Jones, D.I.,
Aerial inspection of overhead power lines using video: estimation of
image blurring due to vehicle and camera motion,
VISP(147), No. 2, April 2000, pp. 157.
0005
BibRef
Golightly, I.[Ian],
Jones, D.[Dewi],
Corner detection and matching for visual tracking during power line
inspection,
IVC(21), No. 9, September 2003, pp. 827-840.
Elsevier DOI
0308
BibRef
Sun, C.M.[Chang-Ming],
Jones, R.[Ronald],
Talbot, H.[Hugues],
Wu, X.L.[Xiao-Liang],
Cheong, K.[Kevin],
Beare, R.[Richard],
Buckley, M.[Michael],
Berman, M.[Mark],
Measuring the distance of vegetation from powerlines using stereo
vision,
PandRS(60), No. 4, June 2006, pp. 269-283.
Elsevier DOI
PDF File.
0610
Stereo matching; powerline inspection; power pole segmentation;
vegetation clearance; 3D vegetation surface
BibRef
Li, Z.R.[Zheng-Rong],
Liu, Y.[Yuee],
Walker, R.[Rodney],
Hayward, R.[Ross],
Zhang, J.L.[Jing-Lan],
Towards automatic power line detection for a UAV surveillance system
using pulse coupled neural filter and an improved Hough transform,
MVA(21), No. 5, August 2010, pp. 677-686.
WWW Link.
1011
BibRef
Liu, Y.[Yuee],
Li, Z.R.[Zheng-Rong],
Hayward, R.[Ross],
Walker, R.[Rodney],
Jin, H.[Hang],
Classification of Airborne LIDAR Intensity Data Using Statistical
Analysis and Hough Transform with Application to Power Line Corridors,
DICTA09(462-467).
IEEE DOI
0912
BibRef
Li, Z.R.[Zheng-Rong],
Liu, Y.[Yuee],
Hayward, R.[Ross],
Zhang, J.L.[Jing-Lan],
Cai, J.H.[Jin-Hai],
Knowledge-based power line detection for UAV surveillance and
inspection systems,
IVCNZ08(1-6).
IEEE DOI
0811
BibRef
Mills, S.J.,
Gerardo Castro, M.P.,
Li, Z.,
Cai, J.,
Hayward, R.,
Mejias, L.,
Walker, R.A.,
Evaluation of Aerial Remote Sensing Techniques for Vegetation
Management in Power-Line Corridors,
GeoRS(48), No. 9, September 2010, pp. 3379-3390.
IEEE DOI
1008
BibRef
Li, Z.R.[Zheng-Rong],
Hayward, R.,
Zhang, J.L.[Jing-Lan],
Liu, Y.[Yuee],
Individual Tree Crown Delineation Techniques for Vegetation Management
in Power Line Corridor,
DICTA08(148-154).
IEEE DOI
0812
BibRef
Ma, Q.,
Goshi, D.S.,
Shih, Y.C.,
Sun, M.T.,
An Algorithm for Power Line Detection and Warning Based on a
Millimeter-Wave Radar Video,
IP(20), No. 12, December 2011, pp. 3534-3543.
IEEE DOI
1112
BibRef
Zhu, L.L.[Ling-Li],
Hyyppä, J.[Juha],
Fully-Automated Power Line Extraction from Airborne Laser Scanning
Point Clouds in Forest Areas,
RS(6), No. 11, 2014, pp. 11267-11282.
DOI Link
1412
See also Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D, The.
BibRef
Cheng, L.[Liang],
Tong, L.H.[Li-Hua],
Wang, Y.[Yu],
Li, M.C.[Man-Chun],
Extraction of Urban Power Lines from Vehicle-Borne LiDAR Data,
RS(6), No. 4, 2014, pp. 3302-3320.
DOI Link
1405
See also Building Point Detection from Vehicle-Borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis.
BibRef
Guo, B.[Bo],
Huang, X.F.[Xian-Feng],
Zhang, F.[Fan],
Sohn, G.[Gunho],
Classification of airborne laser scanning data using JointBoost,
PandRS(100), No. 1, 2015, pp. 71-83.
Elsevier DOI
1502
LiDAR
BibRef
Sohn, G.[Gunho],
Jwa, Y.[Yoonseok],
Kim, H.B.[Heungsik Brian],
Automatic Powerline Scene Classification And Reconstruction Using
Airborne Lidar Data,
AnnalsPRS(I-3), No. 2012, pp. 167-172.
HTML Version.
1209
BibRef
Earlier: A2, A1, A3:
Automatic 3D Powerline Reconstruction Using Airborne LIDAR Data,
Laser09(105).
0909
See also Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR Data.
BibRef
Luo, C.,
Sohn, G.,
Line-based Classification of Terrestrial Laser Scanning Data using
Conditional Random Field,
SSG13(155-160).
DOI Link
1402
BibRef
Kim, H.B.[Heungsik Brian],
Sohn, G.[Gunho],
Random Forests Based Multiple Classifier System For Power-Line Scene
Classification,
Laser11(xx-yy).
DOI Link
1109
BibRef
Earlier:
3D classification of power-line scene from airborne laser scanning data
using Random Forests,
PCVIA10(A:126).
PDF File.
1009
BibRef
Jwa, Y.[Yoonseok],
Sohn, G.[Gunho],
A multi-level span analysis for improving 3D power-line reconstruction
performance using airborne laser scanning data,
PCVIA10(A:97).
PDF File.
1009
BibRef
Cho, C.J.,
Ko, H.,
Video-Based Dynamic Stagger Measurement of Railway Overhead Power
Lines Using Rotation-Invariant Feature Matching,
ITS(16), No. 3, June 2015, pp. 1294-1304.
IEEE DOI
1506
Feature extraction
BibRef
Conde, B.[Borja],
Villarino, A.[Alberto],
Cabaleiro, M.[Manuel],
Gonzalez-Aguilera, D.[Diego],
Geometrical Issues on the Structural Analysis of Transmission
Electricity Towers Thanks to Laser Scanning Technology and Finite
Element Method,
RS(7), No. 9, 2015, pp. 11551.
DOI Link
1511
BibRef
Chen, Y.P.[Yun-Ping],
Li, Y.[Yang],
Zhang, H.X.[Hui-Xiong],
Tong, L.[Ling],
Cao, Y.X.[Yong-Xing],
Xue, Z.[Zhihang],
Automatic power line extraction from high resolution remote sensing
imagery based on an improved Radon transform,
PR(49), No. 1, 2016, pp. 174-186.
Elsevier DOI
1511
High resolution
BibRef
Li, Q.Q.[Qing-Quan],
Chen, Z.P.[Zhi-Peng],
Hu, Q.[Qingwu],
A Model-Driven Approach for 3D Modeling of Pylon from Airborne LiDAR
Data,
RS(7), No. 9, 2015, pp. 11501.
DOI Link
1511
BibRef
Guo, B.[Bo],
Li, Q.Q.[Qing-Quan],
Huang, X.F.[Xian-Feng],
Wang, C.S.[Chi-Sheng],
An Improved Method for Power-Line Reconstruction from Point Cloud
Data,
RS(8), No. 1, 2016, pp. 36.
DOI Link
1602
BibRef
Guo, B.[Bo],
Huang, X.F.[Xian-Feng],
Li, Q.Q.[Qing-Quan],
Zhang, F.[Fan],
Zhu, J.S.[Jia-Song],
Wang, C.S.[Chi-Sheng],
A Stochastic Geometry Method for Pylon Reconstruction from Airborne
LiDAR Data,
RS(8), No. 3, 2016, pp. 243.
DOI Link
1604
BibRef
Matikainen, L.[Leena],
Lehtomäki, M.[Matti],
Ahokas, E.[Eero],
Hyyppä, J.[Juha],
Karjalainen, M.[Mika],
Jaakkola, A.[Anttoni],
Kukko, A.[Antero],
Heinonen, T.[Tero],
Remote sensing methods for power line corridor surveys,
PandRS(119), No. 1, 2016, pp. 10-31.
Elsevier DOI
1610
Power line
BibRef
Pastucha, E.[Elzbieta],
Catenary System Detection, Localization and Classification Using
Mobile Scanning Data,
RS(8), No. 10, 2016, pp. 801.
DOI Link
1609
overhead power lines.
BibRef
Jung, J.W.[Jae-Wook],
Chen, L.[Leihan],
Sohn, G.[Gunho],
Luo, C.[Chao],
Won, J.U.[Jong-Un],
Multi-Range Conditional Random Field for Classifying Railway
Electrification System Objects Using Mobile Laser Scanning Data,
RS(8), No. 12, 2016, pp. 1008.
DOI Link
1612
BibRef
Zhang, Y.[Yong],
Yuan, X.X.[Xiu-Xiao],
Fang, Y.[Yi],
Chen, S.Y.[Shi-Yu],
UAV Low Altitude Photogrammetry for Power Line Inspection,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link
1702
BibRef
Zhang, Y.[Yong],
Yuan, X.X.[Xiu-Xiao],
Li, W.Z.[Wen-Zhuo],
Chen, S.Y.[Shi-Yu],
Automatic Power Line Inspection Using UAV Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Jaw, Y.[Yoonseok],
Sohn, G.[Gunho],
Wind adaptive modeling of transmission lines using minimum
description length,
PandRS(125), No. 1, 2017, pp. 193-206.
Elsevier DOI
1703
3D transmission line model
BibRef
Cerón, A.[Alexander],
Mondragón, I.[Iván],
Prieto, F.[Flavio],
Real-time transmission tower detection from video based on a feature
descriptor,
IET-CV(11), No. 1, February 2017, pp. 33-42.
DOI Link
1703
BibRef
Jiang, S.[San],
Jiang, W.[Wanshou],
Huang, W.[Wei],
Yang, L.[Liang],
UAV-Based Oblique Photogrammetry for Outdoor Data Acquisition and
Offsite Visual Inspection of Transmission Line,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Jiang, S.[San],
Jiang, W.[Wanshou],
On-Board GNSS/IMU Assisted Feature Extraction and Matching for
Oblique UAV Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Qin, X.Y.[Xin-Yan],
Wu, G.P.[Gong-Ping],
Ye, X.[Xuhui],
Huang, L.[Le],
Lei, J.[Jin],
A Novel Method to Reconstruct Overhead High-Voltage Power Lines Using
Cable Inspection Robot LiDAR Data,
RS(9), No. 7, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Wang, Y.J.[Yan-Jun],
Chen, Q.[Qi],
Liu, L.[Lin],
Zheng, D.Y.[Dun-Yong],
Li, C.[Chaokui],
Li, K.[Kai],
Supervised Classification of Power Lines from Airborne LiDAR Data in
Urban Areas,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Zhou, R.[Ruqin],
Jiang, W.[Wanshou],
Huang, W.[Wei],
Xu, B.[Bo],
Jiang, S.[San],
A Heuristic Method for Power Pylon Reconstruction from Airborne LiDAR
Data,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link
1712
BibRef
Chen, C.[Chi],
Yang, B.S.[Bi-Sheng],
Song, S.[Shuang],
Peng, X.Y.[Xiang-Yang],
Huang, R.G.[Rong-Gang],
Automatic Clearance Anomaly Detection for Transmission Line Corridors
Utilizing UAV-Borne LIDAR Data,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Yang, B.S.[Bi-Sheng],
Chen, C.[Chi],
Automatic registration of UAV-borne sequent images and LiDAR data,
PandRS(101), No. 1, 2015, pp. 262-274.
Elsevier DOI
1503
Unmanned aerial vehicles mapping
BibRef
Wang, Y.J.[Yan-Jun],
Chen, Q.[Qi],
Liu, L.[Lin],
Li, X.[Xiong],
Sangaiah, A.K.[Arun Kumar],
Li, K.[Kai],
Systematic Comparison of Power Line Classification Methods from ALS
and MLS Point Cloud Data,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Shi, Z.W.[Zhen-Wei],
Kang, Z.Z.[Zhi-Zhong],
Lin, Y.[Yi],
Liu, Y.[Yu],
Chen, W.[Wei],
Automatic Recognition of Pole-Like Objects from Mobile Laser Scanning
Point Clouds,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Zhou, R.Q.[Ru-Qin],
Jiang, W.S.[Wan-Shou],
Jiang, S.[San],
A Novel Method for High-Voltage Bundle Conductor Reconstruction from
Airborne LiDAR Data,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Ortega, S.[Sebastián],
Trujillo, A.[Agustín],
Santana, J.M.[José Miguel],
Suárez, J.P.[José Pablo],
Santana, J.[Jaisiel],
Characterization and modeling of power line corridor elements from
LiDAR point clouds,
PandRS(152), 2019, pp. 24-33.
Elsevier DOI
1905
Power line, Classification, Point cloud, Modeling
BibRef
Zhang, H.[Heng],
Yang, W.[Wen],
Yu, H.[Huai],
Zhang, H.[Haijian],
Xia, G.S.[Gui-Song],
Detecting Power Lines in UAV Images with Convolutional Features and
Structured Constraints,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Chen, S.C.[Shi-Chao],
Wang, C.[Cheng],
Dai, H.[Huayang],
Zhang, H.B.[He-Bing],
Pan, F.F.[Fei-Fei],
Xi, X.H.[Xiao-Huan],
Yan, Y.G.[Yue-Guan],
Wang, P.[Pu],
Yang, X.B.[Xue-Bo],
Zhu, X.X.[Xiao-Xiao],
Aben, A.[Ardana],
Power Pylon Reconstruction Based on Abstract Template Structures
Using Airborne LiDAR Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Awrangjeb, M.[Mohammad],
Extraction of Power Line Pylons and Wires Using Airborne LiDAR Data
at Different Height Levels,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Peng, S.[Shuwen],
Xi, X.H.[Xiao-Huan],
Wang, C.[Cheng],
Dong, P.L.[Pin-Liang],
Wang, P.[Pu],
Nie, S.[Sheng],
Systematic Comparison of Power Corridor Classification Methods from
ALS Point Clouds,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Sánchez-Rodríguez, A.[Ana],
Soilán, M.[Mario],
Cabaleiro, M.[Manuel],
Arias, P.[Pedro],
Automated Inspection of Railway Tunnels' Power Line Using LiDAR Point
Clouds,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Tomaszewski, M.[Michal],
Michalski, P.[Pawel],
Ruszczak, B.[Bogdan],
Zator, S.[Slawomir],
Detection of power line insulators on digital images with the use of
laser spots,
IET-IPR(13), No. 12, October 2019, pp. 2358-2366.
DOI Link
1911
BibRef
Zhang, R.Z.[Rui-Zhuo],
Yang, B.S.[Bi-Sheng],
Xiao, W.[Wen],
Liang, F.[Fuxun],
Liu, Y.[Yang],
Wang, Z.M.[Zi-Ming],
Automatic Extraction of High-Voltage Power Transmission Objects from
UAV Lidar Point Clouds,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Tao, X.[Xian],
Zhang, D.P.[Da-Peng],
Wang, Z.H.[Zi-Hao],
Liu, X.L.[Xi-Long],
Zhang, H.Y.[Hong-Yan],
Xu, D.[De],
Detection of Power Line Insulator Defects Using Aerial Images
Analyzed With Convolutional Neural Networks,
SMCS(50), No. 4, April 2020, pp. 1486-1498.
IEEE DOI
2004
Insulators, Inspection, Feature extraction, Object detection, Shape,
Support vector machines, Convolutional neural networks,
insulators
BibRef
Jung, J.[Jaehoon],
Che, E.[Erzhuo],
Olsen, M.J.[Michael J.],
Shafer, K.C.[Katherine C.],
Automated and efficient powerline extraction from laser scanning data
using a voxel-based subsampling with hierarchical approach,
PandRS(163), 2020, pp. 343-361.
Elsevier DOI
2005
Powerlines, Lidar, Laser scanning, Point cloud, Voxel-based subsampling
BibRef
Qiao, S.J.[Si-Jia],
Sun, Y.[Yu],
Zhang, H.P.[Hao-Peng],
Deep Learning Based Electric Pylon Detection in Remote Sensing Images,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Munir, N.[Nosheen],
Awrangjeb, M.[Mohammad],
Stantic, B.[Bela],
Automatic Extraction of High-Voltage Bundle Subconductors Using
Airborne LiDAR Data,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Knyaz, V.A.[Vladimir A.],
Kniaz, V.V.[Vladimir V.],
Remondino, F.[Fabio],
Zheltov, S.Y.[Sergey Y.],
Gruen, A.[Armin],
3D Reconstruction of a Complex Grid Structure Combining UAS Images
and Deep Learning,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
radio or television towers.
BibRef
Kniaz, V.V.[Vladimir V.],
Zheltov, S.Y.[Sergey Y.],
Remondino, F.[Fabio],
Knyaz, V.A.[Vladimir A.],
Bordodymov, A.,
Gruen, A.[Armin],
Wire Structure Image-based 3d Reconstruction Aided By Deep Learning,
ISPRS20(B2:435-441).
DOI Link
2012
BibRef
Pastucha, E.[Elzbieta],
Puniach, E.[Edyta],
Scislowicz, A.[Agnieszka],
Cwiakala, P.[Pawel],
Niewiem, W.[Witold],
Wiacek, P.[Pawel],
3D Reconstruction of Power Lines Using UAV Images to Monitor Corridor
Clearance,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Nardinocchi, C.,
Balsi, M.,
Esposito, S.,
Fully Automatic Point Cloud Analysis for Powerline Corridor Mapping,
GeoRS(58), No. 12, December 2020, pp. 8637-8648.
IEEE DOI
2012
Wires, Poles and towers, Laser radar,
Task analysis, Inspection, Vegetation mapping, Data analysis,
unmanned aerial vehicles (UAVs)
BibRef
Yu, W.,
Xi, J.,
Wu, Z.,
Lei, W.,
Zhu, C.,
Tang, T.,
A Method for Extracting Substation Equipment Based on UAV Laser
Scanning Point Clouds,
SmartCityApp20(413-419).
DOI Link
2012
BibRef
Kähler, O.,
Hochstöger, S.,
Kemper, G.,
Birchbauer, J.,
Automating Powerline Inspection: A Novel Multisensor System for Data
Analysis Using Deep Learning,
ISPRS20(B4:747-754).
DOI Link
2012
BibRef
Wu, Z.,
Lei, W.,
Sun, W.,
Chen, C.,
Wang, H.,
Yu, W.,
Zhong, H.,
Zhu, C.,
Xi, J.,
Yang, B.,
Power Transmission Line Reconstruction From Sequential Oblique UAV
Images,
ISPRS20(B2:515-520).
DOI Link
2012
BibRef
Wu, Z.,
Wang, H.,
Yu, W.,
Xi, J.,
Lei, W.,
Tang, T.,
3d High-efficiency and High-precision Model-driven Modelling for Power
Transmission Tower,
SmartCityApp20(421-426).
DOI Link
2012
BibRef
Choi, H.,
Koo, G.,
Kim, B.J.,
Kim, S.W.[S. Woo],
Real-time Power Line Detection Network using Visible Light and
Infrared Images,
IVCNZ19(1-6)
IEEE DOI
2004
convolutional neural nets, image fusion, image segmentation,
infrared imaging, inspection, learning (artificial intelligence), Real-time
BibRef
Jiang, S.,
Jiang, W.,
UAV-based Oblique Photogrammetry for 3d Reconstruction of Transmission
Line: Practices and Applications,
UAV-g19(401-406).
DOI Link
1912
BibRef
Toschi, I.,
Morabito, D.,
Grilli, E.,
Remondino, F.,
Carlevaro, C.,
Cappellotto, A.,
Tamagni, G.,
Maffeis, M.,
Cloud-based Solution for Nationwide Power Line Mapping,
Semantics3D19(119-126).
DOI Link
1912
BibRef
Pu, S.,
Xie, L.,
Ji, M.,
Zhao, Y.,
Liu, W.,
Wang, L.,
Zhao, Y.,
Yang, F.,
Qiu, D.,
Real-time Powerline Corridor Inspection By Edge Computing of UAV Lidar
Data,
UAV-g19(547-551).
DOI Link
1912
BibRef
Yermo, M.,
Martínez, J.,
Lorenzo, O.G.,
Vilariño, D.L.,
Cabaleiro, J.C.,
Pena, T.F.,
Rivera, F.F.,
Automatic Detection and Characterisation of Power Lines and Their
Surroundings Using Lidar Data,
Laser19(1161-1168).
DOI Link
1912
BibRef
Liu, L.,
Zhang, T.,
Zhao, K.,
Wiliem, A.,
Astin-Walmsley, K.,
Lovell, B.,
Deep Inspection: An Electrical Distribution Pole Parts Study VIA Deep
Neural Networks,
ICIP19(4170-4174)
IEEE DOI
1910
electrical distribution pole, integrated inspection system,
deep neural networks, object detection, imbalanced data classification
BibRef
Ganovelli, F.,
Malomo, L.,
Scopigno, R.,
Reconstructing Power Lines from Images,
IVCNZ18(1-6)
IEEE DOI
1902
Wires, Cameras, Image segmentation,
Image reconstruction, Image edge detection,
power lines
BibRef
McCulloch, J.[Josh],
Green, R.[Richard],
Conductor Reconstruction for Dynamic Line Rating Using
Vehicle-Mounted LiDAR,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Earlier:
Utility pole extraction using vehicle-mounted LIDAR for dynamic line
rating,
IVCNZ17(1-5)
IEEE DOI
1902
BibRef
And:
Density Based Recovery of Urban Power Lines Using Vehicle-Mounted
LiDAR,
IVCNZ18(1-5)
IEEE DOI
1902
BibRef
Earlier:
Extraction of utility poles in LIDAR scans using cross-sectional
slices,
ICVNZ16(1-4)
IEEE DOI
1701
Conductors, Meters, Laser radar, Clustering algorithms,
Poles and towers, Urban areas, lidar.
optical radar, principal component analysis, radar clutter,
road vehicle radar, utility pole extraction,
dynamic line rating.
Clustering algorithms
BibRef
Pontecorvo, C.[Carmine],
Redding, N.J.[Nicholas J.],
Non-Periodic Translation Symmetry Detection Using Global Self
Similarity,
DICTA17(1-8)
IEEE DOI
1804
Multiple poles and shadows in aerial images.
correlation methods, image matching, object detection,
actual aerial imagery, approximate size, blobs, consistent regions,
Tensile stress
BibRef
Awrangjeb, M.,
Jonas, D.,
Zhou, J.,
An Automatic Technique for Power Line Pylon Detection from Point
Cloud Data,
DICTA17(1-8)
IEEE DOI
1804
feature extraction, object detection, trees (mathematics),
candidate pylons, connected component analysis,
Wires
BibRef
Maeda, K.,
Takahashi, S.,
Ogawa, T.,
Haseyama, M.,
Automatic estimation of deterioration level on transmission towers
via deep extreme learning machine based on local receptive field,
ICIP17(2379-2383)
IEEE DOI
1803
Estimation, Feature extraction, Inspection, Machine learning,
Poles and towers, Training, Visualization,
transmission tower
BibRef
Cabello, F.C.[Frank C.],
Iano, Y.[Yuzo],
Arthur, R.[Rangel],
Dueñas, A.[Abel],
León, J.[Julio],
Caetano, D.G.[Diogo G.],
Automatic Detection of Utility Poles Using the Bag of Visual Words
Method for Different Feature Extractors,
CAIP17(II: 116-126).
Springer DOI
1708
BibRef
Gubbi, J.[Jayavardhana],
Varghese, A.[Ashley],
Balamuralidhar, P.,
A new deep learning architecture for detection of long linear
infrastructure,
MVA17(207-210)
DOI Link
1708
Adaptation models, Data models, Drones, Feature extraction,
Machine learning, Monitoring, Training
BibRef
Zhou, X.[Xiao],
Zheng, X.L.[Xiao-Liang],
Ou, K.[Kejun],
Power line detect system based on stereo vision and FPGA,
ICIVC17(715-719)
IEEE DOI
1708
Decision making, Digital signal processing,
Field programmable gate arrays, Image edge detection,
Real-time systems, Robustness, Shape, FPGA, census transform,
morphology, power line detect, real time, stereo, vision
BibRef
Baker, L.,
Mills, S.,
Langlotz, T.,
Rathbone, C.,
Power line detection using Hough transform and line tracing
techniques,
ICVNZ16(1-6)
IEEE DOI
1701
Cameras
BibRef
Han, G.[Ge],
Gong, W.[Wei],
Cui, X.H.[Xiao-Hui],
Zhang, M.[Miao],
Chen, J.[Jun],
Estimation Of Insulator Contaminations By Means Of Remote Sensing
Technique,
ISPRS16(B8: 73-77).
DOI Link
1610
To prevent power failures.
BibRef
Zhou, G.,
Yuan, J.,
Yen, I.L.,
Bastani, F.,
Robust real-time UAV based power line detection and tracking,
ICIP16(744-748)
IEEE DOI
1610
Cameras
BibRef
Li, B.L.[Bing-Lin],
Thomas, G.[Gabriel],
Williams, D.[Dexter],
Ice Detection on Electrical Power Cables,
ISVC15(II: 355-364).
Springer DOI
1601
BibRef
Józków, G.,
Vander Jagt, B.,
Toth, C.,
Experiments with UAS Imagery for Automatic Modeling of Power Line 3D
Geometry,
UAV-g15(403-409).
DOI Link
1512
BibRef
Pan, W.W.,
Dou, Y.J.,
Wang, G.L.,
Wu, M.X.,
Ren, R.G.,
Xu, X.,
Development and Test of Blimp-Based Compact LIDAR Powewr-Line
Inspection System,
PIA15(155-159).
DOI Link
1504
BibRef
Cerón, A.[Alexander],
Mondragón Bernal, I.F.[Iván F.],
Prieto, F.[Flavio],
Towards Visual Based Navigation with Power Line Detection,
ISVC14(I: 827-836).
Springer DOI
1501
BibRef
Liu, Y.,
Mejias, L.,
Li, Z.,
Fast Power Line Detection and Localization Using Steerable Filter For
Active Uav Guidance,
ISPRS12(XXXIX-B3:491-496).
DOI Link
1209
BibRef
Liang, J.[Jing],
Zhang, J.X.[Ji-Xian],
Deng, K.Z.[Ka-Zhong],
Liu, Z.J.[Zheng-Jun],
Shi, Q.S.[Qun-Shan],
A New Power-Line Extraction Method Based on Airborne LiDAR Point Cloud
Data,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Shi, Q.S.[Qun-Shan],
Xu, Q.[Qing],
Xing, S.[Shuai],
Lan, C.Z.[Chao-Zhen],
Liang, J.[Jing],
A Vector Collection Method Based on LiDAR Point Cloud Data,
ISIDF11(1-4).
IEEE DOI
1111
BibRef
Wan, X.[Xue],
Qu, X.Z.[Xiao-Zhi],
Wang, L.T.[Li-Tao],
Wu, B.[Buwei],
Zhang, J.Q.[Jian-Qing],
Zheng, S.Y.[Shun-Yi],
Photogrammetric techniques for power line ranging,
PCVIA10(B:29).
PDF File.
1009
BibRef
Candamo, J.[Joshua],
Goldgof, D.[Dmitry],
Kasturi, R.[Rangachar],
Godavarthy, S.[Sridhar],
Detecting Wires in Cluttered Urban Scenes Using a Gaussian Model,
ICPR10(432-435).
IEEE DOI
1008
Not roads, powerlines, etc.
BibRef
Gu, I.Y.H.[Irene Y.H.],
Sistiaga, U.[Unai],
Berlijn, S.M.[Sonja M.],
Fahlström, A.[Anders],
Intelligent Video Surveillance for Detecting Snow and Ice Coverage on
Electrical Insulators of Power Transmission Lines,
CAIP09(1179-1187).
Springer DOI
0909
BibRef
Gu, I.Y.H.[Irene Y.H.],
Sistiaga, U.[Unai],
Berlijn, S.M.[Sonja M.],
Fahlstrom, A.[Anders],
Online detection of snow coverage and swing angles of electrical
insulators on power transmission lines using videos,
ICIP09(3249-3252).
IEEE DOI
0911
BibRef
Ituen, I.,
Sohn, G.,
Jenkins, A.,
A Case Study: Workflow Analysis of Power Line Systems for Risk
Management,
ISPRS08(B3b: 331 ff).
PDF File.
0807
BibRef
Hofler, H.,
Dambacher, M.,
Dimopoulos, N.,
Jetter, V.,
Monitoring and inspecting overhead wires and supporting structures,
IVS04(512-517).
IEEE DOI
0411
BibRef
Loehlein, O.[Otto],
Detection of Linear Objects for Synthetic Vision Applications,
SPIE(2736), 1996, pp. 128-135.
Roads and power lines in radar images.
BibRef
9600
Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Tunnels, Tunnel Descriptions, Tunnel Analysis .