Nagy, G.[George],
Wagle, S.G.[Sharad G.],
Approximation of polygonal maps by cellular maps,
CACM(22), No. 9, September 1979, pp. 518-525.
WWW Link.
BibRef
7909
Sklansky, J.[Jack],
Gonzalez, V.[Victor],
Fast polygonal approximation of digitized curves,
PR(12), No. 5, 1980, pp. 327-331.
Elsevier DOI
0309
Apply to lung and rib boundaries.
BibRef
Rosin, P.L.[Paul L.],
Techniques for Assessing Polygonal Approximations of Curves,
PAMI(19), No. 6, June 1997, pp. 659-666.
IEEE DOI
9708
BibRef
Earlier:
BMVC96(Poster Session 1).
9608
BibRef
And:
Technical ReportCSTR-96-3, February 1996, Brunel University, UK.
PS File.
Evaluation. Brunel University.
Presents the comparison of results of 23 algorithms on a test curve.
And an evaluation criteria. Start here for viable techniques.
BibRef
Rosin, P.L.[Paul L.],
Assessing the Behaviour of Polygonal Approximation Algorithms,
PR(36), No. 2, February 2003, pp. 505-518.
Elsevier DOI
0211
BibRef
Earlier:
BMVC98(xx-yy).
Continuation from
See also Techniques for Assessing Polygonal Approximations of Curves. to assess stability under variations in scale parameters and data.
BibRef
Sklansky, J.,
Chazin, R.L.,
Hansen, B.J.,
Minimum Perimeter Polygons of Digitized Silhouettes,
TC(21), No. 3, March 1972, pp. 260-268.
BibRef
7203
Sklansky, J.,
Nahin, P.J.,
A Parallel Mechanism for Describing Silhouettes,
TC(21), No. 11, November 1972, pp. 1233-1239.
BibRef
7211
Nahin, P.J.[Paul J.],
The theory and measurement of a silhouette descriptor for image
pre-processing and recognition,
PR(6), No. 2, October 1974, pp. 85-95.
Elsevier DOI
0309
BibRef
Kurozumi, Y.[Yoshisuke],
Davis, W.A.[Wayne A.],
Polygonal Approximation by the Minimax Method,
CGIP(19), No. 3, July 1982, pp. 248-264.
Elsevier DOI
BibRef
8207
Sarvarayudu, G.P.R.,
Sethi, I.K.,
Walsh Descriptors for Polygonal Curves,
PR(16), No. 3, 1983, pp. 327-336.
Elsevier DOI
BibRef
8300
Earlier:
Boundary Approximation Using Walsh Series Expansion
for Numeral Recognition,
ICPR80(879-881).
BibRef
Wall, K.[Karin],
Danielsson, P.E.[Per-Erik],
A Fast Sequential Method for Polygonal Approximation of
Digitized Curves,
CVGIP(28), No. 2, November 1984, pp. 220-227.
Elsevier DOI
BibRef
8411
Wall, K.,
Curve Fitting Based On Polygonal Approximation,
ICPR86(1273-1275).
BibRef
8600
Imai, H.[Hiroshi],
Iri, M.[Masao],
Computational-Geometric Methods for Polygonal Approximations of a Curve,
CVGIP(36), No. 1, October 1986, pp. 31-41.
Elsevier DOI Approximate a finer piecewise linear curve by a coarser linear curve.
BibRef
8610
Wu, W.Y.[Wen-Yen],
Wang, M.J.J.[Mao-Jiun J.],
Detecting the Dominant Points by the Curvature-Based
Polygonal Approximation,
GMIP(55), No. 2, March 1993, pp. 79-88.
BibRef
9303
Pikaz, A.[Arie],
Dinstein, I.[Its'hak],
Using Simple Decomposition for Smoothing and
Feature Point Detection Of Noisy Digital Curves,
PAMI(16), No. 8, August 1994, pp. 808-813.
IEEE DOI
BibRef
9408
Pikaz, A.[Arie],
Dinstein, I.[Its'hak],
Optimal Polygonal-Approximation of Digital Curves,
PR(28), No. 3, March 1995, pp. 373-379.
BibRef
9503
Earlier:
Elsevier DOI
ICPR94(A:619-621).
IEEE DOI
BibRef
Pikaz, A.[Arie],
Dinstein, I.[Its'hak],
An Algorithm for Polygonal-Approximation Based on
Iterative Point Elimination,
PRL(16), No. 6, June 1995, pp. 557-563.
BibRef
9506
Perez, J.C.,
Vidal, E.,
Optimum Polygonal-Approximation Of Digitized-Curves,
PRL(15), No. 8, August 1994, pp. 743-750.
BibRef
9408
Earlier:
An algorithm for the optimum piecewise linear approximation of
digitized curves,
ICPR92(III:167-170).
IEEE DOI
9208
BibRef
Eu, D.,
Toussaint, G.T.,
On Approximating Polygonal Curves in 2 and 3 Dimensions,
GMIP(56), No. 3, May 1994, pp. 231-246.
BibRef
9405
Chung, P.C.[Pau-Choo],
Tsai, C.T.[Ching-Tsorng],
Chen, E.L.[E-Liang],
Sun, Y.N.[Yung-Nien],
Polygonal-Approximation Using A Competitive Hopfield Neural-Network,
PR(27), No. 11, November 1994, pp. 1505-1512.
Elsevier DOI
BibRef
9411
Ray, B.K.,
Ray, K.S.,
A New Approach to Polygonal Approximation,
PRL(12), 1991, pp. 229-234.
See also New Split-and-Merge Technique for Polygonal-Approximation of Chain Coded Curves, A.
See also Corner Detection Using Iterative Gaussian Smoothing with Constant Window Size.
BibRef
9100
Ray, B.K.[Bimal Kumar],
Ray, K.S.[Kumar S.],
Determination of Optimal Polygon from Digital Curve Using L1 Norm,
PR(26), No. 4, April 1993, pp. 505-509.
Elsevier DOI
BibRef
9304
Ray, B.K.[Bimal Kumar],
Ray, K.S.[Kumar S.],
A Nonparametric Sequential Method for Polygonal-Approximation
of Digital Curves,
PRL(15), No. 2, February 1994, pp. 161-167.
BibRef
9402
Ray, B.K.[Bimal Kumar],
Ray, K.S.[Kumar S.],
Detection of Significant Points and Polygonal Approximation of
Digitized Curves,
PRL(13), 1992, pp. 443-452.
BibRef
9200
Ray, B.K.[Bimal Kumar],
Ray, K.S.[Kumar S.],
An Algorithm for Polygonal Approximation of Digitized Curves,
PRL(13), 1992, pp. 489-496.
BibRef
9200
Ray, B.K.[Bimal Kumar],
Ray, K.S.[Kumar S.],
An Algorithm for Detection of Dominant Points and
Polygonal Approximation of Digitzed Curves,
PRL(13), 1992, pp. 849-856.
BibRef
9200
Rannou, F.R.[Fernando R.],
Gregor, J.[Jens],
Equilateral Polygon Approximation of Closed Contours,
PR(29), No. 7, July 1996, pp. 1105-1115.
Elsevier DOI
9607
BibRef
Wu, J.S.[Jiann-Shing],
Leou, J.J.[Jin-Jang],
New Polygonal Approximation Schemes for Object Shape Representation,
PR(26), No. 4, April 1993, pp. 471-484.
Elsevier DOI
BibRef
9304
Sato, Y.[Yukio],
Piecewise Linear Approximation of Plane Curves by
Perimeter Optimization,
PR(25), No. 12, December 1992, pp. 1535-1543.
Elsevier DOI
BibRef
9212
Pikaz, A.[Arie],
Averbuch, A.[Amir],
On Automatic Threshold Selection for Polygonal Approximations
of Digital Curves,
PR(29), No. 11, November 1996, pp. 1835-1845.
Elsevier DOI
9612
BibRef
Pei, S.C.[Soo-Chang],
Lin, C.N.[Chao-Nan],
The Detection of Dominant Points on Digital Curves by
Scale-Space Filtering,
PR(25), No. 11, November 1992, pp. 1307-1314.
Elsevier DOI
BibRef
9211
Boxer, L.,
Chang, C.S.,
Miller, R.,
Polygonal Approximation by Boundary Reduction,
PRL(14), 1993, pp. 111-119.
BibRef
9300
Lavakusha,
Pujari, A.K.,
Reddy, P.G.,
Polygonal Representation by Edge K-D Trees,
PRL(11), 1990, pp. 391-394.
BibRef
9000
Leu, J.G.,
Chen, L.,
Polygonal Approximation of 2-D Shapes Through Boundary Merging,
PRL(7), 1988, pp. 231-238.
BibRef
8800
Sirjani, A.,
Cross, G.R.,
An Algorithm for Polygonal Approximation of a Digital Object,
PRL(7), 1988, pp. 299-303.
BibRef
8800
Cordella, L.P.,
Dettori, G.,
An O(N) Algorithm for Polygonal Approximation,
PRL(3), 1985, pp. 93-97.
BibRef
8500
Dettori, G.,
An On-Line Algorithm for Polygonal Approximation of
Digitized Plane Curves,
ICPR82(739-741).
BibRef
8200
Chan, W.S.,
Chin, F.,
On Approximation of Polygonal Curves with Minimum Number of
Line Segments or Minimum Error,
CompGeomApp(6), 1996, pp. 59-77.
BibRef
9600
Hu, H.W.[Ha-Wing],
Yan, H.[Hong],
Polygonal-Approximation of Digital Curves Based on the
Principles of Perceptual Organization,
PR(30), No. 5, May 1997, pp. 701-718.
Elsevier DOI
9705
BibRef
Zhu, Y.,
Seneviratne, L.D.,
Optimal Polygonal-Approximation of Digitized-Curves,
VISP(144), No. 1, February 1997, pp. 8-14.
9706
BibRef
Ekman, A.,
Torne, A.,
Stromberg, D.,
Exploration of Polygonal Environments Using Range Data,
SMC-B(27), No. 2, April 1997, pp. 250-255.
IEEE Top Reference.
9704
BibRef
Schuster, G.M.[Guido M.],
Katsaggelos, A.K.,
An Optimal Polygonal Boundary Encoding Scheme in the
Rate-Distortion Sense,
IP(7), No. 1, January 1998, pp. 13-26.
IEEE DOI
9801
BibRef
Meier, F.,
Schuster, G.M.[Guido M.],
Katsaggelos, A.K.,
An Efficient Boundary Encoding Scheme which is Optimal in the
Rate-Distortion Sense,
ICIP97(II: 9-12).
IEEE DOI
BibRef
9700
Iñesta Quereda, J.M.[José Manuel],
Buendía Gómez, M.[Mateo],
Sarti, M.Á.[María Ángeles],
Reliable Polygonal Approximations of Imaged Real Objects
Through Dominant Point Detection,
PR(31), No. 6, June 1998, pp. 685-697.
Elsevier DOI
9806
BibRef
Wang, W.X.,
Binary Image Segmentation of Aggregates Based on Polygonal-Approximation
and Classification of Concavities,
PR(31), No. 10, October 1998, pp. 1503-1524.
Elsevier DOI
9808
BibRef
Wang, W.X.,
Stephansson, O.,
Binary Image Segmentation of Aggregates Based on
Polygonal Approximation,
SCIA97(xx-yy)
9705
HTML Version.
BibRef
Bergevin, R.[Robert],
Mokhtari, M.[Marielle],
Multiscale Contour Segmentation and Approximation:
An Algorithm Based on the Geometry of Regular Inscribed Polygons,
CVIU(71), No. 1, July 1998, pp. 55-73.
DOI Link
BibRef
9807
Earlier: A2, A1:
Multiscale Compression of Planar Curves Using
Constant Curvature Segments,
ICPR98(Vol I: 744-746).
IEEE DOI
9808
BibRef
Bergevin, R.,
Bubel, A.,
Object-level structured contour map extraction,
CVIU(91), No. 3, September 2003, pp. 302-334.
Elsevier DOI
0310
Extract contours from junctions.
BibRef
Bergevin, R.,
Bubel, A.,
Detection and characterization of junctions in a 2D image,
CVIU(93), No. 3, March 2004, pp. 288-309.
Elsevier DOI
0402
BibRef
Garai, G.[Gautam],
Chaudhuri, B.B.,
A split and merge procedure for polygonal border detection
of dot pattern,
IVC(17), No. 1, January 1999, pp. 75-82.
Elsevier DOI
BibRef
9901
Huang, S.C.[Shu-Chien],
Sun, Y.N.[Yung-Nien],
Polygonal approximation using genetic algorithms,
PR(32), No. 8, August 1999, pp. 1409-1420.
Elsevier DOI
BibRef
9908
Davis, T.J.,
Fast Decomposition of Digital Curves into Polygons Using the Haar
Transform,
PAMI(21), No. 8, August 1999, pp. 786-790.
IEEE DOI
BibRef
9908
Qjidaa, H.,
Radouane, L.,
Robust Line Fitting in a Noisy Image by the Method of Moments,
PAMI(21), No. 11, November 1999, pp. 1216-1223.
IEEE DOI
9912
Overcome errors with least squares when the noise is extreme.
BibRef
Kiryati, N.[Nahum],
Bruckstein, A.M.[Alfred M.],
Mizrahi, H.,
Comments on:
'Robust Line Fitting in a Noisy Image by the Method of Moments',
PAMI(22), No. 11, November 2000, pp. 1340-1341.
IEEE DOI
0012
See also Heteroscedastic Hough Transform (HtHT): An Efficient Method for Robust Line Fitting in the 'Errors in the Variables' Problem.
BibRef
Kim, J.I.[Jong Il],
Bovik, A.C.[Alan C.],
Evans, B.L.[Brian L.],
Generalized predictive binary shape coding using polygon approximation,
SP:IC(15), No. 7-8, May 2000, pp. 643-663.
Elsevier DOI
0005
BibRef
Salotti, M.[Marc],
An efficient algorithm for the optimal polygonal approximation of
digitized curves,
PRL(22), No. 2, February 2001, pp. 215-221.
Elsevier DOI
0101
BibRef
Earlier:
Improvement of Perez and Vidal Algorithm for the Decomposition of
Digitized Curves Into Line Segments,
ICPR00(Vol II: 878-882).
IEEE DOI
0009
See also Optimum Polygonal-Approximation Of Digitized-Curves.
BibRef
Salotti, M.[Marc],
Optimal polygonal approximation of digitized curves using the sum of
square deviations criterion,
PR(35), No. 2, February 2002, pp. 435-443.
Elsevier DOI
0201
BibRef
Ho, S.Y.[Shinn-Ying],
Chen, Y.C.[Yeong-Chinq],
An efficient evolutionary algorithm for accurate polygonal
approximation,
PR(34), No. 12, December 2001, pp. 2305-2317.
Elsevier DOI
0110
See also Mesh optimization for surface approximation using an efficient coarse-to-fine evolutionary algorithm.
BibRef
Shu, H.Z.,
Luo, L.M.,
Zhou, J.D.,
Bao, X.D.,
Moment-based methods for polygonal approximation of digitized curves,
PR(35), No. 2, February 2002, pp. 421-434.
Elsevier DOI
0201
BibRef
Latecki, L.J.[Longin Jan],
Rosenfeld, A.[Azriel],
Recovering a Polygon from Noisy Data,
CVIU(86), No. 1, April 2002, pp. 32-51.
DOI Link
0211
BibRef
Latecki, L.J.[Longin Jan],
Lakämper, R.[Rolf],
Polygon Evolution by Vertex Deletion,
ScaleSpace99(398-409).
BibRef
9900
Latecki, L.J.[Longin Jan],
Lakaemper, R.[Rolf],
Sobel, M.[Marc],
Polygonal Approximation of Point Sets,
IWCIA06(159-173).
Springer DOI
0606
BibRef
Choi, J.G.,
Lee, S.W.,
Kang, H.S.,
Dynamic programming approach to optimal vertex selection for
polygon-based shape approximation,
VISP(150), No. 4, October 2003, pp. 287-291.
IEEE Abstract.
0401
BibRef
Dörksen-Reiter, H.[Helene],
Debled-Rennesson, I.[Isabelle],
A Linear Algorithm for Polygonal Representations of Digital Sets,
IWCIA06(307-319).
Springer DOI
0606
BibRef
Debled-Rennesson, I.[Isabelle],
Tabbone, S.A.[Salvatore A.],
Wendling, L.[Laurent],
Multiorder polygonal approximation of digital curves,
ELCVIA(5), No. 2, 2005, pp. 98-110.
DOI Link
0001
BibRef
Earlier:
Fast polygonal approximation of digital curves,
ICPR04(I: 465-468).
IEEE DOI
0409
See also Linear Algorithm for Segmentation of Digital Curves, A.
BibRef
Kolesnikov, A.[Alexander],
Fränti, P.[Pasi],
Reduced-search dynamic programming for approximation of polygonal
curves,
PRL(24), No. 14, October 2003, pp. 2243-2254.
Elsevier DOI
0307
BibRef
Earlier:
A fast near-optimal algorithm for approximation of polygonal curves,
ICPR02(IV: 335-338).
IEEE DOI
0211
See also Lossless Compression of Map Contours by Context Tree Modeling of Chain Codes.
BibRef
Kolesnikov, A.[Alexander],
Segmentation and multi-model approximation of digital curves,
PRL(33), No. 9, 1 July 2012, pp. 1171-1179.
Elsevier DOI
1202
BibRef
Earlier:
Nonparametric polygonal and multimodel approximation of digital curves
with Rate-Distortion curve modeling,
ICIP11(2889-2892).
IEEE DOI
1201
BibRef
Earlier:
Approximation of digitized curves with cubic Bézier splines,
ICIP10(4285-4288).
IEEE DOI
1009
BibRef
And:
Fast algorithm for error-bounded compression of digital curves,
ICIP10(1453-1456).
IEEE DOI
1009
BibRef
Earlier:
Minimum Description Length approximation of digital curves,
ICIP09(449-452).
IEEE DOI
0911
BibRef
Earlier:
An online polygonal approximation of digital signals and curves with
Dynamic Programming algorithm,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
Constrained piecewise linear approximation of digital curves,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
Optimal Algorithm for Lossy Vector Data Compression,
ICIAR07(761-771).
Springer DOI
0708
BibRef
Earlier:
Optimal Encoding of Vector Data with Polygonal Approximation and Vertex
Quantization,
SCIA05(1186-1195).
Springer DOI
0506
Curve segmentation; Multi-model approximation; Minimum Description
Length; Circular arcs; Polygonal approximation; Trajectory modeling
See also Lossless Compression of Map Contours by Context Tree Modeling of Chain Codes.
BibRef
Kolesnikov, A.[Alexander],
ISE-bounded polygonal approximation of digital curves,
PRL(33), No. 10, 15 July 2012, pp. 1329-1337.
Elsevier DOI
1205
BibRef
Earlier:
Fast algorithm for ISE-bounded polygonal approximation,
ICIP08(1013-1016).
IEEE DOI
0810
Polygonal approximation; Dynamic Programming; Shape encoding; Shape
analysis; Vector maps compression; Vectorization
BibRef
Kolesnikov, A.[Alexander],
Kauranne, T.[Tuomo],
Unsupervised segmentation and approximation of digital curves with
rate-distortion curve modeling,
PR(47), No. 2, 2014, pp. 623 - 633.
Elsevier DOI
1311
Shape
BibRef
Kolesnikov, A.,
Franti, P.,
Wu, X.L.[Xiao-Lin],
Multiresolution polygonal approximation of digital curves,
ICPR04(II: 855-858).
IEEE DOI
0409
BibRef
Kolesnikov, A.[Alexander],
Fränti, P.[Pasi],
Polygonal approximation of closed discrete curves,
PR(40), No. 4, April 2007, pp. 1282-1293.
Elsevier DOI
0701
BibRef
Earlier:
Optimal Algorithm for Convexity Measure Calculation,
ICIP05(I: 353-356).
IEEE DOI
0512
BibRef
Earlier:
Min-e Polygonal Approximation of Closed Curves,
ICIP05(II: 522-525).
IEEE DOI
0512
BibRef
Earlier:
Optimal multiresolution polygonal approximation,
ICIP04(V: 3037-3040).
IEEE DOI
0505
BibRef
Earlier:
Polygonal Approximation of Closed Contours,
SCIA03(778-785).
Springer DOI
0310
BibRef
And:
Fast algorithm for multiple-objects MIN-e problem,
ICIP03(I: 221-224).
IEEE DOI
0312
Polygonal approximation; Closed contour; Dynamic programming
Approximation of polygonal curves.
BibRef
Panagiotakis, C.[Costas],
Tziritas, G.[George],
Any dimension polygonal approximation based on equal errors principle,
PRL(28), No. 5, 1 April 2007, pp. 582-591.
Elsevier DOI
0703
Polygonal approximation; Equal errors principle
BibRef
Krolupper, F.[Filip],
Flusser, J.[Jan],
Polygonal shape description for recognition of partially occluded
objects,
PRL(28), No. 9, 1 July 2007, pp. 1002-1011.
Elsevier DOI
0704
Occluded object recognition; Polygonal approximation; Affine invariant
BibRef
Bhowmick, P.[Partha],
Bhattacharya, B.B.[Bhargab B.],
Fast Polygonal Approximation of Digital Curves Using Relaxed
Straightness Properties,
PAMI(29), No. 9, September 2007, pp. 1590-1602.
IEEE DOI
0709
BibRef
Bhowmick, P.[Partha],
Biswas, A.[Arindam],
Bhattacharya, B.B.[Bhargab B.],
Thinning-free Polygonal Approximation of Thick Digital Curves Using
Cellular Envelope,
ELCVIA(7), No. 2, 2008, pp. xx-yy.
DOI Link
0903
BibRef
Earlier:
PACE: Polygonal Approximation of Thick Digital Curves Using Cellular
Envelope,
ICCVGIP06(299-310).
Springer DOI
0612
BibRef
Bhowmick, P.[Partha],
Klette, R.[Reinhard],
Generation of Random Digital Simple Curves with Artistic Emulation,
JMIV(48), No. 1, January 2014, pp. 53-71.
WWW Link.
1402
BibRef
Bhowmick, P.[Partha],
Pal, O.,
Klette, R.,
A Linear-time Algorithm for the Generation of Random Digital Curves,
PSIVT10(168-173).
IEEE DOI
1011
BibRef
Masood, A.[Asif],
Optimized polygonal approximation by dominant point deletion,
PR(41), No. 1, January 2008, pp. 227-239.
Elsevier DOI
0710
Dominant points; Polygonal approximation; DP table;
Associated error value; Optimal algorithm
BibRef
Masood, A.[Asif],
Haq, S.A.[Shaiq A.],
A novel approach to polygonal approximation of digital curves,
JVCIR(18), No. 3, June 2007, pp. 264-274.
Elsevier DOI
0711
Dominant points; Break points; Polygonal approximation;
DP table; Near optimal algorithm
BibRef
Masood, A.[Asif],
Dominant point detection by reverse polygonization of digital curves,
IVC(26), No. 5, May 2008, pp. 702-715.
Elsevier DOI
0803
Reverse polygonization; Dominant points; Break points; Polygonal approximation
BibRef
Masood, A.[Asif],
Sarfraz, M.[Muhammad],
Capturing outlines of 2D objects with Bezier cubic approximation,
IVC(27), No. 6, 4 May 2009, pp. 704-712.
Elsevier DOI
0904
Cubic Bezier curves; Corner points; Control point search; Subdivision
BibRef
Chung, K.L.[Kuo-Liang],
Liao, P.H.[Po-Hsuan],
Chang, J.M.[Jia-Ming],
Novel efficient two-pass algorithm for closed polygonal approximation
based on LISE and curvature constraint criteria,
JVCIR(19), No. 4, May 2008, pp. 219-230.
Elsevier DOI
0711
Algorithm; Closed curve; Closed polygonal approximation algorithm; Curvature;
Local integral square error; Shortest path algorithm
BibRef
Yun, B.J.[Byoung-Ju],
Cho, J.S.[Jae-Soo],
Ko, Y.H.[Yun-Ho],
A New Vertex Adjustment Method for Polygon-Based Shape Coding,
IEICE(E89-D), No. 10, October 2006, pp. 2693-2695.
DOI Link
0610
BibRef
Oh, K.M.[Kwang-Man],
Choi, J.D.[Jeong-Dan],
Lee, C.S.[Chan-Su],
Park, C.J.[Chan-Jong],
Lee, E.T.[Ee-Taek],
An Efficient and Simple Quad Edge Conversion of Polygonal Mainfold
Objects,
IJIG(1), No. 2, April 2001, pp. 251-271.
0104
BibRef
Sarkar, B.[Biswajit],
Singh, L.K.[Lokendra Kumar],
Sarkar, D.[Debranjan],
A Genetic Algorithm-based Approach For Detection Of Significant
Vertices For Polygonal Approximation Of Digital Curves,
IJIG(4), No. 2, April 2004, pp. 223-239.
0404
BibRef
Yhann, S.R.[Stephan R.],
Converting bitmap objects to polygons,
US_Patent6,639,593, Oct 28, 2003
WWW Link.
BibRef
0310
And:
US_Patent6,882,341, Apr 19, 2005
WWW Link.
BibRef
Wang, B.[Bin],
Shu, H.Z.[Hua-Zhong],
Luo, L.M.[Li-Min],
A genetic algorithm with chromosome-repairing for min-# and min-epsilon
polygonal approximation of digital curves,
JVCIR(20), No. 1, January 2009, pp. 45-56.
Elsevier DOI
0804
Genetic algorithms; Chromosome repairing; Digital curves;
Polygonal approximations; Integral square error; Optimization;
Split technique; Merge technique
BibRef
Carmona-Poyato, A.[Angel],
Madrid-Cuevas, F.J.[Francisco J.],
Medina-Carnicer, R.[Rafael],
Munoz-Salinas, R.,
Polygonal approximation of digital planar curves through break point
suppression,
PR(43), No. 1, January 2010, pp. 14-25,.
Elsevier DOI
0909
Digital planar curves; Polygonal approximation; Dominant points
BibRef
Madrid-Cuevas, F.J.[Francisco J.],
Aguilera-Aguilera, E.J.[Eusebio J.],
Carmona-Poyato, A.[Angel],
Muñoz-Salinas, R.,
Medina-Carnicer, R.[Rafael],
Fernández-García, N.L.[Nicolás Luis],
An efficient unsupervised method for obtaining polygonal
approximations of closed digital planar curves,
JVCIR(39), No. 1, 2016, pp. 152-163.
Elsevier DOI
1608
Closed digital planar curve
See also Dominant point detection: A new proposal.
BibRef
Aguilera-Aguilera, E.J.[Eusebio J.],
Carmona-Poyato, A.[Angel],
Madrid-Cuevas, F.J.[Francisco J.],
Medina-Carnicer, R.[Rafael],
Unsupervised Approximation of Digital Planar Curves,
IbPRIA15(200-207).
Springer DOI
1506
BibRef
Aguilera-Aguilera, E.J.,
Carmona-Poyato, A.,
Madrid-Cuevas, F.J.,
Muñoz-Salinas, R.,
Novel method to obtain the optimal polygonal approximation of digital
planar curves based on Mixed Integer Programming,
JVCIR(30), No. 1, 2015, pp. 106-116.
Elsevier DOI
1507
Polygonal approximation
BibRef
Madrid-Cuevas, F.J.,
Carmona-Poyato, A.,
Medina-Carnicer, R.,
Munoz-Salinas, R.,
Contour simplification using a multi-scale local phase analysis,
IVC(26), No. 11, 1 November 2008, pp. 1499-1506.
Elsevier DOI
0804
Contour simplification; Local phase; Multi-scale contour analysis
BibRef
Carmona-Poyato, Á.[Ángel],
Medina-Carnicer, R.[Rafael],
Madrid-Cuevas, F.J.[Francisco José],
Munoz-Salinas, R.,
Fernández-García, N.L.[Nicolás Luis],
A new measurement for assessing polygonal approximation of curves,
PR(44), No. 1, January 2011, pp. 45-54.
Elsevier DOI
1003
Digital planar curves; Assessing polygonal approximation
BibRef
Fernández-García, N.L.[Nicolás Luis],
Martínez, L.D.M.[Luis Del-Moral],
Carmona-Poyato, Á.[Ángel],
Madrid-Cuevas, F.J.[Francisco José],
Medina-Carnicer, R.[Rafael],
Assessing polygonal approximations:
A new measurement and a comparative study,
PR(138), 2023, pp. 109396.
Elsevier DOI
2303
2D Closed curve, Contour, Polygonal approximation, Performance evaluation
BibRef
Carmona-Poyato, A.,
Medina-Carnicer, R.,
Muñoz-Salinas, R.,
Yeguas-Bolivar, E.,
On stop conditions about methods to obtain polygonal approximations
relied on break point suppression,
IVC(30), No. 8, August 2012, pp. 513-523.
Elsevier DOI
1209
Digital planar curves; Polygonal approximation; Dominant points
BibRef
Fernández-García, N.L.,
del-Moral Martínez, L.,
Carmona-Poyato, A.,
Madrid-Cuevas, F.J.,
Medina-Carnicer, R.,
A new thresholding approach for automatic generation of polygonal
approximations,
JVCIR(35), No. 1, 2016, pp. 155-168.
Elsevier DOI
1602
Digital planar curves
BibRef
Song, Y.Q.[Yu-Qing],
Boundary fitting for 2D curve reconstruction,
VC(26), No. 3, March 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Parvez, M.T.[Mohammad Tanvir],
Mahmoud, S.A.[Sabri A.],
Polygonal approximation of digital planar curves through adaptive
optimizations,
PRL(31), No. 13, 1 October 2010, pp. 1997-2005.
Elsevier DOI
1003
Dominant points; Polygonal approximation; Planar curves; Contour processing
BibRef
Damiand, G.[Guillaume],
Coeurjolly, D.[David],
A generic and parallel algorithm for 2D digital curve polygonal
approximation,
RealTimeIP(6), No. 3, September 2011, pp. 145-157.
WWW Link.
1108
BibRef
Prasad, D.K.[Dilip K.],
Leung, M.K.H.[Maylor K.H.],
Quek, C.[Chai],
Cho, S.Y.[Siu-Yeung],
A novel framework for making dominant point detection methods
non-parametric,
IVC(30), No. 11, November 2012, pp. 843-859.
Elsevier DOI
1211
BibRef
Earlier: A1, A3, A2, Only:
A Non-heuristic Dominant Point Detection Based on Suppression of Break
Points,
ICIAR12(I: 269-276).
Springer DOI
1206
Non-parametric; Line fitting; Polygonal approximation; Dominant points;
Digital curves
BibRef
Zhou, X.Z.[Xiu-Zhuang],
Shang, Y.Y.[Yuan-Yuan],
Lu, J.W.[Ji-Wen],
Polygonal Approximation of Digital Planar Curves via Hybrid Monte Carlo
Optimization,
SPLetters(20), No. 2, February 2013, pp. 125-128.
IEEE DOI
1302
See also Abrupt Motion Tracking Via Intensively Adaptive Markov-Chain Monte Carlo Sampling.
BibRef
Zhou, X.Z.[Xiu-Zhuang],
Lu, Y.[Yao],
Polygonal approximation of digital curves using adaptive MCMC sampling,
ICIP10(2753-2756).
IEEE DOI
1009
BibRef
And:
Efficient Polygonal Approximation of Digital Curves via Monte Carlo
Optimization,
ICPR10(3513-3516).
IEEE DOI
1008
BibRef
Liu, J.H.[Jian-Hua],
Zhang, J.F.[Jin-Fang],
Xu, F.J.[Fang-Jiang],
Huang, Z.J.[Zhi-Jian],
Li, Y.P.[Ya-Ping],
Adaptive Algorithm for Automated Polygonal Approximation of High
Spatial Resolution Remote Sensing Imagery Segmentation Contours,
GeoRS(52), No. 2, February 2014, pp. 1099-1106.
IEEE DOI
1402
geographic information systems
BibRef
Ray, K.S.[Kumar S.],
Ray, B.K.[Bimal Kumar],
Polygonal Approximation of Digital Curve Based on Reverse Engineering
Concept,
IJIG(13), No. 04, 2013, pp. 1350017.
DOI Link
1404
BibRef
Aguilera-Aguilera, E.J.,
Carmona-Poyato, A.,
Madrid-Cuevas, F.J.,
Medina-Carnicer, R.,
The computation of polygonal approximations for 2D contours based on
a concavity tree,
JVCIR(25), No. 8, 2014, pp. 1905-1917.
Elsevier DOI
1411
Digital planar curves
BibRef
Parvez, M.T.[Mohammad Tanvir],
Optimized polygonal approximations through vertex relocations in
contour neighborhoods,
IVC(34), No. 1, 2015, pp. 1-10.
Elsevier DOI
1502
Polygonal approximation
BibRef
Nguyen, T.P.,
Hoang, T.V.,
Projection-Based Polygonality Measurement,
IP(24), No. 1, January 2015, pp. 305-315.
IEEE DOI
1502
Radon transforms
BibRef
Ramaiah, M.[Mangayarkarasi],
Ray, B.K.[Bimal Kumar],
Polygonal approximation of digital planar curve using local integral
deviation,
IJCVR(5), No. 3, 2015, pp. 302-319.
DOI Link
1509
BibRef
Pratihar, S.[Sanjoy],
Bhowmick, P.[Partha],
Fast and Direct Polygonization for Gray-Scale Images Using Digital
Straightness and Exponential Averaging,
IJIG(16), No. 02, 2016, pp. 1650007.
DOI Link
1605
BibRef
Ramaiah, M.[Mangayarkarasi],
Ray, B.K.[Bimal Kumar],
An iterative point elimination technique to retain significant vertices
on digital planar curves,
IJCVR(6), No. 4, 2016, pp. 354-368.
DOI Link
1610
BibRef
Wu, Z.B.[Zhao-Bin],
Zhao, C.X.[Chun-Xia],
Liu, B.[Bin],
Polygonal approximation based on coarse-grained parallel genetic
algorithm,
JVCIR(71), 2020, pp. 102717.
Elsevier DOI
2009
Polygonal approximation,
Coarse-grained parallel genetic algorithms, Ensemble learning
BibRef
Ma, D.[Ding],
Zhao, Z.G.[Zhi-Gang],
Zheng, Y.[Ye],
Guo, R.Z.[Ren-Zhong],
Zhu, W.[Wei],
PolySimp: A Tool for Polygon Simplification Based on the Underlying
Scaling Hierarchy,
IJGI(9), No. 10, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Tapia-Dueñas, O.A.[Osvaldo A.],
Sánchez-Cruz, H.[Hermilo],
Context-free grammars to detect straight segments and a novel
polygonal approximation method,
SP:IC(91), 2021, pp. 116080.
Elsevier DOI
2012
Break points, Dominant points, Shortest path,
Digital straight segments, Lost pixels, Tolerable error
BibRef
Low, P.E.[Pau-Ek],
Wong, L.K.[Lai-Kuan],
See, J.[John],
Ng, R.S.[Rui-Sheng],
Pic2PolyArt: Transforming a photograph into polygon-based geometric
art,
SP:IC(91), 2021, pp. 116090.
Elsevier DOI
2012
Geometric art, Computational art, Low poly rendering,
Style transfer, Non-photorealistic rendering
BibRef
Wei, Q.[Qi],
Yao, X.L.[Xiao-Lin],
Liu, L.[Luan],
Zhang, Y.[Yan],
Exploring the Outer Boundary of a Simple Polygon,
IEICE(E104-D), No. 7, July 2021, pp. 923-930.
WWW Link.
2107
BibRef
He, Y.C.[Yu-Chen],
Kang, S.H.[Sung Ha],
Morel, J.M.[Jean-Michel],
Silhouette vectorization by affine scale-space,
JMIV(64), 2022, pp. 41-56.
Springer DOI
BibRef
2200
Earlier:
Accurate Silhouette Vectorization by Affine Scale-Space,
ICIP21(1539-1543)
IEEE DOI
2201
Image resolution, Shape, Software algorithms, Detectors,
Feature extraction, Software, Vectorization, Silhouettes, Curvature extrema
BibRef
He, Y.C.[Yu-Chen],
Kang, S.H.[Sung Ha],
Morel, J.M.[Jean-Michel],
Binary Shape Vectorization by Affine Scale-space,
IPOL(13), 2023, pp. 22--37.
DOI Link
2301
Code, Vectorization.
BibRef
Molano, R.[Ruben],
Avila, M.[Mar],
Sancho, J.C.[Jose Carlos],
Rodriguez, P.G.[Pablo G.],
Caro, A.[Andres],
An Algorithm to Compute Any Simple k-gon of a Maximum Area or
Perimeter Inscribed in a Region of Interest,
SIIMS(15), No. 4, 2022, pp. 1808-1832.
DOI Link
2212
BibRef
Alfieri, A.[Andrea],
Lin, Y.[Yancong],
van Gemert, J.C.[Jan C.],
Investigating transformers in the decomposition of polygonal shapes
as point collections,
DLGC21(2076-2085)
IEEE DOI
2112
Visualization, Shape, Toy manufacturing industry,
Buildings, Logic gates, Transformers
BibRef
Wang, Q.[Qiang],
Zhang, H.[Hui],
Zhang, Z.S.[Zhi-Sheng],
Xia, Z.J.[Zhi-Jie],
A New Method for Polygon Detection Based on Clustering,
ICIVC21(31-35)
IEEE DOI
2112
Image segmentation, Filtering, Clustering methods, Fitting,
Clustering algorithms, Computational complexity, Convergence, cyclic data
BibRef
Li, M.,
Lafarge, F.,
Marlet, R.,
Approximating shapes in images with low-complexity polygons,
CVPR20(8630-8638)
IEEE DOI
2008
Image edge detection, Partitioning algorithms, Semantics,
Complexity theory, Merging, Image segmentation, Shape
BibRef
Ngo, P.[Phuc],
A Discrete Approach for Polygonal Approximation of Irregular Noise
Contours,
CAIP19(I:433-446).
Springer DOI
1909
BibRef
Pohl, M.[Melanie],
Meidow, J.[Jochen],
Bulatov, D.[Dimitri],
Simplification of Polygonal Chains by Enforcing Few Distinctive Edge
Directions,
SCIA17(II: 3-14).
Springer DOI
1706
BibRef
Duan, L.Y.[Liu-Yun],
Lafarge, F.[Florent],
Image partitioning into convex polygons,
CVPR15(3119-3127)
IEEE DOI
1510
BibRef
Carmona-Poyato, A.[Angel],
Aguilera-Aguilera, E.J.[Eusebio J.],
Madrid-Cuevas, F.J.[Francisco J.],
López-Fernandez, D.,
New Method for Obtaining Optimal Polygonal Approximations,
IbPRIA15(149-156).
Springer DOI
1506
BibRef
Lai, Z.Y.[Zhong-Yuan],
Zhang, F.[Fan],
Lin, W.S.[Wei-Si],
Operational rate-distortion shape coding with dual error
regularization,
ICIP14(5547-5550)
IEEE DOI
1502
Approximation methods
BibRef
Girard, A.,
Bellik, Y.,
Auvray, M.,
Ammi, M.,
Collaborative adjustment of selection areas for polygonal modelling,
3DUI13(135-136)
IEEE DOI
1406
computational geometry
BibRef
Liu, H.[Han],
Zhang, X.L.[Xiang-Liang],
Rockwood, A.[Alyn],
A direction Change-based algorithm for polygonal approximation,
ICPR12(3586-3589).
WWW Link.
1302
BibRef
Wang, Y.[Ying],
Zhong, B.J.[Bao-Jiang],
A scale-space technique for polygonal approximation of planar curves,
ICIP12(517-520).
IEEE DOI
1302
BibRef
Lachaud, J.O.[Jacques-Olivier],
Provençal, X.[Xavier],
Dynamic Minimum Length Polygon,
IWCIA11(208-221).
Springer DOI
1105
BibRef
Earlier: A2, A1:
Two Linear-Time Algorithms for Computing the Minimum Length Polygon of
a Digital Contour,
DGCI09(104-117).
Springer DOI
0909
BibRef
di Ruberto, C.[Cecilia],
Morgera, A.[Andrea],
A New Algorithm for Polygonal Approximation Based on Ant Colony
Optimization,
CIAP09(633-641).
Springer DOI
0909
BibRef
Shin, J.J.[Jong-Ju],
Kim, D.J.[Dai-Jin],
Enhanced Resolution Aware Fitting algorithm using interpolation
operator,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Hsu, R.C.M.[Roy Chao-Ming],
Lee, Y.Y.[Yaw-Yu],
Kao, B.W.[Bin-Wen],
Chan, D.Y.[Din-Yuen],
Hardware Design of Shape-Preserving Contour Tracing for Object of
Segmented Images,
PSIVT09(976-987).
Springer DOI
0901
BibRef
Zhang, K.[Ke],
Lu, J.B.[Jiang-Bo],
Lafruit, G.[Gauthier],
Scalable stereo matching with Locally Adaptive Polygon Approximation,
ICIP08(313-316).
IEEE DOI
0810
BibRef
Somphone, O.[Oudom],
Mory, B.[Benoit],
Makram-Ebeid, S.[Sherif],
Cohen, L.[Laurent],
Prior-Based Piecewise-Smooth Segmentation by Template Competitive
Deformation Using Partitions of Unity,
ECCV08(III: 628-641).
Springer DOI
0810
BibRef
Sharma, O.[Ojaswa],
Mioc, D.[Darka],
Anton, F.[François],
Polygon Feature Extraction from Satellite Imagery Based on Colour Image
Segmentation and Medial Axis,
ISPRS08(B3a: 235 ff).
PDF File.
0807
BibRef
Zillich, M.[Michael],
Vincze, M.[Markus],
Anytimeness avoids parameters in detecting closed convex polygons,
Tensor08(1-8).
IEEE DOI
0806
BibRef
Juengling, R.[Ralf],
Prasad, L.[Lakshman],
Parsing Silhouettes without Boundary Curvature,
CIAP07(665-670).
IEEE DOI
0709
Find overlapping set of ribbons.
BibRef
Feschet, F.[Fabien],
Fast Guaranteed Polygonal Approximations of Closed Digital Curves,
SCIA05(910-919).
Springer DOI
0506
BibRef
Nguyen, T.[Trung],
A Linear Algorithm for Polygonal Approximations of Thick Curves,
CAIP05(17).
Springer DOI
0509
BibRef
Alhalabi, F.[Firas],
Tougne, L.[Laure],
Toward Polygonalisation of Thick Discrete Arcs,
CAIP05(197).
Springer DOI
0509
BibRef
Li, F.J.[Fa-Jie],
Klette, R.[Reinhard],
Decomposing a Simple Polygon into Trapezoids,
CAIP07(726-733).
Springer DOI
0708
BibRef
Earlier:
Minimum-Length Polygons of First-Class Simple Cube-Curves,
CAIP05(321).
Springer DOI
0509
BibRef
Earlier:
Minimum-Length Polygon of a Simple Cube-Curve in 3D Space,
IWCIA04(502-511).
Springer DOI
0505
See also Analysis of the rubberband algorithm.
BibRef
Kaess, M.[Michael],
Zboinski, R.[Rafal],
Dellaert, F.[Frank],
MCMC-Based Multiview Reconstruction of Piecewise Smooth Subdivision
Curves with a Variable Number of Control Points,
ECCV04(Vol III: 329-341).
Springer DOI
0405
BibRef
Kaess, M.[Michael],
Dellaert, F.[Frank],
Reconstruction of objects with jagged edges through Rao-Blackwellized
fitting of piecewise smooth subdivision curves,
HLK03(39-47).
IEEE Abstract.
0402
Model irregular curve sections.
BibRef
Mikheev, A.,
Vincent, L.,
Faber, V.,
High-quality polygonal contour approximation based on relaxation,
ICDAR01(361-365).
IEEE DOI
0109
BibRef
Traver, V.J.[V. Javier],
Recatalá, G.[Gabriel],
Iñesta, J.M.[Jose Manuel],
Exploring the Performance of Genetic Algorithms as Polygonal
Approximators,
ICPR00(Vol III: 766-769).
IEEE DOI
IEEE DOI
0009
BibRef
Recatalá, G.,
Iñesta, J.M.,
Polygonal Approximations through Genetic Algorithms,
SCIA99(Pattern Recognition).
BibRef
9900
Schroder, K.[Karsten],
Laurent, P.[Patrick],
Efficient Polygon Approximations for Shape Signatures,
ICIP99(II:811-814).
IEEE Abstract.
BibRef
9900
Shmulevich, I.[Ilya],
Yli-Harja, O.[Olli],
Coding of Shape Contours Using a Minimal Set of Control Points,
ICIP99(26PP3). Not in proceedings.
BibRef
9900
Hosur, P.I.,
Ma, K.K.[Kai-Kuang],
Optimal Algorithm for Progressive Polygon Approximation of
Discrete Plannar Curves,
ICIP99(I:16-20).
IEEE Abstract.
BibRef
9900
Tung, L.H.[Lun Hsing],
King, I.[Irwin],
A two-stage framework for polygon retrieval using Minimum Circular
Error Bound,
CIAP97(I: 567-574).
Springer DOI
9709
BibRef
van der Heijden, G.W.A.M.,
Construction of a polygonal model using the Fisher-ratio criterion,
ICPR94(A:210-215).
IEEE DOI
9410
BibRef
Neagoe, V.,
Legendre descriptors for classification of polygonal closed curves,
ICPR92(II:717-720).
IEEE DOI
9208
BibRef
Neagoe, V.,
Seeking pattern recognition principles for intelligent detection of FSK
signals,
ICPR92(II:721-724).
IEEE DOI
9208
BibRef
Wong, K.C.,
Kittler, J.V.,
Illingworth, J.,
Heuristically Guided Polygon Finding,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Deguchi, K.,
Aoki, S.,
Regularized polygonal approximation for analysis and interpretation of
planar contour figures,
ICPR90(I: 865-869).
IEEE DOI
9006
BibRef
Suzuki, K.,
Nishida, Y.,
Hata, S.,
A Fast Polygonal Approximation Method for Real-Time Shape Recognition,
CVPR86(388-394).
Generation of piecewise approximations, and using them.
BibRef
8600
Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
General Polygonal Representations and Computations .