Semwal, S.K.[Sudhanshu K.],
Parker, M.J.[Michael J.],
An Animation System for Biomechanical Analysis of Leg Motion and
Predicting Injuries during Cycling,
RealTimeImg(5), No. 2, April 1999, pp. 109-123.
BibRef
9904
Tan, T.W.[Tee-Woon],
Guan, L.[Ling],
Burne, J.[John],
A Real-time Image Analysis System for Computer-Assisted Diagnosis of
Neurological Disorders,
RealTimeImg(5), No. 4, August 1999, pp. 253-269.
BibRef
9908
Lee, H.[Howard],
Guan, L.[Ling],
Lee, I.[Ivan],
Video Analysis of Human Gait and Posture to Determine Neurological
Disorders,
JIVP(2008), No. 2008, pp. xx-yy.
DOI Link
0811
BibRef
Lee, H.[Howard],
Guan, L.[Ling],
Burne, J.,
Human Gait and Posture Analysis for Diagnosing Neurological Disorders,
ICIP00(Vol II: 435-438).
IEEE DOI
0008
BibRef
You, B.M.,
Siy, P.,
Anderst, W.,
Tashman, S.,
In vivo measurement of 3-D skeletal kinematics from sequences of
biplane radiographs: Application to knee kinematics,
MedImg(20), No. 6, June 2001, pp. 514-525.
IEEE Top Reference.
0110
BibRef
Beynon, M.J.,
Jones, L.,
Holt, C.A.,
Classification of Osteoarthritic and Normal Knee Function Using
Three-Dimensional Motion Analysis and the Dempster-Shafer Theory of
Evidence,
SMC-A(36), No. 1, January 2006, pp. 173-186.
IEEE DOI
0601
BibRef
Roetenberg, D.,
Inertial and Magnetic Sensing of Human Motion,
Ph.D.Thesis, University of Twente, May 2006.
PDF File.
1109
BibRef
Luinge, H.J.,
Inertial Sensing of Human Movement,
Ph.D.Thesis, University of Twente, December 2002.
PDF File.
1109
BibRef
Pronost, N.[Nicolas],
Dumont, G.[Georges],
Dynamics-based analysis and synthesis of human locomotion,
VC(23), No. 7, July 2007, pp. 513-522.
Springer DOI
0707
BibRef
Ramasso, E.[Emmanuel],
Rombaut, M.[Michèle],
Pellerin, D.[Denis],
State Filtering and Change Detection Using TBM Conflict Application to
Human Action Recognition in Athletics Videos,
CirSysVideo(17), No. 7, July 2007, pp. 944-949.
IEEE DOI
0707
BibRef
Guironnet, M.,
Pellerin, D.,
Rombaut, M.,
A fusion architecture based on TBM for camera motion classification,
IVC(25), No. 11, 1 November 2007, pp. 1737-1747.
Elsevier DOI
0709
Camera motion classification; Transferable belief model;
Motion estimation; Motion description; Video indexing
BibRef
Ramasso, E.[Emmanuel],
Panagiotakis, C.[Costas],
Rombaut, M.[Michèle],
Pellerin, D.[Denis],
Tziritas, G.[Georgios],
Human Shape-Motion Analysis In Athletics Videos for Coarse To Fine
Action/Activity Recognition Using Transferable Belief Model,
ELCVIA(7), No. 4, 2008, pp. xx-yy.
DOI Link
0909
BibRef
Earlier: A2, A1, A5, A3, A4:
Automatic people detection and counting for athletic videos
classification,
AVSBS07(429-434).
IEEE DOI
0709
BibRef
Lakany, H.M.[Heba M.],
Extracting a diagnostic gait signature,
PR(41), No. 5, May 2008, pp. 1644-1654.
Elsevier DOI
0711
Human locomotion; Gait analysis; Feature extraction;
Self-organising maps; Diagnostic signatures
BibRef
Schepers, H.M.,
Ambulatory Assessment of Human Body Kinematics and Kinetics,
Ph.D.Thesis, Universiteit Twente, June 2009.
PDF File.
1109
BibRef
Klein Horstman, M.D.[Martijn D.],
The Twente Lower Extremity Model:
Consistent Dynamic Simulation of the Human Locomoter Apparatus,
Ph.D.Thesis, University of Twente, December 2007.
PDF File.
1109
BibRef
Zhang, B.L.[Bai-Ling],
Zhang, Y.C.[Yan-Chun],
Begg, R.K.[Rezaul K.],
Gait classification in children with cerebral palsy by Bayesian
approach,
PR(42), No. 4, April 2009, pp. 581-586.
Elsevier DOI
0812
Gait classification; Cerebral palsy; Bayesian approach
BibRef
Gu, J.X.[Jun-Xia],
Ding, X.Q.[Xiao-Qing],
Wang, S.J.[Sheng-Jin],
Wu, Y.S.[You-Shou],
Action and Gait Recognition From Recovered 3-D Human Joints,
SMC-B(40), No. 4, August 2010, pp. 1021-1033.
IEEE DOI
1008
BibRef
Koktas, N.S.[Nigar Sen],
Yalabik, N.[Nese],
Yavuzer, G.[Gunes],
Duin, R.P.W.[Robert P.W.],
A multi-classifier for grading knee osteoarthritis using gait analysis,
PRL(31), No. 9, 1 July 2010, pp. 898-904.
Elsevier DOI
1004
BibRef
Earlier: A1, A2, A3, Only:
Combining Neural Networks for Gait Classification,
CIARP06(381-388).
Springer DOI
0611
Combining classifiers; Grading knee OA; Gait analysis
BibRef
Charbonnier, C.[Caecilia],
Assassi, L.[Lazhari],
Volino, P.[Pascal],
Magnenat-Thalmann, N.[Nadia],
Motion study of the hip joint in extreme postures,
VC(25), No. 9, September 2009, pp. xx-yy.
Springer DOI
0909
BibRef
Bauckhage, C.[Christian],
Tsotsos, J.K.[John K.],
Bunn, F.E.[Frank E.],
Automatic detection of abnormal gait,
IVC(27), No. 1-2, January 2009, pp. 108-115.
Elsevier DOI
0811
BibRef
Earlier:
Detecting Abnormal Gait,
CRV05(282-288).
IEEE DOI
0505
Gait analysis; Shape encoding; Vector space embedding; SVM classification
BibRef
Karg, M.,
Kuhnlenz, K.,
Buss, M.,
Recognition of Affect Based on Gait Patterns,
SMC-B(40), No. 4, August 2010, pp. 1050-1061.
IEEE DOI
1008
BibRef
Kurihara, Y.,
Watanabe, K.,
Yoneyama, M.,
Estimation of Walking Exercise Intensity Using 3-D Acceleration Sensor,
SMC-C(42), No. 4, July 2012, pp. 495-500.
IEEE DOI
1206
BibRef
Shimura, K.[Kenichiro],
Ohtsuka, K.[Kazumichi],
Vizzari, G.[Giuseppe],
Nishinari, K.[Katsuhiro],
Bandini, S.[Stefania],
Mobility analysis of the aged pedestrians by experiment and
simulation,
PRL(44), No. 1, 2014, pp. 58-63.
Elsevier DOI
1407
Aging society
BibRef
Kadu, H.,
Kuo, C.C.J.[C.C. Jay],
Automatic Human Mocap Data Classification,
MultMed(16), No. 8, December 2014, pp. 2191-2202.
IEEE DOI
1502
image classification
BibRef
Parascandolo, P.[Patrizia],
Cesario, L.[Lorenzo],
Vosilla, L.[Loris],
Viano, G.[Gianni],
RheumaSCORE:
A CAD System for Rheumatoid Arthritis Diagnosis and Follow-Up,
RHEUMA15(135-142).
Springer DOI
1511
BibRef
Hwang, K.,
Lin, J.,
Yeh, K.,
Learning to Adjust and Refine Gait Patterns for a Biped Robot,
SMCS(45), No. 12, December 2015, pp. 1481-1490.
IEEE DOI
1512
Foot
BibRef
Tao, L.[Lili],
Paiement, A.[Adeline],
Damen, D.[Dima],
Mirmehdi, M.[Majid],
Hannuna, S.[Sion],
Camplani, M.[Massimo],
Burghardt, T.[Tilo],
Craddock, I.[Ian],
A comparative study of pose representation and dynamics modelling for
online motion quality assessment,
CVIU(148), No. 1, 2016, pp. 136-152.
Elsevier DOI
1606
BibRef
Earlier: A2, A1, A6, A5, A3, A4, Only:
Online quality assessment of human motion from skeleton data,
BMVC14(xx-yy).
HTML Version.
1410
Human motion quality
BibRef
Yu, Z.,
Chen, X.,
Huang, Q.,
Zhang, W.,
Meng, L.,
Zhang, W.,
Gao, J.,
Gait Planning of Omnidirectional Walk on Inclined Ground for Biped
Robots,
SMCS(46), No. 7, July 2016, pp. 888-897.
IEEE DOI
1606
Digital signal processing
BibRef
Saputra, A.A.,
Botzheim, J.,
Sulistijono, I.A.,
Kubota, N.,
Biologically Inspired Control System for 3-D Locomotion of a Humanoid
Biped Robot,
SMCS(46), No. 7, July 2016, pp. 898-911.
IEEE DOI
1606
Humanoid robots
BibRef
Cheng, T.H.,
Wang, Q.,
Kamalapurkar, R.,
Dinh, H.T.,
Bellman, M.,
Dixon, W.E.,
Identification-Based Closed-Loop NMES Limb Tracking With
Amplitude-Modulated Control Input,
Cyber(46), No. 7, July 2016, pp. 1679-1690.
IEEE DOI
1606
Fatigue
BibRef
Parisi, F.,
Ferrari, G.,
Giuberti, M.,
Contin, L.,
Cimolin, V.,
Azzaro, C.,
Albani, G.,
Mauro, A.,
Inertial BSN-Based Characterization and Automatic UPDRS Evaluation of
the Gait Task of Parkinsonians,
AffCom(7), No. 3, July 2016, pp. 258-271.
IEEE DOI
1609
BibRef
Zaki, M.H.,
Sayed, T.,
Exploring walking gait features for the automated recognition of
distracted pedestrians,
IET-ITS(10), No. 2, 2016, pp. 106-113.
DOI Link
1602
gait analysis
BibRef
Ameli, S.[Sina],
Naghdy, F.[Fazel],
Stirling, D.[David],
Naghdy, G.[Golshah],
Aghmesheh, M.[Morteza],
Objective clinical gait analysis using inertial sensors and six
minute walking test,
PR(63), No. 1, 2017, pp. 246-257.
Elsevier DOI
1612
Physical performance status
BibRef
Higashiguchi, T.[Tsuyoshi],
Shimoyama, T.[Toma],
Ukita, N.[Norimichi],
Kanbara, M.[Masayuki],
Hagita, N.[Norihiro],
Classification of Gait Anomaly due to Lesion Using Full-Body Gait
Motions,
IEICE(E100-D), No. 4, April 2017, pp. 874-881.
WWW Link.
1704
BibRef
Earlier:
Lesioned-Part Identification by Classifying Entire-Body Gait Motions,
PSIVT15(136-147).
Springer DOI
1602
BibRef
Paulo, J.,
Peixoto, P.,
Nunes, U.J.,
ISR-AIWALKER: Robotic Walker for Intuitive and Safe Mobility
Assistance and Gait Analysis,
HMS(47), No. 6, December 2017, pp. 1110-1122.
IEEE DOI
1712
Cameras, Gait recognition, Legged locomotion,
Rehabilitation robotics, Robot sensing systems, Safety,
user intention
BibRef
Li, B.,
Zhu, C.,
Li, S.,
Zhu, T.,
Identifying Emotions from Non-Contact Gaits Information Based on
Microsoft Kinects,
AffCom(9), No. 4, October 2018, pp. 585-591.
IEEE DOI
1812
Feature extraction, Legged locomotion, Emotion recognition,
Time-frequency analysis, Discrete Fourier transforms,
discrete fourier transform
BibRef
Choi, M.G.[Myung Geol],
Kwon, T.[Taesoo],
Motion rank: applying page rank to motion data search,
VC(35), No. 2, February 2019, pp. 289-300.
Springer DOI
1906
Visualize motion data.
BibRef
Xu, C.[Chi],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Lu, J.F.[Jian-Feng],
Gait-based age progression/regression: a baseline and performance
evaluation by age group classification and cross-age gait
identification,
MVA(30), No. 4, June 2019, pp. 629-644.
Springer DOI
1906
BibRef
Bargiotas, I.[Ioannis],
Audiffren, J.[Julien],
Vayatis, N.[Nicolas],
Vidal, P.P.[Pierre-Paul],
Yelnik, A.P.[Alain P.],
Ricard, D.[Damien],
Local Assessment of Statokinesigram Dynamics in Time:
An in-Depth Look at the Scoring Algorithm,
IPOL(9), 2019, pp. 143-157.
DOI Link
1906
Code, Posture. postural control evaluation in elderly.
BibRef
Raman, R.[Rahul],
Boubchir, L.[Larbi],
Sa, P.K.[Pankaj Kumar],
Majhi, B.[Banshidhar],
Bakshi, S.[Sambit],
Beyond estimating discrete directions of walk: a fuzzy approach,
MVA(30), No. 5, July 2019, pp. 901-917.
Springer DOI
1907
BibRef
Xu, M.L.[Ming-Liang],
Zhai, Y.F.[Ya-Fang],
Guo, Y.[Yibo],
Lv, P.[Pei],
Li, Y.[Yafei],
Wang, M.[Meng],
Zhou, B.[Bing],
Personalized training through Kinect-based games for physical
education,
JVCIR(62), 2019, pp. 394-401.
Elsevier DOI
1908
Kinect, Educational games
BibRef
Li, S.,
Liu, W.,
Ma, H.,
Attentive Spatial-Temporal Summary Networks for Feature Learning in
Irregular Gait Recognition,
MultMed(21), No. 9, September 2019, pp. 2361-2375.
IEEE DOI
1909
Gait recognition, Feature extraction, Surveillance, Semantics,
Biological system modeling,
irregular gait sequence
BibRef
Yamakawa, K.,
Okamoto, S.,
Kubo, R.,
Yamada, N.,
Akiyama, Y.,
Yamada, Y.,
Knee Pain Patient Simulation for Recommendation of Sit-to-Stand
Handrail Positions,
HMS(49), No. 5, October 2019, pp. 461-467.
IEEE DOI
1909
Knee, Pain, Modeling, Senior citizens, Muscles, Electrical stimulation,
Skin, Knee osteoarthritis (OA), knee moment, motion simulation
BibRef
Ma, Y.,
Lee, E.W.,
Hu, Z.,
Shi, M.,
Yuen, R.K.,
An Intelligence-Based Approach for Prediction of Microscopic
Pedestrian Walking Behavior,
ITS(20), No. 10, October 2019, pp. 3964-3980.
IEEE DOI
1910
Legged locomotion, Microscopy, Predictive models, Neural networks,
Decision making, Mathematical model, Numerical models,
prediction
BibRef
Prabhu, P.[Pooja],
Karunakar, A.K.,
Anitha, H.,
Pradhan, N.,
Classification of gait signals into different neurodegenerative
diseases using statistical analysis and recurrence quantification
analysis,
PRL(139), 2020, pp. 10-16.
Elsevier DOI
2011
Gait, Neurological disorder, Probabilistic neural networks,
Recurrence quantification analysis, Sports medicine, Support vector machine
BibRef
Bhattacharya, U.[Uttaran],
Roncal, C.[Christian],
Mittal, T.[Trisha],
Chandra, R.[Rohan],
Kapsaskis, K.[Kyra],
Gray, K.[Kurt],
Bera, A.[Aniket],
Manocha, D.[Dinesh],
Take an Emotion Walk: Perceiving Emotions from Gaits Using Hierarchical
Attention Pooling and Affective Mapping,
ECCV20(X:145-163).
Springer DOI
2011
BibRef
Koop, M.M.,
Rosenfeldt, A.B.,
Johnston, J.D.,
Streicher, M.C.,
Qu, J.,
Alberts, J.L.,
The HoloLens Augmented Reality System Provides Valid Measures of Gait
Performance in Healthy Adults,
HMS(50), No. 6, December 2020, pp. 584-592.
IEEE DOI
2011
Legged locomotion, Biomechanics, Wearable computers,
Data collection, Augmented reality, Augmented reality (AR), gait,
wearable computers
BibRef
Ongun, M.F.[Mehmet Faruk],
Güdükbay, U.[Ugur],
Aksoy, S.[Selim],
Recognition of occupational therapy exercises and detection of
compensation mistakes for Cerebral Palsy,
JVCIR(73), 2020, pp. 102970.
Elsevier DOI
2012
Gesture recognition, Cerebral palsy, Occupational therapy,
Compensation mistake, Hidden Markov model, Virtual rehabilitation
BibRef
Webering, F.[Fritz],
Blume, H.[Holger],
Allaham, I.[Issam],
Markerless camera-based vertical jump height measurement using
OpenPose,
CVPM21(3863-3869)
IEEE DOI
2109
Power measurement, Tracking,
Pose estimation, Neural networks, Tools, vertical jump height,
parabola
BibRef
Liao, R.C.[Ruo-Chen],
Moriwaki, K.[Kousuke],
Makihara, Y.S.[Yasu-Shi],
Muramatsu, D.[Daigo],
Takemura, N.[Noriko],
Yagi, Y.S.[Yasu-Shi],
Health Indicator Estimation by Video-Based Gait Analysis,
IEICE(E104-D), No. 10, October 2021, pp. 1678-1690.
WWW Link.
2110
BibRef
Li, J.W.[Jian-Wei],
Hu, Q.R.[Qing-Rui],
Guo, T.X.[Tian-Xiao],
Wang, S.Q.[Si-Qi],
Shen, Y.F.[Yan-Fei],
What and how well you exercised? An efficient analysis framework for
fitness actions,
JVCIR(80), 2021, pp. 103304.
Elsevier DOI
2110
Action assessment, Image processing,
Action recognition, Intelligent sports, Performance analysis
BibRef
Ribet, S.[Sarah],
Wannous, H.[Hazem],
Vandeborre, J.P.[Jean-Philippe],
Survey on Style in 3D Human Body Motion:
Taxonomy, Data, Recognition and Its Applications,
AffCom(12), No. 4, October 2021, pp. 928-948.
IEEE DOI
2112
Taxonomy, Animation,
Legged locomotion, Motion analysis, Machine learning, motion style generation
BibRef
Wang, Y.H.[Yan-Hong],
Zou, Q.S.[Qiao-Sha],
Tang, Y.M.[Yan-Min],
Wang, Q.[Qing],
Ding, J.[Jing],
Wang, X.[Xin],
Shi, C.J.R.[C.J. Richard],
SAIL: A Deep-Learning-Based System for Automatic Gait Assessment From
TUG Videos,
HMS(52), No. 1, February 2022, pp. 110-122.
IEEE DOI
2201
Videos, Skeleton, Legged locomotion, Pose estimation, Detectors,
Feature extraction, Support vector machines,
timed "up & go" (TUG)
BibRef
Zhou, G.Y.[Guo-Yang],
Aggarwal, V.[Vaneet],
Yin, M.[Ming],
Yu, D.[Denny],
A Computer Vision Approach for Estimating Lifting Load Contributors
to Injury Risk,
HMS(52), No. 2, April 2022, pp. 207-219.
IEEE DOI
2203
Task analysis, Feature extraction, Injuries, Videos,
Predictive models, Cameras, facial expression,
lifting risk assessment
BibRef
Du, C.[Chen],
Graham, S.[Sarah],
Depp, C.[Colin],
Nguyen, T.[Truong],
Multi-Task Center-of-Pressure Metrics Estimation With Graph
Convolutional Network,
MultMed(24), No. 2022, pp. 2018-2033.
IEEE DOI
2204
Understanding, diagnosis, human body movement.
Measurement, Estimation, Task analysis, Adaptation models,
Computational modeling, Predictive models, Multi-task learning,
balance control
BibRef
Zhang, Y.[Yu],
Xiong, W.[Wei],
Mi, S.[Siya],
Learning time-aware features for action quality assessment,
PRL(158), 2022, pp. 104-110.
Elsevier DOI
2205
Action quality assessment, Time-aware attention, Video clips,
Time-aware (TA), Adversarial
BibRef
Abbas, M.[Manuel],
Jeannès, R.L.B.[Régine Le Bouquin],
Acceleration-based gait analysis for frailty assessment in older
adults,
PRL(161), 2022, pp. 45-51.
Elsevier DOI
2209
Gait quality, Acceleration signals, Frailty, Elderly, Free-living conditions
BibRef
Zhou, J.J.[Jun-Jie],
Zhong, S.[Shanlin],
Wu, W.[Wei],
Hierarchical Motion Learning for Goal-Oriented Movements With
Speed-Accuracy Tradeoff of a Musculoskeletal System,
Cyber(52), No. 11, November 2022, pp. 11453-11466.
IEEE DOI
2211
Muscles, Adaptation models, Task analysis, Arms, Mathematical model,
Integrated circuit modeling, Basal ganglia,
speed-accuracy tradeoff (SAT)
BibRef
Pan, J.H.[Jia-Hui],
Gao, J.[Jibin],
Zheng, W.S.[Wei-Shi],
Adaptive Action Assessment,
PAMI(44), No. 12, December 2022, pp. 8779-8795.
IEEE DOI
2212
Adaptation models, Computer architecture, Task analysis,
Visualization, Training, Videos, Image quality, Action assessment,
action modelling
BibRef
Yang, H.[Hu],
Li, M.L.[Ming-Lun],
Guo, B.[Bao],
Zhang, F.[Fan],
Wang, P.[Pu],
A vector field approach for identifying anomalous human mobility,
IET-ITS(17), No. 4, 2023, pp. 649-666.
DOI Link
2304
BibRef
Gedamu, K.[Kumie],
Ji, Y.L.[Yan-Li],
Yang, Y.[Yang],
Shao, J.[Jie],
Shen, H.T.[Heng Tao],
Fine-Grained Spatio-Temporal Parsing Network for Action Quality
Assessment,
IP(32), 2023, pp. 6386-6400.
IEEE DOI
2311
BibRef
Voisard, C.[Cyril],
de l'Escalopier, N.[Nicolas],
Moreau, A.[Albane],
Vienne-Jumeau, A.[Alienor],
Ricard, D.[Damien],
Oudre, L.[Laurent],
A Reference Data Set for the Study of Healthy Subject Gait with
Inertial Measurements Units,
IPOL(13), 2023, pp. 314-320.
DOI Link
2312
Dataset, Gait.
BibRef
Zhou, K.L.[Kang-Lei],
Ma, Y.[Yue],
Shum, H.P.H.[Hubert P. H.],
Liang, X.H.[Xiao-Hui],
Hierarchical Graph Convolutional Networks for Action Quality
Assessment,
CirSysVideo(33), No. 12, December 2023, pp. 7749-7763.
IEEE DOI
2312
BibRef
Hwang, Y.T.[Yi-Ting],
Hsu, Y.R.[Ya-Ru],
Lin, B.S.[Bor-Shing],
Using B-Spline Model on Depth Camera Data to Predict Physical
Activity Energy Expenditure of Different Levels of Human Exercise,
HMS(54), No. 1, February 2024, pp. 79-88.
IEEE DOI
2402
Task analysis, Cameras, Splines (mathematics), Predictive models,
Hip, Elbow, Calorimetry, B-spline regression, depth camera,
physical activity (PA)
BibRef
Zeng, L.A.[Ling-An],
Zheng, W.S.[Wei-Shi],
Multimodal Action Quality Assessment,
IP(33), 2024, pp. 1600-1613.
IEEE DOI Code:
WWW Link.
2403
Decoding, Adaptation models, Feature extraction, Task analysis,
Quality assessment, Visualization, Rhythm, video understanding
BibRef
Kouhi, R.M.[Reza Mahmoudi],
Stocker, O.[Olivier],
Giguère, P.[Philippe],
Daniel, S.[Sylvie],
CLOUDSPAM: Contrastive Learning On Unlabeled Data for Segmentation
and Pre-Training Using Aggregated Point Clouds and MoCo,
RS(16), No. 21, 2024, pp. 3984.
DOI Link
2411
BibRef
Olivas-Padilla, B.E.[Brenda Elizabeth],
Manitsaris, S.[Sotiris],
Glushkova, A.[Alina],
Interactive Visualization and Dexterity Analysis of Human Movement:
AIMove Platform,
FG24(1-9)
IEEE DOI
2408
Training, Manufacturing industries, Face recognition,
Data visualization, Gesture recognition, Data augmentation, Motion capture
BibRef
Cosma, A.[Adrian],
Radoi, E.[Emilian],
PsyMo: A Dataset for Estimating Self-Reported Psychological Traits
from Gait,
WACV24(4591-4601)
IEEE DOI
2404
Legged locomotion, Biological system modeling, Psychology,
Estimation, Benchmark testing, Fatigue, Algorithms,
Psychology and cognitive science
BibRef
Chiquier, M.[Mia],
Vondrick, C.[Carl],
Muscles in Action,
ICCV23(22034-22044)
IEEE DOI
2401
Dataset, motion, with surface electromyography data.
BibRef
Araújo, J.P.[João Pedro],
Li, J.[Jiaman],
Vetrivel, K.[Karthik],
Agarwal, R.[Rishi],
Wu, J.J.[Jia-Jun],
Gopinath, D.[Deepak],
Clegg, A.[Alexander],
Liu, C.K.[C. Karen],
CIRCLE: Capture In Rich Contextual Environments,
CVPR23(21211-21221)
IEEE DOI
2309
BibRef
Dunnhofer, M.[Matteo],
Sordi, L.[Luca],
Micheloni, C.[Christian],
Visualizing Skiers' Trajectories in Monocular Videos,
CVSports23(5188-5198)
IEEE DOI
2309
BibRef
Suman, H.K.[Himanshu Kumar],
Verlekar, T.T.[Tanmay Tulsidas],
Video-based Gait Analysis for Spinal Deformity,
PeopleAn22(278-288).
Springer DOI
2304
BibRef
Huang, Z.[Zhuo],
Liu, C.[Changhui],
Zhu, R.[Rui],
Zhao, T.Z.[Tong-Zhou],
An AHP-based Physical Fitness Assessment Model for College Students,
ICRVC22(277-280)
IEEE DOI
2301
Training, Computational modeling, Data models,
Health and safety, Physical fitness assessment model, AHP,
Multidimensional assessment
BibRef
Bai, Y.[Yang],
Zhou, D.[Desen],
Zhang, S.Y.[Song-Yang],
Wang, J.[Jian],
Ding, E.[Errui],
Guan, Y.[Yu],
Long, Y.[Yang],
Wang, J.D.[Jing-Dong],
Action Quality Assessment with Temporal Parsing Transformer,
ECCV22(IV:422-438).
Springer DOI
2211
BibRef
Xu, A.C.[Ang-Chi],
Zeng, L.A.[Ling-An],
Zheng, W.S.[Wei-Shi],
Likert Scoring with Grade Decoupling for Long-term Action Assessment,
CVPR22(3222-3231)
IEEE DOI
2210
Computational modeling, Estimation,
Transformers, Feature extraction, Decoding, Video analysis and understanding
BibRef
Peng, K.Y.[Kun-Yu],
Roitberg, A.[Alina],
Yang, K.L.[Kai-Lun],
Zhang, J.M.[Jia-Ming],
Stiefelhagen, R.[Rainer],
Should I take a walk? Estimating Energy Expenditure from Video Data,
CVPM22(2074-2084)
IEEE DOI
2210
Training, Weight measurement, Target tracking, Annotations,
Estimation, Benchmark testing, Muscles
BibRef
Xu, J.L.[Jing-Lin],
Rao, Y.M.[Yong-Ming],
Yu, X.[Xumin],
Chen, G.Y.[Guang-Yi],
Zhou, J.[Jie],
Lu, J.W.[Ji-Wen],
FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment,
CVPR22(2939-2948)
IEEE DOI
2210
Codes, Annotations, Semantics, Quality assessment,
Reliability,
Action and event recognition
BibRef
Lannan, N.[Nate],
Zhou, L.[Le],
Fan, G.L.[Guo-Liang],
A Multiview Depth-based Motion Capture Benchmark Dataset for Human
Motion Denoising and Enhancement Research,
PBVS22(426-435)
IEEE DOI
2210
Conferences, Software algorithms, Noise reduction,
Benchmark testing, Cameras, Motion capture, Adaptive optics
BibRef
Chatzitofis, A.[Anargyros],
Albanis, G.[Georgios],
Zioulis, N.[Nikolaos],
Thermos, S.[Spyridon],
A Low-cost & Realtime Motion Capture System,
CVPR22(21421-21426)
IEEE DOI
2210
Costs, Noise reduction, Virtual reality, Motion capture,
Sensor systems, Real-time systems
BibRef
Farabi, S.[Shafkat],
Himel, H.[Hasibul],
Gazzali, F.[Fakhruddin],
Hasan, M.B.[Md. Bakhtiar],
Kabir, M.H.[Md. Hasanul],
Farazi, M.[Moshiur],
Improving Action Quality Assessment Using Weighted Aggregation,
IbPRIA22(576-587).
Springer DOI
2205
BibRef
Parmar, P.[Paritosh],
Morris, B.[Brendan],
Win-Fail Action Recognition,
Activity22(161-171)
IEEE DOI
2202
Code, Action Recognition.
WWW Link. Did the attempt fail or succeed.
Analytical models, Pediatrics, Limiting, Benchmark testing,
Spatial databases, Spatiotemporal phenomena
BibRef
Li, Y.[Yue],
Habermann, M.[Marc],
Thomaszewski, B.[Bernhard],
Coros, S.[Stelian],
Beeler, T.[Thabo],
Theobalt, C.[Christian],
Deep Physics-aware Inference of Cloth Deformation for Monocular Human
Performance Capture,
3DV21(373-384)
IEEE DOI
2201
Training, Learning systems, Deformable models, Tracking, Dynamics, Clothing
BibRef
Nagai, T.[Takasuke],
Takeda, S.[Shoichiro],
Matsumura, M.[Masaaki],
Shimizu, S.[Shinya],
Yamamoto, S.[Susumu],
Action Quality Assessment with Ignoring Scene Context,
ICIP21(1189-1193)
IEEE DOI
2201
Training, Correlation, Shape, Convolution, Predictive models,
Feature extraction, Action quality assessment, Scene context,
Regression problem
BibRef
Fieraru, M.[Mihai],
Zanfir, M.[Mihai],
Pirlea, S.C.[Silviu Cristian],
Olaru, V.[Vlad],
Sminchisescu, C.[Cristian],
AIFit: Automatic 3D Human-Interpretable Feedback Models for Fitness
Training,
CVPR21(9914-9923)
IEEE DOI
2111
Training, Visualization, Solid modeling,
Shape, Real-time systems, Sensors
BibRef
Nonaka, N.[Naoki],
Fujihira, R.[Ryo],
Nishio, M.[Monami],
Murakami, H.[Hidetaka],
Tajima, T.[Takuya],
Yamada, M.[Mutsuo],
Maeda, A.[Akira],
Seita, J.[Jun],
End-to-End High-Risk Tackle Detection System for Rugby,
CVSports22(3549-3558)
IEEE DOI
2210
Deep learning, Protocols, Head, Pose estimation
BibRef
Martin, Z.[Zubair],
Hendricks, S.[Sharief],
Patel, A.[Amir],
Automated Tackle Injury Risk Assessment in Contact-Based Sports:
A Rugby Union Example,
CVSports21(4589-4598)
IEEE DOI
2109
Protocols, Tracking, System dynamics,
Stability analysis, Time factors, Risk management
BibRef
Zhou, Q.X.[Qian-Xiang],
Jin, Y.[Yu],
Liu, Z.Q.[Zhong-Qi],
The Measurement and Analysis of Chinese Adults' Range of Motion Joint,
DHM21(I:163-177).
Springer DOI
2108
BibRef
Seo, C.J.[Chan-Jin],
Sabanai, M.[Masato],
Goto, Y.[Yuta],
Tagami, K.[Koji],
Ogata, H.[Hiroyuki],
Kanosue, K.[Kazuyuki],
Ohya, J.[Jun],
Extracting and Interpreting Unknown Factors with Classifier for Foot
Strike Types in Running,
ICPR21(3217-3224)
IEEE DOI
2105
Accelerometers, Deep learning, Radio frequency, Video sequences,
raining data, Cameras, Data models, foot strike types, running
BibRef
Fu, B.Y.[Bi-Ying],
Damer, N.[Naser],
Kirchbuchner, F.[Florian],
Kuijper, A.[Arjan],
Generalization of Fitness Exercise Recognition from Doppler
Measurements by Domain-adaption and Few-shot Learning,
HCAU20(203-218).
Springer DOI
2103
BibRef
Masuda, M.[Mana],
Hachiuma, R.[Ryo],
Fujii, R.[Ryo],
Saito, H.[Hideo],
Unsupervised Anomaly Detection of the First Person in Gait from an
Egocentric Camera,
ISVC20(II:604-617).
Springer DOI
2103
BibRef
Zhuang, Y.[Yuan],
Lin, L.F.[Lan-Fen],
Tong, R.F.[Ruo-Feng],
Liu, J.Q.[Jia-Qing],
Iwamoto, Y.[Yutaro],
Chen, Y.W.[Yen-Wei],
G-GCSN: Global Graph Convolution Shrinkage Network for Emotion
Perception from Gait,
MLCSA20(46-57).
Springer DOI
2103
BibRef
Haider, F.,
Albert, P.,
Luz, S.,
Automatic Recognition of Low-Back Chronic Pain Level and Protective
Movement Behaviour using Physical and Muscle Activity Information,
FG20(834-838)
IEEE DOI
2102
Pain, Task analysis, Radio frequency, Feature extraction, Muscles,
Neurons, Support vector machines, Social Signal Processing,
Pain Recognition
BibRef
Loureiro, J.,
Correia, P.L.,
Using a Skeleton Gait Energy Image for Pathological Gait
Classification,
FG20(503-507)
IEEE DOI
2102
Pathology, Feature extraction, Skeleton, Legged locomotion,
Support vector machines, Training, Computational modeling, Gait,
Skeleton
BibRef
Shao, D.,
Zhao, Y.,
Dai, B.,
Lin, D.,
FineGym: A Hierarchical Video Dataset for Fine-Grained Action
Understanding,
CVPR20(2613-2622)
IEEE DOI
2008
Semantics, Benchmark testing, Quality control, Pipelines, Bars,
Space exploration
BibRef
Gao, J.B.[Ji-Bin],
Zheng, W.S.[Wei-Shi],
Pan, J.H.[Jia-Hui],
Gao, C.Y.[Cheng-Ying],
Wang, Y.W.[Yao-Wei],
Zeng, W.[Wei],
Lai, J.H.[Jian-Huang],
An Asymmetric Modeling for Action Assessment,
ECCV20(XXX: 222-238).
Springer DOI
2010
BibRef
Wu, E.,
Nozawa, T.,
Perteneder, F.,
Koike, H.,
VR Alpine Ski Training Augmentation using Visual Cues of Leading
Skier,
CVSports20(3836-3845)
IEEE DOI
2008
Training, Visualization, Tracking, Resists, Eye protection, Sensors
BibRef
Pan, J.H.[Jia-Hui],
Gao, J.[Jibin],
Zheng, W.S.[Wei-Shi],
Action Assessment by Joint Relation Graphs,
ICCV19(6330-6339)
IEEE DOI
2004
graph theory, image motion analysis,
learning (artificial intelligence), video signal processing, Kinetic theory
BibRef
Parmar, P.[Paritosh],
Morris, B.T.[Brendan Tran],
What and How Well You Performed? A Multitask Learning Approach to
Action Quality Assessment,
CVPR19(304-313).
IEEE DOI
2002
BibRef
Saponaro, P.,
Wei, H.,
Dominick, G.,
Kambhamettu, C.,
Estimating Physical Activity Intensity And Energy Expenditure Using
Computer Vision On Videos,
ICIP19(3631-3635)
IEEE DOI
1910
Convolutional neural networks, energy expenditure,
physical activity intensity, action recognition
BibRef
Blanchard, N.,
Skinner, K.,
Kemp, A.,
Scheirer, W.,
Flynn, P.J.[Patrick J.],
'Keep Me In, Coach!': A Computer Vision Perspective on Assessing ACL
Injury Risk in Female Athletes,
WACV19(1366-1374)
IEEE DOI
1904
biomechanics, bone, injuries,
medical image processing, sport, video signal processing,
Cameras
BibRef
Fani, H.,
Mirlohi, A.,
Hosseini, H.,
Herperst, R.,
Swim Stroke Analytic: Front Crawl Pulling Pose Classification,
ICIP18(4068-4072)
IEEE DOI
1809
Elbow, Videos, Cameras, Feature extraction, Forestry, Task analysis,
Swim Stroke Analysis, Pose Estimation
BibRef
Zhao, C.J.[Cai-Jun],
Li, K.W.[Kai-Way],
Perception of Floor Slipperiness Before and After a Walk,
DHM18(242-252).
Springer DOI
1807
BibRef
Wang, B.,
Tao, L.,
Burghardt, T.,
Mirmehdi, M.,
Calorific Expenditure Estimation Using Deep Convolutional Network
Features,
Assist18(69-76)
IEEE DOI
1806
biomedical measurement, convolution, feedforward neural nets,
health care, mean square error methods, activity recognition,
Visualization
BibRef
Saadat, S.,
Pickering, M.R.,
Perriman, D.,
Scarvell, J.M.,
Smith, P.N.,
Fast and Robust Multi-Modal Image Registration for 3D Knee Kinematics,
DICTA17(1-5)
IEEE DOI
1804
edge detection, image matching, image registration,
medical image processing, stereo image processing,
BibRef
Zell, P.,
Rosenhahn, B.,
Learning-Based Inverse Dynamics of Human Motion,
CMBFH17(842-850)
IEEE DOI
1802
Computational modeling, Dynamics, Force, Force measurement,
Mathematical model, Optimization
BibRef
Brattoli, B.[Biagio],
Büchler, U.[Uta],
Wahl, A.S.[Anna-Sophia],
Schwab, M.E.[Martin E.],
Ommer, B.[Björn],
LSTM Self-Supervision for Detailed Behavior Analysis,
CVPR17(3747-3756)
IEEE DOI
1711
Grasping, Manuals, Tracking, Training, Trajectory, Videos
BibRef
Palma, C.[Carlos],
Salazar, A.[Augusto],
Vargas, F.[Francisco],
Automatic Detection of Deviations in Human Movements Using HMM:
Discrete vs Continuous,
ISVC16(II: 534-543).
Springer DOI
1701
BibRef
Gianaria, E.,
Grangetto, M.,
Roppolo, M.,
Mulasso, A.,
Rabaglietti, E.,
Kinect-based gait analysis for automatic frailty syndrome assessment,
ICIP16(1314-1318)
IEEE DOI
1610
Aging
BibRef
Dyshel, M.,
Arkadir, D.,
Bergman, H.,
Weinshall, D.,
Quantifying Levodopa-Induced Dyskinesia Using Depth Camera,
ACVR15(511-518)
IEEE DOI
1602
Biomedical monitoring
BibRef
Pradhan, N.[Neera],
Benavides, A.[Angela],
Zhu, Q.[Qin],
Banic, A.U.[Amy Ulinski],
Evaluation of Fatigue Measurement Using Human Motor Coordination for
Gesture-Based Interaction in 3D Environments,
ISVC15(II: 443-452).
Springer DOI
1601
BibRef
Nabiyouni, M.,
Saktheeswaran, A.,
Bowman, D.A.,
Karanth, A.,
Comparing the performance of natural, semi-natural, and non-natural
locomotion techniques in virtual reality,
3DUI15(3-10)
IEEE DOI
1511
gait analysis
BibRef
Boutaayamou, M.[Mohamed],
Schwartz, C.[Cedric],
Denoel, V.[Vincent],
Forthomme, B.[Benedicte],
Croisier, J.L.[Jean-Louis],
Garraux, G.[Gaetan],
Verly, J.G.[Jacques G.],
Bruls, O.[Olivier],
Development and validation of a 3D kinematic-based method for
determining gait events during overground walking,
IC3D14(1-6)
IEEE DOI
1503
Accuracy
BibRef
Boutaayamou, M.,
Schwartz, C.,
Stamatakis, J.,
Denoel, V.,
Maquet, D.,
Forthomme, B.,
Croisier, J.L.,
Macq, B.,
Verly, J.G.,
Garraux, G.,
Bruls, O.,
Validated extraction of gait events from 3D accelerometer recordings,
IC3D12(1-4)
IEEE DOI
1503
accelerometers
BibRef
Samaraweera, G.,
Guo, R.[Rongkai],
Quarles, J.,
Latency and avatars in Virtual Environments and the effects on gait
for persons with mobility impairments,
3DUI13(23-30)
IEEE DOI
1406
avatars
BibRef
Nakamura, T.,
Nishimura, N.,
Asahi, T.,
Oyama, G.,
Sato, M.,
Kajimoto, H.,
Kinect-based automatic scoring system for spasmodic torticollis,
3DUI14(155-156)
IEEE DOI
1406
diseases
BibRef
Baumgartner, T.[Tobias],
Mitzel, D.[Dennis],
Leibe, B.[Bastian],
Tracking People and Their Objects,
CVPR13(3658-3665)
IEEE DOI
1309
BibRef
Manjanna, S.[Sandeep],
Dudek, G.[Gregory],
Giguere, P.[Philippe],
Using Gait Change for Terrain Sensing by Robots,
CRV13(16-22)
IEEE DOI
1308
Acceleration
BibRef
Vieira, A.W.[Antonio W.],
Lewiner, T.[Thomas],
Schwartz, W.R.[William Robson],
Campos, M.[Mario],
Distance matrices as invariant features for classifying MoCap data,
ICPR12(2934-2937).
WWW Link.
1302
BibRef
Zong, C.[Cong],
Chetouani, M.,
Tapus, A.,
Automatic gait characterization for a mobility assistance system,
ICARCV10(473-478).
IEEE DOI
1109
BibRef
Svendsen, J.[Jeremy],
Albu, A.B.[Alexandra Branzan],
Virji-Babul, N.[Naznin],
Analysis of patterns of motor behavior in gamers with down syndrome,
CVCG11(1-6).
IEEE DOI
1106
BibRef
Spurlock, S.[Scott],
Chang, R.[Remco],
Wang, X.Y.[Xiao-Yu],
Arceneaux, G.[George],
Keefe, D.F.[Daniel F.],
Souvenir, R.[Richard],
Combining Automated and Interactive Visual Analysis of Biomechanical
Motion Data,
ISVC10(II: 564-573).
Springer DOI
1011
BibRef
Choi, W.[Woong],
Mukaida, S.[Sho],
Sekiguchi, H.[Hiroyuki],
Hachimura, K.[Kozaburo],
Quantitative analysis of Iaido proficiency by using motion data,
ICPR08(1-4).
IEEE DOI
0812
Iaido: Japanese sword technique
BibRef
Fothergill, S.[Simon],
Harle, R.[Robert],
Holden, S.[Sean],
Modeling the Model Athlete: Automatic Coaching of Rowing Technique,
SSPR08(372-381).
Springer DOI
0812
BibRef
Wang, Y.[Ying],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Multi-view Gymnastic Activity Recognition with Fused HMM,
ACCV07(I: 667-677).
Springer DOI
0711
BibRef
Kobashi, S.[Syoji],
Shibanuma, N.[Nao],
Kondo, K.[Katsuya],
Kurosaka, M.[Masahiro],
Hata, Y.[Yutaka],
Robust Estimation of Knee Kinematics After Total Knee Arthroplasty with
Evolutional Computing Approach,
ICIP07(VI: 9-12).
IEEE DOI
0709
BibRef
Li, H.J.[Hao-Jie],
Lin, S.X.[Shou-Xun],
Zhang, Y.D.[Yong-Dong],
Combining Template Matching and Model Fitting for Human Body
Segmentation and Tracking with Applications to Sports Training,
ICIAR06(II: 823-831).
Springer DOI
0610
BibRef
Tong, X.F.[Xiao-Feng],
Duan, L.Y.[Ling-Yu],
Xu, C.S.[Chang-Sheng],
Tian, Q.[Qi],
Lu, H.Q.[Han-Qing],
Local Motion Analysis and Its Application in Video based Swimming Style
Recognition,
ICPR06(II: 1258-1261).
IEEE DOI
0609
BibRef
Lakany, H.M.,
Birbilis, A., and
Hayes, G.M.,
Recognising Walkers Using Moving Light Displays,
DAINo. 811, June 1996.
Neural network classifier applied to 2-D FFT features.
BibRef
9606
Lakany, H.M., and
Hayes, G.M.,
An Algorithm for Recognising Walkers,
DAINo. 848, March 1997.
Spatio temporal analysis of joint features, uses moving light display.
BibRef
9703
Lakany, H.M., and
Hayes, G.M.,
A Neural Network for Moving Light Display Trajectory Prediction,
DAINo. 847, March 1997.
Radial Basis Function Neural Network to predict location of lights
on joints of walking person.
BibRef
9703
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Rehabilitation Systems, Rehabilitation Techniques .