24.8.6.7.1 Rainfall Analysis, Rain, Precipitation, Satellite Based Systems

Chapter Contents (Back)
Rainfall. Precipitation. Weather. Satellite.

Gabella, M., Joss, J., Perona, G., Michaelides, S.,
Range Adjustment for Ground-Based Radar, Derived With the Spaceborne TRMM Precipitation Radar,
GeoRS(44), No. 1, January 2006, pp. 126-133.
IEEE DOI 0601
BibRef

Tarnavsky, E.[Elena], Mulligan, M.[Mark], Ouessar, M.[Mohamed], Faye, A.[Abdoulaye], Black, E.[Emily],
Dynamic Hydrological Modeling in Drylands with TRMM Based Rainfall,
RS(5), No. 12, 2013, pp. 6691-6716.
DOI Link 1402
BibRef

Boschetti, M.[Mirco], Nutini, F.[Francesco], Brivio, P.A.[Pietro Alessandro], Bartholomé, E.[Etienne], Stroppiana, D.[Daniela], Hoscilo, A.[Agata],
Identification of environmental anomaly hot spots in West Africa from time series of NDVI and rainfall,
PandRS(78), No. 1, April 2013, pp. 26-40.
Elsevier DOI 1304
West African Sahel; Satellite time series; Environmental anomalies; Change detection; Monitoring; Correlation; Ecosystem; Temporal BibRef

Stroppiana, D.[Daniela], Boschetti, M.[Mirco], Brivio, P.A.[Pietro A.], Nutini, F.[Francesco], Bartholome, E.[Etienne],
Analysis of earth observation time series to investigate the relation between rainfall, vegetation dynamic and streamflow in the Uele' basin (Central African Republic),
MultiTemp11(177-180).
IEEE DOI 1109
BibRef

Mishra, A.K.,
A New Technique to Estimate Precipitation at Fine Scale Using Multifrequency Satellite Observations Over Indian Land and Oceanic Regions,
GeoRS(51), No. 7, 2013, pp. 4349-4358.
IEEE DOI 1307
Rain BibRef

de Coning, E.[Estelle],
Optimizing Satellite-Based Precipitation Estimation for Nowcasting of Rainfall and Flash Flood Events over the South African Domain,
RS(5), No. 11, 2013, pp. 5702-5724.
DOI Link 1312
BibRef

Xu, S.G.[Shi-Guang], Wu, C.Y.[Chao-Yang], Gonsamo, A.[Alemu], Shen, Y.[Yan],
Delineation of Rain Areas with TRMM Microwave Observations Based on PNN,
RS(6), No. 12, 2014, pp. 12118-12137.
DOI Link 1412
BibRef

Mahmud, M.R.[Mohd Rizaludin], Numata, S.[Shinya], Matsuyama, H.[Hiroshi], Hosaka, T.[Tetsuro], Hashim, M.[Mazlan],
Assessment of Effective Seasonal Downscaling of TRMM Precipitation Data in Peninsular Malaysia,
RS(7), No. 4, 2015, pp. 4092-4111.
DOI Link 1505
BibRef

Shi, Y.[Yuli], Song, L.[Lei], Xia, Z.[Zhen], Lin, Y.R.[Yu-Rong], Myneni, R.B.[Ranga B.], Choi, S.[Sungho], Wang, L.[Lin], Ni, X.L.[Xi-Liang], Lao, C.[Cailian], Yang, F.K.[Feng-Kai],
Mapping Annual Precipitation across Mainland China in the Period 2001-2010 from TRMM3B43 Product Using Spatial Downscaling Approach,
RS(7), No. 5, 2015, pp. 5849-5878.
DOI Link 1506
BibRef

Yong, B.[Bin], Chen, B.[Bo], Hong, Y.[Yang], Gourley, J.J.[Jonathan J.], Li, Z.[Zhe],
Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm,
RS(7), No. 1, 2015, pp. 668-683.
DOI Link 1502
BibRef

Verdin, A., Funk, C., Rajagopalan, B., Kleiber, W.,
Kriging and Local Polynomial Methods for Blending Satellite-Derived and Gauge Precipitation Estimates to Support Hydrologic Early Warning Systems,
GeoRS(54), No. 5, May 2016, pp. 2552-2562.
IEEE DOI 1604
alarm systems BibRef

Takahashi, N., Hanado, H., Nakamura, K., Kanemaru, K., Nakagawa, K., Iguchi, T., Nio, T., Kubota, T., Oki, R., Yoshida, N.,
Overview of the End-of-Mission Observation Experiments of Precipitation Radar Onboard the Tropical Rainfall Measuring Mission Satellite,
GeoRS(54), No. 6, June 2016, pp. 3450-3459.
IEEE DOI 1606
artificial satellites BibRef

Chen, J.Q.[Jia-Qi], Yong, B.[Bin], Ren, L.L.[Li-Liang], Wang, W.G.[Wei-Guang], Chen, B.[Bo], Lin, J.A.[Jian-An], Yu, Z.B.[Zhong-Bo], Li, N.[Ning],
Using a Kalman Filter to Assimilate TRMM-Based Real-Time Satellite Precipitation Estimates over Jinghe Basin, China,
RS(8), No. 11, 2016, pp. 899.
DOI Link 1612
BibRef

Jing, W.L.[Wen-Long], Yang, Y.P.[Ya-Ping], Yue, X.F.[Xia-Fang], Zhao, X.D.[Xiao-Dan],
A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature,
RS(8), No. 8, 2016, pp. 655.
DOI Link 1609
BibRef

Jing, W.L.[Wen-Long], Yang, Y.P.[Ya-Ping], Yue, X.F.[Xia-Fang], Zhao, X.D.[Xiao-Dan],
A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China,
RS(8), No. 10, 2016, pp. 835.
DOI Link 1609
BibRef

Jing, W.L.[Wen-Long], Zhang, P.Y.[Peng-Yan], Jiang, H.[Hao], Zhao, X.D.[Xiao-Dan],
Reconstructing Satellite-Based Monthly Precipitation over Northeast China Using Machine Learning Algorithms,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Hong, S., Shin, D.B., Park, B., So, D.,
Development of Prototype Algorithms for Quantitative Precipitation Nowcasts From AMI Onboard the GEO-KOMPSAT-2A Satellite,
GeoRS(54), No. 12, December 2016, pp. 7149-7156.
IEEE DOI 1612
atmospheric precipitation BibRef

Park, N.W.[No-Wook], Kyriakidis, P.C.[Phaedon C.], Hong, S.[Sungwook],
Geostatistical Integration of Coarse Resolution Satellite Precipitation Products and Rain Gauge Data to Map Precipitation at Fine Spatial Resolutions,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Yuan, F.[Fei], Zhang, L.M.[Li-Min], Soe, K.M.W.[Khin Min Wun], Ren, L.L.[Li-Liang], Zhao, C.X.[Chong-Xu], Zhu, Y.H.[Yong-Hua], Jiang, S.[Shanhu], Liu, Y.[Yi],
Applications of TRMM- and GPM-Era Multiple-Satellite Precipitation Products for Flood Simulations at Sub-Daily Scales in a Sparsely Gauged Watershed in Myanmar,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Takahashi, N.,
Surface Echo Characteristics Derived From the Wide Swath Experiment of the Precipitation Radar Onboard TRMM Satellite During Its End-of-Mission Operation,
GeoRS(55), No. 4, April 2017, pp. 1988-1993.
IEEE DOI 1704
atmospheric precipitation BibRef

Burdanowitz, J.[Jörg], Klepp, C.[Christian], Bakan, S.[Stephan], Buehler, S.A.[Stefan A.],
Simulation of Ship-Track versus Satellite-Sensor Differences in Oceanic Precipitation Using an Island-Based Radar,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Duan, Y.J.[Ya-Juan], Barros, A.P.[Ana P.],
Understanding How Low-Level Clouds and Fog Modify the Diurnal Cycle of Orographic Precipitation Using In Situ and Satellite Observations,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Nash, D.[Deanna], Ye, H.C.[Heng-Chun], Fetzer, E.[Eric],
Spatial and Temporal Variability in Winter Precipitation across the Western United States during the Satellite Era,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Yoshimoto, S.[Shuhei], Amarnath, G.[Giriraj],
Applications of Satellite-Based Rainfall Estimates in Flood Inundation Modeling: A Case Study in Mundeni Aru River Basin, Sri Lanka,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Ulloa, J.[Jacinto], Ballari, D.[Daniela], Campozano, L.[Lenin], Samaniego, E.[Esteban],
Two-Step Downscaling of Trmm 3b43 V7 Precipitation in Contrasting Climatic Regions With Sparse Monitoring: The Case of Ecuador in Tropical South America,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link 1708
BibRef

Zhang, Y.Y.[Yue-Yuan], Li, Y.G.[Yun-Gang], Ji, X.[Xuan], Luo, X.[Xian], Li, X.[Xue],
Fine-Resolution Precipitation Mapping in a Mountainous Watershed: Geostatistical Downscaling of TRMM Products Based on Environmental Variables,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

He, Y.X.[Yu-Xiang], Zhang, Y.[Yu], Kuligowski, R.[Robert], Cifelli, R.[Robert], Kitzmiller, D.[David],
Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Arslan, C.H., Aydin, K., Urbina, J.V., Dyrud, L.,
Satellite-Link Attenuation Measurement Technique for Estimating Rainfall Accumulation,
GeoRS(56), No. 2, February 2018, pp. 681-693.
IEEE DOI 1802
Doppler radar, attenuation measurement, geophysical signal processing, meteorological radar, rainfall estimation BibRef

Shen, Y.[Yan], Hong, Z.[Zhen], Pan, Y.[Yang], Yu, J.J.[Jing-Jing], Maguire, L.[Lane],
China's 1 km Merged Gauge, Radar and Satellite Experimental Precipitation Dataset,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Militino, A.F.[Ana F.], Ugarte, M.D.[M. Dolores], Pérez-Goya, U.[Unai],
Improving the Quality of Satellite Imagery Based on Ground-Truth Data from Rain Gauge Stations,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Alahacoon, N.[Niranga], Matheswaran, K.[Karthikeyan], Pani, P.[Peejush], Amarnath, G.[Giriraj],
A Decadal Historical Satellite Data and Rainfall Trend Analysis (2001-2016) for Flood Hazard Mapping in Sri Lanka,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Muhammad, W.[Waseem], Yang, H.[Hanbo], Lei, H.M.[Hui-Min], Muhammad, A.[Ajmal], Yang, D.[Dawen],
Improving the Regional Applicability of Satellite Precipitation Products by Ensemble Algorithm,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Tapiador, F.J.[Francisco J.], Marcos, C.[Cecilia], Navarro, A.[Andres], Jiménez-Alcázar, A.[Alfonso], Galdón, R.M.[Raul Moreno], Sanz, J.[Julia],
Decorrelation of Satellite Precipitation Estimates in Space and Time,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Cattani, E.[Elsa], Merino, A.[Andrés], Guijarro, J.A.[José A.], Levizzani, V.[Vincenzo],
East Africa Rainfall Trends and Variability 1983-2015 Using Three Long-Term Satellite Products,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Beusch, L.[Lea], Foresti, L.[Loris], Gabella, M.[Marco], Hamann, U.[Ulrich],
Satellite-Based Rainfall Retrieval: From Generalized Linear Models to Artificial Neural Networks,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Cánovas-García, F.[Fulgencio], García-Galiano, S.[Sandra], Alonso-Sarría, F.[Francisco],
Assessment of Satellite and Radar Quantitative Precipitation Estimates for Real Time Monitoring of Meteorological Extremes Over the Southeast of the Iberian Peninsula,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Kimani, M.W.[Margaret Wambui], Hoedjes, J.C.B.[Joost C. B.], Su, Z.B.[Zhong-Bo],
Bayesian Bias Correction of Satellite Rainfall Estimates for Climate Studies,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Satgé, F.[Frédéric], Hussain, Y.[Yawar], Bonnet, M.P.[Marie-Paule], Hussain, B.M.[Babar M.], Martinez-Carvajal, H.[Hernan], Akhter, G.[Gulraiz], Uagoda, R.[Rogério],
Benefits of the Successive GPM Based Satellite Precipitation Estimates IMERG-V03, -V04, -V05 and GSMaP-V06, -V07 Over Diverse Geomorphic and Meteorological Regions of Pakistan,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Ricciardelli, E.[Elisabetta], di Paola, F.[Francesco], Gentile, S.[Sabrina], Cersosimo, A.[Angela], Cimini, D.[Domenico], Gallucci, D.[Donatello], Geraldi, E.[Edoardo], Larosa, S.[Salvatore], Nilo, S.T.[Saverio Teodosio], Ripepi, E.[Ermann], Romano, F.[Filomena], Viggiano, M.[Mariassunta],
Analysis of Livorno Heavy Rainfall Event: Examples of Satellite-Based Observation Techniques in Support of Numerical Weather Prediction,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Ur Rahman, K.[Khalil], Shang, S.[Songhao], Shahid, M.[Muhammad], Li, J.[Jiang],
Developing an Ensemble Precipitation Algorithm from Satellite Products and Its Topographical and Seasonal Evaluations Over Pakistan,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Zhang, R.Y.[Ruan-Yu], Wang, Z.Z.[Zhen-Zhan], Hilburn, K.A.[Kyle A.],
Tropical Cyclone Rainfall Estimates from FY-3B MWRI Brightness Temperatures Using the WS Algorithm,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Cersosimo, A.[Angela], Larosa, S.[Salvatore], Romano, F.[Filomena], Cimini, D.[Domenico], di Paola, F.[Francesco], Gallucci, D.[Donatello], Gentile, S.[Sabrina], Geraldi, E.[Edoardo], Nilo, S.T.[Saverio Teodosio], Ricciardelli, E.[Elisabetta], Ripepi, E.[Ermann], Viggiano, M.[Mariassunta],
Downscaling of Satellite OPEMW Surface Rain Intensity Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Aboutalebi, M.[Mahyar], Torres-Rua, A.F.[Alfonso F.], Allen, N.[Niel],
Spatial and Temporal Analysis of Precipitation and Effective Rainfall Using Gauge Observations, Satellite, and Gridded Climate Data for Agricultural Water Management in the Upper Colorado River Basin,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Zhang, D.[Dan], Liu, X.M.[Xiao-Mang], Bai, P.[Peng], Li, X.H.[Xiang-Hu],
Suitability of Satellite-Based Precipitation Products for Water Balance Simulations Using Multiple Observations in a Humid Catchment,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Santos, C.A.G.[Celso Augusto Guimarães], Neto, R.M.B.[Reginaldo Moura Brasil], da Silva, R.M.[Richarde Marques], Fernandes-Costa, S.G.[Samir Gonçalves],
Cluster Analysis Applied to Spatiotemporal Variability of Monthly Precipitation over Paraíba State Using Tropical Rainfall Measuring Mission (TRMM) Data,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Mega, T., Ushio, T., Takahiro, M., Kubota, T., Kachi, M., Oki, R.,
Gauge-Adjusted Global Satellite Mapping of Precipitation,
GeoRS(57), No. 4, April 2019, pp. 1928-1935.
IEEE DOI 1904
hydrological techniques, hydrology, rain, remote sensing by radar, Gauge-adjusted Global satellite mapping, spaceborne radar BibRef

Dong, H., Zou, X.,
Striping Noise Mitigation for Tropical Rainfall Measuring Mission Microwave Imager Observations,
GeoRS(57), No. 4, April 2019, pp. 2449-2463.
IEEE DOI 1904
atmospheric techniques, environmental monitoring (geophysics), feature extraction, geophysical signal processing, rain, Tropical Rainfall Measuring Mission Microwave Imager (TMI) BibRef

Ma, Q.M.[Qiu-Mei], Xiong, L.H.[Li-Hua], Xia, J.[Jun], Xiong, B.[Bin], Yang, H.[Han], Xu, C.Y.[Chong-Yu],
A Censored Shifted Mixture Distribution Mapping Method to Correct the Bias of Daily IMERG Satellite Precipitation Estimates,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Shen, X., Huang, D.D., Song, B., Vincent, C., Togneri, R.,
3-D Tomographic Reconstruction of Rain Field Using Microwave Signals From LEO Satellites: Principle and Simulation Results,
GeoRS(57), No. 8, August 2019, pp. 5434-5446.
IEEE DOI 1908
atmospheric techniques, geophysics computing, microwave links, rain, signal reconstruction, 3-D tomographic reconstruction, signal-to-noise ratio (SNR) estimation BibRef

Jiang, W.W.[Wei-Wei], Zhan, Y.F.[Ya-Feng], Xi, S.[Shen], Huang, D.D.[Defeng David], Lu, J.H.[Jian-Hua],
Compressive Sensing-Based 3-D Rain Field Tomographic Reconstruction Using Simulated Satellite Signals,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI 2112
Rain, Satellites, Attenuation, Satellite broadcasting, Compressed sensing, Receivers, Microwave theory and techniques, tomographic reconstruction BibRef

Kanemaru, K., Kubota, T., Iguchi, T.,
Improvements in the Beam-Mismatch Correction of Precipitation Radar Data After the TRMM Orbit Boost,
GeoRS(57), No. 9, September 2019, pp. 7161-7169.
IEEE DOI 1909
Orbits, Spaceborne radar, Extraterrestrial measurements, Degradation, Satellites, Radar measurements, Algorithm, tropical rainfall measuring mission (TRMM) BibRef

Hayatbini, N.[Negin], Kong, B.[Bailey], Hsu, K.L.[Kuo-Lin], Nguyen, P.[Phu], Sorooshian, S.[Soroosh], Stephens, G.[Graeme], Fowlkes, C.C.[Charless C.], Nemani, R.[Ramakrishna], Ganguly, S.[Sangram],
Conditional Generative Adversarial Networks (cGANs) for Near Real-Time Precipitation Estimation from Multispectral GOES-16 Satellite Imageries: PERSIANN-cGAN,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Levizzani, V.[Vincenzo], Cattani, E.[Elsa],
Satellite Remote Sensing of Precipitation and the Terrestrial Water Cycle in a Changing Climate,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Belabid, N.[Nasreddine], Zhao, F.[Feng], Brocca, L.[Luca], Huang, Y.B.[Yan-Bo], Tan, Y.M.[Yu-Min],
Near-Real-Time Flood Forecasting Based on Satellite Precipitation Products,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Kumar, A.[Ashish], Ramsankaran, R.[Raaj], Brocca, L.[Luca], Munoz-Arriola, F.[Francisco],
A Machine Learning Approach for Improving Near-Real-Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Moraux, A.[Arthur], Dewitte, S.[Steven], Cornelis, B.[Bruno], Munteanu, A.[Adrian],
Deep Learning for Precipitation Estimation from Satellite and Rain Gauges Measurements,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Wu, J.P.[Jian-Ping], Liu, L.Y.[Li-Yang], Sun, C.H.[Cai-Hong], Su, Y.X.[Yong-Xian], Wang, C.J.[Chang-Jian], Yang, J.[Ji], Liao, J.Y.[Jia-Yuan], He, X.L.[Xiao-Lei], Li, Q.[Qian], Zhang, C.Q.[Chao-Qun], Zhang, H.O.[Hong-Ou],
Estimating Rainfall Interception of Vegetation Canopy from MODIS Imageries in Southern China,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Pullman, M., Gurung, I., Maskey, M., Ramachandran, R., Christopher, S.A.,
Applying Deep Learning to Hail Detection: A Case Study,
GeoRS(57), No. 12, December 2019, pp. 10218-10225.
IEEE DOI 1912
Deep learning, Storms, Weather forecasting, Satellites, Spaceborne radar, Artificial intelligence, event detection, neural networks BibRef

Fan, D.[Dong], Wu, H.[Hua], Dong, G.[Guotao], Jiang, X.G.[Xiao-Guang], Xue, H.Z.[Hua-Zhu],
A Temporal Disaggregation Approach for TRMM Monthly Precipitation Products Using AMSR2 Soil Moisture Data,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Li, N.[Nan], Wang, Z.[Zhenhui], Chen, X.[Xi], Austin, G.[Geoffrey],
Studies of General Precipitation Features with TRMM PR Data: An Extensive Overview,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link 1901
Survey, Precipitation. BibRef

Wang, L.[Lei], Chen, R.S.[Ren-Sheng], Han, C.T.[Chun-Tan], Yang, Y.[Yong], Liu, J.F.[Jun-Feng], Liu, Z.W.[Zhang-Wen], Wang, X.Q.[Xi-Qiang], Liu, G.H.[Guo-Hua], Guo, S.H.[Shu-Hai],
An Improved Spatial-Temporal Downscaling Method for TRMM Precipitation Datasets in Alpine Regions: A Case Study in Northwestern China's Qilian Mountains,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Li, Y.[Yun], Guo, B.[Bin], Wang, K.[Kaicun], Wu, G.[Guocan], Shi, C.M.[Chun-Ming],
Performance of TRMM Product in Quantifying Frequency and Intensity of Precipitation during Daytime and Nighttime across China,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Retalis, A.[Adrianos], Katsanos, D.[Dimitris], Tymvios, F.[Filippos], Michaelides, S.[Silas],
Comparison of GPM IMERG and TRMM 3B43 Products over Cyprus,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Elnashar, A.[Abdelrazek], Zeng, H.W.[Hong-Wei], Wu, B.F.[Bing-Fang], Zhang, N.[Ning], Tian, F.[Fuyou], Zhang, M.[Miao], Zhu, W.W.[Wei-Wei], Yan, N.[Nana], Chen, Z.Q.[Ze-Qiang], Sun, Z.Y.[Zhi-Yu], Wu, X.H.[Xing-Hua], Li, Y.[Yuan],
Downscaling TRMM Monthly Precipitation Using Google Earth Engine and Google Cloud Computing,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Li, X.H.[Xiang-Hu], Li, Z.[Zhen], Lin, Y.L.[Ya-Ling],
Suitability of TRMM Products with Different Temporal Resolution (3-Hourly, Daily, and Monthly) for Rainfall Erosivity Estimation,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Ebtehaj, A., Kummerow, C.D., Turk, F.J.,
Metric Learning for Approximation of Microwave Channel Error Covariance: Application for Satellite Retrieval of Drizzle and Light Snowfall,
GeoRS(58), No. 2, February 2020, pp. 903-912.
IEEE DOI 2001
Ocean temperature, Brightness temperature, Sea surface, Bayes methods, Microwave radiometry, Channel error covariance, satellite snowfall detection BibRef

Chen, H., Chandrasekar, V., Cifelli, R., Xie, P.,
A Machine Learning System for Precipitation Estimation Using Satellite and Ground Radar Network Observations,
GeoRS(58), No. 2, February 2020, pp. 982-994.
IEEE DOI 2001
Satellites, Spaceborne radar, Meteorology, Extraterrestrial measurements, Sea measurements, satellite observations BibRef

Lolli, S.[Simone], Vivone, G.[Gemine], Lewis, J.R.[Jasper R.], Sicard, M.[Michaël], Welton, E.J.[Ellsworth J.], Campbell, J.R.[James R.], Comerón, A.[Adolfo], d'Adderio, L.P.[Leo Pio], Tokay, A.[Ali], Giunta, A.[Aldo], Pappalardo, G.[Gelsomina],
Overview of the New Version 3 NASA Micro-Pulse Lidar Network (MPLNET) Automatic Precipitation Detection Algorithm,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link 2001
BibRef

Lu, X.Y.[Xin-Yu], Tang, G.Q.[Guo-Qiang], Wang, X.Q.[Xiu-Qin], Liu, Y.[Yan], Wei, M.[Ming], Zhang, Y.X.[Ying-Xin],
The Development of a Two-Step Merging and Downscaling Method for Satellite Precipitation Products,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Huang, W.R.[Wan-Ru], Liu, P.Y.[Pin-Yi], Chang, Y.H.[Ya-Hui], Liu, C.Y.[Chian-Yi],
Evaluation and Application of Satellite Precipitation Products in Studying the Summer Precipitation Variations over Taiwan,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Wehbe, Y.[Youssef], Temimi, M.[Marouane], Adler, R.F.[Robert F.],
Enhancing Precipitation Estimates Through the Fusion of Weather Radar, Satellite Retrievals, and Surface Parameters,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Li, Z.[Zhi], Chen, M.Y.[Meng-Ye], Gao, S.[Shang], Hong, Z.[Zhen], Tang, G.Q.[Guo-Qiang], Wen, Y.X.[Yi-Xin], Gourley, J.J.[Jonathan J.], Hong, Y.[Yang],
Cross-Examination of Similarity, Difference and Deficiency of Gauge, Radar and Satellite Precipitation Measuring Uncertainties for Extreme Events Using Conventional Metrics and Multiplicative Triple Collocation,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Mosaffa, H.[Hamidreza], Sadeghi, M.[Mojtaba], Hayatbini, N.[Negin], Gorooh, V.A.[Vesta Afzali], Asanjan, A.A.[Ata Akbari], Nguyen, P.[Phu], Sorooshian, S.[Soroosh],
Spatiotemporal Variations of Precipitation over Iran Using the High-Resolution and Nearly Four Decades Satellite-Based PERSIANN-CDR Dataset,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Zhao, Q., Liu, Y., Ma, X., Yao, W., Yao, Y., Li, X.,
An Improved Rainfall Forecasting Model Based on GNSS Observations,
GeoRS(58), No. 7, July 2020, pp. 4891-4900.
IEEE DOI 2006
Global navigation satellite system, Forecasting, Atmospheric modeling, Delays, Software, Predictive models, zenith total delay (ZTD) BibRef

Takahashi, N.,
Analysis of Surface Cross-Sectional Data Taken During the 90° Yaw Experiment of the TRMM Precipitation Radar,
GeoRS(58), No. 8, August 2020, pp. 5729-5738.
IEEE DOI 2007
Satellites, Sea surface, Spaceborne radar, Rain, Earth, Wind speed, Radar cross section, spaceborne precipitation radar (PR) BibRef

Kanemaru, K., Iguchi, T., Masaki, T., Kubota, T.,
Estimates of Spaceborne Precipitation Radar Pulsewidth and Beamwidth Using Sea Surface Echo Data,
GeoRS(58), No. 8, August 2020, pp. 5291-5303.
IEEE DOI 2007
Spaceborne radar, Shape, Band-pass filters, Sea surface, Radar measurements, Pulse measurements, tropical rainfall measuring mission (TRMM) BibRef

Boluwade, A.[Alaba],
Remote sensed-based rainfall estimations over the East and West Africa regions for disaster risk management,
PandRS(167), 2020, pp. 305-320.
Elsevier DOI 2008
Disaster management, Flood management, Precipitation analysis, Satellite observations, Uganda, Ghana, Satellite Rainfall, GPM BibRef

Colli, M., Cassola, F., Martina, F., Trovatore, E., Delucchi, A., Maggiolo, S., Caviglia, D.D.,
Rainfall Fields Monitoring Based on Satellite Microwave Down-Links and Traditional Techniques in the City of Genoa,
GeoRS(58), No. 9, September 2020, pp. 6266-6280.
IEEE DOI 2008
Rain, Microwave theory and techniques, Microwave measurement, Sensors, Monitoring, Urban areas, Atmosphere, satellite-to-earth microwave down-links (SMLs) BibRef

Le, X.H.[Xuan-Hien], Lee, G.[Giha], Jung, K.[Kwansue], An, H.U.[Hyun-Uk], Lee, S.[Seungsoo], Jung, Y.H.[Young-Hun],
Application of Convolutional Neural Network for Spatiotemporal Bias Correction of Daily Satellite-Based Precipitation,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Lagasio, M.[Martina], Meroni, A.N.[Agostino N.], Boni, G.[Giorgio], Pulvirenti, L.[Luca], Monti-Guarnieri, A.[Andrea], Haagmans, R.[Roger], Hobbs, S.[Stephen], Parodi, A.[Antonio],
Meteorological OSSEs for New Zenith Total Delay Observations: Impact Assessment for the Hydroterra Geosynchronous Satellite on the October 2019 Genoa Event,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
Observing System Simulation Experiments. Extreme rainfall events. BibRef

Wang, C., Xu, J., Tang, G., Yang, Y., Hong, Y.,
Infrared Precipitation Estimation Using Convolutional Neural Network,
GeoRS(58), No. 12, December 2020, pp. 8612-8625.
IEEE DOI 2012
Estimation, Satellites, Meteorology, Remote sensing, Clouds, Feature extraction, Deep learning, infrared (IR) precipitation estimation BibRef

Csurgai-Horváth, L.[László],
Small Scale Rain Field Sensing and Tomographic Reconstruction with Passive Geostationary Satellite Receivers,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Usowicz, B.[Boguslaw], Lipiec, J.[Jerzy], Lukowski, M.[Mateusz], Slominski, J.[Jan],
Improvement of Spatial Interpolation of Precipitation Distribution Using Cokriging Incorporating Rain-Gauge and Satellite (SMOS) Soil Moisture Data,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Lyu, F., Tang, G., Behrangi, A., Wang, T., Tan, X., Ma, Z., Xiong, W.,
Precipitation Merging Based on the Triple Collocation Method Across Mainland China,
GeoRS(59), No. 4, April 2021, pp. 3161-3176.
IEEE DOI 2104
Merging, Satellites, Meteorology, Estimation, Benchmark testing, Remote sensing, Uncertainty, China, merging, precipitation, snowfall, triple collocation (TC) BibRef

Tang, G.Q.[Guo-Qiang],
Characterization of the Systematic and Random Errors in Satellite Precipitation Using the Multiplicative Error Model,
GeoRS(59), No. 7, July 2021, pp. 5407-5416.
IEEE DOI 2106
Satellites, Systematics, Additives, Rain, Mathematical model, Error analysis, Additive model, China, multiplicative model, systematic and random errors BibRef

Kumah, K.K.[Kingsley K.], Hoedjes, J.C.B.[Joost C. B.], David, N.[Noam], Maathuis, B.H.P.[Ben H. P.], Gao, H.O.[H. Oliver], Su, B.Z.[Bob Z.],
The MSG Technique: Improving Commercial Microwave Link Rainfall Intensity by Using Rain Area Detection from Meteosat Second Generation,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Zhang, Y.H.[Yu-Hang], Ye, A.[Aizhong], Nguyen, P.[Phu], Analui, B.[Bita], Sorooshian, S.[Soroosh], Hsu, K.[Kuolin],
Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Sun, L.[Luyao], Chen, H.[Haonan], Li, Z.[Zhe], Han, L.[Lei],
Cross Validation of GOES-16 and NOAA Multi-Radar Multi-Sensor (MRMS) QPE over the Continental United States,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
quantitative precipitation estimation. BibRef

Shi, J.[Jiayong], Wang, B.[Bing], Wang, G.Q.[Guo-Qing], Yuan, F.[Fei], Shi, C.X.[Chun-Xiang], Zhou, X.[Xiong], Zhang, L.M.[Li-Min], Zhao, C.X.[Chong-Xu],
Are the Latest GSMaP Satellite Precipitation Products Feasible for Daily and Hourly Discharge Simulations in the Yellow River Source Region?,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Hinge, G.[Gilbert], Mohamed, M.M.[Mohamed M.], Long, D.[Di], Hamouda, M.A.[Mohamed A.],
Meta-Analysis in Using Satellite Precipitation Products for Drought Monitoring: Lessons Learnt and Way Forward,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Ren, J.[Jing], Xu, G.R.[Gui-Rong], Zhang, W.G.[Wen-Gang], Leng, L.[Liang], Xiao, Y.J.[Yan-Jiao], Wan, R.[Rong], Wang, J.C.[Jun-Chao],
Evaluation and Improvement of FY-4A AGRI Quantitative Precipitation Estimation for Summer Precipitation over Complex Topography of Western China,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Dou, Y.H.[Yan-Hong], Ye, L.[Lei], Zhang, J.Y.[Jia-Yan], Zhang, C.[Chi], Zhou, H.[Huicheng],
Evaluation of Seven Near-Real-Time Satellite-Based Precipitation Products for Wet Seasons in the Nierji Basin, China,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Liu, Q.[Qian], Chiu, L.S.[Long S.], Hao, X.J.[Xian-Jun], Yang, C.W.[Chao-Wei],
Spatiotemporal Trends and Variations of the Rainfall Amount, Intensity, and Frequency in TRMM Multi-satellite Precipitation Analysis (TMPA) Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Lepetit, P.[Pierre], Ly, C.[Camille], Barthès, L.[Laurent], Mallet, C.[Cécile], Viltard, N.[Nicolas], Lemaitre, Y.[Yvon], Rottner, L.[Lucie],
Using Deep Learning for Restoration of Precipitation Echoes in Radar Data,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI 2112
Clutter, Image restoration, Radar, Training, Radar imaging, Image segmentation, Task analysis, Blind inpainting, deep learning, weak supervision BibRef

Asgarimehr, M.[Milad], Hoseini, M.[Mostafa], Semmling, M.[Maximilian], Ramatschi, M.[Markus], Camps, A.[Adriano], Nahavandchi, H.[Hossein], Haas, R.[Rüdiger], Wickert, J.[Jens],
Remote Sensing of Precipitation Using Reflected GNSS Signals: Response Analysis of Polarimetric Observations,
GeoRS(60), 2022, pp. 1-12.
IEEE DOI 2112
Rain, Sea surface, Sea measurements, Global navigation satellite system, Salinity (geophysical), surface-roughening BibRef

Tang, X.[Xuan], Yin, Z.R.[Zhao-Rui], Qin, G.H.[Guang-Hua], Guo, L.[Li], Li, H.X.[Hong-Xia],
Integration of Satellite Precipitation Data and Deep Learning for Improving Flash Flood Simulation in a Poor-Gauged Mountainous Catchment,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Luo, T.[Ting], Xie, Y.[Yanan], Wang, R.[Rui], Yu, X.Y.[Xue-Ying],
An Analytic Solution to Precipitation Attenuation Expression with Spaceborne Synthetic Aperture Radar Based on Volterra Integral Equation,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Ramadhan, R.[Ravidho], Marzuki, M.[Marzuki], Yusnaini, H.[Helmi], Muharsyah, R.[Robi], Suryanto, W.[Wiwit], Sholihun, S.[Sholihun], Vonnisa, M.[Mutya], Battaglia, A.[Alessandro], Hashiguchi, H.[Hiroyuki],
Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Guo, H.[Hao], Li, M.[Min], Nzabarinda, V.[Vincent], Bao, A.[Anming], Meng, X.C.[Xiang-Chen], Zhu, L.[Li], de Maeyer, P.[Philippe],
Assessment of Three Long-Term Satellite-Based Precipitation Estimates against Ground Observations for Drought Characterization in Northwestern China,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Liu, K.W.[Kang-Wen], He, J.Y.[Jie-Ying], Chen, H.N.[Hao-Nan],
Precipitation Retrieval from Fengyun-3D Microwave Humidity and Temperature Sounder Data Using Machine Learning,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhang, D.S.[Da-Sheng], Yang, M.X.[Ming-Xiang], Ma, M.H.[Mei-Hong], Tang, G.Q.[Guo-Qiang], Wang, T.C.[Tse-Chun], Zhao, X.[Xun], Ma, S.Y.[Su-Ying], Wu, J.[Jin], Wang, W.[Wei],
Can GPM IMERG Capture Extreme Precipitation in North China Plain?,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Liao, L.[Liang], Meneghini, R.[Robert],
GPM DPR Retrievals: Algorithm, Evaluation, and Validation,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
Dual-frequency precipitation radar (DPR) aboard the Global Precipitation Measurement (GPM) satellite. BibRef

Chua, Z.W.[Zhi-Weng], Kuleshov, Y.[Yuriy], Watkins, A.B.[Andrew B.], Choy, S.[Suelynn], Sun, C.[Chayn],
A Two-Step Approach to Blending GSMaP Satellite Rainfall Estimates with Gauge Observations over Australia,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Kaur, I.[Inderpreet], Eriksson, P.[Patrick], Barlakas, V.[Vasileios], Pfreundschuh, S.[Simon], Fox, S.[Stuart],
Fast Radiative Transfer Approximating Ice Hydrometeor Orientation and Its Implication on IWP Retrievals,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Zhao, Y.C.[Ying-Cheng], Liu, X.C.[Xi-Chuan], Pu, K.[Kang], Ye, J.[Jin], Xian, M.H.[Ming-Hao],
Research on the Method of Rainfall Field Retrieval Based on the Combination of Earth-Space Links and Horizontal Microwave Links,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Li, Y.[Yu], Pang, B.[Bo], Ren, M.F.[Mei-Fang], Shi, S.[Shulan], Peng, D.Z.[Ding-Zhi], Zhu, Z.F.[Zhong-Fan], Zuo, D.[Depeng],
Evaluation of Performance of Three Satellite-Derived Precipitation Products in Capturing Extreme Precipitation Events over Beijing, China,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Gao, Y.B.[Yan-Bo], Guan, J.P.[Ji-Ping], Zhang, F.H.[Fu-Han], Wang, X.D.[Xiao-Dong], Long, Z.Y.[Zhi-Yong],
Attention-Unet-Based Near-Real-Time Precipitation Estimation from Fengyun-4A Satellite Imageries,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Ye, X.Y.[Xiang-Yu], Guo, Y.H.[Yu-Han], Wang, Z.G.[Zhong-Gen], Liang, L.F.[Liao-Feng], Tian, J.[Jiayu],
Extensive Evaluation of Four Satellite Precipitation Products and Their Hydrologic Applications over the Yarlung Zangbo River,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Yan, Y.[Yan], Wang, G.H.[Gui-Hua], Nanding, N.[Nergui], Chen, W.[Weitian],
Hydrological Evaluation of Satellite-Based Precipitation Products in Hunan Province,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Kidd, C.[Chris], Matsui, T.[Toshi], Blackwell, W.[William], Braun, S.[Scott], Leslie, R.[Robert], Griffith, Z.[Zach],
Precipitation Estimation from the NASA TROPICS Mission: Initial Retrievals and Validation,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Li, X.[Xianghu], Ye, X.C.[Xu-Chun], Xu, C.[Chengyu],
Assessment of Satellite-Based Precipitation Products for Estimating and Mapping Rainfall Erosivity in a Subtropical Basin, China,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Jiang, S.H.[Shan-Hu], Ding, Y.[Yu], Liu, R.L.[Ruo-Lan], Wei, L.Y.[Lin-Yong], Liu, Y.T.[Ya-Ting], Ren, M.M.[Ming-Ming], Ren, L.L.[Li-Liang],
Assessing the Potential of IMERG and TMPA Satellite Precipitation Products for Flood Simulations and Frequency Analyses over a Typical Humid Basin in South China,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Dong, W.C.[Wen-Chang], Wang, G.X.[Gen-Xu], Guo, L.[Li], Sun, J.Y.[Ju-Ying], Sun, X.Y.[Xiang-Yang],
Evaluation of Three Gridded Precipitation Products in Characterizing Extreme Precipitation over the Hengduan Mountains Region in China,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Woldegebrael, S.M.[Surafel M.], Kidanewold, B.B.[Belete B.], Melesse, A.M.[Assefa M.],
Seasonal Flow Forecasting Using Satellite-Driven Precipitation Data for Awash and Omo-Gibe Basins, Ethiopia,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Xu, Y.[Yike], Arevalo, J.[Jorge], Ouyed, A.[Amir], Zeng, X.B.[Xu-Bin],
Precipitation over the U.S. Coastal Land/Water Using Gauge-Corrected Multi-Radar/Multi-Sensor System and Three Satellite Products,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Zhu, H.Q.[Hui-Qin], Chen, S.[Sheng], Li, Z.[Zhi], Gao, L.[Liang], Li, X.Y.[Xiao-Yu],
Comparison of Satellite Precipitation Products: IMERG and GSMaP with Rain Gauge Observations in Northern China,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Kumar, S.[Sonu], Amarnath, G.[Giriraj], Ghosh, S.[Surajit], Park, E.[Edward], Baghel, T.[Triambak], Wang, J.Y.[Jing-Yu], Pramanik, M.[Malay], Belbase, D.[Devesh],
Assessing the Performance of the Satellite-Based Precipitation Products (SPP) in the Data-Sparse Himalayan Terrain,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Wang, H.F.[Hao-Fei], Zhang, P.[Peng], Yin, D.[Dekui], Li, Z.Q.[Zheng-Qiang], Shang, H.Z.[Hua-Zhe], Xu, H.[Hanlie], Shang, J.[Jian], Gu, S.Y.[Song-Yan], Hu, X.Q.[Xiu-Qing],
Shortwave Infrared Multi-Angle Polarization Imager (MAPI) Onboard Fengyun-3 Precipitation Satellite for Enhanced Cloud Characterization,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Geng, L.C.[Liang-Chao], Geng, H.T.[Huan-Tong], Min, J.Z.[Jin-Zhong], Zhuang, X.R.[Xiao-Ran], Zheng, Y.[Yu],
AF-SRNet: Quantitative Precipitation Forecasting Model Based on Attention Fusion Mechanism and Residual Spatiotemporal Feature Extraction,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Dong, Z.Z.[Zi-Zhen], Wang, L.[Lin], Yang, R.[Ruowen], Cao, J.[Jie], Hu, P.[Peng],
Impact of Quasi-Biweekly Oscillation on Southeast Asian Cold Surge Rainfall Monitored by TRMM Satellite Observation,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Kazemzadeh, M.[Majid], Hashemi, H.[Hossein], Jamali, S.[Sadegh], Uvo, C.B.[Cintia B.], Berndtsson, R.[Ronny], Huffman, G.J.[George J.],
Detecting the Greatest Changes in Global Satellite-Based Precipitation Observations,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Xie, Y.H.[Yan-Hui], Chen, M.[Min], Zhang, S.T.[Shu-Ting], Shi, J.C.[Jian-Cheng], Liu, R.X.[Rui-Xia],
Impacts of FY-4A Atmospheric Motion Vectors on the Henan 7.20 Rainstorm Forecast in 2021,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, H.L.[He-Long], Chen, W.L.[Wen-Long], Hu, Z.K.[Zu-Kang], Xu, Y.P.[Yue-Ping], Shen, D.T.[Ding-Tao],
Optimal Rain Gauge Network Design Aided by Multi-Source Satellite Precipitation Observation,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Simanjuntak, F.[Febryanto], Jamaluddin, I.[Ilham], Lin, T.H.[Tang-Huang], Siahaan, H.A.W.[Hary Aprianto Wijaya], Chen, Y.N.[Ying-Nong],
Rainfall Forecast Using Machine Learning with High Spatiotemporal Satellite Imagery Every 10 Minutes,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Tang, X.[Xuan], Li, H.X.[Hong-Xia], Qin, G.H.[Guang-Hua], Huang, Y.Y.[Yuan-Yuan], Qi, Y.L.[Yong-Liang],
Evaluation of Satellite-Based Precipitation Products over Complex Topography in Mountainous Southwestern China,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Lee, G.[Giha], Nguyen, D.H.[Duc Hai], Le, X.H.[Xuan-Hien],
A Novel Framework for Correcting Satellite-Based Precipitation Products for Watersheds with Discontinuous Observed Data, Case Study in Mekong River Basin,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Baig, F.[Faisal], Abrar, M.[Muhammad], Chen, H.[Haonan], Sherif, M.[Mohsen],
Evaluation of Precipitation Estimates from Remote Sensing and Artificial Neural Network Based Products (PERSIANN) Family in an Arid Region,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Li, Y.P.[Yun-Ping], Zhang, K.[Ke], Bardossy, A.[Andras], Shen, X.J.[Xiao-Ji], Cheng, Y.[Yujia],
Evaluation and Error Decomposition of IMERG Product Based on Multiple Satellite Sensors,
RS(15), No. 6, 2023, pp. 1710.
DOI Link 2304
BibRef

Li, Y.[Yu], Pang, B.[Bo], Zheng, Z.Q.[Zi-Qi], Chen, H.M.[Hao-Ming], Peng, D.Z.[Ding-Zhi], Zhu, Z.F.[Zhong-Fan], Zuo, D.P.[De-Peng],
Assessment of the Urban Extreme Precipitation by Satellite Estimates over Mainland China,
RS(15), No. 7, 2023, pp. 1805.
DOI Link 2304
BibRef

Estébanez-Camarena, M.[Mónica], Taormina, R.[Riccardo], van de Giesen, N.[Nick], ten Veldhuis, M.C.[Marie-Claire],
The Potential of Deep Learning for Satellite Rainfall Detection over Data-Scarce Regions, the West African Savanna,
RS(15), No. 7, 2023, pp. 1922.
DOI Link 2304
BibRef

Huang, X.T.[Xing-Tao], Wu, Z.H.[Zu-Hang], Xie, Y.Q.[Yan-Qiong], Zhang, Y.[Yun], Zhang, L.F.[Li-Feng], Zheng, H.[Hepeng], Xiao, W.[Wupeng],
Precipitation Microphysics of Locally-Originated Typhoons in the South China Sea Based on GPM Satellite Observations,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Pan, X.S.[Xin-Shun], Wu, H.[Huan], Chen, S.R.[Si-Rong], Nanding, N.[Nergui], Huang, Z.J.[Zhi-Jun], Chen, W.T.[Wei-Tian], Li, C.Q.[Chao-Qun], Li, X.M.[Xiao-Meng],
Evaluation and Applicability Analysis of GPM Satellite Precipitation over Mainland China,
RS(15), No. 11, 2023, pp. 2866.
DOI Link 2306
BibRef

Liu, Z.F.[Zhao-Fei],
Comprehensive Evaluation of High-Resolution Satellite Precipitation Products over the Qinghai-Tibetan Plateau Using the New Ground Observation Network,
RS(15), No. 13, 2023, pp. 3381.
DOI Link 2307
BibRef

Awasthi, N.[Nitesh], Tripathi, J.N.[Jayant Nath], Petropoulos, G.P.[George P.], Gupta, D.K.[Dileep Kumar], Singh, A.K.[Abhay Kumar], Kathwas, A.K.[Amar Kumar],
Performance Assessment of Global-EO-Based Precipitation Products against Gridded Rainfall from the Indian Meteorological Department,
RS(15), No. 13, 2023, pp. 3443.
DOI Link 2307
BibRef

Xiang, J.[Jie], Wang, H.[Hao], Li, Z.[Zhi], Bu, Z.C.[Zhi-Chao], Yang, R.[Rong], Liu, Z.H.[Zhi-Hao],
Case Study on the Evolution and Precipitation Characteristics of Southwest Vortex in China: Insights from FY-4A and GPM Observations,
RS(15), No. 16, 2023, pp. 4114.
DOI Link 2309
BibRef

Papacharalampous, G.[Georgia], Tyralis, H.[Hristos], Doulamis, N.[Nikolaos], Doulamis, A.[Anastasios],
Ensemble Learning for Blending Gridded Satellite and Gauge-Measured Precipitation Data,
RS(15), No. 20, 2023, pp. 4912.
DOI Link 2310
BibRef

Wu, H.[Hao], Yong, B.[Bin], Shen, Z.[Zhehui],
Spatial Reconstruction of Quantitative Precipitation Estimates Derived from Fengyun-2G Geostationary Satellite in Northeast China,
RS(15), No. 21, 2023, pp. 5251.
DOI Link 2311
BibRef

Magoffin, R.H.[Rachel Huber], Hales, R.C.[Riley C.], Erazo, B.[Bolívar], Nelson, E.J.[E. James], Larco, K.[Karina], Miskin, T.J.[Taylor James],
Evaluating the Performance of Satellite Derived Temperature and Precipitation Datasets in Ecuador,
RS(15), No. 24, 2023, pp. 5713.
DOI Link 2401
BibRef

Campo, C.[Chloe], Tamagnone, P.[Paolo], Schumann, G.[Guy],
Automated Surface Runoff Estimation with the Spectral Unmixing of Remotely Sensed Multispectral Imagery,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

Peinó, E.[Eric], Bech, J.[Joan], Udina, M.[Mireia], Polls, F.[Francesc],
Disentangling Satellite Precipitation Estimate Errors of Heavy Rainfall at the Daily and Sub-Daily Scales in the Western Mediterranean,
RS(16), No. 3, 2024, pp. 457.
DOI Link 2402
BibRef

Alharbi, R.S.[Raied Saad], Dao, V.[Vu], Arellano, C.J.[Claudia Jimenez], Nguyen, P.[Phu],
Comprehensive Evaluation of Near-Real-Time Satellite-Based Precipitation: PDIR-Now over Saudi Arabia,
RS(16), No. 4, 2024, pp. 703.
DOI Link 2402
BibRef

Chen, X.[Xingru], Letu, H.[Husi], Shang, H.Z.[Hua-Zhe], Ri, X.[Xu], Tang, C.Q.[Chen-Qian], Ji, D.[Dabin], Shi, C.[Chong], Teng, Y.P.[Yu-Peng],
Rainfall Area Identification Algorithm Based on Himawari-8 Satellite Data and Analysis of its Spatiotemporal Characteristics,
RS(16), No. 5, 2024, pp. 747.
DOI Link 2403
BibRef

Wang, Z.[Zunya], Li, Q.Q.[Qing-Quan],
Towards Improved Satellite Data Utilization in China: Insights from an Integrated Evaluation of GSMaP-GNRT6 in Rainfall Patterns,
RS(16), No. 5, 2024, pp. 755.
DOI Link 2403
BibRef

Huang, Y.[Yang], Bao, Y.S.[Yan-Song], Petropoulos, G.P.[George P.], Lu, Q.F.[Qi-Feng], Huo, Y.F.[Yan-Feng], Wang, F.[Fu],
Precipitation Estimation Using FY-4B/AGRI Satellite Data Based on Random Forest,
RS(16), No. 7, 2024, pp. 1267.
DOI Link 2404
BibRef

Zhang, J.B.[Jian-Bin], Gao, Z.[Zhiqiu], Li, Y.[Yubin], Jiang, Y.[Yuncong],
Impacts of Fengyun-4A and Ground-Based Observation Data Assimilation on the Forecast of Kaifeng's Heavy Rainfall (2022) and Mechanism Analysis of the Event,
RS(16), No. 10, 2024, pp. 1663.
DOI Link 2405
BibRef

Torcasio, R.C.[Rosa Claudia], Papa, M.[Mario], del Frate, F.[Fabio], Mascitelli, A.[Alessandra], Dietrich, S.[Stefano], Panegrossi, G.[Giulia], Federico, S.[Stefano],
Data Assimilation of Satellite-Derived Rain Rates Estimated by Neural Network in Convective Environments: A Study over Italy,
RS(16), No. 10, 2024, pp. 1769.
DOI Link 2405
BibRef

Nan, L.J.[Lin-Jiang], Yang, M.X.[Ming-Xiang], Wang, H.[Hao], Wang, H.[Hejia], Dong, N.P.[Ning-Peng],
An Innovative Correction-Fusion Approach for Multi-Satellite Precipitation Products Conditioned by Gauge Background Fields over the Lancang River Basin,
RS(16), No. 11, 2024, pp. 1824.
DOI Link 2406
BibRef

Gutierrez, S.R.M.[Silvia Roxana Mattos], Fenta, A.A.[Ayele Almaw], Meshesha, T.M.[Taye Minichil], Belay, A.S.[Ashebir Sewale],
Unveiling the Accuracy of New-Generation Satellite Rainfall Estimates across Bolivia's Complex Terrain,
RS(16), No. 12, 2024, pp. 2211.
DOI Link 2406
BibRef

Wang, B.[Bingli], Cheng, W.[Wei], Bao, Y.S.[Yan-Song], Wang, S.D.[Shu-Dong], Petropoulos, G.P.[George P.], Fan, S.Y.[Shui-Yong], Mao, J.J.[Jia-Jia], Jin, Z.Q.[Zi-Qi], Yang, Z.[Zihui],
Effects of Assimilating Ground-Based Microwave Radiometer and FY-3D MWTS-2/MWHS-2 Data in Precipitation Forecasting,
RS(16), No. 14, 2024, pp. 2682.
DOI Link 2408
BibRef

Ji, X.P.[Xian-Pu], Song, X.J.[Xiao-Jiang], Guo, A.[Anboyu], Liu, K.[Kai], Cao, H.[Haijin], Feng, T.[Tao],
Oceanic Precipitation Nowcasting Using a UNet-Based Residual and Attention Network and Real-Time Himawari-8 Images,
RS(16), No. 16, 2024, pp. 2871.
DOI Link 2408
BibRef


Seo, J.Y., Lee, S.I.,
Multi-Platform Satellite Based Estimates of Runoff in Ungauged Areas,
GeoInfo15(61-62).
DOI Link 1602
BibRef

Louise, L., Christian, B., Danny, L.S., Agnes, B., Seydou, B.T.,
Testing satellite rainfall estimates for yield simulation of a rainfed cereal in West Africa,
MultiTemp15(1-4)
IEEE DOI 1511
crops BibRef

Mahrooghy, M.[Majid], Anantharaj, V.G.[Valentine G.], Younan, N.H.[Nicolas H.], Aanstoos, J.V.[James V.],
Optimal wavelet features for an infrared satellite precipitation estimate algorithm,
AIPR10(1-6).
IEEE DOI 1010
BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Evaluation and Comparison of Rainfall Analysis, Rain, Precipitation Products .


Last update:Sep 28, 2024 at 17:47:54