Hansen, L.K.,
Salamon, P.,
Neural network ensembles,
PAMI(12), No. 10, October 1990, pp. 993-1001.
IEEE DOI
0401
BibRef
Bourlard, H.,
Wellekens, C.J.,
Links between Markov models and multilayer perceptrons,
PAMI(12), No. 12, December 1990, pp. 1167-1178.
IEEE DOI
0401
BibRef
Fu, L.M.[Li-Min],
Analysis of the dimensionality of neural networks for pattern
recognition,
PR(23), No. 10, 1990, pp. 1131-1140.
Elsevier DOI
0401
BibRef
Musavi, M.T.,
Chan, K.H.,
Hummels, D.M.,
Kalantri, K.,
Ahmed, W.,
A probabilistic model for evaluation of neural network classifiers,
PR(25), No. 10, October 1992, pp. 1241-1251.
Elsevier DOI
0401
BibRef
Ruck, D.W.,
Rogers, S.K.,
Kabrisky, M.,
Maybeck, P.S.,
Oxley, M.E.,
Comparative analysis of backpropagation and the extended Kalman filter
for training multilayer perceptrons,
PAMI(14), No. 6, June 1992, pp. 686-691.
IEEE DOI
0401
BibRef
Schmidt, W.A.C.,
Davis, J.P.,
Pattern recognition properties of various feature spaces for higher
order neural networks,
PAMI(15), No. 8, August 1993, pp. 795-801.
IEEE DOI
0401
BibRef
Jou, I.C.[I. Chang],
You, S.S.[Shih-Shien],
Chang, L.W.[Long-Wen],
Analysis of hidden nodes for multi-layer perceptron neural networks,
PR(27), No. 6, June 1994, pp. 859-864.
Elsevier DOI
0401
BibRef
Hamamoto, Y.,
Uchimura, S.,
Tomita, S.,
On the Behavior of Artificial Neural-Network Classifiers in
High-Dimensional Spaces,
PAMI(18), No. 5, May 1996, pp. 571-574.
IEEE DOI
9606
Neural Networks.
BibRef
Hamamoto, Y.,
Matsuura, Y.,
Kanaoka, T., and
Tomita, S.,
A Note on the Orthonormal Discriminant Vector Method
for Feature Extraction,
PR(24), No. 7, 1991, pp. 681-684.
Elsevier DOI
BibRef
9100
Hamamoto, Y.[Yoshihiko],
Kanaoka, T.[Taiho],
Tomita, S.[Shingo],
On a theoretical comparison between the orthonormal discriminant vector
method and discriminant analysis,
PR(26), No. 12, December 1993, pp. 1863-1867.
Elsevier DOI
0401
BibRef
Earlier:
Orthogonal discriminant analysis for interactive pattern analysis,
ICPR90(I: 424-427).
IEEE DOI
9006
BibRef
Hamamoto, Y.,
Ohama, A.,
Kanaoka, T.,
Tomita, S.,
Orthogonal discriminant analysis based on a modified Fisher criterion,
ICPR92(II:363-366).
IEEE DOI
9208
feature extraction
BibRef
Archer, N.P.,
Wang, S.,
Learning bias in neural networks and an approach to controlling its
effect in monotonic classification,
PAMI(15), No. 9, September 1993, pp. 962-966.
IEEE DOI
0401
BibRef
Park, Y.T.[Young-Tae],
A comparison of neural net classifiers and linear tree classifiers:
Their similarities and differences,
PR(27), No. 11, November 1994, pp. 1493-1503.
Elsevier DOI
0401
BibRef
Sarat Chandran, P.,
Comments on 'Comparative analysis of backpropagation and the extended
Kalman filter for training multilayer perceptrons',
PAMI(16), No. 8, August 1994, pp. 862-863.
IEEE DOI
0401
See also Comparative analysis of backpropagation and the extended Kalman filter for training multilayer perceptrons.
BibRef
Cho, S.B.,
Kim, J.H.,
Combining Multiple Neural Networks by Fuzzy Integral for
Robust Classification,
SMC(25), No. 2, 1995, pp. 380-384.
BibRef
9500
Cho, S.B.,
Kim, J.H.,
Multiple Network Fusion Using Fuzzy Logic,
TNN(6), No. 2, 1995, pp. 497-501.
BibRef
9500
Hashem,
Schmeiser, B.,
Improving Model Accuracy Using Optimal Linear Combinations of
Trained Neural Networks,
TNN(6), No. 3, 1995, pp. 792-794.
BibRef
9500
Chong, C.C.,
Jia, J.C.,
Assessments of Neural-Network Classifier Output Codings Using
Variability of Hamming Distance,
PRL(17), No. 8, July 1 1996, pp. 811-818.
9608
BibRef
Earlier:
Assessments of neural network output codings for classification of
multispectral images using Hamming distance measure,
ICPR94(B:526-528).
IEEE DOI
9410
BibRef
Kanellopoulos, I.,
Wilkinson, G.G.,
Strategies and Best Practice for Neural-Network Image Classification,
JRS(18), No. 4, March 10 1997, pp. 711-725.
9703
BibRef
Holmstrom, L.,
Koistinen, P.,
Laaksonen, J.T.[Jorma T.],
Oja, E.,
Neural and Statistical Classifiers: Taxonomy and Two Case-Studies,
TNN(8), No. 1, January 1997, pp. 5-17.
9701
BibRef
Earlier: A1, A4, A2, A3:
Neural Network and Statistical Perspectives of Classification,
ICPR96(IV: 286-290).
IEEE DOI
9608
(Helsinki Univ. of Technology, SF)
BibRef
Guan, L.,
Anderson, J.A.,
Sutton, J.P.,
A Network of Networks Processing Model for Image Regularization,
TNN(8), No. 1, January 1997, pp. 169-174.
9701
BibRef
Gao, D.Q.[Da Qi],
Wu, S.Y.[Shou Yi],
An Optimization Method for the Topological Structures of
Feedforward Multilayer Neural Networks,
PR(31), No. 9, September 1998, pp. 1337-1342.
Elsevier DOI
9808
BibRef
Tang, X.O.,
Multiple Competitive Learning Network Fusion for Object Classification,
SMC-B(28), No. 4, August 1998, pp. 532-543.
IEEE Top Reference.
9808
BibRef
Babri, H.A.,
Chen, Y.Q.,
Yin, T.,
Improving Backpropagation Learning Under Limited Precision,
PRL(19), No. 11, September 1998, pp. 1007-1016.
9811
BibRef
Sierra, A.,
Santa Cruz, C.,
Global and Local Neural-Network Ensembles,
PRL(19), No. 8, June 1998, pp. 651-655.
9808
BibRef
Gori, M.,
Tesi, A.,
On the problem of local minima in backpropagation,
PAMI(14), No. 1, January 1992, pp. 76-86.
IEEE DOI
0401
BibRef
Venkatesh, S.S.,
Psaltis, D.,
On reliable computation with formal neurons,
PAMI(14), No. 1, January 1992, pp. 87-91.
IEEE DOI
0401
BibRef
Gori, M.[Marco],
Scarselli, F.[Franco],
Are Multilayer Perceptrons Adequate for
Pattern-Recognition and Verification,
PAMI(20), No. 11, November 1998, pp. 1121-1132.
IEEE DOI
9811
BibRef
Lerner, B.[Boaz],
Guterman, H.[Hugo],
Aladjem, M.[Mayer],
Dinstein, I.[Its'hak],
Comparative Study of Neural Network Based
Feature Extraction Paradigms,
PRL(20), No. 1, January 1999, pp. 7-14.
BibRef
9901
Earlier:
Feature Extraction by Neural Network Nonlinear Mapping for
Pattern Classification,
ICPR96(IV: 320-324).
IEEE DOI
9608
(Ben-Gurion Univ. IL)
BibRef
Serpico, S.B.,
Bruzzone, L.,
Roli, F.,
An Experimental Comparison of Neural and Statistical Nonparametric
Algorithms for Supervised Classification of Remote Sensing Images,
PRL(17), No. 13, November 25 1996, pp. 1331-1341.
9701
Neural Networks.
Comparisons.
Remote Sensing.
BibRef
Giacinto, G.[Giorgio],
Roli, F.[Fabio],
Bruzzone, L.[Lorenzo],
Combination of neural and statistical algorithms for supervised
classification of remote-sensing images,
PRL(21), No. 5, May 2000, pp. 385-397.
0005
See also approach to the automatic design of multiple classifier systems, An.
BibRef
Bruzzone, L.,
Fernàndez Prieto, D.,
Serpico, S.B.,
A Neural-Statistical Approach to Multitemporal and Multisource
Remote-Sensing Image Classification,
GeoRS(37), No. 3, May 1999, pp. 1350.
IEEE Top Reference.
BibRef
9905
Roli, F.,
Serpico, S.,
Bruzzone, L.,
Classification of Multisensor Remote Sensing Images by
Multiple Structured Neural Networks,
ICPR96(IV: 180-184).
IEEE DOI
9608
(Univ. di Cagliari, I)
BibRef
Bruzzone, L.,
Serpico, S.B.,
Classification of Imbalanced Remote Sensing Data by Neural Networks,
PRL(18), No. 11-13, November 1997, pp. 1323-1328.
9806
BibRef
Bruzzone, L.,
Fernàndez Prieto, D.,
An incremental-learning neural network for the classification of
remote-sensing images,
PRL(20), No. 11-13, November 1999, pp. 1241-1248.
0001
BibRef
Bruzzone, L.,
Carlin, L.,
A Multilevel Context-Based System for Classification of Very High
Spatial Resolution Images,
GeoRS(44), No. 9, September 2006, pp. 2587-2600.
IEEE DOI
0609
BibRef
Perner, P.[Petra],
Zscherpel, U.[Uwe],
Jacobsen, C.[Carsten],
A comparison between neural networks and decision trees based on data
from industrial radiographic testing,
PRL(22), No. 1, January 2001, pp. 47-54.
Elsevier DOI
0105
BibRef
Baraldi, A.,
Binaghi, E.,
Blonda, P.,
Brivio, P.A.,
Rampini, A.,
Comparison of the multilayer perceptron with neuro-fuzzy techniques in
the estimation of cover class mixture in remotely sensed data,
GeoRS(39), No. 5, May 2001, pp. 994-1005.
IEEE Top Reference.
0106
BibRef
Giacinto, G.[Giorgio],
Roli, F.[Fabio],
Design of effective neural network ensembles for image classification
purposes,
IVC(19), No. 9-10, August 2001, pp. 699-707.
Elsevier DOI
0108
See also Combination of neural and statistical algorithms for supervised classification of remote-sensing images.
BibRef
Giacinto, G.,
Roli, F.[Fabio],
Fumera, G.[Giorgio],
Design of Effective Multiple Classifier Systems by Clustering of
Classifiers,
ICPR00(Vol II: 160-163).
IEEE DOI
0009
BibRef
Behloul, F.,
Lelieveldt, B.P.F.,
Boudraa, A.,
Reiber, J.H.C.,
Optimal design of radial basis function neural networks for fuzzy-rule
extraction in high dimensional data,
PR(35), No. 3, March 2002, pp. 659-675.
Elsevier DOI
0201
BibRef
Woods, K.,
Bowyer, K.W.,
Generating ROC curves for artificial neural networks,
MedImg(16), No. 3, June 1997, pp. 329-337.
IEEE Top Reference.
0205
BibRef
Racca, R.[Robert],
Can periodic perceptrons replace multi-layer perceptrons?,
PRL(21), No. 12, November 2000, pp. 1019-1025.
0011
BibRef
Pal, N.R.,
Bezdek, J.C.,
Complexity reduction for 'large image' processing,
SMC-B(32), No. 5, October 2002, pp. 598-611.
Sampling method. Train NN or clustering on the
samples only.
IEEE Top Reference.
0210
BibRef
Jiang, Y.L.[Yu-Lei],
Uncertainty in the output of artificial neural networks,
MedImg(22), No. 7, July 2003, pp. 913-921.
IEEE Abstract.
0308
BibRef
Weber, K.E.[Karsten E.],
Schlagner, W.[Werner],
Schweier, K.[Knuth],
Estimating regional noise on neural network predictions,
PR(36No. 10, October 2003, pp. 2333-2337.
Elsevier DOI
0308
BibRef
Gao, D.Q.[Da Qi],
Yang, G.X.[Gen-Xing],
Influences of variable scales and activation functions on the
performances of multilayer feedforward neural networks,
PR(36), No. 4, April 2003, pp. 869-878.
Elsevier DOI
0304
BibRef
Abbas, H.M.[Hazem M.],
Analysis and pruning of nonlinear auto-association networks,
VISP(151), No. 1, February 2004, pp. 44-50.
IEEE Abstract.
0403
Analysis of Neural networks.
BibRef
Abbas, H.M.[Hazem M.],
Classified image compression using optimally structured
auto-association networks,
IET-IPR(1), No. 2, June 2007, pp. 189-196.
DOI Link
0905
BibRef
Gao, D.Q.[Da-Qi],
Ji, Y.[Yan],
Classification methodologies of multilayer perceptrons with sigmoid
activation functions,
PR(38), No. 10, October 2005, pp. 1469-1482.
Elsevier DOI
0508
BibRef
Cantu-Paz, E.,
Kamath, C.,
An empirical comparison of combinations of evolutionary algorithms and
neural networks for classification problems,
SMC-B(35), No. 5, October 2005, pp. 915-927.
IEEE DOI
0510
Compares 8 combinations of NN algorithms.
BibRef
Hervás-Martínez, C.[César],
Martínez-Estudillo, F.[Francisco],
Logistic regression using covariates obtained by product-unit neural
network models,
PR(40), No. 1, January 2007, pp. 52-64.
Elsevier DOI
0611
Logistic regression; Product-unit neural network; Classification
BibRef
Gao, D.Q.[Da Qi],
Li, C.X.[Chun-Xia],
Yang, Y.F.[Yun-Fan],
Task decomposition and modular single-hidden-layer perceptron
classifiers for multi-class learning problems,
PR(40), No. 8, August 2007, pp. 2226-2236.
Elsevier DOI
0704
Task decomposition; Multi-class learning data sets;
Modular multilayer perceptrons; Unbalanced classes;
Weak distribution regions; Output amendment
BibRef
Kang, S.G.[Sang-Gil],
Park, S.J.[Sung-Joon],
A fusion neural network classifier for image classification,
PRL(30), No. 9, 1 July 2009, pp. 789-793.
Elsevier DOI
0905
Image classification; Fusion neural network classifier; Sensitivity;
MPEG-7 descriptor
BibRef
Quteishat, A.,
Lim, C.P.,
Tan, K.S.,
A Modified Fuzzy Min-Max Neural Network With a Genetic-Algorithm-Based
Rule Extractor for Pattern Classification,
SMC-A(40), No. 3, May 2010, pp. 641-650.
IEEE DOI
1003
BibRef
Raudys, S.J.[Sarunas J.],
Raudys, A.[Aistis],
Pairwise Costs in Multiclass Perceptrons,
PAMI(32), No. 7, July 2010, pp. 1324-1328.
IEEE DOI
1006
Train net of K single layer perceptrons.
BibRef
Salas, R.[Rodrigo],
Saavedra, C.[Carolina],
Allende, H.[Héctor],
Moraga, C.,
Machine fusion to enhance the topology preservation of vector
quantization artificial neural networks,
PRL(32), No. 7, 1 May 2011, pp. 962-972.
Elsevier DOI
1101
Machine fusion; Topology preservation; Vector quantization artificial
neural networks; Machine learning ensembles
BibRef
Saavedra, C.[Carolina],
Moreno, S.[Sebastián],
Salas, R.[Rodrigo],
Allende, H.[Héctor],
Robustness Analysis of the Neural Gas Learning Algorithm,
CIARP06(559-568).
Springer DOI
0611
BibRef
Allende-Cid, H.[Héctor],
Veloz, A.[Alejandro],
Salas, R.[Rodrigo],
Chabert, S.[Steren],
Allende, H.[Héctor],
Self-Organizing Neuro-Fuzzy Inference System,
CIARP08(429-436).
Springer DOI
0809
BibRef
Lessmann, M.[Markus],
Learning of invariant object recognition in hierarchical neural
networks using temporal continuity,
ELCVIA(14), No. 3, 2015, pp. xx-yy.
DOI Link
1601
Thesis summary.
BibRef
Nanni, L.[Loris],
Ghidoni, S.[Stefano],
Brahnam, S.[Sheryl],
Handcrafted vs. non-handcrafted features for computer vision
classification,
PR(71), No. 1, 2017, pp. 158-172.
Elsevier DOI
1707
Deep, learning
BibRef
Wang, X.G.[Xing-Gang],
Yan, Y.L.[Yong-Luan],
Tang, P.[Peng],
Bai, X.[Xiang],
Liu, W.Y.[Wen-Yu],
Revisiting multiple instance neural networks,
PR(74), No. 1, 2018, pp. 15-24.
Elsevier DOI
1711
Multiple instance learning
BibRef
Li, J.[Jun],
Chang, H.Y.[He-You],
Yang, J.[Jian],
Luo, W.[Wei],
Fu, Y.[Yun],
Visual Representation and Classification by Learning Group Sparse
Deep Stacking Network,
IP(27), No. 1, January 2018, pp. 464-476.
IEEE DOI
1712
Biological neural networks, Dictionaries, Encoding, Stacking,
Training, Deep learning, image classification,
stacking network
BibRef
Garcia-Garcia, A.[Alberto],
Garcia-Rodriguez, J.[Jose],
Orts-Escolano, S.[Sergio],
Oprea, S.[Sergiu],
Gomez-Donoso, F.[Francisco],
Cazorla, M.[Miguel],
A study of the effect of noise and occlusion on the accuracy of
convolutional neural networks applied to 3D object recognition,
CVIU(164), No. 1, 2017, pp. 124-134.
Elsevier DOI
1801
Deep learning
BibRef
Rao, Y.M.[Yong-Ming],
Lu, J.W.[Ji-Wen],
Lin, J.[Ji],
Zhou, J.[Jie],
Runtime Network Routing for Efficient Image Classification,
PAMI(41), No. 10, October 2019, pp. 2291-2304.
IEEE DOI
1909
Routing, Runtime, Neural networks, Acceleration, Training,
Computational modeling, Deep network compression,
deep learning
BibRef
Wu, Z.S.[Zi-Sheng],
Ling, B.W.K.[Bingo Wing-Kuen],
Training algorithm for perceptron with multi-pulse type activation
function,
SIViP(14), No. 5, July 2020, pp. 925-933.
Springer DOI
2006
BibRef
Melnykov, V.[Volodymyr],
Sarkar, S.[Shuchismita],
Melnykov, Y.[Yana],
On finite mixture modeling and model-based clustering of directed
weighted multilayer networks,
PR(112), 2021, pp. 107641.
Elsevier DOI
2102
Model-based clustering, Directed network, Weighted network,
Multilayer network, MCMC
BibRef
Kahatapitiya, K.[Kumara],
Rodrigo, R.[Ranga],
Exploiting the Redundancy in Convolutional Filters for Parameter
Reduction,
WACV21(1409-1419)
IEEE DOI
2106
Correlation, Computational modeling,
Redundancy, Memory management, Network architecture
BibRef
Tissera, D.[Dumindu],
Vithanage, K.[Kasun],
Wijesinghe, R.[Rukshan],
Kahatapitiya, K.[Kumara],
Fernando, S.[Subha],
Rodrigo, R.[Ranga],
Feature-Dependent Cross-Connections in Multi-Path Neural Networks,
ICPR21(4032-4039)
IEEE DOI
2105
Adaptation models, Adaptive systems, Neural networks, Redundancy,
Feature extraction, Routing, Complexity theory
BibRef
Liu, B.Y.[Bing-Yuan],
Malon, C.[Christopher],
Xue, L.Z.[Ling-Zhou],
Kruus, E.[Erik],
Improving Neural Network Robustness Through Neighborhood Preserving
Layers,
IVC(123), 2022, pp. 104469.
Elsevier DOI
2206
BibRef
Earlier:
ManifLearn20(179-195).
Springer DOI
2103
Deep learning, Manifold approximation, Neighborhood preservation,
Robustness, Adversarial attack, Image classification
BibRef
Jia, S.C.[Shao-Cheng],
Yao, W.[Wei],
Joint learning of frequency and spatial domains for dense image
prediction,
PandRS(195), 2023, pp. 14-28.
Elsevier DOI
2301
WWW Link. Apply to self-supervised depth estimation, ego-motion estimation, and
semantic segmentation.
Joint learning, Frequency learning, Spatial learning,
Depth estimation, Semantic image segmentation
BibRef
Yao, G.B.[Guo-Biao],
Zhang, J.[Jin],
Gong, J.Y.[Jian-Ya],
Jin, F.X.[Feng-Xiang],
Automatic Production of Deep Learning Benchmark Dataset for
Affine-Invariant Feature Matching,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Hang, R.L.[Ren-Long],
Qian, X.[Xuwei],
Liu, Q.S.[Qing-Shan],
MSNet: Multi-Resolution Synergistic Networks for Adaptive Inference,
CirSysVideo(33), No. 5, May 2023, pp. 2009-2018.
IEEE DOI
WWW Link.
2305
Adaptive systems, Image resolution, Feature extraction, Costs,
Predictive models, Knowledge engineering, Adaptation models,
image classification
BibRef
Soflaei, M.[Masoumeh],
Zhang, R.[Richong],
Guo, H.Y.[Hong-Yu],
Al-Bashabsheh, A.[Ali],
Mao, Y.Y.[Yong-Yi],
Information Bottleneck and Aggregated Learning,
PAMI(45), No. 12, December 2023, pp. 14807-14820.
IEEE DOI
2311
BibRef
Zheng, Y.W.[Yao-Wei],
Zhang, R.[Richong],
Mao, Y.Y.[Yong-Yi],
Regularizing Neural Networks via Adversarial Model Perturbation,
CVPR21(8152-8161)
IEEE DOI
2111
Deep learning, Codes, Perturbation methods,
Computational modeling, Neural networks, Tools
BibRef
Shin, C.H.[Chan Ho],
Oh, S.J.[Seong-Jun],
Co-TES: Learning noisy labels with a Co-Teaching Exchange Student
method,
PRL(182), 2024, pp. 17-23.
Elsevier DOI
2405
Learning with noisy labels, Co-teaching, Multi-network learning
BibRef
Deng, H.Q.[Hui-Qi],
Zou, N.[Na],
Du, M.[Mengnan],
Chen, W.F.[Wei-Fu],
Feng, G.[Guocan],
Yang, Z.W.[Zi-Wei],
Li, Z.Y.[Zhe-Yang],
Zhang, Q.S.[Quan-Shi],
Unifying Fourteen Post-Hoc Attribution Methods With Taylor
Interactions,
PAMI(46), No. 7, July 2024, pp. 4625-4640.
IEEE DOI
2406
Input variables, Resource management, Collaboration, Task analysis,
Additives, Visualization, Toy manufacturing industry,
Taylor interactions
BibRef
Lee, J.H.[Joon-Ho],
Woo, J.O.[Jae Oh],
Moon, H.K.[Han-Kyu],
Lee, K.[Kwonho],
Unsupervised Accuracy Estimation of Deep Visual Models using
Domain-Adaptive Adversarial Perturbation without Source Samples,
ICCV23(16397-16406)
IEEE DOI
2401
BibRef
Müller, N.M.[Nicolas M.],
Jacobs, J.[Jochen],
Williams, J.[Jennifer],
Böttinger, K.[Konstantin],
Localized Shortcut Removal,
XAI4CV23(3721-3725)
IEEE DOI
2309
BibRef
Chen, Y.H.[Yu-Hao],
Zhang, S.[Shen],
Song, R.J.[Ren-Jie],
Scoring Your Prediction on Unseen Data,
VDU23(3279-3288)
IEEE DOI
2309
BibRef
Pan, Z.Z.[Zi-Zheng],
Cai, J.F.[Jian-Fei],
Zhuang, B.[Bohan],
Stitchable Neural Networks,
CVPR23(16102-16112)
IEEE DOI
2309
BibRef
Liu, B.Y.[Bing-Yuan],
Rony, J.[Jérôme],
Galdran, A.[Adrian],
Dolz, J.[Jose],
Ayed, I.B.[Ismail Ben],
Class Adaptive Network Calibration,
CVPR23(16070-16079)
IEEE DOI
2309
WWW Link.
BibRef
Shen, Y.[Yang],
Sun, X.[Xuhao],
Wei, X.S.[Xiu-Shen],
Equiangular Basis Vectors,
CVPR23(11755-11765)
IEEE DOI
2309
WWW Link.
BibRef
Feng, R.[Ruili],
Zheng, K.[Kecheng],
Zhu, K.[Kai],
Shen, Y.J.[Yu-Jun],
Zhao, J.[Jian],
Huang, Y.K.[Yu-Kun],
Zhao, D.L.[De-Li],
Zhou, J.R.[Jing-Ren],
Jordan, M.[Michael],
Zha, Z.J.[Zheng-Jun],
Neural Dependencies Emerging from Learning Massive Categories,
CVPR23(11711-11720)
IEEE DOI
2309
WWW Link. Given a well-trained model, the logits predicted for some category can
be directly obtained by linearly combining the predictions of a few
other categories.
BibRef
Cherian, A.[Anoop],
Peng, K.C.[Kuan-Chuan],
Lohit, S.[Suhas],
Smith, K.A.[Kevin A.],
Tenenbaum, J.B.[Joshua B.],
Are Deep Neural Networks SMARTer Than Second Graders?,
CVPR23(10834-10844)
IEEE DOI
2309
BibRef
Hänel, T.[Tobias],
Kumar, N.[Nishant],
Schlesinger, D.[Dmitrij],
Li, M.Z.[Meng-Ze],
Ünal, E.[Erdem],
Eslami, A.[Abouzar],
Gumhold, S.[Stefan],
Enhancing Fairness of Visual Attribute Predictors,
ACCV22(VI:151-167).
Springer DOI
2307
BibRef
Szabó, G.[Gergely],
Horváth, A.[András],
Mitigating the Bias of Centered Objects in Common Datasets,
ICPR22(4786-4792)
IEEE DOI
2212
While CNNs are considered shift invariant, not always.
Training, Image segmentation, Image edge detection,
Boundary conditions, Task analysis
BibRef
Tomani, C.[Christian],
Cremers, D.[Daniel],
Buettner, F.[Florian],
Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration,
ECCV22(XIII:555-569).
Springer DOI
2211
WWW Link.
BibRef
Pinto, F.[Francesco],
Torr, P.H.S.[Philip H. S.],
Dokania, P.K.[Puneet K.],
An Impartial Take to the CNN vs Transformer Robustness Contest,
ECCV22(XIII:466-480).
Springer DOI
2211
BibRef
Oh, J.H.[Jung-Hun],
Kim, H.[Heewon],
Baik, S.[Sungyong],
Hong, C.[Cheeun],
Lee, K.M.[Kyoung Mu],
Batch Normalization Tells You Which Filter is Important,
WACV22(3351-3360)
IEEE DOI
2202
Learning systems, Neural networks, Training data,
Information filters, Data mining, Convolutional neural networks,
Deep Learning -> Efficient Training and
Inference Methods for Networks Object Detection/Recognition/Categorization
BibRef
Laugros, A.[Alfred],
Caplier, A.[Alice],
Ospici, M.[Matthieu],
Using the Overlapping Score to Improve Corruption Benchmarks,
ICIP21(959-963)
IEEE DOI
2201
Study effect of blur, noise, lighting, etc. on NN analysis.
Measurement, Image processing, Neural networks, Buildings,
Benchmark testing, Robustness, Robustness, Benchmark, Corruptions
BibRef
Shi, X.W.[Xiang-Wei],
Li, Y.Q.[Yun-Qiang],
Liu, X.[Xin],
van Gemert, J.C.[Jan C.],
WeightAlign: Normalizing Activations by Weight Alignment,
ICPR21(9788-9795)
IEEE DOI
2105
Batch normalization in training.
Training, Image segmentation, Semantics,
Task analysis, Standards, Image classification
BibRef
Horváth, A.[András],
Al-Afandi, J.[Jalal],
Filtered Batch Normalization,
ICPR21(6778-6785)
IEEE DOI
2105
Training, Filtering, Neurons, Gaussian distribution,
Kernel, Biological neural networks
BibRef
Su, Y.C.[Ying-Cheng],
Wu, Y.C.[Yi-Chao],
Chen, K.[Ken],
Liang, D.[Ding],
Hu, X.L.[Xiao-Lin],
Dynamic Multi-path Neural Network,
ICPR21(4137-4144)
IEEE DOI
2105
Training, Performance evaluation, Runtime, Inference mechanisms,
Neural networks, Network architecture, Logic gates
BibRef
Forouzesh, M.[Mahsa],
Salehi, F.[Farnood],
Thiran, P.[Patrick],
Generalization Comparison of Deep Neural Networks via Output
Sensitivity,
ICPR21(7411-7418)
IEEE DOI
2105
Training, Sensitivity, Neural networks,
Labeling, deep neural networks, generalization, sensitivity,
bias-variance decomposition
BibRef
Rodríguez-Rodríguez, J.A.[José A.],
Molina-Cabello, M.A.[Miguel A.],
Benítez-Rochel, R.[Rafaela],
López-Rubio, E.[Ezequiel],
The effect of image enhancement algorithms on convolutional neural
networks,
ICPR21(3084-3089)
IEEE DOI
2105
Measurement, Brightness, Lighting, Classification algorithms,
Convolutional neural networks, image enhancement techniques
BibRef
Koçyigit, M.T.[Mustafa Taha],
Sevilla-Lara, L.[Laura],
Hospedales, T.M.[Timothy M.],
Bilen, H.[Hakan],
Unsupervised Batch Normalization,
VL3W20(3994-3999)
IEEE DOI
2008
Improve convergence of NN training.
Training, Standards, Manifolds, Task analysis, Architecture,
Estimation, Optical imaging
BibRef
Gómez-Flores, W.[Wilfrido],
Sossa-Azuela, J.H.[Juan Humberto],
Towards Dendrite Spherical Neurons for Pattern Classification,
MCPR20(14-24).
Springer DOI
2007
BibRef
Tokmakov, P.[Pavel],
Wang, Y.X.[Yu-Xiong],
Hebert, M.[Martial],
Learning Compositional Representations for Few-Shot Recognition,
ICCV19(6371-6380)
IEEE DOI
2004
brain, image classification, image recognition,
image representation, learning (artificial intelligence), Image coding
BibRef
Zhuang, C.X.[Cheng-Xu],
Zhai, A.[Alex],
Yamins, D.[Daniel],
Local Aggregation for Unsupervised Learning of Visual Embeddings,
ICCV19(6001-6011)
IEEE DOI
2004
convolutional neural nets, learning (artificial intelligence),
object detection, object recognition, pattern clustering,
Unsupervised learning
BibRef
Xie, S.,
Kirillov, A.,
Girshick, R.,
He, K.,
Exploring Randomly Wired Neural Networks for Image Recognition,
ICCV19(1284-1293)
IEEE DOI
2004
graph theory, image recognition, neural net architecture,
optimisation, random processes, stochastic processes,
Probability distribution
BibRef
Tsotsos, J.,
Kotseruba, I.,
Andreopoulos, A.,
Wu, Y.,
Why Does Data-Driven Beat Theory-Driven Computer Vision?,
NeruArch19(2057-2060)
IEEE DOI
2004
learning (artificial intelligence),
common vision datasets, theory-driven algorithms,
theory driven vision
BibRef
Lin, W.[Wang],
Yang, Z.F.[Zheng-Feng],
Chen, X.[Xin],
Zhao, Q.Y.[Qing-Ye],
Li, X.K.[Xiang-Kun],
Liu, Z.M.[Zhi-Ming],
He, J.F.[Ji-Feng],
Robustness Verification of Classification Deep Neural Networks via
Linear Programming,
CVPR19(11410-11419).
IEEE DOI
2002
BibRef
Zhang, C.Q.[Chang-Qing],
Liu, Y.Q.[Ye-Qing],
Fu, H.Z.[Hua-Zhu],
AE2-Nets: Autoencoder in Autoencoder Networks,
CVPR19(2572-2580).
IEEE DOI
2002
BibRef
Zhang, L.H.[Li-Heng],
Qi, G.J.[Guo-Jun],
Wang, L.Q.[Li-Qiang],
Luo, J.B.[Jie-Bo],
AET vs. AED: Unsupervised Representation Learning by Auto-Encoding
Transformations Rather Than Data,
CVPR19(2542-2550).
IEEE DOI
2002
BibRef
Li, Y.[Yi],
Kuang, Z.H.[Zhang-Hui],
Chen, Y.M.[Yi-Min],
Zhang, W.[Wayne],
Data-Driven Neuron Allocation for Scale Aggregation Networks,
CVPR19(11518-11526).
IEEE DOI
2002
BibRef
Wang, G.[Guangrun],
Wang, K.[Keze],
Lin, L.[Liang],
Adaptively Connected Neural Networks,
CVPR19(1781-1790).
IEEE DOI
2002
BibRef
Alcorn, M.A.[Michael A.],
Li, Q.[Qi],
Gong, Z.T.[Zhi-Tao],
Wang, C.F.[Cheng-Fei],
Mai, L.[Long],
Ku, W.S.[Wei-Shinn],
Nguyen, A.[Anh],
Strike (With) a Pose: Neural Networks Are Easily Fooled by Strange
Poses of Familiar Objects,
CVPR19(4840-4849).
IEEE DOI
2002
BibRef
Zhao, K.,
Matsukawa, T.,
Suzuki, E.,
Retraining: A Simple Way to Improve the Ensemble Accuracy of Deep
Neural Networks for Image Classification,
ICPR18(860-867)
IEEE DOI
1812
Training, Biological system modeling, Task analysis, Optimization,
Neural networks, Learning systems, Standards
BibRef
Maier, A.[Andreas],
Schebesch, F.[Frank],
Syben, C.[Christopher],
Würfl, T.[Tobias],
Steidl, S.[Stefan],
Choi, J.H.[Jang-Hwan],
Fahrig, R.[Rebecca],
Precision Learning: Towards Use of Known Operators in Neural Networks,
ICPR18(183-188)
IEEE DOI
1812
Transforms, Neural networks, Needles, Upper bound, Training, Plastics,
Pattern recognition
BibRef
Wang, P.S.[Pei-Song],
Hu, Q.H.[Qing-Hao],
Zhang, Y.F.[Yi-Fan],
Zhang, C.J.[Chun-Jie],
Liu, Y.[Yang],
Cheng, J.[Jian],
Two-Step Quantization for Low-Bit Neural Networks,
CVPR18(4376-4384)
IEEE DOI
1812
Quantization (signal), Hardware, Biological neural networks,
Optimization, Training, Acceleration
BibRef
Shen, H.,
Towards a Mathematical Understanding of the Difficulty in Learning
with Feedforward Neural Networks,
CVPR18(811-820)
IEEE DOI
1812
Training, Approximation algorithms, Optimization, Convergence,
Task analysis, Topology, Supervised learning
BibRef
Murdock, C.[Calvin],
Chang, M.F.[Ming-Fang],
Lucey, S.[Simon],
Deep Component Analysis via Alternating Direction Neural Networks,
ECCV18(XV: 851-867).
Springer DOI
1810
BibRef
Velasco-Montero, D.[Delia],
Fernández-Berni, J.[Jorge],
Carmona-Galán, R.[Ricardo],
Rodríguez-Vázquez, Á.[Ángel],
Optimum Network/Framework Selection from High-Level Specifications in
Embedded Deep Learning Vision Applications,
ACIVS18(369-379).
Springer DOI
1810
Benchmarks 16 combinations of popular Deep Neural Networks for 1000-category
image recognition.
BibRef
Li, H.Y.[Hong-Yang],
Guo, X.Y.[Xiao-Yang],
Dai, B.[Bo],
Ouyang, W.L.[Wan-Li],
Wang, X.G.[Xiao-Gang],
Neural Network Encapsulation,
ECCV18(XI: 266-282).
Springer DOI
1810
BibRef
Cheng, H.[Hao],
Lian, D.Z.[Dong-Ze],
Gao, S.H.[Sheng-Hua],
Geng, Y.L.[Yan-Lin],
Evaluating Capability of Deep Neural Networks for Image Classification
via Information Plane,
ECCV18(XI: 181-195).
Springer DOI
1810
BibRef
Liu, X.Q.[Xuan-Qing],
Cheng, M.H.[Min-Hao],
Zhang, H.[Huan],
Hsieh, C.J.[Cho-Jui],
Towards Robust Neural Networks via Random Self-Ensemble,
ECCV18(VII: 381-397).
Springer DOI
1810
BibRef
Su, D.[Dong],
Zhang, H.[Huan],
Chen, H.G.[Hong-Ge],
Yi, J.F.[Jin-Feng],
Chen, P.Y.[Pin-Yu],
Gao, Y.P.[Yu-Peng],
Is Robustness the Cost of Accuracy?: A Comprehensive Study on the
Robustness of 18 Deep Image Classification Models,
ECCV18(XII: 644-661).
Springer DOI
1810
BibRef
Stock, P.[Pierre],
Cisse, M.[Moustapha],
ConvNets and ImageNet Beyond Accuracy:
Understanding Mistakes and Uncovering Biases,
ECCV18(VI: 504-519).
Springer DOI
1810
BibRef
Wang, J.,
Russakovsky, O.,
Ramanan, D.,
The More You Look, the More You See: Towards General Object
Understanding Through Recursive Refinement,
WACV18(1794-1803)
IEEE DOI
1806
feature extraction, image segmentation, inference mechanisms,
learning (artificial intelligence), neural nets,
Visualization
BibRef
Goh, G.B.,
Siegel, C.,
Vishnu, A.,
Hodas, N.,
Baker, N.,
How Much Chemistry Does a Deep Neural Network Need to Know to Make
Accurate Predictions?,
WACV18(1340-1349)
IEEE DOI
1806
free energy, image representation,
learning (artificial intelligence), neural nets, CNN models,
Task analysis
BibRef
Yuan, B.,
Chen, J.,
Zhang, W.,
Tai, H.S.,
McMains, S.,
Iterative Cross Learning on Noisy Labels,
WACV18(757-765)
IEEE DOI
1806
incorrect labels in training data.
convolution, feedforward neural nets, image classification,
iterative methods, Iterative Cross Learning,
Training data
BibRef
Novotny, D.[David],
Larlus, D.[Diane],
Vedaldi, A.[Andrea],
I Have Seen Enough: Transferring Parts Across Categories,
BMVC16(xx-yy).
HTML Version.
1805
Whether further progress can be indefinitely sustained by annotating
more data, or whether there is a saturation point beyond which a
problem is essentially solved, or the capacity of a model is
saturated.
A few thousand examples.
BibRef
Stabinger, S.,
Rodríguez-Sánchez, A.,
Evaluation of Deep Learning on an Abstract Image Classification
Dataset,
CogCV17(2767-2772)
IEEE DOI
1802
Cameras, Concrete, Machine learning, Training
BibRef
Hou, S.H.[Sai-Hui],
Liu, X.[Xu],
Wang, Z.L.[Zi-Lei],
DualNet: Learn Complementary Features for Image Recognition,
ICCV17(502-510)
IEEE DOI
1802
2 parallel neural nets.
feature extraction, image classification, image representation,
learning (artificial intelligence), neural nets, Dual-Net, DualNet,
Visualization
BibRef
Eisenschtat, A.[Aviv],
Wolf, L.B.[Lior B.],
Linking Image and Text with 2-Way Nets,
CVPR17(1855-1865)
IEEE DOI
1711
Adaptation models, Computer architecture,
Correlation, Neurons, Training
BibRef
Papandreou, G.[George],
Kokkinos, I.[Iasonas],
Savalle, P.A.[Pierre-Andre],
Modeling local and global deformations in Deep Learning: Epitomic
convolution, Multiple Instance Learning, and sliding window detection,
CVPR15(390-399)
IEEE DOI
1510
BibRef
Zhou, X.Z.[Xiang-Zeng],
Xie, L.[Lei],
Zhang, P.[Peng],
Zhang, Y.N.[Yan-Ning],
An ensemble of deep neural networks for object tracking,
ICIP14(843-847)
IEEE DOI
1502
Boosting
BibRef
Miclut, B.[Bogdan],
Committees of Deep Feedforward Networks Trained with Few Data,
GCPR14(736-742).
Springer DOI
1411
BibRef
Yu, W.[Wei],
Yang, K.Y.[Kui-Yuan],
Bai, Y.L.[Ya-Long],
Yao, H.X.[Hong-Xun],
Rui, Y.[Yong],
DNN Flow: DNN Feature Pyramid based Image Matching,
BMVC14(xx-yy).
HTML Version.
1410
Deep Neural Network
BibRef
Agrawal, P.[Pulkit],
Girshick, R.[Ross],
Malik, J.[Jitendra],
Analyzing the Performance of Multilayer Neural Networks for Object
Recognition,
ECCV14(VII: 329-344).
Springer DOI
1408
BibRef
Chakraborty, D.[Debrup],
Neural Network Ensembles from Training Set Expansions,
CIARP09(629-636).
Springer DOI
0911
BibRef
Húsek, D.[Dušan],
Moravec, P.[Pavel],
Snášel, V.[Václav],
Frolov, A.[Alexander],
Rezanková, H.[Hana],
Polyakov, P.[Pavel],
Comparison of Neural Network Boolean Factor Analysis Method with Some
Other Dimension Reduction Methods on Bars Problem,
PReMI07(235-243).
Springer DOI
0712
BibRef
Sridharan, K.[Karthik],
Beal, M.J.[Matthew J.],
Govindaraju, V.[Venu],
Competitive Mixtures of Simple Neurons,
ICPR06(II: 494-497).
IEEE DOI
0609
BibRef
Lefebvre, G.[Gregoire],
Laurent, C.[Christophe],
Ros, J.[Julien],
Garcia, C.[Christophe],
Supervised Image Classification by SOM Activity Map Comparison,
ICPR06(II: 728-731).
IEEE DOI
0609
BibRef
Ros, J.[Julien],
Laurent, C.[Christophe],
Lefebvre, G.[Grégoire],
A Cascade of Unsupervised and Supervised Neural Networks for Natural
Image Classification,
CIVR06(92-101).
Springer DOI
0607
See also Bag of Strings Representation for Image Categorization, A.
BibRef
Qin, K.[Ke],
Oommen, B.J.[B. John],
Chaotic Pattern Recognition:
The Spectrum of Properties of the Adachi Neural Network,
SSPR08(540-550).
Springer DOI
0812
BibRef
Calitoiu, D.[Dragos],
Oommen, J.B.[John B.],
Nussbaum, D.[Doron],
Modeling Inaccurate Perception: Desynchronization Issues of a Chaotic
Pattern Recognition Neural Network,
SCIA05(821-830).
Springer DOI
0506
BibRef
Adeodato, P.J.L.,
Vasconcelos, G.C.,
Arnaud, A.L.,
Cunha, R.C.L.V.,
Monteiro, D.S.M.P.,
A systematic solution for the NN3 Forecasting Competition problem based
on an ensemble of MLP neural networks,
ICPR08(1-4).
IEEE DOI
0812
Multilayer Perceptron
BibRef
Adeodato, P.J.L.,
Vasconcelos, G.C.,
Arnaud, A.L.,
Santos, R.A.F.,
Cunha, R.C.L.V.,
Monteiro, D.S.M.P.,
Neural Networks vs. Logistic Regression:
A Comparative Study on a Large Data Set,
ICPR04(III: 355-358).
IEEE DOI
0409
BibRef
Steinkraus, D.,
Buck, I.,
Simard, P.Y.,
Using GPUs for machine learning algorithms,
ICDAR05(II: 1115-1120).
IEEE DOI
0508
BibRef
Doering, A.,
Witte, H.,
Feedforward Neural Networks for Bayes-Optimal Classification:
Investigations on the Influence of the Composition of the
Training Set on the Cost Function,
ICPR96(IV: 219-223).
IEEE DOI
9608
(Klinikum der Friedrich Schiller-Univ. D)
BibRef
Holt, M.J.J.,
Comparison of generalization in multi-layer perceptrons with the
log-likelihood and least-squares cost functions,
ICPR92(II:17-20).
IEEE DOI
9208
BibRef
Chen, C.H.,
A comparison of neural network models for pattern recognition,
ICPR90(II: 45-46).
IEEE DOI
9208
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Neural Architecture, Network Structure .