Shaffer, E.[Edward],
Dubes, R.C.[Richard C.],
Jain, A.K.[Anil K.],
Single-link characteristics of a mode-seeking clustering algorithm,
PR(11), No. 1, 1979, pp. 65-70.
Elsevier DOI
0309
BibRef
Kittler, J.V.[Josef V.],
Comments on 'single-link characteristics of a mode-seeking clustering
algorithm',
PR(11), No. 1, 1979, pp. 71-73.
Elsevier DOI
0309
BibRef
Pathak, A.P.[A. Pal],
Pal, S.K.,
Generalized guard-zone algorithm (GGA) for learning:
automatic selection of threshold,
PR(23), No. 3-4, 1990, pp. 325-335.
Elsevier DOI
0401
self-supervised parameter learning.
BibRef
LeHegarat-Mascle, S.,
Bloch, I.,
Vidal-Madjar, D.,
Application of Dempster-Shafer Evidence Theory to
Unsupervised Classification in Multisource Remote Sensing,
GeoRS(35), No. 4, July 1997, pp. 1018-1031.
IEEE Top Reference.
9708
See also Mathematical Theory of Evidence, A.
BibRef
Lee, J.S.,
Grunes, M.R.,
Ainsworth, T.L.,
Du, L.J.,
Schuler, D.L.,
Cloude, S.R.,
Unsupervised Classification Using Polarimetric Decomposition and the
Complex Wishart Classifier,
GeoRS(37), No. 5, September 1999, pp. 2249.
BibRef
9909
Du, L.J.,
Grunes, M.R.,
Lee, J.S.,
Unsupervised segmentation of dual-polarization SAR images based on
amplitude and texture characteristics,
JRS(23), No. 20, October 2002, pp. 4383-4402.
WWW Link.
0211
BibRef
Brumbley, C.[Clark],
Chang, C.I.[Chein-I],
An unsupervised vector quantization-based target subspace projection
approach to mixed pixel detection and classification in unknown
background for remotely sensed imagery,
PR(32), No. 7, July 1999, pp. 1161-1174.
Elsevier DOI
BibRef
9907
Ren, H.,
Chang, C.I.[Chein-I],
A Generalized Orthogonal Subspace Projection Approach to Unsupervised
Multispectral Image Classification,
GeoRS(38), No. 6, November 2000, pp. 2515-2528.
IEEE Top Reference.
0011
See also Anomaly detection and classification for hyperspectral imagery.
BibRef
Chang, C.I.,
Orthogonal Subspace Projection (OSP) Revisited:
A Comprehensive Study and Analysis,
GeoRS(43), No. 3, March 2005, pp. 502-518.
IEEE Abstract.
0501
See also Comments on Orthogonal Subspace Projection (OSP) Revisited: A Comprehensive Study and Analysis.
BibRef
Roberts, S.J.[Stephen J.],
Holmes, C.[Chris],
Denison, D.[Dave],
Minimum-Entropy Data Partitioning Using Reversible Jump Markov Chain
Monte Carlo,
PAMI(23), No. 8, August 2001, pp. 909-914.
IEEE DOI
0109
In unsupervised classifications, how to find the best partition.
Hence, use entropy measures.
BibRef
Gokcay, E.[Erhan],
Principe, J.C.[Jose C.],
Information Theoretic Clustering,
PAMI(24), No. 2, February 2002, pp. 158-171.
IEEE DOI
0202
Applied to MRI data.
Derived from Renyi's measure.
See also On Measures of Entropy and Information.
BibRef
Yeung, D.S.,
Wang, X.Z.,
Improving Performance of Similarity-Based Clustering by Feature Weight
Learning,
PAMI(24), No. 4, April 2002, pp. 556-561.
IEEE DOI
0204
learning feature weights for classification.
See also Improving Fuzzy C-Means Clustering Based on Feature-Weight Learning.
BibRef
Duda, T.,
Canty, M.,
Unsupervised Classification of Satellite Imagery:
Choosing a Good Algorithm,
JRS(23), No. 11, June 2002, pp. 2193-2212.
WWW Link.
0206
BibRef
Canty, M.J.,
Boosting a fast neural network for supervised
land cover classification,
CompGeo(35), No. 6, 2009, pp. 1280-1295
Elsevier DOI
1102
BibRef
Garai, G.[Gautam],
Chaudhuri, B.B.,
A novel genetic algorithm for automatic clustering,
PRL(25), No. 2, January 2004, pp. 173-187.
Elsevier DOI
0401
BibRef
Frigui, H.[Hichem],
Nasraoui, O.[Olfa],
Unsupervised learning of prototypes and attribute weights,
PR(37), No. 3, March 2004, pp. 567-581.
Elsevier DOI
0401
BibRef
Tasoulis, D.K.,
Vrahatis, M.N.,
Unsupervised clustering on dynamic databases,
PRL(26), No. 13, 1 October 2005, pp. 2116-2127.
Elsevier DOI
0509
BibRef
Yang, M.S.[Miin-Shen],
Wu, K.L.[Kuo-Lung],
Unsupervised possibilistic clustering,
PR(39), No. 1, January 2006, pp. 5-21.
Elsevier DOI
0512
BibRef
Wu, K.L.[Kuo-Lung],
Yang, M.S.[Miin-Shen],
Mean shift-based clustering,
PR(40), No. 11, November 2007, pp. 3035-3052.
Elsevier DOI
0707
kernel functions, Mean shift, Robust clustering,
Generalized Epanechnikov kernel; Bandwidth selection,
Parameter estimation, Mountain method; Noise
See also Alternative c-means clustering algorithms.
BibRef
Wu, K.L.[Kuo-Lung],
Yang, M.S.[Miin-Shen],
Hsieh, J.N.[June-Nan],
Robust cluster validity indexes,
PR(42), No. 11, November 2009, pp. 2541-2550.
Elsevier DOI
0907
Cluster validity index; Clustering algorithms; Fuzzy c-means;
Partition membership; Mean; Median; Robust; Noise; Outlier
BibRef
Goldberger, J.[Jacob],
Gordon, S.,
Greenspan, H.K.[Hayit K.],
Unsupervised Image-Set Clustering Using an Information Theoretic
Framework,
IP(15), No. 2, February 2006, pp. 449-458.
IEEE DOI
0602
BibRef
Earlier: A2, A3, A1:
Applying the information bottleneck principle to unsupervised
clustering of discrete and continuous image representations,
ICCV03(370-377).
IEEE DOI
0311
BibRef
Earlier: A1, A3, A2:
Unsupervised Image Clustering Using the Information Bottleneck Method,
DAGM02(158 ff.).
Springer DOI
0303
BibRef
Johnson, S.,
Comments on 'Orthogonal Subspace Projection (OSP) Revisited: A
Comprehensive Study and Analysis',
GeoRS(45), No. 2, February 2007, pp. 532-533.
IEEE DOI
0703
See also Orthogonal Subspace Projection (OSP) Revisited: A Comprehensive Study and Analysis.
BibRef
Xavier, A.E.[Adilson Elias],
The hyperbolic smoothing clustering method,
PR(43), No. 3, March 2010, pp. 731-737.
Elsevier DOI
1001
Cluster analysis; Min-sum-min problems; Nondifferentiable programming;
Smoothing
BibRef
Xavier, A.E.[Adilson Elias],
Xavier, V.L.[Vinicius Layter],
Solving the minimum sum-of-squares clustering problem by hyperbolic
smoothing and partition into boundary and gravitational regions,
PR(44), No. 1, January 2011, pp. 70-77.
Elsevier DOI
1003
Cluster analysis; Min-sum-min problems; Nondifferentiable programming;
Smoothing
BibRef
Vatsavai, R.R.[Ranga Raju],
Bhaduri, B.L.[Budhendra L.],
A hybrid classification scheme for mining multisource geospatial data,
GeoInfo(15), No. 1, January 2011, pp. 29-47.
WWW Link.
1102
BibRef
Vatsavai, R.R.[Ranga Raju],
Shekhar, S.[Shashi],
Bhaduri, B.L.[Budhendra L.],
A Learning Scheme for Recognizing Sub-classes from Model Trained on
Aggregate Classes,
SSPR08(967-976).
Springer DOI
0812
Aggreate labels, not all sub-classes.
BibRef
Patra, S.[Swarnajyoti],
Bruzzone, L.[Lorenzo],
A Fast Cluster-Assumption Based Active-Learning Technique for
Classification of Remote Sensing Images,
GeoRS(49), No. 5, May 2011, pp. 1617-1626.
IEEE DOI
1105
BibRef
Patra, S.[Swarnajyoti],
Bruzzone, L.[Lorenzo],
A cluster-assumption based batch mode active learning technique,
PRL(33), No. 9, 1 July 2012, pp. 1042-1048.
Elsevier DOI
1202
Active learning; Cluster assumption; Entropy; Query function; Support
vector machine
BibRef
Demir, B.,
Minello, L.,
Bruzzone, L.,
Definition of Effective Training Sets for Supervised Classification
of Remote Sensing Images by a Novel Cost-Sensitive Active Learning
Method,
GeoRS(52), No. 2, February 2014, pp. 1272-1284.
IEEE DOI
1402
digital elevation models
BibRef
Patra, S.[Swarnajyoti],
Bruzzone, L.[Lorenzo],
A Novel SOM-SVM-Based Active Learning Technique for Remote Sensing
Image Classification,
GeoRS(52), No. 11, November 2014, pp. 6899-6910.
IEEE DOI
1407
Labeling
BibRef
Shin, H.C.[Hoo-Chang],
Orton, M.R.[Matthew R.],
Collins, D.J.[David J.],
Doran, S.J.[Simon J.],
Leach, M.O.[Martin O.],
Stacked Autoencoders for Unsupervised Feature Learning
and Multiple Organ Detection in a Pilot Study Using 4D Patient Data,
PAMI(35), No. 8, 2013, pp. 1930-1943.
IEEE DOI
1307
Feature extraction; Liver; Edge and feature detection
BibRef
Pasolli, E.,
Melgani, F.,
Alajlan, N.,
Conci, N.,
Optical Image Classification: A Ground-Truth Design Framework,
GeoRS(51), No. 6, 2013, pp. 3580-3597.
IEEE DOI
1307
IKONOS sensors; clustering unsupervised method; hyperspectral image;
support vector machines (SVMs);
BibRef
Dabboor, M.,
Collins, M.J.,
Karathanassi, V.,
Braun, A.,
An Unsupervised Classification Approach for Polarimetric SAR Data Based
on the Chernoff Distance for Complex Wishart Distribution,
GeoRS(51), No. 7, 2013, pp. 4200-4213.
IEEE DOI
1307
Eigenvalues and eigenfunctions; Radar polarimetry; terrain classification
BibRef
Baldeck, C.A.[Claire A.],
Asner, G.P.[Gregory P.],
Estimating Vegetation Beta Diversity from Airborne
Imaging Spectroscopy and Unsupervised Clustering,
RS(5), No. 5, 2013, pp. 2057-2071.
DOI Link
1307
BibRef
Ghassabeh, Y.A.[Youness Aliyari],
Linder, T.[Tamás],
Takahara, G.[Glen],
On some convergence properties of the subspace constrained mean shift,
PR(46), No. 11, November 2013, pp. 3140-3147.
Elsevier DOI
1306
Unsupervised learning; Subspace constrained mean shift;
Dimensionality reduction; Principal curves; Principal surfaces;
Convergence
BibRef
An, L.T.H.[Le Thi Hoai],
Minh, L.H.[Le Hoai],
Tao, P.D.[Pham Dinh],
New and efficient DCA based algorithms for minimum sum-of-squares
clustering,
PR(47), No. 1, 2014, pp. 388-401.
Elsevier DOI
1310
Clustering.
Difference of Convex functions Algorithm.
BibRef
Hanwell, D.,
Mirmehdi, M.,
QUAC: Quick unsupervised anisotropic clustering,
PR(47), No. 1, 2014, pp. 427-440.
Elsevier DOI
1310
Clustering
BibRef
Ghamary Asl, M.,
Mobasheri, M.R.,
Mojaradi, B.,
Unsupervised Feature Selection Using Geometrical Measures in
Prototype Space for Hyperspectral Imagery,
GeoRS(52), No. 7, July 2014, pp. 3774-3787.
IEEE DOI
1403
Absorption
BibRef
Fang, M.[Meng],
Zhu, X.Q.[Xing-Quan],
Active learning with uncertain labeling knowledge,
PRL(43), No. 1, 2014, pp. 98-108.
Elsevier DOI
1404
BibRef
Earlier:
I don't know the label: Active learning with blind knowledge,
ICPR12(2238-2241).
WWW Link.
1302
Award, ICPR. Active learning
BibRef
Pan, S.R.[Shi-Rui],
Zhu, X.Q.[Xing-Quan],
Fang, M.[Meng],
Top-k correlated subgraph query for data streams,
ICPR12(2906-2909).
WWW Link.
1302
BibRef
Rad, A.M.[Amir Moeini],
Abkar, A.A.[Ali Akbar],
Mojaradi, B.[Barat],
Supervised Distance-Based Feature Selection for Hyperspectral Target
Detection,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
You, X.,
Wang, R.,
Tao, D.,
Diverse Expected Gradient Active Learning for Relative Attributes,
IP(23), No. 7, July 2014, pp. 3203-3217.
IEEE DOI
1407
Optimization
Semantic understanding for HCI.
BibRef
Feng, J.S.[Jia-Shi],
Yuan, X.T.[Xiao-Tong],
Wang, Z.L.[Zi-Lei],
Xu, H.[Huan],
Yan, S.C.[Shui-Cheng],
Autogrouped Sparse Representation for Visual Analysis,
IP(23), No. 12, December 2014, pp. 5390-5399.
IEEE DOI
1412
BibRef
Earlier:
Auto-Grouped Sparse Representation for Visual Analysis,
ECCV12(I: 640-653).
Springer DOI
1210
image classification
BibRef
Wang, W.Q.[Wen-Qi],
Aggarwal, V.[Vaneet],
Aeron, S.C.[Shu-Chin],
Unsupervised clustering under the Union of Polyhedral Cones (UOPC)
model,
PRL(100), No. 1, 2017, pp. 104-109.
Elsevier DOI
1712
BibRef
Chang, J.L.[Jian-Long],
Wang, L.F.[Ling-Feng],
Meng, G.F.[Gao-Feng],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Deep unsupervised learning with consistent inference of latent
representations,
PR(77), 2018, pp. 438-453.
Elsevier DOI
1802
Deep unsupervised learning, Consistent inference of latent representations
BibRef
Chang, J.L.[Jian-Long],
Meng, G.F.[Gao-Feng],
Wang, L.F.[Ling-Feng],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Deep Self-Evolution Clustering,
PAMI(42), No. 4, April 2020, pp. 809-823.
IEEE DOI
2003
Task analysis, Unsupervised learning, Training, Clustering methods,
Pattern analysis, Clustering, deep self-evolution clustering,
deep unsupervised learning
BibRef
Suo, M.L.[Ming-Liang],
An, R.M.[Ruo-Ming],
Zhou, D.[Ding],
Li, S.L.[Shun-Li],
Grid-clustered rough set model for self-learning and fast reduction,
PRL(106), 2018, pp. 61-68.
Elsevier DOI
1804
Rough set, Rough self-learning, Fast reduction, Grid cluster
BibRef
Malhotra, A.,
Schizas, I.D.,
MILP-Based Unsupervised Clustering,
SPLetters(25), No. 12, December 2018, pp. 1825-1829.
IEEE DOI
1812
gradient methods, hyperspectral imaging, integer programming,
linear programming, matrix decomposition, pattern clustering,
clustering
BibRef
Merkurjev, E.[Ekaterina],
A fast graph-based data classification method with applications to 3D
sensory data in the form of point clouds,
PRL(136), 2020, pp. 154-160.
Elsevier DOI
2008
Data classification 1, Graph-based setting, Optimization,
Auction dynamics, Sensory data
BibRef
Pedronette, D.C.G.[Daniel Carlos Guimarães],
Valem, L.P.[Lucas Pascotti],
da Silva Torres, R.[Ricardo],
A BFS-Tree of ranking references for unsupervised manifold learning,
PR(111), 2021, pp. 107666.
Elsevier DOI
2012
Content-based image retrieval, Unsupervised manifold learning,
Tree representation, Ranking references
BibRef
Valem, L.P.[Lucas Pascotti],
Pedronette, D.C.G.[Daniel Carlos Guimarães],
Latecki, L.J.[Longin Jan],
Rank Flow Embedding for Unsupervised and Semi-Supervised Manifold
Learning,
IP(32), 2023, pp. 2811-2826.
IEEE DOI
2305
Task analysis, Manifold learning, Feature extraction, Manifolds,
Convolutional neural networks, Technological innovation, person Re-ID
BibRef
Cai, J.Y.[Jin-Yu],
Wang, S.P.[Shi-Ping],
Xu, C.[Chao=Yang],
Guo, W.Z.[Wen-Zhong],
Unsupervised deep clustering via contractive feature representation
and focal loss,
PR(123), 2022, pp. 108386.
Elsevier DOI
2112
Unsupervised learning, Clustering,
Contractive feature representation, Focal loss, Auto-encoder
BibRef
Borna, K.[Kambiz],
Moore, A.B.[Antoni B.],
Hoshyar, A.N.[Azadeh Noori],
Sirguey, P.[Pascal],
Using Vector Agents to Implement an Unsupervised Image Classification
Algorithm,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ye, M.[Mang],
Shen, J.B.[Jian-Bing],
Zhang, X.[Xu],
Yuen, P.C.[Pong C.],
Chang, S.F.[Shih-Fu],
Augmentation Invariant and Instance Spreading Feature for Softmax
Embedding,
PAMI(44), No. 2, February 2022, pp. 924-939.
IEEE DOI
2201
BibRef
Earlier: A1, A3, A4, A5, Only:
Unsupervised Embedding Learning via Invariant and Spreading Instance
Feature,
CVPR19(6203-6212).
IEEE DOI
2002
Task analysis, Visualization, Testing, Training,
Unsupervised learning, Data mining, Unsupervised learning,
data augmentation
BibRef
Chen, S.[Song],
Xue, J.H.[Jing-Hao],
Chang, J.L.[Jian-Long],
Zhang, J.Z.[Jian-Zhong],
Yang, J.F.[Ju-Feng],
Tian, Q.[Qi],
SSL++: Improving Self-Supervised Learning by Mitigating the Proxy
Task-Specificity Problem,
IP(31), 2022, pp. 1134-1148.
IEEE DOI
2202
Task analysis, Representation learning, Semantics,
Feature extraction, Visualization, Noise measurement, Couplings,
convolutional neural networks
BibRef
Wang, J.Y.[Jing-Yu],
Ma, Z.Y.[Zhen-Yu],
Nie, F.P.[Fei-Ping],
Li, X.L.[Xue-Long],
Entropy regularization for unsupervised clustering with adaptive
neighbors,
PR(125), 2022, pp. 108517.
Elsevier DOI
2203
Unsupervised clustering, Similarity matrix,
Entropy regularization, Trivial similarity distribution, Adaptive neighbors
BibRef
Chatterjee, A.[Ankita],
Saha, J.[Jayasree],
Mukherjee, J.[Jayanta],
Clustering with multi-layered perceptron,
PRL(155), 2022, pp. 92-99.
Elsevier DOI
2203
Multi layer perceptron, Unsupervised learning, Clustering
BibRef
Lu, H.[Hu],
Chen, C.[Chao],
Wei, H.[Hui],
Ma, Z.C.[Zhong-Chen],
Jiang, K.[Ke],
Wang, Y.Q.[Ying-Quan],
Improved deep convolutional embedded clustering with re-selectable
sample training,
PR(127), 2022, pp. 108611.
Elsevier DOI
2205
Unsupervised clustering, Deep embedded clustering, Autoencoder, Reliable samples
BibRef
Wang, J.H.[Jing-Hua],
Wang, L.[Li],
Jiang, J.M.[Jian-Min],
Preserving similarity order for unsupervised clustering,
PR(128), 2022, pp. 108670.
Elsevier DOI
2205
Image clustering, Order preserving,
Deep representation learning, Score function learning
BibRef
Fan, J.F.[Jin-Fu],
Yu, Y.[Yang],
Wang, Z.J.[Zhong-Jie],
Gu, J.Y.[Jin-Yi],
Partial Label Learning Based on Disambiguation Correction Net With
Graph Representation,
CirSysVideo(32), No. 8, August 2022, pp. 4953-4967.
IEEE DOI
2208
Phase locked loops, Entropy, Training, Data models,
Integrated circuit modeling, Deep learning, Transforms,
label probability threshold
BibRef
Fan, J.F.[Jin-Fu],
Yu, Y.[Yang],
Huang, L.Q.[Lin-Qing],
Wang, Z.J.[Zhong-Jie],
GraphDPI: Partial label disambiguation by graph representation
learning via mutual information maximization,
PR(134), 2023, pp. 109133.
Elsevier DOI
2212
Partial label learning, GraphDPI, Mutual Information, Triplet loss
BibRef
Fan, J.F.[Jin-Fu],
Wang, Z.J.[Zhong-Jie],
Partial Label Learning via GANs With Multiclass SVMs and Information
Maximization,
CirSysVideo(32), No. 12, December 2022, pp. 8409-8421.
IEEE DOI
2212
Phase locked loops, Generators, Semantics, Supervised learning,
Predictive models, Neural networks, Training,
partial contrastive loss
BibRef
Feigin, Y.[Yuri],
Spitzer, H.[Hedva],
Giryes, R.[Raja],
Cluster with GANs,
CVIU(225), 2022, pp. 103571.
Elsevier DOI
2212
Combine them. Unsupervised learning.
GAN, clustering
BibRef
Kim, J.[Jeonghoon],
Im, S.H.[Sung-Hoon],
Cho, S.[Sunghyun],
ProFeat: Unsupervised image clustering via progressive feature
refinement,
PRL(164), 2022, pp. 166-172.
Elsevier DOI
2212
Clustering, Unsupervised learning, Representation learning
BibRef
Pastore, V.P.[Vito Paolo],
Ciranni, M.[Massimiliano],
Bianco, S.[Simone],
Fung, J.C.[Jennifer Carol],
Murino, V.[Vittorio],
Odone, F.[Francesca],
Efficient unsupervised learning of biological images with compressed
deep features,
IVC(137), 2023, pp. 104764.
Elsevier DOI
2309
Unsupervised learning, Transfer learning,
Biological images analysis, Pre-trained features, Model ensembling
BibRef
Li, A.C.[Alexander C.],
Brown, E.[Ellis],
Efros, A.A.[Alexei A.],
Pathak, D.[Deepak],
Internet Curiosity: Directed Unsupervised Learning on Uncurated
Internet Data,
SelfLearn22(100-104).
Springer DOI
2304
BibRef
Pang, B.[Bo],
Zhang, Y.F.[Yi-Fan],
Li, Y.[Yaoyi],
Cai, J.[Jia],
Lu, C.[Cewu],
Unsupervised Visual Representation Learning by Synchronous Momentum
Grouping,
ECCV22(XXX:265-282).
Springer DOI
2211
BibRef
Zhang, W.W.[Wen-Wei],
Pang, J.M.[Jiang-Miao],
Chen, K.[Kai],
Loy, C.C.[Chen Change],
Dense Siamese Network for Dense Unsupervised Learning,
ECCV22(XXX:464-480).
Springer DOI
2211
BibRef
Fostiropoulos, I.[Iordanis],
Boehm, B.[Barry],
Implicit Feature Decoupling with Depthwise Quantization,
CVPR22(396-405)
IEEE DOI
2210
Quantization (signal), Tensors, Statistical analysis, Redundancy,
Neural networks, Estimation, Statistical methods,
Self- semi- meta- unsupervised learning
BibRef
Li, Z.[Zefan],
Liu, C.X.[Chen-Xi],
Yuille, A.L.[Alan L.],
Ni, B.B.[Bing-Bing],
Zhang, W.J.[Wen-Jun],
Gao, W.[Wen],
Progressive Stage-wise Learning for Unsupervised Feature
Representation Enhancement,
CVPR21(9762-9771)
IEEE DOI
2111
Training, Supervised learning,
Feature extraction, Data mining, Task analysis
BibRef
Dang, Z.Y.[Zhi-Yuan],
Deng, C.[Cheng],
Yang, X.[Xu],
Wei, K.[Kun],
Huang, H.[Heng],
Nearest Neighbor Matching for Deep Clustering,
CVPR21(13688-13697)
IEEE DOI
2111
Codes, Semantics, Artificial neural networks,
Benchmark testing, Unsupervised learning
BibRef
Xie, Z.D.[Zhen-Da],
Lin, Y.T.[Yu-Tong],
Zhang, Z.[Zheng],
Cao, Y.[Yue],
Lin, S.[Stephen],
Hu, H.[Han],
Propagate Yourself: Exploring Pixel-Level Consistency for
Unsupervised Visual Representation Learning,
CVPR21(16679-16688)
IEEE DOI
2111
Learning systems, Visualization, Head, Codes,
Semantics, Object detection
BibRef
Park, S.[Sungwon],
Han, S.[Sungwon],
Kim, S.[Sundong],
Kim, D.[Danu],
Park, S.[Sungkyu],
Hong, S.[Seunghoon],
Cha, M.[Meeyoung],
Improving Unsupervised Image Clustering With Robust Learning,
CVPR21(12273-12282)
IEEE DOI
2111
Training, Clustering methods,
Computational modeling, Predictive models, Robustness, Calibration
BibRef
Henzler, P.[Philipp],
Reizenstein, J.[Jeremy],
Labatut, P.[Patrick],
Shapovalov, R.[Roman],
Ritschel, T.[Tobias],
Vedaldi, A.[Andrea],
Novotny, D.[David],
Unsupervised Learning of 3D Object Categories from Videos in the Wild,
CVPR21(4698-4707)
IEEE DOI
2111
Training, Surface reconstruction,
Benchmark testing, Surface texture, Image reconstruction
BibRef
Zhang, Y.F.[Yi-Fei],
Liu, C.[Chang],
Zhou, Y.[Yu],
Wang, W.[Wei],
Wang, W.P.[Wei-Ping],
Ye, Q.X.[Qi-Xiang],
Progressive Cluster Purification for Unsupervised Feature Learning,
ICPR21(8476-8483)
IEEE DOI
2105
Training, Purification, Filtering, Clustering methods, Focusing,
Benchmark testing, Reliability
BibRef
Aizawa, H.[Hiroaki],
Kataoka, H.[Hirokatsu],
Satoh, Y.[Yutaka],
Kato, K.[Kunihito],
Disentangle, Assemble, and Synthesize:
Unsupervised Learning to Disentangle Appearance and Location,
ICPR21(2065-2072)
IEEE DOI
2105
Image resolution, Image synthesis,
Computational modeling, Generative adversarial networks,
BibRef
Wang, R.[Ru],
Li, L.[Lin],
Wang, P.P.[Pei-Pei],
Tao, X.H.[Xiao-Hui],
Liu, P.[Peiyu],
Feature-aware unsupervised learning with joint variational attention
and automatic clustering,
ICPR21(923-930)
IEEE DOI
2105
Clustering methods, Data mining, Task analysis, Optimization,
Unsupervised learning
BibRef
Han, S.[Sungwon],
Park, S.[Sungwon],
Park, S.K.[Sung-Kyu],
Kim, S.[Sundong],
Cha, M.[Meeyoung],
Mitigating Embedding and Class Assignment Mismatch in Unsupervised
Image Classification,
ECCV20(XXIV:768-784).
Springer DOI
2012
BibRef
Abukmeil, M.,
Ferrari, S.,
Genovese, A.,
Piuri, V.,
Scotti, F.,
Unsupervised Learning From Limited Available Data by ß-NMF and Dual
Autoencoder,
ICIP20(81-85)
IEEE DOI
2011
Unsupervised Learning, Limited data learning,
Non-negative Matrix Factorization, Autoencoder
BibRef
van Gansbeke, W.[Wouter],
Vandenhende, S.[Simon],
Georgoulis, S.[Stamatios],
Proesmans, M.[Marc],
Van Gool, L.J.[Luc J.],
Scan: Learning to Classify Images Without Labels,
ECCV20(X:268-285).
Springer DOI
2011
Code, Classification.
WWW Link.
BibRef
Newell, A.[Alejandro],
Deng, J.[Jia],
How Useful Is Self-Supervised Pretraining for Visual Tasks?,
CVPR20(7343-7352)
IEEE DOI
2008
Code, Pretraining.
WWW Link. Task analysis, Training, Image color analysis, Data models,
Complexity theory, Visualization, Benchmark testing
BibRef
Ye, M.,
Shen, J.,
Probabilistic Structural Latent Representation for Unsupervised
Embedding,
CVPR20(5456-5465)
IEEE DOI
2008
Training, Probabilistic logic, Testing, Task analysis,
Feature extraction, Robustness, Visualization
BibRef
Gao, X.,
Hu, W.,
Qi, G.,
GraphTER: Unsupervised Learning of Graph Transformation Equivariant
Representations via Auto-Encoding Node-Wise Transformations,
CVPR20(7161-7170)
IEEE DOI
2008
Decoding,
Image reconstruction, Feature extraction, Convolution,
Anisotropic magnetoresistance
BibRef
Ji, X.,
Vedaldi, A.[Andrea],
Henriques, J.,
Invariant Information Clustering for Unsupervised Image
Classification and Segmentation,
ICCV19(9864-9873)
IEEE DOI
2004
image classification, image representation,
image segmentation, neural nets, pattern clustering,
Entropy
BibRef
Sun, C.[Chen],
Myers, A.[Austin],
Vondrick, C.[Carl],
Murphy, K.[Kevin],
Schmid, C.[Cordelia],
VideoBERT: A Joint Model for Video and Language Representation
Learning,
ICCV19(7463-7472)
IEEE DOI
2004
image classification, learning (artificial intelligence),
social networking (online), speech recognition,
BibRef
Feng, Z.[Zeyu],
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
Self-Supervised Representation Learning From Multi-Domain Data,
ICCV19(3244-3254)
IEEE DOI
2004
image representation, knowledge management,
learning (artificial intelligence), knowledge transfer,
Picture archiving and communication systems
BibRef
Nina, O.[Oliver],
Moody, J.[Jamison],
Milligan, C.[Clarissa],
A Decoder-Free Approach for Unsupervised Clustering and Manifold
Learning with Random Triplet Mining,
CLI19(3987-3994)
IEEE DOI
2004
data mining, neural net architecture, pattern clustering,
unsupervised learning, cluster image samples, offline training,
manifold learning
BibRef
Zhuo, J.B.[Jun-Bao],
Wang, S.H.[Shu-Hui],
Cui, S.H.[Shu-Hao],
Huang, Q.M.[Qing-Ming],
Unsupervised Open Domain Recognition by Semantic Discrepancy
Minimization,
CVPR19(750-759).
IEEE DOI
2002
Deal with unknown categories.
BibRef
Nguyen, T.G.L.[The-Gia Leo],
Ardizzone, L.[Lynton],
Köthe, U.[Ullrich],
Training Invertible Neural Networks as Autoencoders,
GCPR19(442-455).
Springer DOI
1911
BibRef
Suzuki, T.[Tomoyuki],
Itazuri, T.[Takahiro],
Hara, K.[Kensho],
Kataoka, H.[Hirokatsu],
Learning Spatiotemporal 3D Convolution with Video Order
Self-supervision,
PersonContext18(II:590-598).
Springer DOI
1905
self-supervised learning.
BibRef
Lee, H.,
Kim, T.,
Song, E.,
Lee, S.,
Collabonet:
Collaboration of Generative Models by Unsupervised Classification,
ICIP18(1068-1072)
IEEE DOI
1809
Task analysis, Mathematical model, Data models, Manganese,
Image reconstruction, Cats, Unsupervised learning,
Ensemble model
BibRef
Ya, H.,
Sun, H.,
Helt, J.,
Lee, T.S.,
Learning to Associate Words and Images Using a Large-Scale Graph,
CRV17(16-23)
IEEE DOI
1804
convolution, feedforward neural nets, graph theory,
image resolution, railways, unsupervised learning,
unsupervised learning
BibRef
Meng, F.,
Liu, H.,
Liang, Y.,
Wei, L.,
Pei, J.,
A bidirectional adaptive bandwidth mean shift strategy for clustering,
ICIP17(2448-2452)
IEEE DOI
1803
Bandwidth, Clustering algorithms, Convergence,
Frequency modulation, Information technology, Kernel,
Mean Shift
BibRef
Hoang, T.,
Do, T.T.,
Le Tan, D.K.,
Cheung, N.M.,
Enhancing feature discrimination for unsupervised hashing,
ICIP17(3710-3714)
IEEE DOI
1803
Covariance matrices, Gaussian mixture model, Iterative methods,
Measurement, Principal component analysis, Quantization (signal),
Hashing
BibRef
En, S.,
Crémilleux, B.,
Jurie, F.,
Unsupervised deep hashing with stacked convolutional autoencoders,
ICIP17(3420-3424)
IEEE DOI
1803
Binary codes, Convolutional codes, Decoding, Image reconstruction,
Semantics, Task analysis, Unsupervised learning,
unsupervised learning
BibRef
Prabhushankar, M.,
Temel, D.,
Al Regib, G.,
Generating adaptive and robust filter sets using an unsupervised
learning framework,
ICIP17(3041-3045)
IEEE DOI
1803
Correlation, Covariance matrices, Image quality, Neural networks,
Task analysis, Testing, Unsupervised learning,
ZCA Whitening
BibRef
Jenni, S.[Simon],
Meishvili, G.[Givi],
Favaro, P.[Paolo],
Video Representation Learning by Recognizing Temporal Transformations,
ECCV20(XXVIII:425-442).
Springer DOI
2011
BibRef
Noroozi, M.[Mehdi],
Pirsiavash, H.[Hamed],
Favaro, P.[Paolo],
Representation Learning by Learning to Count,
ICCV17(5899-5907)
IEEE DOI
1802
image representation, learning (artificial intelligence),
neural nets, artificial supervision signal,
Visualization
BibRef
Hassanzadeh, A.[Aidin],
Kaarna, A.[Arto],
Kauranne, T.[Tuomo],
Unsupervised Multi-manifold Classification of Hyperspectral Remote
Sensing Images with Contractive Autoencoder,
SCIA17(II: 169-180).
Springer DOI
1706
BibRef
Mukuta, Y.[Yusuke],
Harada, T.[Tatsuya],
Kernel Approximation via Empirical Orthogonal Decomposition for
Unsupervised Feature Learning,
CVPR16(5222-5230)
IEEE DOI
1612
BibRef
Pathak, D.[Deepak],
Krähenbühl, P.[Philipp],
Donahue, J.[Jeff],
Darrell, T.J.[Trevor J.],
Efros, A.A.[Alexei A.],
Context Encoders: Feature Learning by Inpainting,
CVPR16(2536-2544)
IEEE DOI
1612
BibRef
Yang, J.,
Parikh, D.,
Batra, D.,
Joint Unsupervised Learning of Deep Representations and Image
Clusters,
CVPR16(5147-5156)
IEEE DOI
1612
BibRef
Li, Y.,
Huang, C.,
Tang, X.,
Loy, C.C.,
Learning to Disambiguate by Asking Discriminative Questions,
ICCV17(3439-3448)
IEEE DOI
1802
BibRef
Earlier: A2, A4, A3, Only:
Unsupervised Learning of Discriminative Attributes and Visual
Representations,
CVPR16(5175-5184)
IEEE DOI
1612
image retrieval, learning (artificial intelligence),
question answering (information retrieval),
Visualization
BibRef
Wang, J.[Jun_Hong],
Miao, Y.[Yun_Qian],
Khamis, A.[Alaa],
Karray, F.[Fakhri],
Liang, J.[Jiye],
Adaptation Approaches in Unsupervised Learning:
A Survey of the State-of-the-Art and Future Directions,
ICIAR16(3-11).
Springer DOI
1608
BibRef
Afonso, M.[Mariana],
Teixeira, L.F.[Luis F.],
Experimental Evaluation of the Bag-of-Features Model for Unsupervised
Learning of Images,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Tariq, A.[Amara],
Foroosh, H.[Hassan],
T-clustering: Image clustering by tensor decomposition,
ICIP15(4803-4807)
IEEE DOI
1512
Image Clustering. Takes into account the spatial configuration of images.
BibRef
Grozavu, N.[Nistor],
Rogovschi, N.[Nicoleta],
Cabanes, G.[Guenael],
Troya-Galvis, A.[Andres],
Gancarski, P.[Pierre],
VHR satellite image segmentation based on topological unsupervised
learning,
MVA15(543-546)
IEEE DOI
1507
Clustering algorithms
BibRef
Jhuo, I.H.[I-Hong],
Gao, S.H.[Sheng-Hua],
Zhuang, L.S.[Lian-Sheng],
Lee, D.T.,
Ma, Y.[Yi],
Unsupervised Feature Learning for RGB-D Image Classification,
ACCV14(I: 276-289).
Springer DOI
1504
BibRef
Momtaz, R.[Rana],
Mohssen, N.[Nesma],
Gowayyed, M.A.[Mohammad A.],
DWOF: A Robust Density-Based Outlier Detection Approach,
IbPRIA13(517-525).
Springer DOI
1307
BibRef
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Ensemble Projection for Semi-supervised Image Classification,
ICCV13(2072-2079)
IEEE DOI
1403
Ensemble Learning
BibRef
Dai, D.X.[Deng-Xin],
Prasad, M.[Mukta],
Leistner, C.[Christian],
Van Gool, L.J.[Luc J.],
Ensemble Partitioning for Unsupervised Image Categorization,
ECCV12(III: 483-496).
Springer DOI
1210
BibRef
Pan, G.D.[Guo-Dong],
Shang, L.F.[Li-Feng],
Schnieders, D.[Dirk],
Wong, K.Y.K.[Kwan-Yee K.],
Mode Seeking with an Adaptive Distance Measure,
ARTEMIS12(III: 213-222).
Springer DOI
1210
BibRef
He, P.[Ping],
Xu, X.H.[Xiao-Hua],
Chen, L.[Ling],
Constrained Clustering with Local Constraint Propagation,
ARTEMIS12(III: 223-232).
Springer DOI
1210
BibRef
Hu, D.[Diane],
Bo, L.F.[Lie-Feng],
Ren, X.F.[Xiao-Feng],
Toward Robust Material Recognition for Everyday Objects,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Oliveira, L.O.V.B.[Luiz Otávio Vilas Boas],
Drummond, I.N.[Isabela Neves],
Real-Valued Negative Selection (RNS) for Classification Task,
ICPR-Contests10(66-74).
Springer DOI
1008
BibRef
Li, Z.W.[Zhong-Wei],
Pan, Z.K.[Zhen-Kuan],
Ni, M.J.[Ming-Jiu],
An unsupervised model for image classification,
IASP10(38-40).
IEEE DOI
1004
For tracking deformable objects.
BibRef
Shapira, L.[Lior],
Avidan, S.[Shai],
Shamir, A.[Ariel],
Mode-detection via median-shift,
ICCV09(1909-1916).
IEEE DOI
0909
BibRef
Chen, Y.L.[Yen-Lun],
Zheng, Y.F.[Yuan F.],
Margin and domain integrated classification,
ICIP09(2061-2064).
IEEE DOI
0911
BibRef
Cruz, B.[Benjamín],
Barrón, R.[Ricardo],
Sossa, H.[Humberto],
A New Unsupervised Learning for Clustering Using Geometric Associative
Memories,
CIARP09(239-246).
Springer DOI
0911
BibRef
Gilani, S.Z.[Syed Zulqarnain],
Rao, N.I.[Naveed Iqbal],
Fast Block Clustering Based Optimized Adaptive Mediod Shift,
CAIP09(435-443).
Springer DOI
0909
BibRef
Singh, A.[Abhishek],
Jaikumar, P.[Padmini],
Mitra, S.K.[Suman K.],
A Bayesian Learning Based Approach for Clustering of Satellite Images,
ICCVGIP08(187-192).
IEEE DOI
0812
BibRef
Chang, Y.C.[Yu-Chou],
Lee, D.J.[Dah-Jye],
Archibald, J.[James],
Hong, Y.[Yi],
Unsupervised clustering using hyperclique pattern constraints,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bai, X.X.[Xin-Xin],
Chen, G.[Gang],
Lin, Z.L.[Zhong-Lin],
Yin, W.J.[Wen-Jun],
Dong, J.[Jin],
Improving image clustering:
An unsupervised feature weight learning framework,
ICIP08(977-980).
IEEE DOI
0810
BibRef
Gibert, K.[Karina],
Rodríguez Silva, G.[Gustavo],
Identification of More Characteristic Dynamic Patterns in a WWTP by
CIBRxE,
CIARP08(372-380).
Springer DOI
0809
BibRef
Inoue, K.[Kohei],
Urahama, K.[Kiichi],
Hierarchically Distributed Dynamic Mean Shift,
ICIP07(I: 269-272).
IEEE DOI
0709
Iterative mode seeking algorithm. A less memory intensive implementation.
BibRef
Lange, T.[Tilman],
Law, M.H.C.[Martin H.C.],
Jain, A.K.[Anil K.],
Buhmann, J.M.[Joachim M.],
Learning with Constrained and Unlabelled Data,
CVPR05(I: 731-738).
IEEE DOI
0507
BibRef
Furao, S.[Shen],
Hasegawa, O.[Osamu],
An On-Line Learning Mechanism for Unsupervised Classification and
Topology Representation,
CVPR05(I: 651-656).
IEEE DOI
0507
BibRef
Robles-Kelly, A.[Antonio],
Hancock, E.R.,
Pairwise Clustering with Matrix Factorisation and the EM Algorithm,
ECCV02(II: 63 ff.).
Springer DOI
0205
for grouping via pairwise clustering.
BibRef
Zhu, Y.,
Comaniciu, D.,
Schwartz, S.,
Ramesh, V.,
Multimodal Data Representations with Parameterized Local Structures,
ECCV02(I: 173 ff.).
Springer DOI
0205
BibRef
Boujemaa, N.[Nozha],
On Competitive Unsupervised Clustering,
ICPR00(Vol I: 631-634).
IEEE DOI
0009
For segmentation.
BibRef
Nowak, R.D.,
Figueiredo, M.A.T.,
Unsupervised Segmentation of Poisson Data,
ICPR00(Vol III: 155-158).
IEEE DOI
0009
BibRef
Stauffer, C.[Chris],
Minimally-supervised classification using multiple observation sets,
ICCV03(297-304).
IEEE DOI
0311
BibRef
Stauffer, C.[Chris],
Minimally Supervised Classification,
DARPA98(145-150).
BibRef
9800
Fränti, P.,
Kivijärvi, J.,
Random Swapping Technique for Improving Clustering in Unsupervised
Classification,
SCIA99(Pattern Recognition I).
BibRef
9900
Descombes, X.,
Kruggel, F.,
Palubinskas, G.[Gintautas],
An Unsupervised Clustering Method Using the Entropy Minimization,
ICPR98(Vol II: 1816-1818).
IEEE DOI
9808
BibRef
Renyi, A.,
On Measures of Entropy and Information,
ConferenceBerkeley Symposium Mathematics, Statistics, and Probability, 1960, pp. 547-561.
BibRef
6000
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Dictionary Learning, Classification .