accuracy Using Optimal Linear Combinations of Trained Neural Networks,
TNN(6), No. 3, 1995, pp. 792-794. BibRef 9500

Chong, C.C., Jia, J.C.,
Assessments of Neural-Network Classifier Output Codings Using Variability of Hamming Distance,
PRL(17), No. 8, July 1 1996, pp. 811-818. 9608
BibRef
Earlier:
Assessments of neural network output codings for classification of multispectral images using Hamming distance measure,
ICPR94(B:526-528).
IEEE DOI 9410
BibRef

Kanellopoulos, I., Wilkinson, G.G.,
Strategies and Best Practice for Neural-Network Image Classification,
JRS(18), No. 4, March 10 1997, pp. 711-725. 9703
BibRef

Holmstrom, L., Koistinen, P., Laaksonen, J.T., Oja, E.,
Neural and Statistical Classifiers: Taxonomy and Two Case-Studies,
TNN(8), No. 1, January 1997, pp. 5-17. 9701
BibRef

Guan, L., Anderson, J.A., Sutton, J.P.,
A Network of Networks Processing Model for Image Regularization,
TNN(8), No. 1, January 1997, pp. 169-174. 9701
BibRef

Gao, D.Q.[Da Qi], Wu, S.Y.[Shou Yi],
An Optimization Method for the Topological Structures of Feedforward Multilayer Neural Networks,
PR(31), No. 9, September 1998, pp. 1337-1342.
WWW Link. 9808
BibRef

Tang, X.O.,
Multiple Competitive Learning Network Fusion for Object Classification,
SMC-B(28), No. 4, August 1998, pp. 532-543.
IEEE Top Reference. 9808
BibRef

Babri, H.A., Chen, Y.Q., Yin, T.,
Improving Backpropagation Learning Under Limited Precision,
PRL(19), No. 11, September 1998, pp. 1007-1016. 9811
BibRef

Sierra, A., Santa Cruz, C.,
Global and Local Neural-Network Ensembles,
PRL(19), No. 8, June 1998, pp. 651-655. 9808
BibRef

Gori, M., Tesi, A.,
On the problem of local minima in backpropagation,
PAMI(14), No. 1, January 1992, pp. 76-86.
IEEE DOI 0401
BibRef

Venkatesh, S.S., Psaltis, D.,
On reliable computation with formal neurons,
PAMI(14), No. 1, January 1992, pp. 87-91.
IEEE DOI 0401
BibRef

Gori, M.[Marco], Scarselli, F.[Franco],
Are Multilayer Perceptrons Adequate for Pattern-Recognition and Verification,
PAMI(20), No. 11, November 1998, pp. 1121-1132.
IEEE DOI 9811
BibRef

Lerner, B.[Boaz], Guterman, H.[Hugo], Aladjem, M.[Mayer], Dinstein, I.[Its'hak],
Comparative Study of Neural Network Based Feature Extraction Paradigms,
PRL(20), No. 1, January 1999, pp. 7-14. BibRef 9901
Earlier:
Feature Extraction by Neural Network Nonlinear Mapping for Pattern Classification,
ICPR96(IV: 320-324).
IEEE DOI 9608
(Ben-Gurion Univ. IL) BibRef

Serpico, S.B., Bruzzone, L., Roli, F.,
An Experimental Comparison of Neural and Statistical Nonparametric Algorithms for Supervised Classification of Remote Sensing Images,
PRL(17), No. 13, November 25 1996, pp. 1331-1341. 9701
Neural Networks. Comparisons. Remote Sensing. BibRef

Giacinto, G.[Giorgio], Roli, F.[Fabio], Bruzzone, L.[Lorenzo],
Combination of neural and statistical algorithms for supervised classification of remote-sensing images,
PRL(21), No. 5, May 2000, pp. 385-397. 0005
See also approach to the automatic design of multiple classifier systems, An. BibRef

Bruzzone, L., Fernàndez Prieto, D., Serpico, S.B.,
A Neural-Statistical Approach to Multitemporal and Multisource Remote-Sensing Image Classification,
GeoRS(37), No. 3, May 1999, pp. 1350.
IEEE Top Reference. BibRef 9905

Roli, F., Serpico, S., Bruzzone, L.,
Classification of Multisensor Remote Sensing Images by Multiple Structured Neural Networks,
ICPR96(IV: 180-184).
IEEE DOI 9608
(Univ. di Cagliari, I) BibRef

Bruzzone, L., Serpico, S.B.,
Classification of Imbalanced Remote Sensing Data by Neural Networks,
PRL(18), No. 11-13, November 1997, pp. 1323-1328. 9806
BibRef

Bruzzone, L., Fernàndez Prieto, D.,
An incremental-learning neural network for the classification of remote-sensing images,
PRL(20), No. 11-13, November 1999, pp. 1241-1248. 0001
BibRef

Bruzzone, L., Carlin, L.,
A Multilevel Context-Based System for Classification of Very High Spatial Resolution Images,
GeoRS(44), No. 9, September 2006, pp. 2587-2600.
IEEE DOI 0609
BibRef

Perner, P.[Petra], Zscherpel, U.[Uwe], Jacobsen, C.[Carsten],
A comparison between neural networks and decision trees based on data from industrial radiographic testing,
PRL(22), No. 1, January 2001, pp. 47-54.
Elsevier DOI 0105
BibRef

Baraldi, A., Binaghi, E., Blonda, P., Brivio, P.A., Rampini, A.,
Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data,
GeoRS(39), No. 5, May 2001, pp. 994-1005.
IEEE Top Reference. 0106
BibRef

Giacinto, G.[Giorgio], Roli, F.[Fabio],
Design of effective neural network ensembles for image classification purposes,
IVC(19), No. 9-10, August 2001, pp. 699-707.
Elsevier DOI 0108
See also Combination of neural and statistical algorithms for supervised classification of remote-sensing images. BibRef

Giacinto, G., Roli, F.[Fabio], Fumera, G.[Giorgio],
Design of Effective Multiple Classifier Systems by Clustering of Classifiers,
ICPR00(Vol II: 160-163).
IEEE DOI 0009
BibRef

Hinton, G.E.[Geoffrey E.],
Training products of experts by minimizing contrastive divergence,
NeurComp(14), No. 8, 2002, pp. 1771-1800.
DOI Link BibRef 0200

Behloul, F., Lelieveldt, B.P.F., Boudraa, A., Reiber, J.H.C.,
Optimal design of radial basis function neural networks for fuzzy-rule extraction in high dimensional data,
PR(35), No. 3, March 2002, pp. 659-675.
WWW Link. 0201
BibRef

Woods, K., Bowyer, K.W.,
Generating ROC curves for artificial neural networks,
MedImg(16), No. 3, June 1997, pp. 329-337.
IEEE Top Reference. 0205
BibRef

Gupta, L.[Lalit], McAvoy, M.[Mark],
Investigating the prediction capabilities of the simple recurrent neural network on real temporal sequences,
PR(33), No. 12, December 2000, pp. 2075-2081.
WWW Link. 0008
BibRef

Racca, R.[Robert],
Can periodic perceptrons replace multi-layer perceptrons?,
PRL(21), No. 12, November 2000, pp. 1019-1025. 0011
BibRef

Pal, N.R., Bezdek, J.C.,
Complexity reduction for 'large image' processing,
SMC-B(32), No. 5, October 2002, pp. 598-611. Sampling method. Train NN or clustering on the samples only.
IEEE Top Reference. 0210
BibRef

Jiang, Y.L.[Yu-Lei],
Uncertainty in the output of artificial neural networks,
MedImg(22), No. 7, July 2003, pp. 913-921.
IEEE Abstract. 0308
BibRef

Weber, K.E.[Karsten E.], Schlagner, W.[Werner], Schweier, K.[Knuth],
Estimating regional noise on neural network predictions,
PR(36No. 10, October 2003, pp. 2333-2337.
WWW Link. 0308
BibRef

Gao, D.Q.[Da Qi], Yang, G.X.[Gen-Xing],
Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks,
PR(36), No. 4, April 2003, pp. 869-878.
WWW Link. 0304
BibRef

Abbas, H.M.[Hazem M.],
Analysis and pruning of nonlinear auto-association networks,
VISP(151), No. 1, February 2004, pp. 44-50.
IEEE Abstract. 0403
Analysis of Neural networks. BibRef

Abbas, H.M.[Hazem M.],
Classified image compression using optimally structured auto-association networks,
IET-IPR(1), No. 2, June 2007, pp. 189-196.
DOI Link 0905
BibRef

Gao, D.Q.[Da-Qi], Ji, Y.[Yan],
Classification methodologies of multilayer perceptrons with sigmoid activation functions,
PR(38), No. 10, October 2005, pp. 1469-1482.
WWW Link. 0508
BibRef

Cantu-Paz, E., Kamath, C.,
An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems,
SMC-B(35), No. 5, October 2005, pp. 915-927.
IEEE DOI 0510
Compares 8 combinations of NN algorithms. BibRef

Hervás-Martínez, C.[César], Martínez-Estudillo, F.[Francisco],
Logistic regression using covariates obtained by product-unit neural network models,
PR(40), No. 1, January 2007, pp. 52-64.
WWW Link. 0611
Logistic regression; Product-unit neural network; Classification BibRef

Gao, D.Q.[Da Qi], Li, C.X.[Chun-Xia], Yang, Y.F.[Yun-Fan],
Task decomposition and modular single-hidden-layer perceptron classifiers for multi-class learning problems,
PR(40), No. 8, August 2007, pp. 2226-2236.
WWW Link. 0704
Task decomposition; Multi-class learning data sets; Modular multilayer perceptrons; Unbalanced classes; Weak distribution regions; Output amendment BibRef

Kang, S.G.[Sang-Gil], Park, S.J.[Sung-Joon],
A fusion neural network classifier for image classification,
PRL(30), No. 9, 1 July 2009, pp. 789-793.
Elsevier DOI 0905
Image classification; Fusion neural network classifier; Sensitivity; MPEG-7 descriptor BibRef

Quteishat, A., Lim, C.P., Tan, K.S.,
A Modified Fuzzy Min-Max Neural Network With a Genetic-Algorithm-Based Rule Extractor for Pattern Classification,
SMC-A(40), No. 3, May 2010, pp. 641-650.
IEEE DOI 1003
BibRef

Raudys, S.J.[Sarunas J.], Raudys, A.[Aistis],
Pairwise Costs in Multiclass Perceptrons,
PAMI(32), No. 7, July 2010, pp. 1324-1328.
IEEE DOI 1006
Train net of K single layer perceptrons. BibRef

Salas, R.[Rodrigo], Saavedra, C.[Carolina], Allende, H.[Héctor], Moraga, C.,
Machine fusion to enhance the topology preservation of vector quantization artificial neural networks,
PRL(32), No. 7, 1 May 2011, pp. 962-972.
Elsevier DOI 1101
Machine fusion; Topology preservation; Vector quantization artificial neural networks; Machine learning ensembles BibRef

Saavedra, C.[Carolina], Moreno, S.[Sebastián], Salas, R.[Rodrigo], Allende, H.[Héctor],
Robustness Analysis of the Neural Gas Learning Algorithm,
CIARP06(559-568).
Springer DOI 0611
BibRef

Allende-Cid, H.[Héctor], Veloz, A.[Alejandro], Salas, R.[Rodrigo], Chabert, S.[Steren], Allende, H.[Héctor],
Self-Organizing Neuro-Fuzzy Inference System,
CIARP08(429-436).
Springer DOI 0809
BibRef

Lessmann, M.[Markus],
Learning of invariant object recognition in hierarchical neural networks using temporal continuity,
ELCVIA(14), No. 3, 2015, pp. xx-yy.
DOI Link 1601
Thesis summary. BibRef

Nanni, L.[Loris], Ghidoni, S.[Stefano], Brahnam, S.[Sheryl],
Handcrafted vs. non-handcrafted features for computer vision classification,
PR(71), No. 1, 2017, pp. 158-172.
Elsevier DOI 1707
Deep, learning BibRef

Peharz, R.[Robert], Gens, R.[Robert], Pernkopf, F.[Franz], Domingos, P.[Pedro],
On the Latent Variable Interpretation in Sum-Product Networks,
PAMI(39), No. 10, October 2017, pp. 2030-2044.
IEEE DOI 1709
Bayes methods, Computational modeling, Inference algorithms, Mixture models, Periodic structures, Probabilistic logic, Semantics, MPE inference, Sum-product networks, expectation-maximization, latent variables, mixture, models See also Sum-product networks: A new deep architecture. BibRef


Valadez-Godínez, S.[Sergio], González, J.[Javier], Sossa, H.[Humberto],
Efficient Pattern Recognition Using the Frequency Response of a Spiking Neuron,
MCPR17(53-62).
Springer DOI 1706
BibRef

Papandreou, G.[George], Kokkinos, I.[Iasonas], Savalle, P.A.[Pierre-Andre],
Modeling local and global deformations in Deep Learning: Epitomic convolution, Multiple Instance Learning, and sliding window detection,
CVPR15(390-399)
IEEE DOI 1510
BibRef

Zhou, X.Z.[Xiang-Zeng], Xie, L.[Lei], Zhang, P.[Peng], Zhang, Y.[Yanning],
An ensemble of deep neural networks for object tracking,
ICIP14(843-847)
IEEE DOI 1502
Boosting BibRef

Miclut, B.[Bogdan],
Committees of Deep Feedforward Networks Trained with Few Data,
GCPR14(736-742).
Springer DOI 1411
BibRef

Yu, W.[Wei], Yang, K.Y.[Kui-Yuan], Bai, Y.L.[Ya-Long], Yao, H.X.[Hong-Xun], Rui, Y.[Yong],
DNN Flow: DNN Feature Pyramid based Image Matching,
BMVC14(xx-yy).
HTML Version. 1410
Deep Neural Network BibRef

Agrawal, P.[Pulkit], Girshick, R.[Ross], Malik, J.[Jitendra],
Analyzing the Performance of Multilayer Neural Networks for Object Recognition,
ECCV14(VII: 329-344).
Springer DOI 1408
BibRef

Chakraborty, D.[Debrup],
Neural Network Ensembles from Training Set Expansions,
CIARP09(629-636).
Springer DOI 0911
BibRef

Húsek, D.[Dušan], Moravec, P.[Pavel], Snášel, V.[Václav], Frolov, A.[Alexander], Rezanková, H.[Hana], Polyakov, P.[Pavel],
Comparison of Neural Network Boolean Factor Analysis Method with Some Other Dimension Reduction Methods on Bars Problem,
PReMI07(235-243).
Springer DOI 0712
BibRef

Sridharan, K.[Karthik], Beal, M.J.[Matthew J.], Govindaraju, V.[Venu],
Competitive Mixtures of Simple Neurons,
ICPR06(II: 494-497).
IEEE DOI 0609
BibRef

Lefebvre, G.[Gregoire], Laurent, C.[Christophe], Ros, J.[Julien], Garcia, C.[Christophe],
Supervised Image Classification by SOM Activity Map Comparison,
ICPR06(II: 728-731).
IEEE DOI 0609
BibRef

Ros, J.[Julien], Laurent, C.[Christophe], Lefebvre, G.[Grégoire],
A Cascade of Unsupervised and Supervised Neural Networks for Natural Image Classification,
CIVR06(92-101).
Springer DOI 0607
See also Bag of Strings Representation for Image Categorization, A. BibRef

Qin, K.[Ke], Oommen, B.J.[B. John],
Chaotic Pattern Recognition: The Spectrum of Properties of the Adachi Neural Network,
SSPR08(540-550).
Springer DOI 0812
BibRef

Calitoiu, D.[Dragos], Oommen, J.B.[John B.], Nussbaum, D.[Doron],
Modeling Inaccurate Perception: Desynchronization Issues of a Chaotic Pattern Recognition Neural Network,
SCIA05(821-830).
Springer DOI 0506
BibRef

Adeodato, P.J.L., Vasconcelos, G.C., Arnaud, A.L., Santos, R.A.F., Cunha, R.C.L.V., Monteiro, D.S.M.P.,
Neural Networks vs. Logistic Regression: A Comparative Study on a Large Data Set,
ICPR04(III: 355-358).
IEEE DOI 0409
BibRef

Steinkraus, D., Buck, I., Simard, P.Y.,
Using GPUs for machine learning algorithms,
ICDAR05(II: 1115-1120).
IEEE DOI 0508
BibRef

Doering, A., Witte, H.,
Feedforward Neural Networks for Bayes-Optimal Classification: Investigations on the Influence of the Composition of the Training Set on the Cost Function,
ICPR96(IV: 219-223).
IEEE DOI 9608
(Klinikum der Friedrich Schiller-Univ. D) BibRef

Holt, M.J.J.,
Comparison of generalization in multi-layer perceptrons with the log-likelihood and least-squares cost functions,
ICPR92(II:17-20).
IEEE DOI 9208
BibRef

Chen, C.H.,
A comparison of neural network models for pattern recognition,
ICPR90(II: 45-46).
IEEE DOI 9208
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Networks for Classification and Pattern Recognition .


Last update:Sep 25, 2017 at 16:36:46