CVonline: Motion, Tracking and Time Sequence Analysis,
CV-OnlineJuly 2001.
HTML Version.
Survey, Motion.
Survey, Tracking.
BibRef
0107
Martin, W.N., and
Aggarwal, J.K.,
Computer Analysis of Dynamic Scenes Containing Curvilinear Figures,
PR(11), No. 3, 1979, pp. 169-178.
Elsevier DOI Represent the curves in polar form - arc length vs. angle. From
these there are pieces of curves, match the curves. Assume that
the scenes are motion sequences so that the changes are position
and occlusions / separations.
See also Volumetric Descriptions of Objects from Multiple Views.
BibRef
7900
Martin, W.N., and
Aggarwal, J.K.,
Occluding Contours in Dynamic Scenes,
PRIP81(189-192).
BibRef
8100
Aggarwal, J.K., and
Martin, W.N.,
Analyzing Dynamic Scenes Containing Moving Objects,
ISA81(Ch 6).
BibRef
8100
Aggarwal, J.K., and
Duda, R.O.,
Computer Analysis of Moving Polygonal Images,
TC(24), No. 10, October 1975, pp. 966-976.
BibRef
7510
CMetImAly77(271-282).
Motion, Tracking. Motivated by cloud motions assumes: properly registered, clouds
not rapidly changing, and 1 layer at a time. Information in joint
motion - to avoid problems and obtain generality: idealized model
no distinguishing features of the planes (image is union of
several planes.). Given a sequence find linear and angular
velocities and decompose scene into component figures.
Noise free; pair vertices in 2 images - using true and false
vertices; use info from previous image; acute vertex => "true"
vertex, i.e., on an object; obtuse => any kind; cluster on
velocity of true vertices; heuristic: no guarantee that
matches are globally optimal; no processes for backtracking.
BibRef
Chow, W.K., and
Aggarwal, J.K.,
Computer Analysis of Planar Curvilinear Moving Images,
TC(26), No. 2, February 1977, pp. 179-185.
Eliminates assumptions in Aggarwal & Duda (
See also Computer Analysis of Moving Polygonal Images. ),
i.e., - curved objects,
multiple topological changes, but no holes; all objects known
before motion analysis; no occlusion for first 2 views; white
on black background objects; noise, stable velocity, i.e., low
acceleration; heterogeneous collection of objects; edges;
descriptors - invariant to rotation and translation area,
modified principal axes (major/minor axes); matches new
image with current model to get update model, if fails then
match with prediction; extension match boundaries rather than
descriptors.
BibRef
7702
Roach, J.W., and
Aggarwal, J.K.,
Computer Tracking of Objects Moving in Space,
PAMI(1), No. 2, April 1979, pp. 127-135.
BibRef
7904
Earlier:
Computer Tracking of Three Dimensional Objects,
PRAI-78(7-9).
Detect movement of 3-D convex blocks in 2-D
images. Use evidence from T-junctions for occlusions.
BibRef
Aggarwal, J.K.,
Davis, L.S., and
Martin, W.N.,
Correspondence Processes in Dynamic Scene Analysis,
PIEEE(69), No. 5, May 1981, pp. 562-572.
BibRef
8105
Thompson, W.B.,
Lechleider, P., and
Stuck, E.R.,
Detecting Moving Objects Using the Rigidity Constraint,
PAMI(15), No. 2, February 1993, pp. 162-166.
IEEE DOI Not really tracking, more motion detection.
Compute the motion of the camera compared to the background. Moving
objects are the points that do not correspond.
BibRef
9302
Nichol, D.[David],
Fiebig, M.[Merrilyn],
Image Segmentation and Matching Using the Binary Object Forest,
IVC(9), No. 3, June 1991, pp. 139-149.
Elsevier DOI
BibRef
9106
Nichol, D.[David],
Fiebig, M.[Merrilyn],
Tracking Multiple Moving Objects by Binary Object Forest Segmentation,
IVC(9), No. 6, December 1991, pp. 362-371.
Elsevier DOI
BibRef
9112
Lowe, D.G.[David G.],
Robust Model-Based Motion Tracking Through the
Integration of Search and Estimation,
IJCV(8), No. 2, August 1992, pp. 113-122.
Springer DOI
BibRef
9208
And:
UBCTR-92-11, May 1992.
Handle both measurement and motion errors that occur in following
the sequence.
BibRef
Cox, I.J.,
A Review of Statistical Data Association Techniques
for Motion Correspondence,
IJCV(10), No. 1, February 1993, pp. 53-66.
Springer DOI
Survey, Tracking. Techniques that came from target tracking work.
BibRef
9302
Nosler, J.C.[John C.],
Electro-optical position-monitoring apparatus with tracking detector,
US_Patent4,269,512, May 26, 1981
WWW Link.
BibRef
8105
Cowart, A.E.[Alan E.],
Snyder, W.E.[Wesley E.], and
Ruedger, W.H.[W. Howard],
The Detection of Unresolved Targets Using the Hough Transform,
CVGIP(21), No. 2, February 1983, pp. 222-238.
Elsevier DOI
Hough, Motion.
BibRef
8302
Mirmehdi, M.,
Ellis, T.J.,
Parallel Approach to Tracking Edge Segments in Dynamic Scenes,
IVC(11), No. 1, January-February 1993, pp. 35-48.
Elsevier DOI Parallel processors (transputers) applied to tracking problem.
BibRef
9301
Ellis, T.J.,
Mirmehdi, M., and
Dowling, G.R.,
Tracking Image Features Using a Parallel Computational Model,
SPIE(1708), Applications of Artificial Intelligence X:
Machine vision and Robots, 1992, pp. 172-183.
Implementation using transputers.
BibRef
9200
Deffontaines, T.[Thierry],
Method for identifying objects in motion, in particular vehicles,
and systems for its implementation,
US_Patent5,083,200, 01/21/1992.
HTML Version.
BibRef
9201
Zhang, Z.Y.[Zheng-You],
Token Tracking in a Cluttered Scene,
IVC(12), No. 2, March 1994, pp. 110-120.
Elsevier DOI
BibRef
9403
And:
INRIARR-2072, October 1993.
BibRef
Earlier:
Strategies for Tracking Tokens in a Cluttered Scene,
BMVC93(I. 205-216).
PDF File. Uses a beam search.
BibRef
Snijder, H.P.[Henk Philip],
van Leeuwen, C.[Cees],
A Minimal Architecture for Detecting Object Location and Motion,
PR(27), No. 11, November 1994, pp. 1463-1473.
Elsevier DOI
BibRef
9411
Sharp, N.G.[Nigel G.],
Hancock, E.R.[Edwin R.],
Feature Tracking by Multiframe Relaxation,
IVC(13), No. 8, October 1995, pp. 637-644.
Elsevier DOI
BibRef
9510
Earlier:
BMVC94(xx-yy).
PDF File.
9409
BibRef
Bruckstein, A.M.,
Holt, R.J.,
Netravali, A.N.,
How to Catch a Crook,
JVCIR(5), 1994, pp. 273-281.
BibRef
9400
Bruckstein, A.M.,
Holt, R.J.,
Netravali, A.N.,
How to Track a Flying Saucer,
JVCIR(7), No. 2, June 1996, pp. 196-204.
9607
BibRef
Choate, W.C.[William Clay],
Talluri, R.K.[Rajendra K.],
Method of inferring sensor attitude through multi-feature tracking,
US_Patent5,647,015, Jul 8, 1997
WWW Link.
BibRef
9707
And:
US_Patent5,870,486, Feb 9, 1999
WWW Link.
BibRef
And: A2, A1:
Target Tracking and Range Estimation Using an Image Sequence,
WACV92(84-91).
IEEE DOI
BibRef
Habib, A.,
Motion Parameter Estimation by Tracking Stationary 3-Dimensional
Straight Lines in Image Sequences,
PandRS(53), No. 3, June 1998, pp. 174-182.
9807
BibRef
Zatelli, P.,
Measurement and Tracking of Circle Centers for Geotechnic Applications,
PandRS(53), No. 3, June 1998, pp. 183-191.
9807
BibRef
Heimes, F.,
Nagel, H.H.,
Real Time Tracking of Intersections in Image Sequences
of a Moving Camera,
EngAAI(11), No. 2, April 1998, pp. 215-227.
9807
BibRef
Jung, S.K.,
Wohn, K.Y.,
A Model Based 3-D Tracking of Rigid Objects from a
Sequence of Multiple Perspective Views,
PRL(19), No. 5-6, April 1998, pp. 499-512.
9808
BibRef
Sanders-Reed, J.N.[John N.],
Maximum Likelihood Detection of Unresolved Moving Targets,
AeroSys(34), No.3, July, 1998, pp. xx-yy.
WWW Link. Faint target detection and tracking.
BibRef
9807
Toyama, K.[Kentaro],
Hager, G.D.[Gregory D.],
Incremental Focus of Attention for Robust Vision-Based Tracking,
IJCV(35), No. 1, November 1999, pp. 45-63.
DOI Link
BibRef
9911
Earlier:
Incremental Focus of Attention for Robust Visual Tracking,
CVPR96(189-195).
IEEE DOI
Tracking.
HTML Version. And
PS File.
BibRef
Earlier:
Tracker Fusion for Robustness in Visual Feature Tracking,
SPIE(2569), pp. 38-49. Photonics East, October 1995.
PS File.
Code, Tracking. Code:
WWW Link.
BibRef
Toyama, K.[Kentaro],
Handling Tradeoffs Between Precision and Robustness with
Incremental Focus of Attention for Visual Tracking,
AAAI-Fall96(142-147). Symposium on Flexible Computation.
HTML Version. And
PS File.
BibRef
9600
Hu, X.P.[Xiao-Ping],
Takamura, J.[Jun],
Hall, M.[Mark],
Video object tracking method for interactive multimedia applications,
US_Patent5,867,584, Feb 2, 1999
WWW Link.
BibRef
9902
Erdem, Ç.E.,
Tekalp, A.M.,
Sankur, B.,
Video object tracking with feedback of performance measures,
CirSysVideo(13), No. 4, April 2003, pp. 310-324.
IEEE Abstract.
0301
BibRef
Earlier: A1, A3, A2:
Non-Rigid Object Tracking using Performance Evaluation Measures as
Feedback,
CVPR01(II:323-330).
IEEE DOI
0110
BibRef
Erdem, C.E.[Cigdem Eroglu],
Video object segmentation and tracking using region-based statistics,
SP:IC(22), No. 10, November 2007, pp. 891-905.
Elsevier DOI
0711
Object tracking; Active contours; Histogram matching;
Curve evolution; Defocus; Selective focus
BibRef
Erdem, C.E.[C. Eroglu],
Sankur, B.,
Tekalp, A.M.,
Performance Measures for Video Object Segmentation and Tracking,
IP(13), No. 7, July 2004, pp. 937-951.
IEEE DOI
0406
BibRef
Earlier: A1, A3, A2:
Metrics for Performance Evaluation of Video Object Segmentation and
Tracking Without Ground-truth,
ICIP01(II: 69-72).
IEEE DOI
0108
BibRef
Lin, C.F.[Ching-Fang],
Three-dimensional relative positioning and tracking using LDRI,
US_Patent6,677,941, Jan 13, 2004
WWW Link.
BibRef
0401
Williams, O.,
Blake, A.,
Cipolla, R.,
Sparse Bayesian Learning for Efficient Visual Tracking,
PAMI(27), No. 8, August 2005, pp. 1292-1304.
IEEE Abstract.
0506
BibRef
Earlier:
A sparse probabilistic learning algorithm for real-time tracking,
ICCV03(353-360).
IEEE DOI
0311
BibRef
Jia, Z.[Zhen],
Balasuriya, A.[Arjuna],
Challa, S.[Subhash],
Vision Based Target Tracking for Autonomous Land Vehicle Navigation:
A Brief Survey,
RPCS(2), No. 1, January 2009, pp. 32-42.
WWW Link.
1001
Survey, Tracking.
BibRef
Maggio, E.[Emilio],
Cavallaro, A.[Andrea],
Video Tracking: Theory and Practice,
WileyApril 2011
ISBN: 978-0-470-74964-7
HTML Version.
Buy this book: Video Tracking: Theory and Practice
1010
BibRef
Nawaz, T.[Tahir],
Poiesi, F.[Fabio],
Cavallaro, A.[Andrea],
Measures of Effective Video Tracking,
IP(23), No. 1, January 2014, pp. 376-388.
IEEE DOI
1402
BibRef
And:
Assessing tracking assessment measures,
ICIP14(441-445)
IEEE DOI
1502
Area measurement
object tracking
BibRef
Easson, G.,
de Lozier, S.,
Momm, H.,
Estimating Speed and Direction of Small Dynamic Targets through Optical
Satellite Imaging,
RS(2), No. 5, May 2010, pp. 1331-1347.
DOI Link
1203
BibRef
Salti, S.,
Cavallaro, A.,
di Stefano, L.[Luigi],
Adaptive Appearance Modeling for Video Tracking:
Survey and Evaluation,
IP(21), No. 10, October 2012, pp. 4334-4348.
IEEE DOI
1209
BibRef
Fan, J.,
Shen, X.,
Wu, Y.,
What Are We Tracking: A Unified Approach of Tracking and Recognition,
IP(22), No. 2, February 2013, pp. 549-560.
IEEE DOI
1302
BibRef
Ammari, H.[Habib],
Boulier, T.[Thomas],
Garnier, J.[Josselin],
Modeling Active Electrolocation in Weakly Electric Fish,
SIIMS(6), No. 1, 2013, pp. 285-321.
DOI Link
1304
BibRef
Ammari, H.[Habib],
Boulier, T.,
Garnier, J.[Josselin],
Kang, H.B.[Hyeon-Bae],
Wang, H.,
Tracking of a Mobile Target Using Generalized Polarization Tensors,
SIIMS(6), No. 3, 2013, pp. 1477-1498.
DOI Link
1310
BibRef
Ammari, H.[Habib],
Putinar, M.[Mihai],
Steenkamp, A.[Andries],
Triki, F.[Faouzi],
Reconstruction of Domains with Algebraic Boundaries from Generalized
Polarization Tensors,
SIIMS(12), No. 4, 2019, pp. 2097-2118.
DOI Link
1912
BibRef
Seo, J.,
Kim, S.D.,
Visual Target TRACTOR: Tracker and Detector,
CirSysVideo(25), No. 5, May 2015, pp. 761-775.
IEEE DOI
1505
Adaptation models
BibRef
Granstrom, K.,
Natale, A.,
Braca, P.,
Ludeno, G.,
Serafino, F.,
Gamma Gaussian Inverse Wishart Probability Hypothesis Density for
Extended Target Tracking Using X-Band Marine Radar Data,
GeoRS(53), No. 12, December 2015, pp. 6617-6631.
IEEE DOI
1512
geophysical techniques
BibRef
Millefiori, L.M.,
Braca, P.,
Willett, P.,
Consistent Estimation of Randomly Sampled Ornstein-Uhlenbeck Process
Long-Run Mean for Long-Term Target State Prediction,
SPLetters(23), No. 11, November 2016, pp. 1562-1566.
IEEE DOI
1609
covariance analysis
BibRef
Vivone, G.,
Millefiori, L.M.,
Braca, P.,
Willett, P.,
Performance Assessment of Vessel Dynamic Models for Long-Term
Prediction Using Heterogeneous Data,
GeoRS(55), No. 11, November 2017, pp. 6533-6546.
IEEE DOI
1711
Radar tracking, Synthetic aperture radar, Uncertainty,
maritime surveillance, ornstein-Uhlenbeck (OU) process.
BibRef
Gao, Y.[Yun],
Zhou, H.[Hao],
Zhang, X.J.[Xue-Jie],
Enhanced fast compressive tracking based on adaptive measurement
matrix,
IET-CV(9), No. 6, 2015, pp. 857-863.
DOI Link
1512
compressed sensing
BibRef
Wang, X.[Xin],
Shen, S.Q.[Si-Qiu],
Ning, C.[Chen],
Zhang, Y.Z.[Yu-Zhen],
Lv, G.F.[Guo-Fang],
Robust object tracking based on local discriminative sparse
representation,
JOSA-A(34), No. 4, April 2017, pp. 533-544.
DOI Link
1704
Digital image processing
BibRef
Bai, B.[Bendu],
Li, Y.[Ying],
Fan, J.L.[Jiu-Lun],
Price, C.[Chris],
Shen, Q.[Qiang],
Object tracking based on incremental Bi-2DPCA learning
with sparse structure,
AppOpt(54), No. 10, 2015, pp. 2897-2907.
DOI Link
1704
BibRef
Zeng, F.,
Huang, Z.,
Ji, Y.,
Discriminative Bag-of-Words-Based Adaptive Appearance Model for
Robust Visual Tracking,
SPLetters(24), No. 6, June 2017, pp. 907-911.
IEEE DOI
1705
Adaptation models, Computational modeling, Deformable models,
Indexes, Robustness, Signal processing algorithms, Visualization,
Adaptive appearance model, discriminative bag-of-words (DBoW),
visual, tracking
BibRef
Chan, S.X.[Si-Xian],
Zhou, X.L.[Xiao-Long],
Li, J.W.[Jun-Wei],
Chen, S.Y.[Sheng-Yong],
Adaptive Compressive Tracking based on Locality Sensitive Histograms,
PR(72), No. 1, 2017, pp. 517-531.
Elsevier DOI
1708
Compressive tracking
BibRef
Zheng, Y.H.[Yu-Hui],
Liu, X.Y.[Xin-Yan],
Xiao, B.[Bin],
Cheng, X.[Xu],
Wu, Y.[Yi],
Chen, S.Y.[Sheng-Yong],
Multi-Task Convolution Operators with Object Detection for Visual
Tracking,
CirSysVideo(32), No. 12, December 2022, pp. 8204-8216.
IEEE DOI
2212
Target tracking, Correlation, Feature extraction,
Convolutional neural networks, Visualization, multi-task learning
BibRef
Zhang, Z.B.[Zhi-Bin],
Xue, W.L.[Wan-Li],
Zhou, Y.X.[Yu-Xi],
Zhang, K.[Kaihua],
Chen, S.Y.[Sheng-Yong],
Hunt-inspired Transformer for visual object tracking,
PR(156), 2024, pp. 110703.
Elsevier DOI
2408
Visual object tracking, Particle filter,
Uncertainty estimation, Transformer
BibRef
Wang, H.Q.[Hong-Qing],
Xu, T.F.[Ting-Fa],
Guo, J.[Jie],
Rao, Z.T.[Zhi-Tao],
Shi, G.K.[Guo-Kai],
Withdrawn: Incremental subspace and probability mask constrained tracking
in smart and autonomous systems,
PR(72), No. 1, 2017, pp. 473-483.
Elsevier DOI
1708
BibRef
And:
Withdrawn - premature publication.
PR(76), No. 1, 2018, pp. 764.
Elsevier DOI
1801
Smart and autonomous systems
BibRef
Guo, Q.,
Feng, W.,
Zhou, C.,
Pun, C.M.,
Wu, B.,
Structure-Regularized Compressive Tracking With Online Data-Driven
Sampling,
IP(26), No. 12, December 2017, pp. 5692-5705.
IEEE DOI
1710
Haar transforms,
discriminative feature generation,
object localization, online data-driven sampling,
rich local structural information, structural regularization,
BibRef
Yu, Y.H.[Yuan-Hao],
Wu, Q.S.[Qing-Song],
Kirubarajan, T.,
Uehara, Y.[Yasuo],
Robust discriminative tracking via structured prior regularization,
IVC(69), No. 1, 2018, pp. 68-80.
Elsevier DOI
1712
Visual tracking
BibRef
Tran, A.[Antoine],
Manzanera, A.[Antoine],
Mixing Hough and Color Histogram Models for Accurate Real-Time Object
Tracking,
CAIP17(I: 43-54).
Springer DOI
1708
BibRef
Wang, Y.[Yong],
Luo, X.B.[Xin-Bin],
Fu, S.[Shan],
Hu, S.Q.[Shi-Qiang],
Context multi-task visual object tracking via guided filter,
SP:IC(62), 2018, pp. 117-128.
Elsevier DOI
1802
BibRef
Earlier: A1, A2, A4, Only:
ICIP17(4332-4336)
IEEE DOI
1803
BibRef
And: A1, A2, A4, Only:
Robust object tracking via multi-task based collaborative model,
ICIP17(1132-1136)
IEEE DOI
1803
Visual object tracking, Context information,
Multi-task sparse learning, Guided filter,
Alternating direction method of multipliers
BibRef
Wang, Y.[Yong],
Luo, X.B.[Xin-Bin],
Ding, L.[Lu],
Hu, S.Q.[Shi-Qiang],
Multi-task based object tracking via a collaborative model,
JVCIR(55), 2018, pp. 698-710.
Elsevier DOI
1809
Collaborative model,
Alternating direction method of multipliers,
Discriminative model
BibRef
Wang, Y.[Yong],
Wei, X.[Xian],
Ding, L.[Lu],
Tang, X.L.[Xiao-Liang],
Zhang, H.L.[Huan-Long],
A robust visual tracking method via local feature extraction and
saliency detection,
VC(36), No. 4, April 2020, pp. 683-700.
WWW Link.
2004
BibRef
Wang, W.[Wei],
Wang, C.P.[Chun-Ping],
Liu, S.[Si],
Zhang, T.Z.[Tian-Zhu],
Cao, X.C.[Xiao-Chun],
Robust Target Tracking by Online Random Forests and Superpixels,
CirSysVideo(28), No. 7, July 2018, pp. 1609-1622.
IEEE DOI
1807
Adaptation models, Computational modeling,
Robustness, Target tracking, Training, Vision tracking,
superpixels
BibRef
Zhao, M.X.[Meng-Xiao],
Zhang, X.[Xin],
Yang, Q.A.[Qi-Ang],
Modified Multi-Mode Target Tracker for High-Frequency Surface Wave
Radar,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Jiang, S.[Shan],
Han, C.[Cheng],
Di, X.Q.A.[Xiao-Qi-Ang],
An Efficient Misalignment Method for Visual Tracking Based on Sparse
Representation,
IEICE(E101-D), No. 8, August 2018, pp. 2123-2131.
WWW Link.
1808
BibRef
Huang, J.[Jing],
Wang, S.Z.[Shi-Zheng],
Guo, M.H.[Meng-Han],
Chen, S.S.[Shou-Shun],
Event-Guided Structured Output Tracking of Fast-Moving Objects Using
a CeleX Sensor,
CirSysVideo(28), No. 9, September 2018, pp. 2413-2417.
IEEE DOI
1809
Issues of blur and large displacements.
Tracking, Robot sensing systems, Support vector machines, Cameras,
Computational efficiency, Lighting, Search problems,
support vector machine (SVM)
BibRef
Liu, G.,
Robust Visual Tracking via Smooth Manifold Kernel Sparse Learning,
MultMed(20), No. 11, November 2018, pp. 2949-2963.
IEEE DOI
1810
Target tracking, Kernel, Manifolds, Machine learning,
Covariance matrices, Robustness, Visualization,
visual tracking
BibRef
Xue, W.L.[Wan-Li],
Xu, C.[Chao],
Feng, Z.Y.[Zhi-Yong],
Robust Visual Tracking via Multi-Scale Spatio-Temporal Context
Learning,
CirSysVideo(28), No. 10, October 2018, pp. 2849-2860.
IEEE DOI
1811
Target tracking, Feature extraction, Visualization,
Image color analysis, Context, Automobiles, Visual tracking,
salient sample
BibRef
Choi, J.[Janghoon],
Kwon, J.[Junseok],
Lee, K.M.[Kyoung Mu],
Real-time visual tracking by deep reinforced decision making,
CVIU(171), 2018, pp. 10-19.
Elsevier DOI
1812
Visual tracking, Object tracking, Deep learning, Reinforcement learning
BibRef
Park, J.[Jinhee],
Kwon, J.[Junseok],
Wasserstein approximate bayesian computation for visual tracking,
PR(131), 2022, pp. 108905.
Elsevier DOI
2208
BibRef
Choi, J.[Janghoon],
Kwon, J.[Junseok],
Lee, K.M.[Kyoung Mu],
Deep Meta Learning for Real-Time Target-Aware Visual Tracking,
ICCV19(911-920)
IEEE DOI
2004
feature extraction, image matching,
image motion analysis, image representation, Real-time systems
BibRef
de Ath, G.,
Everson, R.,
Visual Object Tracking: The Initialisation Problem,
CRV18(142-149)
IEEE DOI
1812
Feature extraction, Support vector machines, Image segmentation,
Image color analysis, Adaptation models, Kernel, Visualization
BibRef
Wang, Q.,
Yuan, C.,
Wang, J.,
Zeng, W.,
Learning Attentional Recurrent Neural Network for Visual Tracking,
MultMed(21), No. 4, April 2019, pp. 930-942.
IEEE DOI
1903
Target tracking, Visualization, Computational modeling,
Recurrent neural networks, Correlation, Hidden Markov models,
attention model
BibRef
Xiu, C.[Chunbo],
Chai, Z.H.[Zuo-Hong],
Target tracking based on the cognitive associative network,
IET-IPR(13), No. 3, February 2019, pp. 498-505.
DOI Link
1903
BibRef
Zhang, T.[Tiansa],
Huo, C.L.[Chun-Lei],
Zhou, Z.Q.A.[Zhi-Qi-Ang],
Wang, B.[Bo],
Faster-ADNet for Visual Tracking,
IEICE(E102-D), No. 3, March 2019, pp. 684-687.
WWW Link.
1904
BibRef
Qi, Y.K.[Yuan-Kai],
Zhang, S.P.[Sheng-Ping],
Qin, L.[Lei],
Huang, Q.M.[Qing-Ming],
Yao, H.X.[Hong-Xun],
Lim, J.W.[Jong-Woo],
Yang, M.H.[Ming-Hsuan],
Hedging Deep Features for Visual Tracking,
PAMI(41), No. 5, May 2019, pp. 1116-1130.
IEEE DOI
1904
Target tracking, Visualization, Feature extraction, Correlation,
Computer science, Robustness, Visual tracking,
Siamese network
BibRef
Zhang, J.[Jing],
Ren, Y.G.[Yong-Gong],
Zhang, D.[Danyi],
Marrying tracking with ELM: A Metric constraint guided multiple
features fusion method,
PRL(120), 2019, pp. 82-88.
Elsevier DOI
1904
Object tracking, Multi-view fusion, Extreme learning machine, Metric constraint
BibRef
Shen, W.C.[Wei-Chao],
Wu, Y.W.[Yu-Wei],
Yuan, J.S.[Jun-Song],
Duan, L.Y.[Ling-Yu],
Zhang, J.[Jian],
Jia, Y.D.[Yun-De],
Robust Distracter-Resistive Tracker via Learning a Multi-Component
Discriminative Dictionary,
CirSysVideo(29), No. 7, July 2019, pp. 2012-2028.
IEEE DOI
1907
Dictionaries, Visualization, Feature extraction, Machine learning,
Robustness, Target tracking, Convolutional codes, Visual tracking,
multi-object tracking
BibRef
Fang, Z.W.[Zhi-Wen],
Cao, Z.G.[Zhi-Guo],
Xiao, Y.[Yang],
Gong, K.C.[Kai-Cheng],
Yuan, J.S.[Jun-Song],
MAT: Multianchor Visual Tracking With Selective Search Region,
Cyber(52), No. 7, July 2022, pp. 7136-7150.
IEEE DOI
2207
Target tracking, Tracking, Visualization, Search problems, Proposals,
Predictive models, Histograms, Anchor proposal, anchor selection,
selective search region
BibRef
Zhang, B.[Bobin],
Shao, X.Y.[Xiu-Yan],
Chen, W.[Wei],
Bi, F.M.[Fang-Ming],
Fang, W.D.[Wei-Dong],
Sun, T.F.[Tong-Feng],
Tang, C.G.[Chao-Gang],
Visual tracking based on robust appearance model,
IVC(89), 2019, pp. 211-221.
Elsevier DOI
1909
Visual tracking, Semi-supervised linear kernel classifier,
Fisher vectors, Similarity, Pollution handle
BibRef
Abdelpakey, M.H.[Mohamed H.],
Shehata, M.S.[Mohamed S.],
DP-Siam: Dynamic Policy Siamese Network for Robust Object Tracking,
IP(29), 2020, pp. 1479-1492.
IEEE DOI
1911
Real-time systems, Target tracking, Reinforcement learning,
Object tracking, Training, Visualization, Heating systems,
reinforcement learning
BibRef
Abdelpakey, M.H.[Mohamed H.],
Shehata, M.S.[Mohamed S.],
Mohamed, M.M.[Mostafa M.],
DensSiam: End-to-End Densely-Siamese Network with Self-Attention Model
for Object Tracking,
ISVC18(463-473).
Springer DOI
1811
BibRef
Kwan, C.[Chiman],
Chou, B.[Bryan],
Yang, J.[Jonathan],
Rangamani, A.[Akshay],
Tran, T.[Trac],
Zhang, J.[Jack],
Etienne-Cummings, R.[Ralph],
Target tracking and classification using compressive sensing camera for
SWIR videos,
SIViP(13), No. 8, November 2019, pp. 1629-1637.
Springer DOI
1911
BibRef
Lu, X.K.[Xian-Kai],
Tang, F.H.[Fu-Hui],
Huo, H.[Hong],
Fang, T.[Tao],
Learning channel-aware deep regression for object tracking,
PRL(127), 2019, pp. 103-109.
Elsevier DOI
1911
Object tracking, Channel-aware, Deep regression
BibRef
Jiang, Y.F.[Yi-Fan],
Han, D.K.[David K.],
Ko, H.S.[Han-Seok],
Relay dueling network for visual tracking with broad field-of-view,
IET-CV(13), No. 7, Octomber 2019, pp. 615-622.
DOI Link
1911
BibRef
Zha, Y.F.[Yu-Fei],
Wu, M.[Min],
Qiu, Z.L.[Zhu-Ling],
Yu, W.S.[Wang-Sheng],
Visual tracking based on semantic and similarity learning,
IET-CV(13), No. 7, Octomber 2019, pp. 623-631.
DOI Link
1911
BibRef
Lv, Y.Q.[Yun-Qiu],
Liu, K.[Kai],
Cheng, F.[Fei],
Li, W.[Wei],
Visual tracking with tree-structured appearance model for online
learning,
IET-IPR(13), No. 12, October 2019, pp. 2106-2115.
DOI Link
1911
Deep learning during tracking is expensive.
BibRef
Wang, Y.[Yong],
Hu, S.Q.[Shi-Qiang],
Wu, S.D.[Shan-Dong],
Object tracking based on Huber loss function,
VC(35), No. 11, November 2018, pp. 1641-1654.
WWW Link.
1911
BibRef
Zha, Y.F.[Yu-Fei],
Wu, M.[Min],
Qiu, Z.L.[Zhu-Ling],
Sun, J.X.[Jing-Xian],
Zhang, P.[Peng],
Huang, W.[Wei],
Online Semantic Subspace Learning with Siamese Network for UAV
Tracking,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Guo, Q.,
Han, R.,
Feng, W.,
Chen, Z.,
Wan, L.,
Selective Spatial Regularization by Reinforcement Learned Decision
Making for Object Tracking,
IP(29), 2020, pp. 2999-3013.
IEEE DOI
2002
Target tracking, Visualization, Correlation, Object tracking,
Clutter, Complexity theory, Visual object tracking,
reinforcement learning
BibRef
Li, K.,
Kong, Y.,
Fu, Y.,
Visual Object Tracking Via Multi-Stream Deep Similarity Learning
Networks,
IP(29), 2020, pp. 3311-3320.
IEEE DOI
2002
Deep learning, visual tracking
BibRef
Liang, Z.,
Shen, J.,
Local Semantic Siamese Networks for Fast Tracking,
IP(29), 2020, pp. 3351-3364.
IEEE DOI
2002
Visual object tracking, Siamese deep network, local feature representation
BibRef
Bi, Y.[Yin],
Chadha, A.[Aaron],
Abbas, A.[Alhabib],
Bourtsoulatze, E.[Eirina],
Andreopoulos, Y.F.[Yi-Fannis],
Graph-Based Spatio-Temporal Feature Learning for Neuromorphic Vision
Sensing,
IP(29), 2020, pp. 9084-9098.
IEEE DOI
2009
BibRef
Earlier:
Graph-Based Object Classification for Neuromorphic Vision Sensing,
ICCV19(491-501)
IEEE DOI
2004
Represent visual information as sequences of asynchronous discrete events.
convolutional neural nets, graph theory,
Task analysis, Cameras, Neuromorphics, Sensors, Lighting, Labeling,
Feature extraction, Neuromorphic vision sensing,
human action recognition.
image classification, image representation, image sequences
BibRef
Zhang, L.,
Lan, J.,
Li, X.R.,
Performance Evaluation of Joint Tracking and Classification,
SMCS(51), No. 2, February 2021, pp. 1149-1163.
IEEE DOI
2101
Target tracking, Probability density function, Estimation error,
Indexes, Performance evaluation, Credibility,
joint tracking and classification (JTC)
BibRef
Zhu, H.,
Han, Y.,
Wang, Y.,
Yuan, G.,
Hybrid Cascade Filter With Complementary Features for Visual Tracking,
SPLetters(28), 2021, pp. 86-90.
IEEE DOI
2101
Observers, Visualization, Feature extraction, Robustness,
Information filters, Target tracking,
visual tracking
BibRef
Lu, X.K.[Xian-Kai],
Ma, C.[Chao],
Ni, B.B.[Bing-Bing],
Yang, X.K.[Xiao-Kang],
Adaptive Region Proposal With Channel Regularization for Robust
Object Tracking,
CirSysVideo(31), No. 4, April 2021, pp. 1268-1282.
IEEE DOI
2104
Target tracking, Correlation, Proposals, Visualization, Estimation,
Object tracking, Adaptive region proposals,
robust object tracking
BibRef
Lu, X.K.[Xian-Kai],
Ma, C.[Chao],
Shen, J.B.[Jian-Bing],
Yang, X.K.[Xiao-Kang],
Reid, I.D.[Ian D.],
Yang, M.H.[Ming-Hsuan],
Deep Object Tracking With Shrinkage Loss,
PAMI(44), No. 5, May 2022, pp. 2386-2401.
IEEE DOI
2204
Target tracking, Visualization, Training, Benchmark testing,
Object tracking, Data models, Correlation, Data imbalance,
Siamese tracking
BibRef
Lu, X.K.[Xian-Kai],
Ma, C.[Chao],
Ni, B.B.[Bing-Bing],
Yang, X.K.[Xiao-Kang],
Reid, I.D.[Ian D.],
Yang, M.H.[Ming-Hsuan],
Deep Regression Tracking with Shrinkage Loss,
ECCV18(XIV: 369-386).
Springer DOI
1810
BibRef
Shi, L.[Leyi],
Du, S.S.[Shan-Shan],
Miao, Y.F.[Yi-Fan],
Lan, S.B.[Song-Bai],
Modeling and Performance Analysis of Satellite Network Moving Target
Defense System with Petri Nets,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Qu, H.F.[Hui-Fang],
Yang, F.W.[Fu-Wen],
Han, Q.L.[Qing-Long],
Zhang, Y.L.[Yi-Lian],
Distributed H8-Consensus Filtering for Attitude Tracking Using
Ground-Based Radars,
Cyber(51), No. 7, July 2021, pp. 3767-3778.
IEEE DOI
2106
Spaceborne radar, Radar tracking, Network topology, Switches,
Estimation, Sun, Attitude-rate, distributed H8-consensus filtering,
switching topology
BibRef
Wu, W.T.[Wen-Tao],
Peng, Z.H.[Zhou-Hua],
Wang, D.[Dan],
Liu, L.[Lu],
Han, Q.L.[Qing-Long],
Network-Based Line-of-Sight Path Tracking of Underactuated Unmanned
Surface Vehicles With Experiment Results,
Cyber(52), No. 10, October 2022, pp. 10937-10947.
IEEE DOI
2209
Kinetic theory, Kinematics, Uncertainty, Observers, Tracking loops,
Target tracking, Electrical engineering, Event-trigger,
unmanned surface vehicle (USV)
BibRef
Xu, J.T.[Jiang-Tao],
Wang, X.F.[Xiang-Feng],
Gao, Z.Y.[Zhi-Yuan],
Nie, K.M.[Kai-Ming],
High-speed target tracking algorithm for the pulse-sequence-based
image sensor,
IET-IPR(15), No. 5, 2021, pp. 1157-1165.
DOI Link
2106
BibRef
Iraei, I.[Iman],
Faez, K.[Karim],
A motion parameters estimating method based on deep learning for
visual blurred object tracking,
IET-IPR(15), No. 10, 2021, pp. 2213-2226.
DOI Link
2108
BibRef
Zhang, Y.P.[Yu-Ping],
Ma, B.[Bo],
Wu, J.H.[Jia-Hao],
Huang, L.H.[Liang-Hua],
Shen, J.B.[Jian-Bing],
Capturing Relevant Context for Visual Tracking,
MultMed(23), 2021, pp. 4232-4244.
IEEE DOI
2112
Target tracking, Visualization, Task analysis, Feature extraction,
Object tracking, Benchmark testing, visual object tracking
BibRef
Jiang, H.N.[Hao-Nan],
Cai, Y.L.[Yuan-Li],
Yu, Z.H.[Zhen-Hua],
Observability Metrics for Single-Target Tracking With Bearings-Only
Measurements,
SMCS(52), No. 2, February 2022, pp. 1065-1077.
IEEE DOI
2201
Observability, Target tracking, Radar tracking, Geometry,
Linear programming, Bearings-only tracking (BOT),
trajectory optimization
BibRef
Rao, B.[Bin],
Zhou, Y.K.[Yong-Kun],
Nie, Y.P.[Yuan-Ping],
Detection and Tracking of Weak Exoatmospheric Target with Elliptical
Hough Transform,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Stoiber, M.[Manuel],
Pfanne, M.[Martin],
Strobl, K.H.[Klaus H.],
Triebel, R.[Rudolph],
Albu-Schäffer, A.[Alin],
SRT3D: A Sparse Region-Based 3D Object Tracking Approach for the Real
World,
IJCV(130), No. 1, January 2022, pp. 1008-1030.
Springer DOI
2204
BibRef
Earlier:
A Sparse Gaussian Approach to Region-based 6dof Object Tracking,
ACCV20(II:666-682).
Springer DOI
2103
BibRef
Zeng, X.[Xin],
Zhang, L.[Lin],
Luo, Z.Q.[Zhong-Qiang],
Xiong, X.Z.[Xing-Zhong],
LI, C.J.[Cheng-Jie],
Reinforced Tracker Based on Hierarchical Convolutional Features,
IEICE(E105-D), No. 6, June 2022, pp. 1225-1233.
WWW Link.
2206
BibRef
Guo, Z.M.[Zhi-Min],
Tian, Y.Y.[Yang-Yang],
Feng, Y.X.[Yu-Xing],
Zhang, H.L.[Huan-Long],
Liu, J.F.[Jun-Feng],
Wang, Z.F.[Zan-Feng],
Salp swarm algorithm based on golden section and adaptive and its
application in target tracking,
IET-IPR(16), No. 9, 2022, pp. 2321-2337.
DOI Link
2206
See also Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems.
BibRef
Al Arfaj, A.A.[Abeer Abdulaziz],
Mahmoud, H.A.H.[Hanan Ahmed Hosni],
A Moving Object Tracking Technique Using Few Frames with Feature Map
Extraction and Feature Fusion,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, S.[Shuai],
Sheng, H.[Hao],
Yang, D.[Da],
Zhang, Y.[Yang],
Wu, Y.[Yubin],
Wang, S.Z.[Si-Zhe],
Extendable Multiple Nodes Recurrent Tracking Framework with RTU++,
IP(31), 2022, pp. 5257-5271.
IEEE DOI
2208
Tracking, Proposals, Feature extraction, Manuals, Trajectory,
Filtering algorithms, Benchmark testing, Multi-object tracking,
simulated data
BibRef
Wang, S.[Shuai],
Sheng, H.[Hao],
Zhang, Y.[Yang],
Wu, Y.[Yubin],
Xiong, Z.[Zhang],
A General Recurrent Tracking Framework without Real Data,
ICCV21(13199-13208)
IEEE DOI
2203
Training, Tracking, Manuals, Benchmark testing, Motion and tracking,
Efficient training and inference methods, Video analysis and understanding
BibRef
Cao, C.H.[Cheng-Hu],
Zhao, Y.B.[Yong-Bo],
A Generalized Labeled Multi-Bernoulli Filter Based on
Track-before-Detect Measurement Model for Multiple-Weak-Target State
Estimate Using Belief Propagation,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Zhang, Z.[Zhe],
Zhu, X.G.[Xu-Guang],
Zhao, D.[Dong],
Arun, P.V.[Pattathal V.],
Zhou, H.X.[Hui-Xin],
Qian, K.[Kun],
Hu, J.L.[Jian-Ling],
Hyperspectral Video Target Tracking Based on Deep Features with
Spectral Matching Reduction and Adaptive Scale 3D HoG Features,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Hou, Y.[Yueen],
Luo, Z.J.[Zhi-Jian],
Deng, J.M.[Jia-Ming],
Gao, Y.Z.[Yan-Zeng],
Huang, K.[Kekun],
Li, W.G.[Wei-Guang],
Attention meets involution in visual tracking,
JVCIR(90), 2023, pp. 103746.
Elsevier DOI
2301
A recently-proposed model called involution uses kernels differing in
spatial extent but sharing across channels, making it possible to take
advantage of both convolution and attention.
Visual tracking, Involution, Attention
BibRef
Wang, Y.[Yi],
Chen, X.[Xin],
Gong, C.[Chao],
Rao, P.[Peng],
Non-Ellipsoidal Infrared Group/Extended Target Tracking Based on
Poisson Multi-Bernoulli Mixture Filter and B-Spline,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, Y.[Ye],
Liu, Y.H.[Yu-Heng],
Ma, M.Y.[Ming-Yang],
Mei, S.H.[Shao-Hui],
A Spectral-Spatial Transformer Fusion Method for Hyperspectral Video
Tracking,
RS(15), No. 7, 2023, pp. 1735.
DOI Link
2304
BibRef
Yu, E.[En],
Li, Z.L.[Zhuo-Ling],
Han, S.D.[Shou-Dong],
Wang, H.W.[Hong-Wei],
RelationTrack: Relation-Aware Multiple Object Tracking With Decoupled
Representation,
MultMed(25), 2023, pp. 2686-2697.
IEEE DOI
2307
Feature extraction, Transformers, Trajectory, Target tracking,
Optimization, Object tracking, Training, Decoupling representation,
transformer encoder
BibRef
Lee, S.H.[Seong-Ho],
Park, D.H.[Dae-Hyeon],
Bae, S.H.[Seung-Hwan],
Decode-MOT: How Can We Hurdle Frames to Go Beyond
Tracking-by-Detection?,
IP(32), 2023, pp. 4378-4392.
IEEE DOI
2308
Tracking, Detectors, Object tracking, Complexity theory,
Task analysis, Feature extraction, Self-supervised learning,
hierarchical association
BibRef
Xie, X.[Xin],
Chen, Z.Y.[Zhang-You],
Wang, L.[Li],
Zhou, H.[Heng],
Wu, X.B.[Xiong-Bin],
Determination of Meteor Vector Velocity Using MU Interferometry
Measurements of Head Echoes,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Cao, Z.[Ziang],
Huang, Z.Y.[Zi-Yuan],
Pan, L.[Liang],
Zhang, S.W.[Shi-Wei],
Liu, Z.W.[Zi-Wei],
Fu, C.H.[Chang-Hong],
Towards Real-World Visual Tracking With Temporal Contexts,
PAMI(45), No. 12, December 2023, pp. 15834-15849.
IEEE DOI
2311
BibRef
Earlier:
TCTrack: Temporal Contexts for Aerial Tracking,
CVPR22(14778-14788)
IEEE DOI
2210
Visualization, Convolution, Benchmark testing, Feature extraction,
Transformers, Autonomous aerial vehicles, Robot vision, Motion and tracking
BibRef
Li, B.[Bowen],
Huang, Z.Y.[Zi-Yuan],
Ye, J.J.[Jun-Jie],
Li, Y.M.[Yi-Ming],
Scherer, S.[Sebastian],
Zhao, H.[Hang],
Fu, C.H.[Chang-Hong],
PVT++: A Simple End-to-End Latency-Aware Visual Tracking Framework,
ICCV23(9972-9982)
IEEE DOI Code:
WWW Link.
2401
BibRef
Mao, Z.J.[Zhong-Jie],
Wei, C.X.[Chen-Xia],
Yang, C.[Chen],
Chen, X.[Xi],
Yan, J.[Jia],
Tiny Object Tracking With Proposal Position Enhancement,
SPLetters(30), 2023, pp. 1692-1696.
IEEE DOI
2312
BibRef
Zhang, H.[Hao],
Piao, Y.[Yan],
Qi, N.[Nan],
STFT: Spatial and temporal feature fusion for transformer tracker,
IET-CV(18), No. 1, 2024, pp. 165-176.
DOI Link
2403
image processing
BibRef
Wang, S.L.[Shi-Lei],
Han, Y.M.[Ya-Min],
Sun, B.Z.[Bao-Zhen],
Ning, J.F.[Ji-Feng],
IoUNet++: Spatial cross-layer interaction-based bounding box
regression for visual tracking,
IET-CV(18), No. 1, 2024, pp. 177-189.
DOI Link
2403
convolutional neural nets, object tracking
BibRef
Fan, J.Y.[Jun-Yu],
Ji, S.[Shunping],
Adaptive and Anti-Drift Motion Constraints for Object Tracking in
Satellite Videos,
RS(16), No. 8, 2024, pp. 1347.
DOI Link
2405
BibRef
Cui, Y.[Yutao],
Jiang, C.[Cheng],
Wu, G.S.[Gang-Shan],
Wang, L.M.[Li-Min],
MixFormer: End-to-End Tracking With Iterative Mixed Attention,
PAMI(46), No. 6, June 2024, pp. 4129-4146.
IEEE DOI
2405
BibRef
Earlier: A1, A2, A4, A3:
CVPR22(13598-13608)
IEEE DOI
2210
Target tracking, Feature extraction, Head, Transformers,
Magnetic heads, Location awareness, Correlation, visual tracking.
Location awareness, Pipelines, Stacking,
Transformer cores, Transformers, Video analysis and understanding
BibRef
He, Z.S.[Zhao-Shui],
Liang, H.[Hao],
Yang, S.Q.[Sen-Quan],
Su, W.Q.[Wen-Qing],
Wang, P.T.[Pei-Tao],
Lin, Z.J.[Zhi-Jie],
Tan, B.H.[Bei-Hai],
Xie, S.L.[Sheng-Li],
Accelerating Robust-Object-Tracking via Level-3 BLAS-Based Sparse
Learning,
CirSysVideo(34), No. 7, July 2024, pp. 5908-5920.
IEEE DOI
2407
Sparse Collaborative Tracking (SCT).
Basic Linear Algebra Subprograms.
Target tracking, Sparse matrices, Object tracking, Standards,
Optimization, Collaboration, Automation, Sparse representation, level-3 BLAS
BibRef
Kang, B.[Ben],
Chen, X.[Xin],
Wang, D.[Dong],
Peng, H.[Houwen],
Lu, H.C.[Hu-Chuan],
Exploring Lightweight Hierarchical Vision Transformers for Efficient
Visual Tracking,
ICCV23(9578-9587)
IEEE DOI Code:
WWW Link.
2401
BibRef
Nakka, K.K.[Krishna Kanth],
Salzmann, M.[Mathieu],
Universal, Transferable Adversarial Perturbations for Visual Object
Trackers,
AdvRob22(413-429).
Springer DOI
2304
BibRef
Zou, Z.J.[Zhuo-Jun],
Hao, J.[Jie],
Shu, L.[Lin],
Online Feature Classification and Clustering for Transformer-based
Visual Tracker,
ICPR22(3514-3521)
IEEE DOI
2212
Knowledge engineering, Visualization, Process control,
Optimization methods, Quality control, Filtering algorithms,
Feature Clustering
BibRef
Fu, Z.H.[Zhi-Hong],
Liu, Q.J.[Qing-Jie],
Fu, Z.[Zehua],
Wang, Y.H.[Yun-Hong],
STMTrack:
Template-free Visual Tracking with Space-time Memory Networks,
CVPR21(13769-13778)
IEEE DOI
2111
Visualization, Target tracking, Codes,
Adaptive systems, Benchmark testing, Boosting
BibRef
Choi, J.[Janghoon],
Kwon, J.[Junseok],
Lee, K.M.[Kyoung Mu],
Visual Tracking by Tridentalign and Context Embedding,
ACCV20(II:504-520).
Springer DOI
2103
BibRef
Wu, H.,
Li, W.,
Li, W.,
Liu, G.,
A Real-time Robust Approach for Tracking UAVs in Infrared Videos,
Anti-UAV20(4448-4455)
IEEE DOI
2008
Target tracking, Drones, Feature extraction, Cameras, Robustness, Correlation
BibRef
Wang, Z.,
Zhao, Z.,
Su, F.,
Real-time Tracking with Stabilized Frame,
Anti-UAV20(4431-4438)
IEEE DOI
2008
Target tracking, Cameras, Real-time systems, Robustness,
Object tracking, Streaming media
BibRef
Dunnhofer, M.,
Martinel, N.,
Foresti, G.L.[Gian Luca],
Micheloni, C.[Christian],
Visual Tracking by Means of Deep Reinforcement Learning and an Expert
Demonstrator,
VOT19(2290-2299)
IEEE DOI
2004
learning (artificial intelligence), object tracking,
video signal processing, visual tracking, expert demonstrator,
deep reinforcement learning
BibRef
Chen, B.X.,
Tsotsos, J.,
Fast Visual Object Tracking using Ellipse Fitting for Rotated
Bounding Boxes,
VOT19(2281-2289)
IEEE DOI
2004
Code, Tracking.
WWW Link. image segmentation, object tracking, ellipse fitting,
real-time visual object tracking, Ellipse Fitting
BibRef
Cevikalp, H.[Hakan],
Saribas, H.[Hasan],
Benligiray, B.,
Kahvecioglu, S.,
Visual Object Tracking by Using Ranking Loss,
VOT19(2271-2280)
IEEE DOI
2004
filtering theory, learning (artificial intelligence),
neural nets, object detection, object tracking, target tracking,
deep neural network classifier
BibRef
Ma, D.,
Wu, X.,
Learning Cascaded Context-Aware Framework for Robust Visual Tracking,
VisDrone19(28-36)
IEEE DOI
2004
image representation, learning (artificial intelligence),
object detection, object tracking, ubiquitous computing, cascaded structure
BibRef
Zhao, P.H.[Peng-Hui],
Chen, H.S.[Hao-Sheng],
Liang, Y.J.[Yan-Jie],
Yan, Y.[Yan],
Wang, H.Z.[Han-Zi],
Learning Target-specific Response Attention for Siamese Network Based
Visual Tracking,
ACIVS20(554-566).
Springer DOI
2003
BibRef
Lee, H.[Hankyeol],
Choi, S.[Seokeon],
Kim, C.[Changick],
A Memory Model Based on the Siamese Network for Long-Term Tracking,
VOT18(I:100-115).
Springer DOI
1905
BibRef
Morimitsu, H.[Henrique],
Multiple Context Features in Siamese Networks for Visual Object
Tracking,
VOT18(I:116-131).
Springer DOI
1905
BibRef
He, A.F.[An-Feng],
Luo, C.[Chong],
Tian, X.M.[Xin-Mei],
Zeng, W.J.[Wen-Jun],
Towards a Better Match in Siamese Network Based Visual Object Tracker,
VOT18(I:132-147).
Springer DOI
1905
BibRef
Xu, D.,
Wu, L.,
Jian, M.,
Wang, Q.,
Visual Tracking by Combining the Structure-Aware Network and
Spatial-Temporal Regression,
ICPR18(1912-1917)
IEEE DOI
1812
Visualization, Feature extraction, Strain, Training, Logic gates,
Proposals, Task analysis, spatial and temporal regression, LSTM,
object deformation
BibRef
Wang, Y.[Yong],
Laganière, R.[Robert],
Laroche, D.[Daniel],
Ors, A.O.[Ali Osman],
Xu, X.Y.[Xiao-Yin],
Zhu, C.Y.[Chang-Yun],
Deep Convolutional Correlation Filters for Forward-Backward Visual
Tracking,
ISVC18(320-331).
Springer DOI
1811
BibRef
Delforouzi, A.,
Tabatabaei, S.A.H.,
Shirahama, K.,
Grzegorzek, M.,
Unknown object tracking in 360-degree camera images,
ICPR16(1798-1803)
IEEE DOI
1705
Cameras, Detectors, Image resolution, Object tracking,
Robot vision systems, Shape
BibRef
Pal, S.K.,
Plenary speaker: Granular video tracking: Role of r-granules,
IVPR17(1-2)
IEEE DOI
1704
NASA
BibRef
Smith, K.[Kaleb],
Smith, A.O.[Anthony O.],
Video Tracking with Probabilistic Cooccurrence Feature Extraction,
ISVC16(II: 504-513).
Springer DOI
1701
BibRef
Stühmer, J.,
Nowozin, S.[Sebastian],
Fitzgibbon, A.,
Szeliski, R.,
Perry, T.,
Acharya, S.,
Cremers, D.,
Shotton, J.,
Model-Based Tracking at 300Hz Using Raw Time-of-Flight Observations,
ICCV15(3577-3585)
IEEE DOI
1602
Cameras
BibRef
Possegger, H.[Horst],
Mauthner, T.[Thomas],
Bischof, H.[Horst],
In defense of color-based model-free tracking,
CVPR15(2113-2120)
IEEE DOI
1510
BibRef
Dai, M.[Manna],
Lin, P.[Peijie],
Wu, L.J.[Li-Jun],
Chen, Z.C.[Zhi-Cong],
Lai, S.L.[Song-Lin],
Zhang, J.[Jie],
Cheng, S.Y.[Shu-Ying],
He, X.J.[Xiang-Jian],
Orderless and Blurred Visual Tracking via Spatio-temporal Context,
MMMod15(I: 25-36).
Springer DOI
1501
BibRef
Gao, Y.C.[Yi-Cheng],
Yang, J.[Jian],
Wang, H.[Huan],
Bai, H.Y.[Hong-Yang],
Object Tracking via Multi-task Gaussian-Laplacian Regression,
ACPR13(405-409)
IEEE DOI
1408
Gaussian noise
BibRef
Sugaya, Y.[Yasuyuki],
Matsushita, Y.[Yuichi],
Kanatani, K.[Kenichi],
Removing Mistracking of Multibody Motion Video Database Hopkins155,
BMVC13(xx-yy).
DOI Link
1402
Results:
WWW Link. Point features for multibody motion.
BibRef
Wang, W.J.[Wei-Jun],
Nevatia, R.[Ramakant],
Robust Object Tracking Using Constellation Model with Superpixel,
ACCV12(III:191-204).
Springer DOI
1304
BibRef
Qin, T.[Tao],
Zhong, B.[Bineng],
Chin, T.J.[Tat-Jun],
Wang, H.Z.[Han-Zi],
Matting-driven online learning of Hough forests for object tracking,
ICPR12(2488-2491).
WWW Link.
1302
BibRef
Chu, D.M.,
Smeulders, A.W.M.[Arnold W.M.],
Thirteen Hard Cases in Visual Tracking,
AVSS10(103-110).
IEEE DOI
1009
BibRef
Qi, F.[Fei],
Song, X.W.[Xiao-Wei],
Shi, G.M.[Guang-Ming],
LDA based color information fusion for visual objects tracking,
ICIP09(2201-2204).
IEEE DOI
0911
BibRef
Shi, B.[Bo],
Cao, Z.L.[Zuo-Liang],
Juha, R.N.[Ro-Ning],
Target Recognition and Tracking in Outdoor Environment,
CISP09(1-5).
IEEE DOI
0910
BibRef
Gu, Y.[Yang],
Effective Motion Tracking Using Known and Learned Actuation Models,
CMU-CS-08-137, June 2008
BibRef
0806
Ph.D.Thesis, June 2008
HTML Version.
BibRef
Heinrichs, M.[Matthias],
Hellwich, O.[Olaf],
Rodehorst, V.[Volker],
Robust Spatio-Temporal Feature Tracking,
ISPRS08(B3a: 51 ff).
PDF File.
0807
BibRef
Tekinalp, S.,
Alatan, A.A.,
Efficient Bayesian Track-Before-Detect,
ICIP06(2793-2796).
IEEE DOI
0610
BibRef
Ross, M.,
Model-Free, Statistical Detection and Tracking of Moving Objects,
ICIP06(557-560).
IEEE DOI
0610
BibRef
Rosten, E.[Edward],
Drummond, T.W.[Tom W.],
Fusing Points and Lines for High Performance Tracking,
ICCV05(II: 1508-1515).
IEEE DOI
0510
Deal with large changes.
BibRef
Enzweiler, M.[Markus],
Wildes, R.P.[Richard P.],
Herpers, R.[Rainer],
Unified Target Detection and Tracking Using Motion Coherence,
Motion05(II: 66-71).
IEEE DOI
0502
BibRef
Wildes, R.P.,
A measure of motion salience for surveillance applications,
ICIP98(III: 183-187).
IEEE DOI
9810
BibRef
Leng, J.,
Wang, H.,
Tracking as recognition: a stable 3D tracking framework,
ICARCV04(III: 2303-2307).
IEEE DOI
0412
BibRef
Garcia, R.,
Cufi, X.,
Batlle, J.,
Detection of Matchings in a Sequence of Underwater Images Through
Texture Analysis,
ICIP01(I: 361-364).
IEEE DOI
0108
BibRef
Chetverikov, D.,
Nagy, M.,
Verestóy, J.,
Comparison of Tracking Techniques Applied to Digital PIV,
ICPR00(Vol IV: 619-622).
IEEE DOI
0009
BibRef
Ko, J.T.,
Wang, S.J.,
A Coarse-to-fine Approach for the Generation and Tracking of Mesh
Objects from a Natural Image Sequence,
ICIP00(Vol II: 883-886).
IEEE DOI
0008
BibRef
Rares, A.,
Reinders, M.,
Object Tracking by Adaptive Modeling,
ICIP00(Vol III: 74-77).
IEEE DOI
0008
BibRef
Shekarforoush, H.,
Chellappa, R.,
A Multi-fractal Formalism for Stabilization, Object Detection and
Tracking in FLIR Sequences,
ICIP00(Vol III: 78-81).
IEEE DOI
0008
BibRef
de la Torre, F.[Fernando],
Vitria, J.[Jordi],
Radeva, P.I.[Petia I.],
Melenchon, J.[Javier],
Eigenfiltering for Flexible EigenTracking (EFE),
ICPR00(Vol III: 1106-1109).
IEEE DOI
0009
BibRef
Kamijo, S.[Shunsuke],
Ikeuchi, K.[Katsushi],
Sakauchi, M.[Masao],
Segmentations of Spatio-Temporal Images by Spatio-Temporal Markov
Random Field Model,
EMMCVPR01(298-313).
Springer DOI
0205
BibRef
Kamijo, S.,
Ikeuchi, K.,
Sakauchi, M.,
Illumination invariant segmentation of spatio-temporal images by
spatio-temporal markov random field model,
ICPR02(II: 617-622).
IEEE DOI
0211
BibRef
Kamijo, S.,
Matsushita, Y.[Yasuyuki],
Ikeuchi, K.,
Sakauchi, M.[Masao],
Occlusion Robust Tracking Utilizing Spatio-Temporal Markov Random Field
Model,
ICPR00(Vol I: 140-144).
IEEE DOI
0009
BibRef
Verestoy, J.[Judit],
Chetverikov, D.[Dmitry],
Tracking Feature Points:
A New Algorithm and Comparative Performance Evaluation,
ICPR98(Vol II: 1436-1438).
IEEE DOI
9808
BibRef
Steger, C.T.[Carsten T.],
On the Calculation of Arbitrary Moments of Polygons,
TRFGBV-96-05,
Forschungsgruppe Bildverstehen (FG BV), Informatik IX,
Technische Universität München, October 1996.
HTML Version.
BibRef
9610
Steger, C.T.[Carsten T.],
On the Calculation of Moments of Polygons,
TRFGBV-96-04,
Forschungsgruppe Bildverstehen (FG BV), Informatik IX,
Technische Universität München, August 1996.
HTML Version.
BibRef
9608
Brady, N.[Noel],
O'Connor, N.E.[Noel Edward],
Object Detection and Tracking Using an EM-Based Motion Estimation
and Segmentation Framework,
ICIP96(I: 925-928).
IEEE DOI
BibRef
9600
Tan, Y.P.[Yap-Peng],
Kulkarni, S.R.,
Ramadge, P.J.,
Extracting Good Features for Motion Estimation,
ICIP96(I: 117-120).
IEEE DOI
BibRef
9600
Tan, Y.P.[Yap-Peng],
Kulkarni, S.R.,
Ramadge, P.J.,
A new method for camera motion parameter estimation,
ICIP95(I: 406-409).
IEEE DOI
9510
BibRef
Kahl, F.[Fredrik],
Real-Time Corner Tracking in Image Sequences,
SSAB96(xx).
BibRef
9600
Gardner, W.F., and
Lawton, D.T.,
Shape and Motion from Linear Features,
DARPA93(1091-1095).
Generate the structure from sequence of linear features.
BibRef
9300
de Paoli, S.,
Skordas, T.,
Chehikian, A.,
Detection of Moving Objects in a Sequence of Images Using a
Coarse-to-Fine Strategy,
ICPR92(I:228-231).
IEEE DOI
BibRef
9200
Kilger, M.,
A Shadow Handler in a Video-Based Real-Time Traffic Monitoring System,
WACV92(11-18).
IEEE DOI
BibRef
9200
Baker, K.D.,
Sullivan, G.D.,
Performance Assessment of Model-Based Tracking,
WACV92(28-35).
IEEE DOI
BibRef
9200
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Long Sequence Matching and Motion .