Bengio, Y.,
Learning deep architectures for AI,
FTML(1), No. 1, 2009, pp. 1-127.
DOI Link
1609
BibRef
Zhao, W.Z.[Wen-Zhi],
Du, S.H.[Shi-Hong],
Learning multiscale and deep representations for classifying remotely
sensed imagery,
PandRS(113), No. 1, 2016, pp. 155-165.
Elsevier DOI
1602
Multiscale convolutional neural network (MCNN)
BibRef
Barat, C.[Cécile],
Ducottet, C.[Christophe],
String representations and distances in deep Convolutional Neural
Networks for image classification,
PR(54), No. 1, 2016, pp. 104-115.
Elsevier DOI
1603
Convolutional Neural Network
BibRef
Greenspan, H.,
van Ginneken, B.,
Summers, R.M.,
Guest Editorial Deep Learning in Medical Imaging:
Overview and Future Promise of an Exciting New Technique,
MedImg(35), No. 5, May 2016, pp. 1153-1159.
IEEE DOI
1605
Artificial neural networks
BibRef
Murthy, V.N.,
Singh, V.,
Chen, T.,
Manmatha, R.,
Comaniciu, D.,
Deep Decision Network for Multi-class Image Classification,
CVPR16(2240-2248)
IEEE DOI
1612
BibRef
Mansoor, A.,
Cerrolaza, J.J.,
Idrees, R.,
Biggs, E.,
Alsharid, M.A.,
Avery, R.A.,
Linguraru, M.G.,
Deep Learning Guided Partitioned Shape Model for Anterior Visual
Pathway Segmentation,
MedImg(35), No. 8, August 2016, pp. 1856-1865.
IEEE DOI
1608
Biomedical optical imaging
BibRef
van Noord, N.[Nanne],
Postma, E.[Eric],
Learning scale-variant and scale-invariant features for deep image
classification,
PR(61), No. 1, 2017, pp. 583-592.
Elsevier DOI
1609
Convolutional Neural Networks
BibRef
Du, J.[Jun],
Xu, Y.[Yong],
Hierarchical deep neural network for multivariate regression,
PR(63), No. 1, 2017, pp. 149-157.
Elsevier DOI
1612
Divide and Conquer
BibRef
Guo, S.,
Huang, W.,
Wang, L.,
Qiao, Y.,
Locally Supervised Deep Hybrid Model for Scene Recognition,
IP(26), No. 2, February 2017, pp. 808-820.
IEEE DOI
1702
data compression
BibRef
Masoumi, M.[Majid],
Ben Hamza, A.,
Spectral shape classification: A deep learning approach,
JVCIR(43), No. 1, 2017, pp. 198-211.
Elsevier DOI
1702
Deep learning
BibRef
Luciano, L.[Lorenzo],
Ben Hamza, A.,
Deep learning with geodesic moments for 3D shape classification,
PRL(105), 2018, pp. 182-190.
Elsevier DOI
1804
Geodesic moments, Deep learning, Laplace-Beltrami,
Stacked autoencoders, Shape classification
BibRef
Luciano, L.[Lorenzo],
Ben Hamza, A.,
Deep similarity network fusion for 3D shape classification,
VC(35), No. 6-8, June 2018, pp. 1171-1180.
WWW Link.
1906
BibRef
Li, Y.[Yao],
Liu, L.Q.[Ling-Qiao],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Mining Mid-level Visual Patterns with Deep CNN Activations,
IJCV(121), No. 3, February 2017, pp. 344-364.
Springer DOI
1702
BibRef
Sun, W.C.[Wei-Chen],
Su, F.[Fei],
A novel companion objective function for regularization of deep
convolutional neural networks,
IVC(60), No. 1, 2017, pp. 58-63.
Elsevier DOI
1704
BibRef
Earlier:
Regularization of deep neural networks using a novel companion
objective function,
ICIP15(2865-2869)
IEEE DOI
1512
Convolutional neural network.
Companion objective function
BibRef
Sun, W.C.[Wei-Chen],
Su, F.[Fei],
Wang, L.Q.[Lei-Quan],
Improving deep neural networks with multilayer maxout networks,
VCIP14(334-337)
IEEE DOI
1504
filtering theory
BibRef
Shi, C.[Cheng],
Pun, C.M.[Chi-Man],
Superpixel-based 3D deep neural networks for hyperspectral image
classification,
PR(74), No. 1, 2018, pp. 600-616.
Elsevier DOI
1711
Hyperspectral image classification
BibRef
Shi, C.[Cheng],
Pun, C.M.[Chi-Man],
Multiscale Superpixel-Based Hyperspectral Image Classification Using
Recurrent Neural Networks With Stacked Autoencoders,
MultMed(22), No. 2, February 2020, pp. 487-501.
IEEE DOI
2001
Recurrent neural networks, Correlation, Feature extraction,
Neurons, Hyperspectral imaging, Principal component analysis,
Stacked autoencoders
BibRef
Zagoruyko, S.[Sergey],
Komodakis, N.[Nikos],
Deep compare: A study on using convolutional neural networks to
compare image patches,
CVIU(164), No. 1, 2017, pp. 38-55.
Elsevier DOI
1801
BibRef
Earlier:
Learning to compare image patches via convolutional neural networks,
CVPR15(4353-4361)
IEEE DOI
1510
Descriptor learning
BibRef
Simonovsky, M.[Martin],
Komodakis, N.[Nikos],
Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on
Graphs,
CVPR17(29-38)
IEEE DOI
1711
Convolution, Machine learning, Neural networks, Spectral analysis,
Standards,
BibRef
Simonovsky, M.[Martin],
Komodakis, N.[Nikos],
OnionNet: Sharing Features in Cascaded Deep Classifiers,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Liu, N.[Na],
Lu, X.K.[Xian-Kai],
Wan, L.H.[Li-Hong],
Huo, H.[Hong],
Fang, T.[Tao],
Improving the Separability of Deep Features with Discriminative
Convolution Filters for RSI Classification,
IJGI(7), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Liu, Y.[Yu],
Liu, L.[Li],
Guo, Y.M.[Yan-Ming],
Lew, M.S.[Michael S.],
Learning visual and textual representations for multimodal matching
and classification,
PR(84), 2018, pp. 51-67.
Elsevier DOI
1809
Vision and language, Multimodal matching,
Multimodal classification, Deep learning
BibRef
Ben Hamida, A.,
Benoit, A.,
Lambert, P.,
Ben Amar, C.,
3-D Deep Learning Approach for Remote Sensing Image Classification,
GeoRS(56), No. 8, August 2018, pp. 4420-4434.
IEEE DOI
1808
geophysical image processing, hyperspectral imaging,
image classification, learning (artificial intelligence),
remote sensing (RS)
BibRef
Piramanayagam, S.[Sankaranarayanan],
Saber, E.[Eli],
Schwartzkopf, W.[Wade],
Koehler, F.W.[Frederick W.],
Supervised Classification of Multisensor Remotely Sensed Images Using
a Deep Learning Framework,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Mountrakis, G.[Giorgos],
Li, J.[Jun],
Lu, X.Q.[Xiao-Qiang],
Hellwich, O.[Olaf],
Deep learning for remotely sensed data,
PandRS(145), 2018, pp. 1-2.
Elsevier DOI
1810
BibRef
Xu, J.,
Wang, C.,
Qi, C.,
Shi, C.,
Xiao, B.,
Unsupervised Semantic-Based Aggregation of Deep Convolutional
Features,
IP(28), No. 2, February 2019, pp. 601-611.
IEEE DOI
1811
feedforward neural nets, image classification,
image representation, image retrieval, unsupervised learning,
semantic detectors
BibRef
Chevalier, M.[Marion],
Thome, N.[Nicolas],
Hénaff, G.[Gilles],
Cord, M.[Matthieu],
Classifying low-resolution images by integrating privileged
information in deep CNNs,
PRL(116), 2018, pp. 29-35.
Elsevier DOI
1812
Image classification, Deep convolutional neural networks,
Learning using privileged information.
BibRef
Zhang, Z.X.[Zhao-Xiang],
Shan, S.G.[Shi-Guang],
Fang, Y.[Yi],
Shao, L.[Ling],
Deep Learning for Pattern Recognition,
PRL(119), 2019, pp. 1-2.
Elsevier DOI
1902
BibRef
Wang, J.[Jia],
Liu, C.[Chen],
Fu, T.[Tian],
Zheng, L.[Lili],
Research on automatic target detection and recognition based on deep
learning,
JVCIR(60), 2019, pp. 44-50.
Elsevier DOI
1903
Image processing, Target detection, Target recognition, In-depth learning
BibRef
Zhang, J.[Ji],
Mei, K.[Kuizhi],
Zheng, Y.[Yu],
Fan, J.P.[Jian-Ping],
Learning multi-layer coarse-to-fine representations for large-scale
image classification,
PR(91), 2019, pp. 175-189.
Elsevier DOI
1904
Visual-semantic tree, Inter-category correlation,
Multi-task learning, Deep convolutional neural network,
Large-scale image classification
BibRef
Liu, D.,
Cheng, B.,
Wang, Z.,
Zhang, H.,
Huang, T.S.,
Enhance Visual Recognition Under Adverse Conditions via Deep Networks,
IP(28), No. 9, Sep. 2019, pp. 4401-4412.
IEEE DOI
1908
image recognition, image restoration,
learning (artificial intelligence), neural nets,
image recognition
BibRef
Cai, Z.Y.[Zi-Yun],
Long, Y.[Yang],
Shao, L.[Ling],
Classification complexity assessment for hyper-parameter optimization,
PRL(125), 2019, pp. 396-403.
Elsevier DOI
1909
Hyper-parameter optimization, Deep learning, Classification complexity measure
BibRef
Li, Y.Y.[Yu-Yuan],
Zhang, D.[Dong],
Lee, D.J.[Dah-Jye],
IIRNet: A lightweight deep neural network using intensely inverted
residuals for image recognition,
IVC(92), 2019, pp. 103819.
Elsevier DOI
1912
Convolutional neural network (CNN), Lightweight CNN, Image recognition,
Low-redundancy, Model size, Computation complexity
BibRef
He, C.[Chu],
Zhang, Q.Y.[Qing-Yi],
Qu, T.[Tao],
Wang, D.W.[Ding-Wen],
Liao, M.S.[Ming-Sheng],
Remote Sensing and Texture Image Classification Network Based on Deep
Learning Integrated with Binary Coding and Sinkhorn Distance,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Tsiligianni, E.,
Deligiannis, N.,
Deep Coupled-Representation Learning for Sparse Linear Inverse
Problems With Side Information,
SPLetters(26), No. 12, December 2019, pp. 1768-1772.
IEEE DOI
2001
computational complexity, image reconstruction,
image representation, inverse problems,
designing deep neural networks
BibRef
Guo, J.[Jun],
Yuan, X.[Xuan],
Xu, P.F.[Peng-Fei],
Bai, H.[Hao],
Liu, B.Y.[Bao-Ying],
Improved image clustering with deep semantic embedding,
PRL(130), 2020, pp. 225-233.
Elsevier DOI
2002
Semantic embedding, Image clustering, Deep neural networks, Deep autoencoder
BibRef
Kim, E.Y.[Eu Young],
Shin, S.Y.[Seung Yeon],
Lee, S.[Soochahn],
Lee, K.J.[Kyong Joon],
Lee, K.H.[Kyoung Ho],
Lee, K.M.[Kyoung Mu],
Triplanar convolution with shared 2D kernels for 3D classification
and shape retrieval,
CVIU(193), 2020, pp. 102901.
Elsevier DOI
2003
3D vision, Medical image, Deep learning
BibRef
Yavartanoo, M.[Mohsen],
Hung, S.H.[Shih-Hsuan],
Neshatavar, R.[Reyhaneh],
Zhang, Y.[Yue],
Lee, K.M.[Kyoung Mu],
PolyNet: Polynomial Neural Network for 3D Shape Recognition with
PolyShape Representation,
3DV21(1014-1023)
IEEE DOI
2201
Convolutional codes, Geometry, Deep learning, Image segmentation,
Shape, Aggregates
BibRef
Yavartanoo, M.[Mohsen],
Kim, E.Y.[Eu Young],
Lee, K.M.[Kyoung Mu],
SPNet: Deep 3D Object Classification and Retrieval Using Stereographic
Projection,
ACCV18(V:691-706).
Springer DOI
1906
BibRef
Do, T.T.[Thanh-Toan],
Hoang, T.[Tuan],
Tan, D.K.L.[Dang-Khoa Le],
Doan, A.D.[Anh-Dzung],
Cheung, N.M.[Ngai-Man],
Compact Hash Code Learning With Binary Deep Neural Network,
MultMed(22), No. 4, April 2020, pp. 992-1004.
IEEE DOI
2004
Binary constraint optimization, image search, learning to hash
BibRef
Do, T.T.[Thanh-Toan],
Hoang, T.[Tuan],
Tan, D.K.L.[Dang-Khoa Le],
Pham, T.[Trung],
Le, H.[Huu],
Cheung, N.M.[Ngai-Man],
Reid, I.D.[Ian D.],
Binary Constrained Deep Hashing Network for Image Retrieval Without
Manual Annotation,
WACV19(695-704)
IEEE DOI
1904
binary codes, image representation, image retrieval, neural nets,
compact representation methods, image retrieval,
Feature extraction
BibRef
Do, T.T.[Thanh-Toan],
Doan, A.D.[Anh-Dzung],
Cheung, N.M.[Ngai-Man],
Learning to Hash with Binary Deep Neural Network,
ECCV16(V: 219-234).
Springer DOI
1611
BibRef
Tan, D.K.L.[Dang-Khoa Le],
Do, T.T.[Thanh-Toan],
Cheung, N.M.[Ngai-Man],
Supervised Hashing with End-to-End Binary Deep Neural Network,
ICIP18(3019-3023)
IEEE DOI
1809
Feature extraction, Training, Binary codes, Testing, Visualization,
Image retrieval, Optimization, deep neural network,
BibRef
Ruthotto, L.[Lars],
Haber, E.[Eldad],
Deep Neural Networks Motivated by Partial Differential Equations,
JMIV(62), No. 3, April 2020, pp. 352-364.
Springer DOI
2004
BibRef
Forcén, J.I.[Juan Ignacio],
Pagola, M.[Miguel],
Barrenechea, E.[Edurne],
Bustince, H.[Humberto],
Co-occurrence of deep convolutional features for image search,
IVC(97), 2020, pp. 103909.
Elsevier DOI
2005
BibRef
Earlier:
Aggregation of Deep Features for Image Retrieval Based on Object
Detection,
IbPRIA19(I:553-564).
Springer DOI
1910
Image retrieval, Feature aggregation, Pooling
BibRef
Passalis, N.[Nikolaos],
Raitoharju, J.[Jenni],
Tefas, A.[Anastasios],
Gabbouj, M.[Moncef],
Efficient adaptive inference for deep convolutional neural networks
using hierarchical early exits,
PR(105), 2020, pp. 107346.
Elsevier DOI
2006
Adaptive inference, Early exits, Bag-of-Features,
Deep convolutional neural networks, Hierarchical representations
BibRef
Huang, L.[Lei],
Liu, X.L.[Xiang-Long],
Qin, J.[Jie],
Zhu, F.[Fan],
Liu, L.[Li],
Shao, L.[Ling],
Projection based weight normalization:
Efficient method for optimization on oblique manifold in DNNs,
PR(105), 2020, pp. 107317.
Elsevier DOI
2006
Deep learning, Weight normalization, Oblique manifold, Image classification
BibRef
Cococcioni, M.[Marco],
Rossi, F.[Federico],
Ruffaldi, E.[Emanuele],
Saponara, S.[Sergio],
Fast deep neural networks for image processing using posits and ARM
scalable vector extension,
RealTimeIP(17), No. 3, June 2020, pp. 759-771.
Springer DOI
2006
BibRef
Tanaka, M.[Masayuki],
Weighted sigmoid gate unit for an activation function of deep neural
network,
PRL(135), 2020, pp. 354-359.
Elsevier DOI
2006
Deep neural network, Activation function, Relu
BibRef
Ulyanov, D.[Dmitry],
Vedaldi, A.[Andrea],
Lempitsky, V.[Victor],
Deep Image Prior,
IJCV(128), No. 7, July 2020, pp. 1867-1888.
Springer DOI
2007
show that a randomly-initialized neural network can be used as a
handcrafted prior with excellent results in standard inverse problems
such as denoising, super-resolution, and inpainting.
BibRef
Shin, D.,
Yoo, H.,
The Heterogeneous Deep Neural Network Processor With a Non-von
Neumann Architecture,
PIEEE(108), No. 8, August 2020, pp. 1245-1260.
IEEE DOI
2007
Hardware, Biological neural networks,
Computers, Recurrent neural networks, Deep learning,
recurrent neural networks (RNNs)
BibRef
Zhu, R.,
Dornaika, F.,
Ruichek, Y.,
Semi-supervised elastic manifold embedding with deep learning
architecture,
PR(107), 2020, pp. 107425.
Elsevier DOI
2008
Graph-based embedding, Elastic embedding,
Deep learning architecture, Supervised learning, Semi-supervised learning
BibRef
Chen, Z.[Zhi],
Ho, P.H.[Pin-Han],
A generic shift-norm-activation approach for deep learning,
PR(109), 2021, pp. 107609.
Elsevier DOI
2009
Activation, Normalization, CNN, Shifting, Deep learning
BibRef
Chen, G.[Gang],
Srihari, S.N.[Sargur N.],
Revisiting hierarchy:
Deep learning with orthogonally constrained prior for classification,
PRL(140), 2020, pp. 214-221.
Elsevier DOI
2012
Hierarchical prior, Classification, Deep learning
BibRef
Fukushima, K.,
Artificial Vision by Deep CNN Neocognitron,
SMCS(51), No. 1, January 2021, pp. 76-90.
IEEE DOI
2101
Visualization, Focusing, Visual systems, Biology,
Convolutional neural networks, History,
selective attention
BibRef
Qi, Z.A.[Zhong-Ang],
Khorram, S.[Saeed],
Fuxin, L.[Li],
Embedding deep networks into visual explanations,
AI(292), 2021, pp. 103435.
Elsevier DOI
2102
Deep neural networks, Embedding, Visual explanations
BibRef
Messina, N.[Nicola],
Amato, G.[Giuseppe],
Carrara, F.[Fabio],
Gennaro, C.[Claudio],
Falchi, F.[Fabrizio],
Solving the same-different task with convolutional neural networks,
PRL(143), 2021, pp. 75-80.
Elsevier DOI
2102
AI, Deep learning, Abstract reasoning, Relational reasoning,
Convolutional neural, Networks
BibRef
Amato, G.[Giuseppe],
Carrara, F.[Fabio],
Falchi, F.[Fabrizio],
Gennaro, C.[Claudio],
Lagani, G.[Gabriele],
Hebbian Learning Meets Deep Convolutional Neural Networks,
CIAP19(I:324-334).
Springer DOI
1909
BibRef
Yuille, A.L.[Alan L.],
Liu, C.X.[Chen-Xi],
Deep Nets: What have They Ever Done for Vision?,
IJCV(129), No. 3, March 2021, pp. 781-802.
Springer DOI
2103
We argue that Deep Nets in their current form are unlikely to be able
to overcome the fundamental problem of computer vision, namely how to
deal with the combinatorial explosion, caused by the enormous
complexity of natural images, and obtain the rich understanding of
visual scenes that the human visual achieves.
BibRef
Balestriero, R.[Randall],
Baraniuk, R.G.[Richard G.],
Mad Max: Affine Spline Insights Into Deep Learning,
PIEEE(109), No. 5, May 2021, pp. 704-727.
IEEE DOI
2105
Splines (mathematics), Standards, Deep learning, Convolution,
Task analysis, Recurrent neural networks, Quantization (signal),
Voronoi diagram
BibRef
Zeng, X.F.[Xian-Fang],
Wu, W.X.[Wen-Xuan],
Tian, G.Z.[Guang-Zhong],
Li, F.X.[Fu-Xin],
Liu, Y.[Yong],
Deep Superpixel Convolutional Network for Image Recognition,
SPLetters(28), 2021, pp. 922-926.
IEEE DOI
2106
Convolution, Task analysis, Standards,
Image recognition, Kernel, Feature extraction, Deep learning,
superpixel
BibRef
Zhao, B.X.[Bao-Xin],
Xiong, H.Y.[Hao-Yi],
Bian, J.[Jiang],
Guo, Z.S.[Zhi-Shan],
Xu, C.Z.[Cheng-Zhong],
Dou, D.[Dejing],
COMO: Efficient Deep Neural Networks Expansion With COnvolutional
MaxOut,
MultMed(23), 2021, pp. 1722-1730.
IEEE DOI
2106
Convolution, Spatial resolution, Convolutional neural networks,
Deep learning, Transforms, neural networks
BibRef
Wang, X.[Xin],
Wang, S.Y.[Shi-Yi],
Ning, C.[Chen],
Zhou, H.Y.[Hui-Yu],
Enhanced Feature Pyramid Network With Deep Semantic Embedding for
Remote Sensing Scene Classification,
GeoRS(59), No. 9, September 2021, pp. 7918-7932.
IEEE DOI
2109
Feature extraction, Semantics, Spatial resolution, Convolution,
Remote sensing, Deconvolution, Task analysis, scene classification
BibRef
Yang, S.J.[Shi-Jie],
Li, L.[Liang],
Wang, S.H.[Shu-Hui],
Zhang, W.G.[Wei-Gang],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Graph Regularized Encoder-Decoder Networks for Image Representation
Learning,
MultMed(23), 2021, pp. 3124-3136.
IEEE DOI
2109
BibRef
Earlier: A1, A2, A3, A4, A5, Only:
A Graph Regularized Deep Neural Network for Unsupervised Image
Representation Learning,
CVPR17(7053-7061)
IEEE DOI
1711
Laplace equations, Visualization, Manifolds, Image reconstruction,
Task analysis, Decoding, Semantics, Auto-encoder, encoder-decoder,
image representation learning.
Neural networks, Robustness.
BibRef
Chen, Z.D.[Zhao-Dong],
Deng, L.[Lei],
Wang, B.Y.[Bang-Yan],
Li, G.Q.[Guo-Qi],
Xie, Y.[Yuan],
A Comprehensive and Modularized Statistical Framework for Gradient
Norm Equality in Deep Neural Networks,
PAMI(44), No. 1, January 2022, pp. 13-31.
IEEE DOI
2112
Jacobian matrices, Explosions, Measurement,
Biological neural networks, Probability, Libraries,
gradient norm equality
BibRef
Sommer, S.[Stefan],
Bronstein, A.M.[Alex M.],
Horizontal Flows and Manifold Stochastics in Geometric Deep Learning,
PAMI(44), No. 2, February 2022, pp. 811-822.
IEEE DOI
2201
Manifolds, Convolution, Machine learning, Geometry,
Stochastic processes, Bridges, Neural networks,
bridge sampling
BibRef
Yan, M.[Ming],
Yang, J.X.[Jian-Xi],
Chen, C.[Cen],
Zhou, J.T.Y.[Joey Tian-Yi],
Pan, Y.[Yi],
Zeng, Z.[Zeng],
Enhanced gradient learning for deep neural networks,
IET-IPR(16), No. 2, 2022, pp. 365-377.
DOI Link
2201
BibRef
Li, Z.Y.[Zheng-Ying],
Huang, H.[Hong],
Zhang, Z.[Zhen],
Shi, G.Y.[Guang-Yao],
Manifold-Based Multi-Deep Belief Network for Feature Extraction of
Hyperspectral Image,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Nakamura, K.[Kensuke],
Soatto, S.[Stefano],
Hong, B.W.[Byung-Woo],
Stochastic batch size for adaptive regularization in deep network
optimization,
PR(129), 2022, pp. 108776.
Elsevier DOI
2206
Deep network optimization, Adaptive regularization,
Stochastic gradient descent, Adaptive mini-batch size
BibRef
Li, G.Q.[Guo-Qiang],
Fang, Q.[Qi],
Zha, L.L.[Lin-Lin],
Gao, X.[Xin],
Zheng, N.[Nenggan],
HAM: Hybrid attention module in deep convolutional neural networks
for image classification,
PR(129), 2022, pp. 108785.
Elsevier DOI
2206
Hybrid attention module, Channel attention map,
Spatial feature descriptor, HAM-integrated networks
BibRef
Pai, G.[Gautam],
Bronstein, A.M.[Alex M.],
Talmon, R.[Ronen],
Kimmel, R.[Ron],
Deep Isometric Maps,
IVC(123), 2022, pp. 104461.
Elsevier DOI
2206
BibRef
Earlier: A1, A3, A2, A4:
DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic
Sampling,
WACV19(819-828)
IEEE DOI
1904
Multidimensional scaling, Manifold learning,
Non-linear dimensionality reduction, Neural networks.
computational geometry, differential geometry, neural nets,
sampling methods, unsupervised learning, DIMAL,
Interpolation
BibRef
Gould, S.[Stephen],
Hartley, R.I.[Richard I.],
Campbell, D.[Dylan],
Deep Declarative Networks,
PAMI(44), No. 8, August 2022, pp. 3988-4004.
IEEE DOI
2207
Optimization, Deep learning, Mathematical model,
Computational modeling, Neural networks, Task analysis,
declarative networks
BibRef
Tan, L.[Lu],
Li, L.[Ling],
Liu, W.Q.[Wan-Quan],
An, S.J.[Sen-Jian],
Munyard, K.[Kylie],
Unsupervised learning of multi-task deep variational model,
JVCIR(87), 2022, pp. 103588.
Elsevier DOI
2208
Unsupervised learning, Integration approach,
Deep neural networks, Variational general frameworks, Diverse applications
BibRef
Grementieri, L.[Luca],
Fioresi, R.[Rita],
Model-Centric Data Manifold: The Data Through the Eyes of the Model,
SIIMS(15), No. 3, 2022, pp. 1140-1156.
DOI Link
2208
BibRef
Zhao, Y.[Yi],
Zhang, X.C.[Xin-Chang],
Feng, W.M.[Wei-Ming],
Xu, J.H.[Jian-Hui],
Deep Learning Classification by ResNet-18 Based on the Real Spectral
Dataset from Multispectral Remote Sensing Images,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
Landsat.
BibRef
Rezatofighi, H.[Hamid],
Zhu, T.Y.[Tian-Yu],
Kaskman, R.[Roman],
Motlagh, F.T.[Farbod T.],
Shi, J.Q.F.[Javen Qin-Feng],
Milan, A.[Anton],
Cremers, D.[Daniel],
Leal-Taixé, L.[Laura],
Reid, I.D.[Ian D.],
Learn to Predict Sets Using Feed-Forward Neural Networks,
PAMI(44), No. 12, December 2022, pp. 9011-9025.
IEEE DOI
2212
Deep learning, Object detection, Training, Task analysis, Tensors,
CAPTCHAs, Transformers, Random finite set, deep learning
BibRef
Ning, X.[Xin],
Tian, W.J.[Wei-Juan],
He, F.[Feng],
Bai, X.[Xiao],
Sun, L.[Le],
Li, W.J.[Wei-Jun],
Hyper-sausage coverage function neuron model and learning algorithm
for image classification,
PR(136), 2023, pp. 109216.
Elsevier DOI
2301
Deep neural networks, Neuron model, Brain-inspired
BibRef
Nam, J.H.[Ju-Hyeon],
Lee, S.C.[Sang-Chul],
Random image frequency aggregation dropout in image classification
for deep convolutional neural networks,
CVIU(232), 2023, pp. 103684.
Elsevier DOI
2305
Deep learning, Convolutional neural network,
Image classification, Data augmentation, Frequency domain
BibRef
Nam, J.H.[Ju-Hyeon],
Lee, S.C.[Sang-Chul],
FSDA: Frequency re-scaling in data augmentation for corruption-robust
image classification,
PR(150), 2024, pp. 110332.
Elsevier DOI
2403
Deep learning, Image classification,
Convolutional neural networks, Data augmentation, Frequency domain
BibRef
Sarang, N.[Nima],
Poullis, C.[Charalambos],
Tractable large-scale deep reinforcement learning,
CVIU(232), 2023, pp. 103689.
Elsevier DOI
2305
Deep Reinforcement Learning, Road extraction, Self-supervised learning
BibRef
Wang, J.[Jian],
Han, Z.W.[Zi-Wei],
Jiang, W.J.[Wen-Jing],
Kim, J.[Junseok],
A novel classification method combining phase-field and DNN,
PR(142), 2023, pp. 109723.
Elsevier DOI
2307
Phase-field-DNN, Phase-field, DNN, Classification
BibRef
Liu, R.S.[Ri-Sheng],
Liu, X.[Xuan],
Zeng, S.Z.[Shang-Zhi],
Zhang, J.[Jin],
Zhang, Y.X.[Yi-Xuan],
Hierarchical Optimization-Derived Learning,
PAMI(45), No. 12, December 2023, pp. 14693-14708.
IEEE DOI
2311
BibRef
Si, H.Y.[Hong-Ying],
Wei, X.Y.[Xian-Yong],
Feature extraction and representation learning of 3D point cloud data,
IVC(142), 2024, pp. 104890.
Elsevier DOI
2402
Deep learning, 3D data, Point cloud, Represent learning, Feature extraction
BibRef
Peck, J.[Jonathan],
Goossens, B.[Bart],
Saeys, Y.[Yvan],
An Introduction to Adversarially Robust Deep Learning,
PAMI(46), No. 4, April 2024, pp. 2071-2090.
IEEE DOI
2403
Perturbation methods, Deep learning, Surveys, Robustness,
Mathematical models, Image recognition, Predictive models, deep learning
BibRef
Tai, X.C.[Xue-Cheng],
Liu, H.[Hao],
Chan, R.[Raymond],
PottsMGNet: A Mathematical Explanation of Encoder-Decoder Based
Neural Networks,
SIIMS(17), No. 1, 2024, pp. 540-594.
DOI Link
2404
BibRef
Pakhare, J.D.[Jayamala D.],
Uplane, M.D.[Mahadev D.],
Hybrid Mayfly Lévy Flight Distribution Optimization Algorithm-Tuned
Deep Convolutional Neural Network for Indoor-Outdoor Image
Classification,
IJIG(24), No. 2, March 2024, pp. 2450024.
DOI Link
2404
BibRef
Liu, Q.[Qian],
Wang, C.[Cunbao],
Deep network with double reuses and convolutional shortcuts,
IET-CV(18), No. 4, 2024, pp. 512-525.
DOI Link
2406
convolutional neural nets, learning (artificial intelligence)
BibRef
Dong, X.P.[Xing-Ping],
Ouyang, T.R.[Tian-Ran],
Liao, S.C.[Sheng-Cai],
Du, B.[Bo],
Shao, L.[Ling],
Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for
Few-Shot Learning,
IP(33), 2024, pp. 5663-5675.
IEEE DOI Code:
WWW Link.
2410
Training, Data models, Metalearning, Degradation, Accuracy,
Smoothing methods, Semisupervised learning, Few-shot learning,
pseudo-labeling
BibRef
Dong, X.P.[Xing-Ping],
Shen, J.B.[Jian-Bing],
Shao, L.[Ling],
Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning,
ECCV22(XX:169-186).
Springer DOI
2211
WWW Link.
BibRef
Liu, S.[Shunyu],
Song, J.[Jie],
Zhou, Y.[Yihe],
Yu, N.[Na],
Chen, K.X.[Kai-Xuan],
Feng, Z.[Zunlei],
Song, M.L.[Ming-Li],
Interaction Pattern Disentangling for Multi-Agent Reinforcement
Learning,
PAMI(46), No. 12, December 2024, pp. 8157-8172.
IEEE DOI
2411
Prototypes, Training, Task analysis, Predator prey systems,
Noise measurement, History, Observability,
interaction pattern disentangling
BibRef
Xu, K.J.[Ke-Jian],
Chen, J.L.[Jin-Long],
Ning, Y.[Yi],
Tang, W.[Wei],
Deep Learning in Image Classification: An Overview,
CVIDL23(81-93)
IEEE DOI
2403
Deep learning, Training, Computational modeling, Neural networks,
Optimization methods, Transformers, Deep Learning, Transformers
BibRef
Luo, J.B.[Jia-Bin],
Luo, R.Z.[Rong-Zhen],
Research on Image Recognition based on Reinforcement Learning,
CVIDL23(25-28)
IEEE DOI
2403
Deep learning, Image recognition, Costs,
Computational modeling, Neural networks, Reinforcement learning,
recognition accuracy
BibRef
Panousis, K.P.[Konstantinos P.],
Ienco, D.[Dino],
Marcos, D.[Diego],
Sparse Linear Concept Discovery Models,
CLVL23(2759-2763)
IEEE DOI Code:
WWW Link.
2401
BibRef
Kim, H.[Hyungmin],
Suh, S.[Sungho],
Kim, D.[Daehwan],
Jeong, D.[Daun],
Cho, H.S.[Han-Sang],
Kim, J.[Junmo],
Proxy Anchor-based Unsupervised Learning for Continuous Generalized
Category Discovery,
ICCV23(16642-16651)
IEEE DOI
2401
Novel category
BibRef
Qian, Q.[Qi],
Stable Cluster Discrimination for Deep Clustering,
ICCV23(16599-16608)
IEEE DOI
2401
BibRef
Stergiou, A.[Alexandros],
Deligiannis, N.[Nikos],
Leaping Into Memories: Space-Time Deep Feature Synthesis,
ICCV23(1966-1976)
IEEE DOI
2401
BibRef
Djenouri, Y.[Youcef],
Belbachir, A.N.[Ahmed Nabil],
Jhaveri, R.H.[Rutvij H.],
Djenouri, D.[Djamel],
Knowledge Guided Deep Learning for General-purpose Computer Vision
Applications,
CAIP23(I:185-194).
Springer DOI
2312
BibRef
Yong, H.W.[Hong-Wei],
Sun, Y.[Ying],
Zhang, L.[Lei],
A General Regret Bound of Preconditioned Gradient Method for DNN
Training,
CVPR23(7866-7875)
IEEE DOI
2309
BibRef
Metaxas, I.M.[Ioannis Maniadis],
Tzimiropoulos, G.[Georgios],
Patras, I.[Ioannis],
DivClust: Controlling Diversity in Deep Clustering,
CVPR23(3418-3428)
IEEE DOI
2309
BibRef
Frey, M.[Markus],
Doeller, C.F.[Christian F.],
Barry, C.[Caswell],
Probing Neural Representations of Scene Perception in a Hippocampally
Dependent Task Using Artificial Neural Networks,
CVPR23(2113-2121)
IEEE DOI
2309
BibRef
Mahapatra, D.[Dwarikanath],
Reyes, M.[Mauricio],
Multi-label Attention Map Assisted Deep Feature Learning for Medical
Image Classification,
MIA-COVID19D22(722-734).
Springer DOI
2304
BibRef
Hammam, A.[Ahmed],
Bonarens, F.[Frank],
Ghobadi, S.E.[Seyed Eghbal],
Stiller, C.[Christoph],
Towards Improved Intermediate Layer Variational Inference for
Uncertainty Estimation,
SafeDrive22(526-542).
Springer DOI
2304
BibRef
Zhang, X.C.[Xian-Chao],
Yang, W.T.[Wen-Tao],
Zhang, X.T.[Xiao-Tong],
Liu, H.[Han],
Wang, G.L.[Guang-Lu],
Data-Efficient Deep Reinforcement Learning with Symmetric Consistency,
ICPR22(2430-2436)
IEEE DOI
2212
Deep learning, Training, Perturbation methods, Semantics,
Supervised learning, Estimation, Reinforcement learning
BibRef
Egele, R.[Romain],
Maulik, R.[Romit],
Raghavan, K.[Krishnan],
Lusch, B.[Bethany],
Guyon, I.[Isabelle],
Balaprakash, P.[Prasanna],
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification,
ICPR22(1908-1914)
IEEE DOI
2212
Ensemble to model uncertainty.
Deep learning, Training, Uncertainty, Scalability, Neural networks,
Predictive models
BibRef
Subia-Waud, C.[Christopher],
Dasmahapatra, S.[Srinandan],
Weight Fixing Networks,
ECCV22(XI:415-431).
Springer DOI
2211
WWW Link.
BibRef
Guo, J.[Jun],
Chen, Y.H.[Yong-Hong],
Hao, Y.H.[Yi-Hang],
Yin, Z.X.[Zi-Xin],
Yu, Y.[Yin],
Li, S.[Simin],
Towards Comprehensive Testing on the Robustness of Cooperative
Multi-agent Reinforcement Learning,
ArtOfRobust22(114-121)
IEEE DOI
2210
Degradation, Deep learning, Power system management,
Neural networks, Reinforcement learning, Markov processes, Robustness
BibRef
Zhu, L.[Lei],
She, Q.[Qi],
Li, D.[Duo],
Lu, Y.[Yanye],
Kang, X.J.[Xue-Jing],
Hu, J.[Jie],
Wang, C.H.[Chang-Hu],
Unifying Nonlocal Blocks for Neural Networks,
ICCV21(12272-12281)
IEEE DOI
2203
Deep learning, Image segmentation, Image recognition,
Neural networks, Semantics, Information filters,
Video analysis and understanding
BibRef
Vasconcelos, C.[Cristina],
Larochelle, H.[Hugo],
Dumoulin, V.[Vincent],
Romijnders, R.[Rob],
Roux, N.L.[Nicolas Le],
Goroshin, R.[Ross],
Impact of Aliasing on Generalization in Deep Convolutional Networks,
ICCV21(10509-10518)
IEEE DOI
2203
Convolutional codes, Art, Convolution, Low-pass filters,
Performance gain, Representation learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Huang, S.H.[Shi-Hua],
Lu, Z.C.[Zhi-Chao],
Cheng, R.[Ran],
He, C.[Cheng],
FaPN: Feature-aligned Pyramid Network for Dense Image Prediction,
ICCV21(844-853)
IEEE DOI
2203
Code, Deep Learning.
WWW Link. Deep learning, Image segmentation, Codes, Neural networks,
Feature extraction, grouping and shape
BibRef
Lengyel, A.[Attila],
van Gemert, J.C.[Jan C.],
Exploiting Learned Symmetries in Group Equivariant Convolutions,
ICIP21(759-763)
IEEE DOI
2201
Convolutional codes, Deep learning, Image processing,
Convolutional neural networks, group equivariant convolutions,
efficient deep learning
BibRef
Mdrafi, R.[Robiulhossain],
Gurbuz, A.C.[Ali Cafer],
Compressed Classification from Learned Measurements,
LCI21(4021-4030)
IEEE DOI
2112
Classification form compressive sensed data.
Weight measurement, Deep learning, Image coding,
Loss measurement, Robustness
BibRef
Huang, L.[Lei],
Zhou, Y.[Yi],
Liu, L.[Li],
Zhu, F.[Fan],
Shao, L.[Ling],
Group Whitening:
Balancing Learning Efficiency and Representational Capacity,
CVPR21(9507-9516)
IEEE DOI
2111
Deep learning, Analytical models, Sociology,
Standardization, Benchmark testing
BibRef
Pestana, C.[Camilo],
Liu, W.[Wei],
Glance, D.[David],
Owens, R.[Robyn],
Mian, A.[Ajmal],
Assistive Signals for Deep Neural Network Classifiers,
LXCV21(1221-1225)
IEEE DOI
2109
Deep learning,
Perturbation methods, Optimization methods, Lighting
BibRef
Ding, Y.F.[Yi-Fan],
Wang, L.Q.[Li-Qiang],
Gong, B.Q.[Bo-Qing],
Analyzing Deep Neural Network's Transferability via Fréchet Distance,
WACV21(3931-3940)
IEEE DOI
2106
Measurement, Degradation, Training, Correlation,
Transfer learning, Neural networks
BibRef
Jamadandi, A.[Adarsh],
Tigadoli, R.[Rishabh],
Tabib, R.[Ramesh],
Mudenagudi, U.[Uma],
Probabilistic Word Embeddings in Kinematic Space,
ICPR21(8759-8765)
IEEE DOI
2105
Geometry, Uncertainty, Computational modeling, Kinematics,
Transforms, Aerospace electronics, Tools
BibRef
Shiran, G.[Guy],
Weinshall, D.[Daphna],
Multi-Modal Deep Clustering: Unsupervised Partitioning of Images,
ICPR21(4728-4735)
IEEE DOI
2105
Deep learning, Neural networks, Image representation,
Benchmark testing, Task analysis, Gaussian mixture model
BibRef
Takenaga, S.[Shintaro],
Watanabe, S.[Shuhei],
Nomura, M.[Masahiro],
Ozaki, Y.[Yoshihiko],
Onishi, M.[Masaki],
Habe, H.[Hitoshi],
Evaluating Initialization of Nelder-Mead Method for Hyperparameter
Optimization in Deep Learning,
ICPR21(3372-3379)
IEEE DOI
2105
Deep learning, Shape, Optimization
BibRef
Georgiou, T.[Theodoros],
Schmitt, S.[Sebastian],
Bäck, T.[Thomas],
Pu, N.[Nan],
Chen, W.[Wei],
Lew, M.[Michael],
Comparison of deep learning and hand crafted features for mining
simulation data,
ICPR21(1-8)
IEEE DOI
2105
Deep learning, Solid modeling, Dictionaries, Computational modeling,
Detectors
BibRef
Poyser, M.[Matt],
Atapour-Abarghouei, A.[Amir],
Breckon, T.P.[Toby P.],
On the Impact of Lossy Image and Video Compression on the Performance
of Deep Convolutional Neural Network Architectures,
ICPR21(2830-2837)
IEEE DOI
2105
Performance evaluation, Image segmentation, Image coding,
Pose estimation, Transform coding, Network architecture, Video compression
BibRef
Jie, R.L.[Ren-Long],
Gao, J.B.[Jun-Bin],
Vasnev, A.[Andrey],
Tran, M.N.[Minh-Ngoc],
Regularized Flexible Activation Function Combination for Deep Neural
Networks,
ICPR21(2001-2008)
IEEE DOI
2105
Convolutional codes, Image coding, Time series analysis,
Neural networks, Stability criteria, Predictive models
BibRef
Goncalves do Santos, C.F.[Claudio Filipi],
Colombo, D.[Danilo],
Roder, M.[Mateus],
Papa, J.P.[João Paulo],
MaxDropout: Deep Neural Network Regularization Based on Maximum
Output Values,
ICPR21(2671-2676)
IEEE DOI
2105
Deep learning, Neurons, Turning,
Convolutional neural networks, Biological neural networks, Image classification
BibRef
You, J.,
Korhonen, J.,
Attention Boosted Deep Networks For Video Classification,
ICIP20(1761-1765)
IEEE DOI
2011
Feature extraction, Video sequences,
video classification
BibRef
Zhang, X.[Xiao],
Zhao, R.[Rui],
Qiao, Y.[Yu],
Li, H.S.[Hong-Sheng],
RBF-Softmax: Learning Deep Representative Prototypes with Radial Basis
Function Softmax,
ECCV20(XXVI:296-311).
Springer DOI
2011
Code, RBF.
WWW Link.
BibRef
Chen, Y.P.[Yin-Peng],
Dai, X.Y.[Xi-Yang],
Liu, M.C.[Meng-Chen],
Chen, D.D.[Dong-Dong],
Yuan, L.[Lu],
Liu, Z.C.[Zi-Cheng],
Dynamic ReLU,
ECCV20(XIX:351-367).
Springer DOI
2011
Rectified linear units
BibRef
Reimers, C.[Christian],
Runge, J.[Jakob],
Denzler, J.[Joachim],
Determining the Relevance of Features for Deep Neural Networks,
ECCV20(XXVI:330-346).
Springer DOI
2011
BibRef
Zhao, J.J.[Jun-Jie],
Lu, D.H.[Dong-Huan],
Ma, K.[Kai],
Zhang, Y.[Yu],
Zheng, Y.F.[Ye-Feng],
Deep Image Clustering with Category-style Representation,
ECCV20(XIV:54-70).
Springer DOI
2011
WWW Link.
BibRef
Chen, D.D.[Dong-Dong],
Davies, M.E.[Mike E.],
Deep Decomposition Learning for Inverse Imaging Problems,
ECCV20(XXVIII:510-526).
Springer DOI
2011
Code, DNN.
WWW Link.
BibRef
Huang, L.[Lei],
Qin, J.[Jie],
Liu, L.[Li],
Zhu, F.[Fan],
Shao, L.[Ling],
Layer-wise Conditioning Analysis in Exploring the Learning Dynamics of
DNNs,
ECCV20(II:384-401).
Springer DOI
2011
BibRef
Li, D.[Duo],
Chen, Q.F.[Qi-Feng],
Deep Reinforced Attention Learning for Quality-Aware Visual Recognition,
ECCV20(XVI: 493-509).
Springer DOI
2010
BibRef
Yong, H.W.[Hong-Wei],
Huang, J.Q.[Jian-Qiang],
Meng, D.Y.[De-Yu],
Hua, X.S.[Xian-Sheng],
Zhang, L.[Lei],
Momentum Batch Normalization for Deep Learning with Small Batch Size,
ECCV20(XII: 224-240).
Springer DOI
2010
BibRef
Gustafsson, F.K.,
Danelljan, M.,
Schon, T.B.,
Evaluating Scalable Bayesian Deep Learning Methods for Robust
Computer Vision,
SAIAD20(1289-1298)
IEEE DOI
2008
Uncertainty, Task analysis, Estimation, Predictive models,
Bayes methods, Machine learning
BibRef
Le, E.,
Kokkinos, I.,
Mitra, N.J.,
Going Deeper With Lean Point Networks,
CVPR20(9500-9509)
IEEE DOI
2008
Convolution, Memory management, Training
BibRef
Zhang, X.,
Qin, S.,
Xu, Y.,
Xu, H.,
Quaternion Product Units for Deep Learning on 3D Rotation Groups,
CVPR20(7302-7311)
IEEE DOI
2008
Quaternions, Robustness, Skeleton,
Algebra, Data models, Machine learning
BibRef
Song, J.,
Chen, Y.,
Ye, J.,
Wang, X.,
Shen, C.,
Mao, F.,
Song, M.,
DEPARA: Deep Attribution Graph for Deep Knowledge Transferability,
CVPR20(3921-3929)
IEEE DOI
2008
Task analysis, Computational modeling, Feature extraction,
Data models, Dictionaries, Probes, Computer architecture
BibRef
Wu, R.[Rundi],
Zhuang, Y.X.[Yi-Xin],
Xu, K.[Kai],
Zhang, H.[Hao],
Chen, B.Q.[Bao-Quan],
PQ-NET: A Generative Part Seq2Seq Network for 3D Shapes,
CVPR20(826-835)
IEEE DOI
2008
Shape, Geometry, Solid modeling,
Decoding, Adaptation models, Neural networks
BibRef
Lee, E.,
Lee, C.,
NeuralScale: Efficient Scaling of Neurons for Resource-Constrained
Deep Neural Networks,
CVPR20(1475-1484)
IEEE DOI
2008
Neurons, Biological neural networks,
Iterative methods, Redundancy, Taylor series, Computational efficiency
BibRef
Gao, S.,
Huang, F.,
Pei, J.,
Huang, H.,
Discrete Model Compression With Resource Constraint for Deep Neural
Networks,
CVPR20(1896-1905)
IEEE DOI
2008
Logic gates, Computational modeling, Stochastic processes,
Neural networks, Training, Computational efficiency, Acceleration
BibRef
Nan, Y.,
Ji, H.,
Deep Learning for Handling Kernel/model Uncertainty in Image
Deconvolution,
CVPR20(2385-2394)
IEEE DOI
2008
Kernel, Deconvolution, Image restoration, Convolution,
Artificial neural networks, Robustness, Optimization
BibRef
Singh, S.[Saurabh],
Shrivastava, A.[Abhinav],
EvalNorm: Estimating Batch Normalization Statistics for Evaluation,
ICCV19(3632-3640)
IEEE DOI
2004
learning (artificial intelligence), object detection,
batch normalization statistics, deep learning, peculiar behavior, Google
BibRef
Huang, S.Y.[Shuai-Yi],
Wang, Q.Y.[Qiu-Yue],
Zhang, S.Y.[Song-Yang],
Yan, S.P.[Shi-Peng],
He, X.M.[Xu-Ming],
Dynamic Context Correspondence Network for Semantic Alignment,
ICCV19(2010-2019)
IEEE DOI
2004
image fusion, image representation, Pattern matching,
supervised learning, dynamic context correspondence network.
BibRef
Maximov, M.,
Ritschel, T.,
Leal-Taixé, L.,
Fritz, M.,
Deep Appearance Maps,
ICCV19(8728-8737)
IEEE DOI
2004
gradient methods, image reconstruction, image representation,
image segmentation, learning (artificial intelligence), lighting,
Image color analysis
BibRef
Wu, J.,
Long, K.,
Wang, F.,
Qian, C.,
Li, C.,
Lin, Z.,
Zha, H.,
Deep Comprehensive Correlation Mining for Image Clustering,
ICCV19(8149-8158)
IEEE DOI
2004
data mining, feature extraction, image representation,
pattern clustering, unsupervised learning,
Task analysis
BibRef
Li, G.,
Müller, M.,
Thabet, A.,
Ghanem, B.,
DeepGCNs: Can GCNs Go As Deep As CNNs?,
ICCV19(9266-9275)
IEEE DOI
2004
convolutional neural nets, graph theory, image segmentation,
learning (artificial intelligence), solid modelling, Stacking
BibRef
Fong, R.,
Patrick, M.,
Vedaldi, A.,
Understanding Deep Networks via Extremal Perturbations and Smooth
Masks,
ICCV19(2950-2958)
IEEE DOI
2004
image representation, neural nets, optimisation, smoothing methods,
smooth masks, deep neural network, optimization problem
BibRef
Pan, X.,
Zhan, X.,
Shi, J.,
Tang, X.,
Luo, P.,
Switchable Whitening for Deep Representation Learning,
ICCV19(1863-1871)
IEEE DOI
2004
convolutional neural nets, image representation,
image segmentation, learning (artificial intelligence), Semantics
BibRef
Hernández-Garcia, A.,
König, P.,
Learning Representational Invariance Instead of Categorization,
Preregister19(4587-4590)
IEEE DOI
2004
image classification, learning (artificial intelligence),
neural nets, object recognition, adversarial vulnerability, deep learning
BibRef
Wang, C.Y.[Chien-Yao],
Liao, H.Y.M.[Hong-Yuan Mark],
Chen, P.Y.[Ping-Yang],
Hsieh, J.W.[Jun-Wei],
Enriching Variety of Layer-Wise Learning Information by Gradient
Combination,
LPCV19(2477-2484)
IEEE DOI
2004
feature extraction, image recognition, image segmentation,
learning (artificial intelligence), object detection,
object detection
BibRef
Chen, H.,
Lin, M.,
Sun, X.,
Qi, Q.,
Li, H.,
Jin, R.,
MuffNet: Multi-Layer Feature Federation for Mobile Deep Learning,
CEFRL19(2943-2952)
IEEE DOI
2004
convolutional neural nets, image classification,
image representation, learning (artificial intelligence),
convolution network
BibRef
Choi, J.,
Seo, H.,
Im, S.,
Kang, M.,
Attention Routing Between Capsules,
NeruArch19(1981-1989)
IEEE DOI
2004
affine transforms, feature extraction, image classification,
learning (artificial intelligence), multilayer perceptrons,
Deep learning
BibRef
Durand, T.[Thibaut],
Mehrasa, N.[Nazanin],
Mori, G.[Greg],
Learning a Deep ConvNet for Multi-Label Classification With Partial
Labels,
CVPR19(647-657).
IEEE DOI
2002
BibRef
Hossain, M.T.[Md Tahmid],
Teng, S.W.[Shyh Wei],
Zhang, D.S.[Deng-Sheng],
Lim, S.[Suryani],
Lu, G.J.[Guo-Jun],
Distortion Robust Image Classification Using Deep Convolutional
Neural Network with Discrete Cosine Transform,
ICIP19(659-663)
IEEE DOI
1910
CNN, DCT, Dropout, Distortion, VGG16
BibRef
Arroyo, R.[Roberto],
Tovar, J.[Javier],
Delgado, F.J.[Francisco J.],
Almazán, E.J.[Emilio J.],
Serrador, D.G.[Diego G.],
Hurtado, A.[Antonio],
Deep Learning of Visual and Textual Data for Region Detection Applied
to Item Coding,
IbPRIA19(I:329-341).
Springer DOI
1910
Using text on the image.
BibRef
Onchis, D.M.[Darian M.],
Istin, C.[Codruta],
Real, P.[Pedro],
Refined Deep Learning for Digital Objects Recognition via Betti
Invariants,
CAIP19(I:613-621).
Springer DOI
1909
BibRef
Lan, X.[Xu],
Zhu, X.T.[Xia-Tian],
Gong, S.G.[Shao-Gang],
Self-Referenced Deep Learning,
ACCV18(II:284-300).
Springer DOI
1906
BibRef
Hinterstoisser, S.[Stefan],
Lepetit, V.[Vincent],
Wohlhart, P.[Paul],
Konolige, K.[Kurt],
On Pre-trained Image Features and Synthetic Images for Deep Learning,
4DPose18(I:682-697).
Springer DOI
1905
BibRef
Zhang, H.[Huan],
Shi, H.[Hong],
Wang, W.W.[Wen-Wu],
Cascade Deep Networks for Sparse Linear Inverse Problems,
ICPR18(812-817)
IEEE DOI
1812
Inverse problems, Linear programming, Image resolution,
Signal resolution, Convergence, Time complexity
BibRef
Yang, Y.Q.[Yao-Qing],
Feng, C.[Chen],
Shen, Y.[Yiru],
Tian, D.[Dong],
FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation,
CVPR18(206-215)
IEEE DOI
1812
Decoding, Image reconstruction, Surface reconstruction, Neural networks
BibRef
Caron, M.[Mathilde],
Bojanowski, P.[Piotr],
Joulin, A.[Armand],
Douze, M.[Matthijs],
Deep Clustering for Unsupervised Learning of Visual Features,
ECCV18(XIV: 139-156).
Springer DOI
1810
BibRef
Xu, Y.F.[Yi-Fan],
Fan, T.Q.[Tian-Qi],
Xu, M.Y.[Ming-Ye],
Zeng, L.[Long],
Qiao, Y.[Yu],
SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional
Filters,
ECCV18(VIII: 90-105).
Springer DOI
1810
BibRef
Wang, Q.[Qiang],
Xu, J.Q.[Jia-Qing],
Li, R.C.[Rong-Chun],
Qiao, P.[Peng],
Yang, K.[Ke],
Li, S.J.[Shi-Jie],
Dou, Y.[Yong],
Deep Image Clustering Using Convolutional Autoencoder Embedding with
Inception-Like Block,
ICIP18(2356-2360)
IEEE DOI
1809
Convolutional codes, Convolution, Clustering algorithms,
Image reconstruction, Decoding, Clustering methods, Task analysis,
Kullback-Leibler divergence
BibRef
Smith, K.E.[Kaleb E.],
Williams, P.[Phillip],
Chaiya, T.[Tatsanee],
Ble, M.[Max],
Deep Convolutional-Shepard Interpolation Neural Networks for Image
Classification Tasks,
ICIAR18(185-192).
Springer DOI
1807
BibRef
Wu, J.,
Qiu, S.,
Kong, Y.,
Chen, Y.,
Senhadji, L.,
Shu, H.,
MomentsNet:
A simple learning-free method for binary image recognition,
ICIP17(2667-2671)
IEEE DOI
1803
Backpropagation, Feature extraction, Histograms, Image recognition,
Machine learning, Transforms, Deep learning, MomentsNet,
convolutional neural network
BibRef
Dizaji, K.G.[Kamran Ghasedi],
Herandi, A.[Amirhossein],
Deng, C.[Cheng],
Cai, W.D.[Wei-Dong],
Huang, H.[Heng],
Deep Clustering via Joint Convolutional Autoencoder Embedding and
Relative Entropy Minimization,
ICCV17(5747-5756)
IEEE DOI
1802
data visualisation, entropy, estimation theory,
learning (artificial intelligence), minimisation,
Tuning
BibRef
Sun, C.[Chen],
Shrivastava, A.[Abhinav],
Singh, S.[Saurabh],
Gupta, A.[Abhinav],
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era,
ICCV17(843-852)
IEEE DOI
1802
With a very large dataset.
learning (artificial intelligence),
pose estimation, JFT-300M dataset, base model, dataset size,
Visualization
BibRef
Park, E.[Eunhyeok],
Ahn, J.[Junwhan],
Yoo, S.[Sungjoo],
Weighted-Entropy-Based Quantization for Deep Neural Networks,
CVPR17(7197-7205)
IEEE DOI
1711
Computational modeling, Embedded systems, Entropy, Hardware,
Mobile communication, Neural networks, Quantization, (signal)
BibRef
Worrall, D.E.[Daniel E.],
Garbin, S.J.[Stephan J.],
Turmukhambetov, D.[Daniyar],
Brostow, G.J.[Gabriel J.],
Harmonic Networks: Deep Translation and Rotation Equivariance,
CVPR17(7168-7177)
IEEE DOI
1711
To deal with rotations.
Detectors, Filtering theory, Harmonic analysis,
Maximum likelihood detection, Nonlinear filters, Power, harmonic, filters
BibRef
Yang, X.,
Ramesh, P.,
Chitta, R.,
Madhvanath, S.,
Bernal, E.A.,
Luo, J.,
Deep Multimodal Representation Learning from Temporal Data,
CVPR17(5066-5074)
IEEE DOI
1711
Correlation, Data models, Decoding, Fuses, Machine learning, Robustness
BibRef
Guo, Y.W.[Yi-Wen],
Yao, A.B.[An-Bang],
Zhao, H.[Hao],
Chen, Y.R.[Yu-Rong],
Network Sketching: Exploiting Binary Structure in Deep CNNs,
CVPR17(4040-4048)
IEEE DOI
1711
Approximation algorithms, Computational modeling,
Mathematical model, Memory management, Tensile, stress
BibRef
Diba, A.[Ali],
Sharma, V.[Vivek],
Van Gool, L.J.[Luc J.],
Deep Temporal Linear Encoding Networks,
CVPR17(1541-1550)
IEEE DOI
1711
Computational modeling, Encoding, Optical fiber networks,
Optical imaging, Robustness, Videos
BibRef
Achsas, S.,
Nfaoui, E.H.,
Improving relational aggregated search from big data sources using
deep learning,
ISCV17(1-6)
IEEE DOI
1710
Data mining, Feature extraction, Information retrieval,
Neural networks, Big Data Sources, Deep Learning,
Information Extraction, Information nuggets, Knowledge bases,
Relational Aggregated Search, Stacked, Autoencoders
BibRef
Dupre, R.,
Tzimiropoulos, G.,
Argyriou, V.,
Automated Risk Assessment for Scene Understanding and Domestic Robots
Using RGB-D Data and 2.5D CNNs at a Patch Level,
DeepLearnRV17(476-477)
IEEE DOI
1709
Labeling, Machine learning, Shape,
BibRef
Bentes Gatto, B.[Bernardo],
de Souza, L.S.[Lincon Sales],
dos Santos, E.M.[Eulanda M.],
A deep network model based on subspaces:
A novel approach for image classification,
MVA17(436-439)
DOI Link
1708
Discrete cosine transforms, Face,
Face recognition, Machine learning, Neural networks, Principal
component analysis
BibRef
Mojoo, J.[Jonathan],
Kurosawa, K.[Keiichi],
Kurita, T.[Takio],
Deep CNN with Graph Laplacian Regularization for Multi-label Image
Annotation,
ICIAR17(19-26).
Springer DOI
1706
BibRef
McCane, B.,
Szymanskic, L.,
Deep networks are efficient for circular manifolds,
ICPR16(3464-3469)
IEEE DOI
1705
Geometry, Logic gates, Manifolds, Neural networks, Neurons,
Pattern recognition.
BibRef
Zhao, Z.B.[Zhen-Bing],
Xu, G.Z.[Guo-Zhi],
Qi, Y.C.[Yin-Cheng],
Multi-Scale Hierarchy Deep Feature Aggregation for Compact Image
Representations,
DeepVisual16(III: 557-571).
Springer DOI
1704
BibRef
Krutsch, R.,
Naidu, S.,
Monte Carlo method based precision analysis of deep convolution nets,
DASIP16(162-167)
IEEE DOI
1704
Monte Carlo methods
BibRef
Yu, T.Y.[Tian-Yuan],
Bai, L.[Liang],
Guo, J.L.[Jin-Lin],
Yang, Z.[Zheng],
Xie, Y.X.[Yu-Xiang],
Deep Convolutional Neural Network for Bidirectional Image-Sentence
Mapping,
MMMod17(II: 136-147).
Springer DOI
1701
BibRef
Islam, M.A.[M. Amirul],
Rochan, M.,
Bruce, N.D.B.[Neil D.B.],
Wang, Y.[Yang],
Gated Feedback Refinement Network for Dense Image Labeling,
CVPR17(4877-4885)
IEEE DOI
1711
BibRef
Earlier: A1, A3, A4, Only:
Dense Image Labeling Using Deep Convolutional Neural Networks,
CRV16(16-23)
IEEE DOI
1612
Convolution, Decoding, Encoding, Labeling, Logic gates, Semantics,
Spatial resolution.
Deep Convolutional Neural Network
BibRef
Zhou, B.,
Khosla, A.,
Lapedriza, A.,
Oliva, A.,
Torralba, A.B.,
Learning Deep Features for Discriminative Localization,
CVPR16(2921-2929)
IEEE DOI
1612
BibRef
Murdock, C.,
Li, Z.,
Zhou, H.,
Duerig, T.,
Blockout: Dynamic Model Selection for Hierarchical Deep Networks,
CVPR16(2583-2591)
IEEE DOI
1612
BibRef
Kalantidis, Y.[Yannis],
Mellina, C.[Clayton],
Osindero, S.[Simon],
Cross-Dimensional Weighting for Aggregated Deep Convolutional Features,
WebScale16(I: 685-701).
Springer DOI
1611
BibRef
Papadopoulos, G.T.[Georgios T.],
Machairidou, E.[Elpida],
Daras, P.[Petros],
Deep cross-layer activation features for visual recognition,
ICIP16(923-927)
IEEE DOI
1610
Correlation. Last layer of the CNN may not capture every scale of feature.
BibRef
Qi, M.S.[Meng-Shi],
Wang, Y.H.[Yun-Hong],
DEEP-CSSR: Scene classification using category-specific salient
region with deep features,
ICIP16(1047-1051)
IEEE DOI
1610
Bio inspired models.
BibRef
Anantrasirichai, N.,
Gilchrist, I.D.,
Bull, D.R.,
Visual salience and priority estimation for locomotion using a deep
convolutional neural network,
ICIP16(1599-1603)
IEEE DOI
1610
Estimation
BibRef
Chaabouni, S.,
Benois-Pineau, J.,
Ben Amar, C.,
Transfer learning with deep networks for saliency prediction in
natural video,
ICIP16(1604-1608)
IEEE DOI
1610
Benchmark testing
BibRef
Makantasis, K.,
Doulamis, A.,
Doulamis, N.,
Psychas, K.,
Deep learning based human behavior recognition in industrial
workflows,
ICIP16(1609-1613)
IEEE DOI
1610
Computer architecture
BibRef
Gaur, U.,
Kourakis, M.,
Newman-Smith, E.,
Smith, W.,
Manjunath, B.S.,
Membrane segmentation via active learning with deep networks,
ICIP16(1943-1947)
IEEE DOI
1610
Computer architecture
BibRef
Porter, R.B.,
Zimmer, B.G.,
Deep segmentation networks using 'simple' multi-layered graphical
models,
Southwest16(41-44)
IEEE DOI
1605
Feeds
BibRef
Hiranandani, G.,
Karnick, H.,
Improved Classification and Reconstruction by Introducing
Independence and Randomization in Deep Neural Networks,
DICTA15(1-8)
IEEE DOI
1603
image classification
BibRef
Ueki, K.,
Kobayashi, T.,
Multi-layer feature extractions for image classification:
Knowledge from deep CNNs,
WSSIP15(9-12)
IEEE DOI
1603
BibRef
And:
WSSIP15(9-12)
IEEE DOI
1603
feature extraction.
Computer vision
2 papers listed.
BibRef
Ba, J.L.[Jimmy Lei],
Swersky, K.[Kevin],
Fidler, S.[Sanja],
Salakhutdinov, R.[Ruslan],
Predicting Deep Zero-Shot Convolutional Neural Networks Using Textual
Descriptions,
ICCV15(4247-4255)
IEEE DOI
1602
Electronic publishing
BibRef
Huang, J.J.[Jia-Ji],
Qiu, Q.[Qiang],
Calderbank, R.[Robert],
Sapiro, G.[Guillermo],
Geometry-Aware Deep Transform,
ICCV15(4139-4147)
IEEE DOI
1602
Machine learning. Use geometry.
BibRef
Aubry, M.[Mathieu],
Russell, B.C.[Bryan C.],
Understanding Deep Features with Computer-Generated Imagery,
ICCV15(2875-2883)
IEEE DOI
1602
Computational modeling
BibRef
Cheng, Y.,
Yu, F.X.,
Feris, R.S.,
Kumar, S.,
Choudhary, A.,
Chang, S.F.,
An Exploration of Parameter Redundancy in Deep Networks with
Circulant Projections,
ICCV15(2857-2865)
IEEE DOI
1602
Complexity theory
BibRef
Feng, J.,
Darrell, T.J.,
Learning the Structure of Deep Convolutional Networks,
ICCV15(2749-2757)
IEEE DOI
1602
Adaptation models
BibRef
Wu, R.,
Wang, B.,
Wang, W.,
Yu, Y.,
Harvesting Discriminative Meta Objects with Deep CNN Features for
Scene Classification,
ICCV15(1287-1295)
IEEE DOI
1602
Aggregates
BibRef
Yan, Z.,
Zhang, H.,
Piramuthu, R.,
Jagadeesh, V.,
de Coste, D.,
Di, W.,
Yu, Y.,
HD-CNN: Hierarchical Deep Convolutional Neural Networks for Large
Scale Visual Recognition,
ICCV15(2740-2748)
IEEE DOI
1602
Computer architecture
BibRef
Simo-Serra, E.,
Trulls, E.,
Ferraz, L.,
Kokkinos, I.,
Fua, P.,
Moreno-Noguer, F.,
Discriminative Learning of Deep Convolutional Feature Point
Descriptors,
ICCV15(118-126)
IEEE DOI
1602
Computational modeling
BibRef
Monti, F.,
Boscaini, D.,
Masci, J.,
Rodolà, E.,
Svoboda, J.,
Bronstein, M.M.[Michael M.],
Geometric Deep Learning on Graphs and Manifolds Using Mixture Model
CNNs,
CVPR17(5425-5434)
IEEE DOI
1711
Computational modeling, Convolution, Laplace equations,
Machine learning, Manifolds, Shape,
BibRef
Gordo, A.[Albert],
Gaidon, A.[Adrien],
Perronnin, F.[Florent],
Deep Fishing: Gradient Features from Deep Nets,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Thewlis, J.[James],
Zheng, S.[Shuai],
Torr, P.H.S.[Philip H.S.],
Vedaldi, A.[Andrea],
Fully-trainable deep matching,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Bilen, H.,
Vedaldi, A.,
Weakly Supervised Deep Detection Networks,
CVPR16(2846-2854)
IEEE DOI
1612
BibRef
Nguyen, K.[Kien],
Fookes, C.[Clinton],
Sridharan, S.[Sridha],
Deep Context Modeling for Semantic Segmentation,
WACV17(56-63)
IEEE DOI
1609
BibRef
Earlier:
Deeper and wider fully convolutional network coupled with conditional
random fields for scene labeling,
ICIP16(1344-1348)
IEEE DOI
1610
BibRef
Earlier:
Improving deep convolutional neural networks with unsupervised
feature learning,
ICIP15(2270-2274)
IEEE DOI
1512
Feature extraction, Graphical models, Image segmentation, Kernel,
Labeling, Neural networks, Semantics, context modeling,
scene parsing, scene understanding, semantic segmentation.
Computational modeling.
Convolutional Neural Network
BibRef
Talathi, S.S.[Sachin S.],
Hyper-parameter optimization of deep convolutional networks for
object recognition,
ICIP15(3982-3986)
IEEE DOI
1512
deep convolution networks
BibRef
Yamashita, T.[Takayoshi],
Tanaka, M.[Masayuki],
Yamauchi, Y.[Yuji],
Fujiyoshi, H.[Hironobu],
SWAP-NODE:
A regularization approach for deep convolutional neural networks,
ICIP15(2475-2479)
IEEE DOI
1512
deep learning; dropout; regularization; swap-node
BibRef
Afzal, M.Z.[Muhammad Zeshan],
Capobianco, S.[Samuele],
Malik, M.I.[Muhammad Imran],
Marinai, S.[Simone],
Breuel, T.M.[Thomas M.],
Dengel, A.[Andreas],
Liwicki, M.[Marcus],
Deepdocclassifier:
Document classification with deep Convolutional Neural Network,
ICDAR15(1111-1115)
IEEE DOI
1511
Convolutional Neural Network;Deep CNN;Document Image Classification
BibRef
Christodoulidis, S.[Stergios],
Anthimopoulos, M.[Marios],
Mougiakakou, S.[Stavroula],
Food Recognition for Dietary Assessment Using Deep Convolutional Neural
Networks,
MADiMa15(458-465).
Springer DOI
1511
BibRef
Li, Y.[Yao],
Liu, L.Q.[Ling-Qiao],
Shen, C.H.[Chun-Hua],
van den Hengel, A.J.[Anton J.],
Mid-level deep pattern mining,
CVPR15(971-980)
IEEE DOI
1510
Convolutional Neural Networks.
BibRef
Amthor, M.[Manuel],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Impatient DNNs: Deep Neural Networks with Dynamic Time Budgets,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Simon, M.[Marcel],
Rodner, E.[Erik],
Neural Activation Constellations: Unsupervised Part Model Discovery
with Convolutional Networks,
ICCV15(1143-1151)
IEEE DOI
1602
Birds
BibRef
Denzler, J.[Joachim],
Rodner, E.[Erik],
Simon, M.[Marcel],
Convolutional Neural Networks as a Computational Model for the
Underlying Processes of Aesthetics Perception,
CVAA16(I: 871-887).
Springer DOI
1611
BibRef
Simon, M.[Marcel],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Part Detector Discovery in Deep Convolutional Neural Networks,
ACCV14(II: 162-177).
Springer DOI
1504
BibRef
Ng, J.Y.H.[Joe Yue-Hei],
Hausknecht, M.[Matthew],
Vijayanarasimhan, S.[Sudheendra],
Vinyals, O.[Oriol],
Monga, R.[Rajat],
Toderici, G.[George],
Beyond short snippets: Deep networks for video classification,
CVPR15(4694-4702)
IEEE DOI
1510
BibRef
Chen, G.B.[Guo-Bin],
Han, T.X.[Tony X.],
He, Z.H.[Zhi-Hai],
Kays, R.[Roland],
Forrester, T.[Tavis],
Deep convolutional neural network based species recognition for wild
animal monitoring,
ICIP14(858-862)
IEEE DOI
1502
Birds
BibRef
Hafemann, L.G.[Luiz G.],
Oliveira, L.S.[Luiz S.],
Cavalin, P.[Paulo],
Forest Species Recognition Using Deep Convolutional Neural Networks,
ICPR14(1103-1107)
IEEE DOI
1412
Accuracy
BibRef
Gatta, C.[Carlo],
Romero, A.[Adriana],
van de Veijer, J.[Joost],
Unrolling Loopy Top-Down Semantic Feedback in Convolutional Deep
Networks,
DeepLearn14(504-511)
IEEE DOI
1409
BibRef
Yin, X.C.[Xu-Cheng],
Yang, C.[Chun],
Pei, W.Y.[Wei-Yi],
Hao, H.W.[Hong-Wei],
Shallow Classification or Deep Learning: An Experimental Study,
ICPR14(1904-1909)
IEEE DOI
1412
Character recognition
BibRef
Kekec, T.[Taygun],
Emonet, R.[Remi],
Fromont, E.[Elisa],
Tremeau, A.[Alain],
Wolf, C.[Christian],
Contextually Constrained Deep Networks for Scene Labeling,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Zhong, S.H.[Sheng-Hua],
Liu, Y.[Yan],
Chung, F.L.[Fu-Lai],
Wu, G.S.[Gang-Shan],
Semiconducting bilinear deep learning for incomplete image recognition,
ICMR12(32).
DOI Link
1301
semiconducting bilinear deep belief networks (SBDBN)
human's visual cortex.
BibRef
Ciregan, D.[Dan],
Meier, U.[Ueli],
Schmidhuber, J.[Jurgen],
Multi-column deep neural networks for image classification,
CVPR12(3642-3649).
IEEE DOI
1208
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Deep Network Training, Learning, Strategy, Design, Techniques .