Ceres Solver,
2016.
WWW Link.
Code, Optimization, C++.
1707
Open source C++ library for modeling and solving large, complicated
optimization problems.
Yuan, H.Q.[Hua-Qiang],
Ye, Y.D.[Yang-Dong],
Iterative sIB algorithm,
PRL(32), No. 4, 1 March 2011, pp. 606-614.
Elsevier DOI
1102
Information Bottleneck; sIB algorithm; Mutation; Mutual information.
sIB: sequential Information Bottleneck. Optimization technique.
BibRef
Fadili, J.M.[Jalal M.],
Peyre, G.[Gabriel],
Total Variation Projection With First Order Schemes,
IP(20), No. 3, March 2011, pp. 657-669.
IEEE DOI
1103
BibRef
Earlier:
ICIP09(1325-1328).
IEEE DOI
0911
BibRef
Chesneau, C.,
Fadili, M.J.,
Starck, J.L.,
Image deconvolution by stein block thresholding,
ICIP09(1329-1332).
IEEE DOI
0911
BibRef
Starck, J.L.,
Fadili, M.J.,
An overview of inverse problem regularization using sparsity,
ICIP09(1453-1456).
IEEE DOI
0911
BibRef
Fadili, M.J.,
Starck, J.L.,
Monotone operator splitting for optimization problems in sparse
recovery,
ICIP09(1461-1464).
IEEE DOI
0911
BibRef
Felzenszwalb, P.F.[Pedro F.],
Zabih, R.[Ramin],
Dynamic Programming and Graph Algorithms in Computer Vision,
PAMI(33), No. 4, April 2011, pp. 721-740.
IEEE DOI
1103
Discrete Optimization techniques.
BibRef
Rota Bulo, S.[Samuel],
Pelillo, M.[Marcello],
Bomze, I.M.[Immanuel M.],
Graph-based quadratic optimization: A fast evolutionary approach,
CVIU(115), No. 7, July 2011, pp. 984-995.
Elsevier DOI
1106
Quadratic optimization; Population dynamics; Graph-based problems
BibRef
Strandmark, P.[Petter],
Kahl, F.[Fredrik],
Schoenemann, T.[Thomas],
Parallel and distributed vision algorithms using dual decomposition,
CVIU(115), No. 12, December 2011, pp. 1721-1732.
Elsevier DOI
1111
BibRef
Earlier: A1, A2, Only:
Parallel and distributed graph cuts by dual decomposition,
CVPR10(2085-2092).
IEEE DOI Video of talk:
WWW Link.
1006
Graph cuts; Dual decomposition; Parallel; MRF; MPI; GPU
BibRef
Strandmark, P.[Petter],
Kahl, F.[Fredrik],
Overgaard, N.C.[Niels C.],
Optimizing parametric total variation models,
ICCV09(2240-2247).
IEEE DOI
0909
BibRef
Kahl, F.[Fredrik],
Strandmark, P.[Petter],
Generalized roof duality for pseudo-boolean optimization,
ICCV11(255-262).
IEEE DOI
1201
BibRef
Ranjbar, M.,
Lan, T.[Tian],
Wang, Y.[Yang],
Robinovitch, S.N.,
Li, Z.N.[Ze-Nian],
Mori, G.,
Optimizing Nondecomposable Loss Functions in Structured Prediction,
PAMI(35), No. 4, April 2013, pp. 911-924.
IEEE DOI
1303
BibRef
Ranjbar, M.[Mani],
Mori, G.[Greg],
Wang, Y.[Yang],
Optimizing Complex Loss Functions in Structured Prediction,
ECCV10(II: 580-593).
Springer DOI
1009
for various applications where the measure is function of false positive and
false negative.
BibRef
El-Zehiry, N.Y.[Noha Youssry],
Grady, L.[Leo],
Combinatorial Optimization of the Discretized Multiphase Mumford-Shah
Functional,
IJCV(104), No. 3, September 2013, pp. 270-285.
WWW Link.
1308
BibRef
Earlier:
Discrete Optimization of the Multiphase Piecewise Constant Mumford-Shah
Functional,
EMMCVPR11(233-246).
Springer DOI
1107
BibRef
Duan, Y.P.[Yu-Ping],
Huang, W.M.[Wei-Min],
A fixed-point augmented Lagrangian method for total variation
minimization problems,
JVCIR(24), No. 7, 2013, pp. 1168-1181.
Elsevier DOI
1309
Convex optimization
BibRef
Raguet, H.[Hugo],
Landrieu, L.[Loïc],
Preconditioning of a Generalized Forward-Backward Splitting and
Application to Optimization on Graphs,
SIIMS(8), No. 4, 2015, pp. 2706-2739.
DOI Link
1601
BibRef
Syed, M.,
Pardalos, P.,
Principe, J.C.,
Invexity of the Minimum Error Entropy Criterion,
SPLetters(20), No. 12, 2013, pp. 1159-1162.
IEEE DOI
1311
convex programming.
optimization properties of Minimization of Error Entropy.
BibRef
Papadakis, N.,
Peyré, G.,
Oudet, E.,
Optimal Transport with Proximal Splitting,
SIIMS(7), No. 1, 2014, pp. 212-238.
DOI Link
1404
first order convex optimization schemes.
BibRef
Treiber, M.A.[Marco Alexander],
Optimization for Computer Vision:
An Introduction to Core Concepts and Methods,
Ochs, P.[Peter],
Chen, Y.,
Brox, T.[Thomas],
Pock, T.[Thomas],
iPiano: Inertial Proximal Algorithm for Nonconvex Optimization,
SIIMS(7), No. 2, 2014, pp. 1388-1419.
DOI Link
1407
BibRef
Ochs, P.[Peter],
Brox, T.[Thomas],
Pock, T.[Thomas],
iPiasco: Inertial Proximal Algorithm for Strongly Convex Optimization,
JMIV(53), No. 2, October 2015, pp. 171-181.
Springer DOI
1508
BibRef
Ochs, P.[Peter],
Dosovitskiy, A.[Alexey],
Brox, T.[Thomas],
Pock, T.[Thomas],
On Iteratively Reweighted Algorithms for Nonsmooth Nonconvex
Optimization in Computer Vision,
SIIMS(8), No. 1, 2015, pp. 331-372.
DOI Link
1503
BibRef
Earlier:
An Iterated L1 Algorithm for Non-smooth Non-convex Optimization in
Computer Vision,
CVPR13(1759-1766)
IEEE DOI
1309
non-smooth non-convex optimization; optimization
BibRef
Ochs, P.[Peter],
Ranftl, R.[René],
Brox, T.[Thomas],
Pock, T.[Thomas],
Techniques for Gradient-Based Bilevel Optimization with Non-smooth
Lower Level Problems,
JMIV(56), No. 2, October 2016, pp. 175-194.
Springer DOI
1609
BibRef
Earlier:
Bilevel Optimization with Nonsmooth Lower Level Problems,
SSVM15(654-665).
Springer DOI
1506
BibRef
Simonyan, K.[Karen],
Vedaldi, A.[Andrea],
Zisserman, A.[Andrew],
Learning Local Feature Descriptors Using Convex Optimisation,
PAMI(36), No. 8, August 2014, pp. 1573-1585.
IEEE DOI
1407
BibRef
Earlier:
Descriptor Learning Using Convex Optimisation,
ECCV12(I: 243-256).
Springer DOI
1210
Detectors
BibRef
Novotny, D.[David],
Larlus, D.[Diane],
Vedaldi, A.[Andrea],
Capturing the Geometry of Object Categories from Video Supervision,
PAMI(42), No. 2, February 2020, pp. 261-275.
IEEE DOI
2001
BibRef
Earlier:
Learning 3D Object Categories by Looking Around Them,
ICCV17(5228-5237)
IEEE DOI
1802
BibRef
Earlier:
Learning the Structure of Objects from Web Supervision,
DeepLearn16(III: 218-235).
Springer DOI
1611
more about the particular object, not more objects.
Geometry, Shape, Solid modeling,
Estimation, Image reconstruction, Training,
geometry reconstruction.
computational geometry, image motion analysis,
learning (artificial intelligence), object detection,
BibRef
Li, M.,
Yang, S.,
Li, K.,
Liu, X.,
Evolutionary Algorithms With Segment-Based Search for Multiobjective
Optimization Problems,
Cyber(44), No. 8, August 2014, pp. 1295-1313.
IEEE DOI
1407
Convergence
BibRef
Goldstein, T.,
O'Donoghue, B.,
Setzer, S.,
Baraniuk, R.,
Fast Alternating Direction Optimization Methods,
SIIMS(7), No. 3, 2014, pp. 1588-1623.
DOI Link
1410
BibRef
Kappes, J.H.[Jörg H.],
Andres, B.[Bjoern],
Hamprecht, F.A.[Fred A.],
Schnörr, C.[Christoph],
Nowozin, S.[Sebastian],
Batra, D.[Dhruv],
Kim, S.W.[Sung-Woong],
Kausler, B.X.[Bernhard X.],
Kröger, T.[Thorben],
Lellmann, J.[Jan],
Komodakis, N.[Nikos],
Savchynskyy, B.[Bogdan],
Rother, C.[Carsten],
A Comparative Study of Modern Inference Techniques for Structured
Discrete Energy Minimization Problems,
IJCV(115), No. 2, November 2015, pp. 155-184.
Springer DOI
1511
BibRef
Earlier: A1, A2, A3, A4, A5, A6, A7, A8, A10, A11, A13, Only:
A Comparative Study of Modern Inference Techniques for Discrete
Energy Minimization Problems,
CVPR13(1328-1335)
IEEE DOI
1309
Markov random fields; benchmark; discrete optimization; graphical models
BibRef
Chierchia, G.,
Pustelnik, N.,
Pesquet, J.C.,
Pesquet-Popescu, B.,
Epigraphical projection and proximal tools for solving constrained
convex optimization problems,
SIViP(9), No. 8, November 2015, pp. 1737-1749.
Springer DOI
1511
BibRef
Harizanov, S.[Stanislav],
Pesquet, J.C.[Jean-Christophe],
Steidl, G.[Gabriele],
Epigraphical Projection for Solving Least Squares Anscombe Transformed
Constrained Optimization Problems,
SSVM13(125-136).
Springer DOI
1305
BibRef
Chen, C.H.[Cai-Hua],
Chan, R.H.[Raymond H.],
Ma, S.Q.[Shi-Qian],
Yang, J.F.[Jun-Feng],
Inertial Proximal ADMM for Linearly Constrained Separable Convex
Optimization,
SIIMS(8), No. 4, 2015, pp. 2239-2267.
DOI Link
1601
BibRef
Swoboda, P.[Paul],
Shekhovtsov, A.,
Kappes, J.H.[Jörg H.],
Schnörr, C.[Christoph],
Savchynskyy, B.[Bogdan],
Partial Optimality by Pruning for MAP-Inference with General
Graphical Models,
PAMI(38), No. 7, July 2016, pp. 1370-1382.
IEEE DOI
1606
BibRef
Earlier: A1, A5, A3, A4, Only:
CVPR14(1170-1177)
IEEE DOI
1409
Award, CVPR, Student.
BibRef
Earlier: A1, A5, A3, A4, Only:
Partial Optimality via Iterative Pruning for the Potts Model,
SSVM13(477-488).
Springer DOI
1305
Graphical models.
Discrete Optimization; Graphical Models; MAP-inference
BibRef
Li, L.L.[Ling-Ling],
Jiao, L.C.[Li-Cheng],
Zhao, J.[Jiaqi],
Shang, R.H.[Rong-Hua],
Gong, M.[Maoguo],
Quantum-behaved discrete multi-objective particle swarm optimization
for complex network clustering,
PR(63), No. 1, 2017, pp. 1-14.
Elsevier DOI
1612
Multi-objective optimization
BibRef
Shen, F.,
Zhou, X.,
Yang, Y.,
Song, J.,
Shen, H.T.,
Tao, D.,
A Fast Optimization Method for General Binary Code Learning,
IP(25), No. 12, December 2016, pp. 5610-5621.
IEEE DOI
1612
binary codes
BibRef
Pock, T.[Thomas],
Sabach, S.[Shoham],
Inertial Proximal Alternating Linearized Minimization (iPALM) for
Nonconvex and Nonsmooth Problems,
SIIMS(9), No. 4, 2016, pp. 1756-1787.
DOI Link
1612
BibRef
Yu, Y.[Yi],
Zhao, H.Q.[Hai-Quan],
A joint-optimization NSAF algorithm based on the first-order Markov
model,
SIViP(11), No. 3, March 2017, pp. 509-516.
WWW Link.
1702
BibRef
Dillon, K.[Keith],
Fainman, Y.[Yeshaiahu],
Element-wise uniqueness, prior knowledge, and data-dependent resolution,
SIViP(11), No. 1, January 2017, pp. 41-48.
Springer DOI
1702
solutions to underdetermined linear systems.
BibRef
Ono, S.[Shunsuke],
L_0 Gradient Projection,
IP(26), No. 4, April 2017, pp. 1554-1564.
IEEE DOI
1704
approximation theory
BibRef
Watanabe, M.[Makoto],
Kyochi, S.[Seisuke],
Ono, S.[Shunsuke],
Gradient-domain image decomposition for image recovery,
ICIP15(4768-4772)
IEEE DOI
1512
Convex optimization
BibRef
Korkinof, D.[Dimitrios],
Demiris, Y.[Yiannis],
Multi-task and multi-kernel Gaussian process dynamical systems,
PR(66), No. 1, 2017, pp. 190-201.
Elsevier DOI
1704
Gaussian processes
BibRef
Zhang, W.Z.[Wei-Zhong],
Zhang, L.J.[Li-Jun],
Jin, Z.M.[Zhong-Ming],
Jin, R.[Rong],
Cai, D.[Deng],
Li, X.L.[Xue-Long],
Liang, R.H.[Rong-Hua],
He, X.F.[Xiao-Fei],
Sparse Learning with Stochastic Composite Optimization,
PAMI(39), No. 6, June 2017, pp. 1223-1236.
IEEE DOI
1705
Algorithm design and analysis, Convergence, Linear programming,
Optimization, Standards, Stochastic processes, Training,
Sparse learning, stochastic composite optimization, stochastic, optimization
BibRef
Laue, H.E.A.[Heinrich Edgar Arnold],
du Plessis, W.P.[Warren Paul],
A Coherence-Based Algorithm for Optimizing Rank-1 Grassmannian
Codebooks,
SPLetters(24), No. 6, June 2017, pp. 823-827.
IEEE DOI
1705
Coherence, Convergence, Euclidean distance, Manifolds, Optimization,
Signal processing algorithms, Coherence,
compressive sensing (CS), optimization,
rank-1 Grassmannian codebooks, sensing, matrix
BibRef
Deng, Y.[Yue],
Zhao, Y.Y.[Yan-Yu],
Ren, Z.Q.[Zhi-Quan],
Kong, Y.Y.[You-Yong],
Bao, F.[Feng],
Dai, Q.H.[Qiong-Hai],
Discriminant Kernel Assignment for Image Coding,
Cyber(47), No. 6, June 2017, pp. 1434-1445.
IEEE DOI
1706
Dictionaries, Histograms, Image coding, Integrated circuits,
Jacobian matrices, Kernel, Optimization,
Fisher discriminant criterion, image coding (IC),
image understanding, optimization
BibRef
Guan, S.[Sihai],
Li, Z.[Zhi],
Optimal step size of least mean absolute third algorithm,
SIViP(11), No. 6, September 2017, pp. 1105-1113.
WWW Link.
1708
BibRef
Benchikhi, L.[Loubna],
Sadgal, M.[Mohamed],
Elfazziki, A.[Aziz],
Mansouri, F.[Fatimaezzahra],
An ant colony based model to optimize parameters in industrial vision,
ELCVIA(16), No. 1, 2017, pp. 33-53.
DOI Link
1708
BibRef
Liu, R.[Ruochen],
Wang, R.[Ruinan],
Yu, X.[Xin],
An, L.[Lijia],
Shape automatic clustering-based multi-objective optimization with
decomposition,
MVA(28), No. 5-6, August 2017, pp. 497-508.
WWW Link.
1708
BibRef
Chen, Y.Y.[Yong-Yong],
Wang, Y.L.[Yong-Li],
Li, M.Q.[Ming-Qiang],
He, G.P.[Guo-Ping],
Augmented Lagrangian alternating direction method for low-rank
minimization via non-convex approximation,
SIViP(11), No. 7, October 2017, pp. 1271-1278.
WWW Link.
1708
BibRef
Yuan, X.T.[Xiao-Tong],
Liu, Q.S.[Qing-Shan],
Newton-Type Greedy Selection Methods for L_0-Constrained Minimization,
PAMI(39), No. 12, December 2017, pp. 2437-2450.
IEEE DOI
1711
BibRef
Earlier:
Newton Greedy Pursuit: A Quadratic Approximation Method for
Sparsity-Constrained Optimization,
CVPR14(4122-4129)
IEEE DOI
1409
Convergence, Iterative methods, Linear programming, Minimization.
Greedy Pursuit; Newton Method; Optimization; Sparsity Model
BibRef
Shalom, S.S.,
Tabrikian, J.,
Efficient Computation of MSE Lower Bounds via Matching Pursuit,
SPLetters(24), No. 12, December 2017, pp. 1798-1802.
IEEE DOI
1712
Bayes methods, computational complexity, covariance analysis,
greedy algorithms, iterative methods, mean square error methods,
weiss-weinstein class
BibRef
Zhu, B.,
Bai, B.,
Chen, W.,
Liu, Z.,
Sparse Network Completion via Discrete-Constrained Nuclear-Norm
Minimization,
SPLetters(24), No. 12, December 2017, pp. 1896-1900.
IEEE DOI
1712
Complex networks, Minimization, Optimization, Simulation,
Social network services, Sparse matrices, Symmetric matrices,
sparse graph
BibRef
Karlsson, J.[Johan],
Ringh, A.[Axel],
Generalized Sinkhorn Iterations for Regularizing Inverse Problems
Using Optimal Mass Transport,
SIIMS(10), No. 4, 2017, pp. 1935-1962.
DOI Link
1801
BibRef
Bocklin, C.L.[Christofer L.],
Andersson, C.[Claes],
Gustafsson, M.G.[Mats G.],
Self-tuning density estimation based on Bayesian averaging of
adaptive kernel density estimations yields state-of-the-art
performance,
PR(78), 2018, pp. 133-143.
Elsevier DOI
1804
PDF Estimation.
Data Available:
PDF File. Adaptive density estimation, Variable bandwidth,
Bayesian model averaging, Square root law, Multivariate, Univariate
BibRef
Zheng, M.L.[Mian-Lun],
Yuan, Z.Y.[Zhi-Yong],
Tong, Q.Q.[Qian-Qian],
Zhang, G.[Guian],
Zhu, W.X.[Wei-Xu],
A novel unconditionally stable explicit integration method for finite
element method,
VC(34), No. 5, May 2018, pp. 721-733.
WWW Link.
1804
BibRef
Koçanaogullari, A.,
Erdogmus, D.,
Akçakaya, M.,
On Analysis of Active Querying for Recursive State Estimation,
SPLetters(25), No. 6, June 2018, pp. 743-747.
IEEE DOI
1806
combinatorial mathematics, convergence, minimisation, optimisation,
query processing, recursive estimation, state estimation,
recursive state estimation
BibRef
Robini, M.,
Yang, F.,
Zhu, Y.,
Inexact Half-Quadratic Optimization for Linear Inverse Problems,
SIIMS(11), No. 2, 2018, pp. 1078-1133.
DOI Link
1807
BibRef
Wang, B.[Bin],
Jiang, H.Y.[Hong-Yu],
Fang, J.[Jun],
Duan, H.P.[Hui-Ping],
A Proximal ADMM for Decentralized Composite Optimization,
SPLetters(25), No. 8, August 2018, pp. 1121-1125.
IEEE DOI
1808
optimisation, composite optimization problem,
decentralized network, decentralized composite optimization,
proximal ADMM
BibRef
Xie, C.L.[Chun-Lei],
Sun, Y.J.[Yu-Juan],
Constructions of Even-Period Binary Z-Complementary Pairs With Large
ZCZs,
SPLetters(25), No. 8, August 2018, pp. 1141-1145.
IEEE DOI
1808
binary codes, correlation methods, Golay codes,
even-period binary Z-complementary pairs,
zero-correlation zone (ZCZ)
BibRef
Almeida, I.[Inês],
Xavier, J.[João],
DJAM: Distributed Jacobi Asynchronous Method for Learning Personal
Models,
SPLetters(25), No. 9, September 2018, pp. 1389-1392.
IEEE DOI
1809
data handling, distributed algorithms,
learning (artificial intelligence), multi-agent systems,
optimization
BibRef
Ahmed, N.,
Data-Free/Data-Sparse Softmax Parameter Estimation With Structured
Class Geometries,
SPLetters(25), No. 9, September 2018, pp. 1408-1412.
IEEE DOI
1809
approximation theory, learning (artificial intelligence),
maximum likelihood estimation, optimisation,
supervised learning
BibRef
Pan, J.F.[Jin-Feng],
Shen, J.[Jin],
Gao, M.L.[Ming-Liang],
Yin, L.J.[Li-Ju],
Liu, F.Y.[Fa-Ying],
Zou, G.F.[Guo-Feng],
Orthogonal gradient measurement matrix optimisation method,
IET-IPR(12), No. 10, October 2018, pp. 1773-1779.
DOI Link
1809
BibRef
Pizzo, A.,
Zappone, A.,
Sanguinetti, L.,
Solving Fractional Polynomial Problems by Polynomial Optimization
Theory,
SPLetters(25), No. 10, October 2018, pp. 1540-1544.
IEEE DOI
1810
Optimization, Signal to noise ratio,
Signal processing algorithms, Programming,
polynomial optimization theory
BibRef
Zhang, Z.W.[Zheng-Wu],
Su, J.Y.[Jing-Yong],
Klassen, E.[Eric],
Le, H.L.[Hui-Ling],
Srivastava, A.[Anuj],
Rate-Invariant Analysis of Covariance Trajectories,
JMIV(60), No. 8, October 2018, pp. 1306-1323.
Springer DOI
1810
BibRef
Iutzeler, F.,
Condat, L.,
Distributed Projection on the Simplex and L_1 Ball via ADMM and
Gossip,
SPLetters(25), No. 11, November 2018, pp. 1650-1654.
IEEE DOI
1811
convex programming, distributed algorithms,
mathematics computing, distributed projection, computing network,
simplex
BibRef
Koçanaogullari, A.[Aziz],
Marghi, Y.M.[Yeganeh M.],
Akçakaya, M.[Murat],
Erdogmus, D.[Deniz],
Optimal Query Selection Using Multi-Armed Bandits,
SPLetters(25), No. 12, December 2018, pp. 1870-1874.
IEEE DOI
1812
information theory, Monte Carlo methods, query processing,
optimal query selection, multi-armed bandit framework
BibRef
Kushwaha, N.[Neetu],
Pant, M.[Millie],
Kant, S.[Surya],
Jain, V.K.[Vinay Kumar],
Magnetic optimization algorithm for data clustering,
PRL(115), 2018, pp. 59-65.
Elsevier DOI
1812
Clustering inspired by magnetic force.
Magnetic optimization, Clustering, Nature inspired algorithms,
-means, Partitional clustering
BibRef
Geiping, J.,
Moeller, M.,
Composite Optimization by Nonconvex Majorization-Minimization,
SIIMS(11), No. 4, 2018, pp. 2494-2528.
DOI Link
1901
BibRef
Ye, H.S.[Hai-Shan],
Xie, G.Z.[Guang-Zeng],
Luo, L.[Luo],
Zhang, Z.H.[Zhi-Hua],
Fast stochastic second-order method logarithmic in condition number,
PR(88), 2019, pp. 629-642.
Elsevier DOI
1901
BibRef
Hadfield, S.[Simon],
Lebeda, K.[Karel],
Bowden, R.[Richard],
HARD-PnP: PnP Optimization Using a Hybrid Approximate Representation,
PAMI(41), No. 3, March 2019, pp. 768-774.
IEEE DOI
1902
Minimization, Cameras, Cost function, Geometry, Robustness,
PnP, perspective-n-point,
multiview geometry
BibRef
Lin, P.,
Ren, W.,
Wang, H.,
Al-Saggaf, U.M.,
Multiagent Rendezvous With Shortest Distance to Convex Regions With
Empty Intersection: Algorithms and Experiments,
Cyber(49), No. 3, March 2019, pp. 1026-1034.
IEEE DOI
1902
Optimization, Convergence, Algorithm design and analysis,
Multi-agent systems, Linear programming, Lyapunov methods,
shortest-distance rendezvous
BibRef
Daei, S.,
Haddadi, F.,
Amini, A.,
Improved Recovery of Analysis Sparse Vectors in Presence of Prior
Information,
SPLetters(26), No. 2, February 2019, pp. 222-226.
IEEE DOI
1902
matrix algebra, numerical analysis, optimisation,
signal processing, prior information, recovery stage,
conic integral geometry
BibRef
Tan, X.G.[Xue-Gang],
Cao, J.[Jinde],
Li, X.D.[Xiao-Di],
Consensus of Leader-Following Multiagent Systems:
A Distributed Event-Triggered Impulsive Control Strategy,
Cyber(49), No. 3, March 2019, pp. 792-801.
IEEE DOI
1902
Multi-agent systems, Convergence, Measurement errors,
Microprocessors, Information processing,
multiagent systems
BibRef
Caissard, T.[Thomas],
Coeurjolly, D.[David],
Lachaud, J.O.[Jacques-Olivier],
Roussillon, T.[Tristan],
Laplace-Beltrami Operator on Digital Surfaces,
JMIV(61), No. 3, March 2019, pp. 359-379.
Springer DOI
1903
BibRef
Earlier:
Heat Kernel Laplace-Beltrami Operator on Digital Surfaces,
DGCI17(241-253).
Springer DOI
1711
variational problems involving the discretization of the
Laplace-Beltrami operator.
BibRef
Chau, G.,
Wohlberg, B.,
Rodriguez, P.,
Efficient Projection onto the Ll_(inf,1) Mixed-Norm Ball Using a
Newton Root Search Method,
SIIMS(12), No. 1, 2019, pp. 604-623.
DOI Link
1904
BibRef
Gong, X.F.[Xiao-Feng],
Lin, Q.H.[Qiu-Hua],
Cong, F.Y.[Feng-Yu],
de Lathauwer, L.[Lieven],
Double coupled canonical polyadic decomposition of third-order
tensors: Algebraic algorithm and relaxed uniqueness conditions,
SP:IC(73), 2019, pp. 22-36.
Elsevier DOI
1904
Tensor, Canonical polyadic decomposition, Double coupled,
Algebraic algorithm, Uniqueness
BibRef
Xu, Y.,
Qi, L.,
Sun, W.,
On semi-definiteness and minimal H-eigenvalue of a symmetric space
tensor using nonnegative polynomial optimization techniques,
SP:IC(73), 2019, pp. 3-11.
Elsevier DOI
1904
Space tensor, Nonnegative polynomials, Semidefinite program, H-eigenvalue
BibRef
Volaric, I.[Ivan],
Sucic, V.[Victor],
Sparse time-frequency distributions based on the L1-norm minimization
with the fast intersection of confidence intervals rule,
SIViP(13), No. 3, April 2019, pp. 499-506.
WWW Link.
1904
BibRef
Mirebeau, J.M.[Jean-Marie],
Portegies, J.[Jorg],
Hamiltonian Fast Marching: A Numerical Solver for Anisotropic and
Non-Holonomic Eikonal PDEs,
IPOL(9), 2019, pp. 47-93.
DOI Link
1904
HamiltonFastMarching code, designed to solve various classes of
eikonal equations, and extract the related minimal paths.
BibRef
Repetti, A.[Audrey],
Pereyra, M.[Marcelo],
Wiaux, Y.[Yves],
Scalable Bayesian Uncertainty Quantification in Imaging Inverse
Problems via Convex Optimization,
SIIMS(12), No. 1, 2019, pp. 87-118.
DOI Link
1904
BibRef
Pereyra, M.[Marcelo],
Revisiting Maximum-a-Posteriori Estimation in Log-Concave Models,
SIIMS(12), No. 1, 2019, pp. 650-670.
DOI Link
1904
BibRef
Luo, X.,
Zhang, P.,
Huang, Z.,
Nie, L.,
Xu, X.,
Discrete Hashing With Multiple Supervision,
IP(28), No. 6, June 2019, pp. 2962-2975.
IEEE DOI
1905
binary codes, iterative methods,
learning (artificial intelligence), optimisation,
supervised hashing
BibRef
Wu, B.Y.[Bao-Yuan],
Ghanem, B.[Bernard],
L_p-L_p-Box ADMM: A Versatile Framework for Integer Programming,
PAMI(41), No. 7, July 2019, pp. 1695-1708.
IEEE DOI
1906
Integer Programming networks, Convex functions,
Linear programming, Optimization,
Machine learning, Convergence,
machine learning
BibRef
Wu, B.Y.[Bao-Yuan],
Shen, L.[Li],
Zhang, T.[Tong],
Ghanem, B.[Bernard],
MAP Inference Via L_2-Sphere Linear Program Reformulation,
IJCV(128), No. 7, July 2020, pp. 1913-1936.
Springer DOI
2007
BibRef
Altilio, R.[Rosa],
di Lorenzo, P.[Paolo],
Panella, M.[Massimo],
Distributed data clustering over networks,
PR(93), 2019, pp. 603-620.
Elsevier DOI
1906
Distributed learning, Clustering, Gaussian mixtures,
Expectation maximization, Non-Convex optimization
BibRef
Irani, M.[Michal],
'Blind' visual inference by composition,
PRL(124), 2019, pp. 39-54.
Elsevier DOI
1906
Solve complex inverse problems when the degradation model is unknown.
BibRef
Xie, A.,
Yin, F.,
Xu, Y.,
Ai, B.,
Chen, T.,
Cui, S.,
Distributed Gaussian Processes Hyperparameter Optimization for Big
Data Using Proximal ADMM,
SPLetters(26), No. 8, August 2019, pp. 1197-1201.
IEEE DOI
1908
Big Data, distributed algorithms, Gaussian processes,
learning (artificial intelligence),
hyperparameter optimization
BibRef
Xin, R.,
Jakovetic, D.,
Khan, U.A.,
Distributed Nesterov Gradient Methods Over Arbitrary Graphs,
SPLetters(26), No. 8, August 2019, pp. 1247-1251.
IEEE DOI
1908
directed graphs, eigenvalues and eigenfunctions,
gradient methods, optimisation, stochastic processes,
optimization methods
BibRef
Akyildiz, Ö.D.,
Chouzenoux, É.,
Elvira, V.,
Míguez, J.,
A Probabilistic Incremental Proximal Gradient Method,
SPLetters(26), No. 8, August 2019, pp. 1257-1261.
IEEE DOI
1908
Bayes methods, gradient methods, Kalman filters, optimisation,
probability, state-space methods,
extended Kalman filtering
BibRef
Yeredor, A.,
Haardt, M.,
Maximum Likelihood Estimation of a Low-Rank Probability Mass Tensor
From Partial Observations,
SPLetters(26), No. 10, October 2019, pp. 1551-1555.
IEEE DOI
1909
Maximum likelihood estimation, Minimization,
Computational modeling, Optimization, Radio frequency,
Estimation-Maximization (EM)
BibRef
Dai, J.[Jicheng],
Yan, L.[Li],
Liu, H.[Hua],
Chen, C.J.[Chang-Jun],
Huo, L.[Liang],
An Offline Coarse-To-Fine Precision Optimization Algorithm for 3D
Laser SLAM Point Cloud,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Tichavský, P.[Petr],
Phan, A.H.[Anh-Huy],
Cichocki, A.[Andrzej],
Sensitivity in Tensor Decomposition,
SPLetters(26), No. 11, November 2019, pp. 1653-1657.
IEEE DOI
1911
Sensitivity, Matrix decomposition, Signal processing algorithms,
Convergence, Symmetric matrices, Optimization
BibRef
Su, X.H.[Xin-Hua],
Wang, Y.L.[Yi-Lun],
Kang, X.J.[Xue-Jing],
Tao, R.[Ran],
Nonconvex Truncated Nuclear Norm Minimization Based on Adaptive
Bisection Method,
CirSysVideo(29), No. 11, November 2019, pp. 3159-3172.
IEEE DOI
1911
Minimization, Sparse matrices, Approximation algorithms,
Heuristic algorithms, Optimization, Estimation,
nonconvex optimization
BibRef
Mao, F.[Feng],
Huang, M.[Min],
Zheng, J.[Jian],
Qian, Y.X.[Yu-Xiang],
Optimisation model and solution method of multi-sources guide paths,
IET-ITS(13), No. 11, November 2019, pp. 1668-1676.
DOI Link
1911
BibRef
Hafiene, Y.[Yosra],
Fadili, J.M.[Jalal M.],
Elmoataz, A.[Abderrahim],
Continuum Limits of Nonlocal p-Laplacian Variational Problems on
Graphs,
SIIMS(12), No. 4, 2019, pp. 1772-1807.
DOI Link
1912
BibRef
Santos, I.,
Murillo-Fuentes, J.J.,
Arias-de-Reyna, E.,
A Double EP-Based Proposal for Turbo Equalization,
SPLetters(27), 2020, pp. 121-125.
IEEE DOI
2001
Expectation propagation (EP), MMSE, low-complexity,
turbo equalization, ISI, Wiener, Kalman
BibRef
Dulek, B.,
Ozturk, C.,
Gezici, S.,
Optimal Decision Rules for Simple Hypothesis Testing Under General
Criterion Involving Error Probabilities,
SPLetters(27), 2020, pp. 261-265.
IEEE DOI
2002
Hypothesis testing, optimal tests, convexity, likelihood ratio, randomization
BibRef
Zhang, T.,
Wang, S.,
Huang, X.,
Jia, L.,
Kernel Recursive Least Squares Algorithm Based on the Nystrom Method
With k-Means Sampling,
SPLetters(27), 2020, pp. 361-365.
IEEE DOI
2004
Kernel adaptive filters, Nystrom method,
kernel recursive least squares, k-means sampling
BibRef
Peng, D.,
Dong, J.,
Peng, Q.,
Overloaded Branch Chains Induced by False Data Injection Attack in
Smart Grid,
SPLetters(27), 2020, pp. 426-430.
IEEE DOI
2004
Bilevel optimization, chain, false data injection attack,
overloading, smart grid
BibRef
Zhou, H.,
Wang, X.,
Cui, N.,
Fuel-Optimal Multi-Impulse Orbit Transfer Using a Hybrid Optimization
Method,
ITS(21), No. 4, April 2020, pp. 1359-1368.
IEEE DOI
2004
Multi impulse, orbit transfer, space transportation,
hybrid optimization algorithm
BibRef
Liu, Y.[Yong],
Liao, S.Z.[Shi-Zhong],
Jiang, S.L.[Sha-Li],
Ding, L.Z.[Li-Zhong],
Lin, H.L.[Hai-Lun],
Wang, W.P.[Wei-Ping],
Fast Cross-Validation for Kernel-Based Algorithms,
PAMI(42), No. 5, May 2020, pp. 1083-1096.
IEEE DOI
2004
Approximation algorithms, Kernel, Training, Taylor series,
Support vector machines, Upper bound, Computational modeling,
kernel methods
BibRef
Wang, Y.R.[Yi-Ru],
Liu, Y.L.[Yin-Long],
Li, X.C.[Xue-Chen],
Wang, C.[Chen],
Wang, M.N.[Man-Ning],
Song, Z.J.[Zhi-Jian],
GORFLM: Globally Optimal Robust Fitting for Linear Model,
SP:IC(84), 2020, pp. 115834.
Elsevier DOI
2004
Robust linear model fitting, Globally optimization,
Branch and bound, Gaussian function
BibRef
Liu, Y.L.[Yin-Long],
Wang, Y.R.[Yi-Ru],
Wang, M.N.[Man-Ning],
Chen, G.[Guang],
Knoll, A.[Alois],
Song, Z.J.[Zhi-Jian],
Globally Optimal Linear Model Fitting with Unit-Norm Constraint,
IJCV(130), No. 1, January 2022, pp. 933-946.
Springer DOI
2204
BibRef
Zhang, F.,
Hou, J.,
Wang, J.,
Wang, W.,
Uniqueness Guarantee of Solutions of Tensor Tubal-Rank Minimization
Problem,
SPLetters(27), 2020, pp. 540-544.
IEEE DOI
2005
Tensors, Minimization, Manifolds, Transforms, Image reconstruction,
Frequency measurement, Electron tubes,
number of samples
BibRef
Li, X.L.[Xiao-Lan],
Gao, B.B.[Bing-Bo],
Bai, Z.K.[Zhong-Ke],
Pan, Y.C.[Yu-Chun],
Gao, Y.B.[Yun-Bing],
An Improved Parallelized Multi-Objective Optimization Method for
Complex Geographical Spatial Sampling: AMOSA-II,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Xu, Y.,
Wang, Q.,
Asymptotical Optimality of Change Point Detection With Unknown
Discrete Post-Change Distributions,
SPLetters(27), 2020, pp. 695-699.
IEEE DOI
2005
Testing, Delays, Process control, Source coding, Control charts,
Indexes, Quality control, Asymptotic optimality,
universal source coding
BibRef
Romaszko, L.[Lukasz],
Williams, C.K.I.[Christopher K.I.],
Winn, J.[John],
Learning Direct Optimization for scene understanding,
PR(105), 2020, pp. 107369.
Elsevier DOI
2006
Scene understanding, 3D Reconstruction,
Inverse graphics, Object recognition, Scene graph, Graphics
BibRef
Dey, T.K.[Tamal K.],
Slechta, R.[Ryan],
Filtration Simplification for Persistent Homology via Edge Contraction,
JMIV(62), No. 5, June 2020, pp. 704-717.
Springer DOI
2007
BibRef
Earlier:
DGCI19(89-100).
Springer DOI
1905
BibRef
Lee, C.H.[Ching-Hua],
Rao, B.D.[Bhaskar D.],
Garudadri, H.[Harinath],
A Sparse Conjugate Gradient Adaptive Filter,
SPLetters(27), 2020, pp. 1000-1004.
IEEE DOI
2007
Adaptive systems, Signal processing algorithms, Convergence,
Markov processes, Optimization, Correlation, Estimation,
sparse signal recovery
BibRef
Darbon, J.[Jérôme],
Meng, T.[Tingwei],
On Decomposition Models in Imaging Sciences and Multi-time
Hamilton-Jacobi Partial Differential Equations,
SIIMS(13), No. 2, 2020, pp. 971-1014.
DOI Link
2007
BibRef
Gribonval, R.[Rémi],
Nikolova, M.[Mila],
A Characterization of Proximity Operators,
JMIV(62), No. 6-7, July 2020, pp. 773-789.
Springer DOI
2007
Functions that map a vector to a solution of a penalized least-squares
optimization problem.
BibRef
Soubies, E.[Emmanuel],
Blanc-Féraud, L.[Laure],
Aubert, G.[Gilles],
New Insights on the Optimality Conditions of the L2-L0 Minimization
Problem,
JMIV(62), No. 6-7, July 2020, pp. 808-824.
Springer DOI
2007
BibRef
Benning, M.[Martin],
Riis, E.S.[Erlend Skaldehaug],
Schönlieb, C.B.[Carola-Bibiane],
Bregman Itoh-Abe Methods for Sparse Optimisation,
JMIV(62), No. 6-7, July 2020, pp. 842-857.
Springer DOI
2007
BibRef
Jung, H.,
Kim, Y.,
Min, D.,
Jang, H.,
Ha, N.,
Sohn, K.,
Learning Deeply Aggregated Alternating Minimization for General
Inverse Problems,
IP(29), 2020, pp. 8012-8027.
IEEE DOI
2008
Image restoration, Minimization, Noise reduction, Image resolution,
Optimization, Training, Task analysis,
proximal mapping
BibRef
Candan, Ç.,
Chebyshev Center Computation on Probability Simplex With
alpha-Divergence Measure,
SPLetters(27), 2020, pp. 1515-1519.
IEEE DOI
2009
Chebyshev approximation, Signal processing algorithms,
Mutual information, Redundancy, Optimization, Minimization,
error exponent calculation
BibRef
Anirudh, R.[Rushil],
Thiagarajan, J.J.[Jayaraman J.],
Kailkhura, B.[Bhavya],
Bremer, P.T.[Peer-Timo],
MimicGAN: Robust Projection onto Image Manifolds with Corruption
Mimicking,
IJCV(128), No. 10-11, November 2020, pp. 2459-2477.
Springer DOI
2009
BibRef
Earlier: A1, A3, A2, A4:
Poisson Disk Sampling on the Grassmannnian: Applications in Subspace
Optimization,
Diff-CVML17(690-698)
IEEE DOI
1709
Approximation algorithms, Manifolds, Measurement,
Optimization, Principal component analysis, Silicon
BibRef
Ye, S.,
Bar-Shalom, Y.,
Willett, P.,
Estimation of the Support Parameters of a Uniform PDF and the
Cramér-Rao-Leibniz Lower Bound,
SPLetters(27), 2020, pp. 1765-1768.
IEEE DOI
2010
Covariance matrices, Estimation, Convergence, Indexes,
Integral equations, Parameter estimation, Aging, Cramer-Rao bounds,
parameter estimation
BibRef
Rodríguez-Diez, V.[Vladímir],
Martínez-Trinidad, J.F.[José Fco],
Carrasco-Ochoa, J.A.[J. Ariel],
Lazo-Cortés, M.S.[Manuel S.],
Olvera-López, J.A.[J. Arturo],
MinReduct: A new algorithm for computing the shortest reducts,
PRL(138), 2020, pp. 177-184.
Elsevier DOI
2010
Rough sets, Shortest reducts, Binary cumulative operations
BibRef
Jin, R.Y.[Ren-Yun],
Qiu, H.F.[Hai-Feng],
Weng, L.G.[Li-Guo],
Distributed discrete-time event-triggered algorithm for economic
dispatch problem,
PRL(138), 2020, pp. 507-512.
Elsevier DOI
2010
Distributed discrete-time algorithm,
Economic dispatch problem, Convex optimization,
Event-triggered communication
BibRef
Shi, X.,
Xing, F.,
Zhang, Z.,
Sapkota, M.,
Guo, Z.,
Yang, L.,
A Scalable Optimization Mechanism for Pairwise Based Discrete Hashing,
IP(30), 2021, pp. 1130-1142.
IEEE DOI
2012
Binary codes, Hash functions, Symmetric matrices, Semantics,
Task analysis, Linear regression, Convolutional codes, Hashing,
scalable
BibRef
Chen, G.Y.,
Gan, M.,
Wang, S.,
Chen, C.L.P.,
Insights Into Algorithms for Separable Nonlinear Least Squares
Problems,
IP(30), 2021, pp. 1207-1218.
IEEE DOI
2012
Jacobian matrices, Optimization, Signal processing algorithms,
Partitioning algorithms, Bundle adjustment, Analytical models,
bundle adjustment
BibRef
Zhou, P.[Pan],
Yuan, X.T.[Xiao-Tong],
Yan, S.C.[Shui-Cheng],
Feng, J.S.[Jia-Shi],
Faster First-Order Methods for Stochastic Non-Convex Optimization on
Riemannian Manifolds,
PAMI(43), No. 2, February 2021, pp. 459-472.
IEEE DOI
2101
Optimization, Complexity theory, Manifolds, Convergence,
Signal processing algorithms, Stochastic processes, Minimization,
online learning
BibRef
Kocak, M.A.[Mustafa A.],
Ramirez, D.[David],
Erkip, E.[Elza],
Shasha, D.E.[Dennis E.],
SafePredict: A Meta-Algorithm for Machine Learning That Uses Refusals
to Guarantee Correctness,
PAMI(43), No. 2, February 2021, pp. 663-678.
IEEE DOI
2101
Prediction algorithms, Waste materials, Error analysis,
Machine learning, Machine learning algorithms, Reliability
BibRef
Le, H.[Huu],
Chin, T.J.[Tat-Jun],
Eriksson, A.P.[Anders P.],
Do, T.T.[Thanh-Toan],
Suter, D.[David],
Deterministic Approximate Methods for Maximum Consensus Robust Fitting,
PAMI(43), No. 3, March 2021, pp. 842-857.
IEEE DOI
2102
Code, Robust Fitting.
WWW Link. Approximation algorithms, Optimization,
Mathematical model, Estimation, Computational modeling,
approximate algorithm
BibRef
Nonomura, T.[Taku],
Ono, S.[Shunsuke],
Nakai, K.[Kumi],
Saito, Y.[Yuji],
Randomized Subspace Newton Convex Method Applied to Data-Driven
Sensor Selection Problem,
SPLetters(28), 2021, pp. 284-288.
IEEE DOI
2102
Convergence, Sparse matrices, Signal processing algorithms,
Linear programming, Newton method, Heuristic algorithms,
data-driven sensor selection
BibRef
Sun, Y.[Yuan],
Li, X.D.[Xiao-Dong],
Ernst, A.[Andreas],
Using Statistical Measures and Machine Learning for Graph Reduction
to Solve Maximum Weight Clique Problems,
PAMI(43), No. 5, May 2021, pp. 1746-1760.
IEEE DOI
2104
Machine learning, Optimization, Machine learning algorithms,
Search problems, Heuristic algorithms, Atmospheric measurements,
problem reduction
BibRef
Pan, L.L.[Li-Li],
Chen, X.J.[Xiao-Jun],
Group Sparse Optimization for Images Recovery Using Capped Folded
Concave Functions,
SIIMS(14), No. 1, 2021, pp. 1-25.
DOI Link
2104
BibRef
He, F.[Fang],
Wang, X.[Xiao],
Chen, X.J.[Xiao-Jun],
A Penalty Relaxation Method for Image Processing Using Euler's
Elastica Model,
SIIMS(14), No. 1, 2021, pp. 389-417.
DOI Link
2104
BibRef
Wang, Y.[Yiru],
Liu, Y.L.[Yin-Long],
Li, X.C.[Xue-Chen],
Wang, C.[Chen],
Wang, M.[Manning],
Song, Z.J.[Zhi-Jian],
Practical globally optimal consensus maximization by Branch-and-bound
based on interval arithmetic,
PR(115), 2021, pp. 107897.
Elsevier DOI
2104
Consensus maximization, Globally optimization,
Robust model fitting, Branch-and-bound, Interval arithmetic
BibRef
Zheng, B.[Baifu],
Zeng, C.[Cao],
Li, S.D.[Shi-Dong],
Liao, G.S.[Gui-Sheng],
Joint Sparse Recovery for Signals of Spark-Level Sparsity and MMV
Tail-L_2,1 Minimization,
SPLetters(28), 2021, pp. 1130-1134.
IEEE DOI
2106
Minimization, Signal processing algorithms,
Coordinate measuring machines, Upper bound, tail minimization
BibRef
Zhang, J.[Jing],
Zhang, S.G.[Shu-Guang],
Null Space Property of L_1-2 Minimization With Prior Support
Information,
SPLetters(28), 2021, pp. 1779-1783.
IEEE DOI
2109
Minimization, Null space, Standards, Robustness, Tools, Sensors,
Video compression, Compressed sensing, L_1-2 minimization,
null space property
BibRef
Tan, X.J.[Xu-Jie],
Shin, S.Y.[Seong-Yoon],
A clustering-based differential evolution with parapatric and
cross-generation selection,
IJCVR(11), No. 5, 2021, pp. 497-511.
DOI Link
2109
evolutionary algorithms (EA) for continuous optimisation.
BibRef
Karsznia, I.[Izabela],
Golebiowska, I.M.[Izabela Malgorzata],
Korycka-Skorupa, J.[Jolanta],
Nowacki, T.[Tomasz],
Searching for an Optimal Hexagonal Shaped Enumeration Unit Size for
Effective Spatial Pattern Recognition in Choropleth Maps,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liu, R.S.[Ri-Sheng],
Mu, P.[Pan],
Zhang, J.[Jin],
Investigating Customization Strategies and Convergence Behaviors of
Task-Specific ADMM,
IP(30), 2021, pp. 8278-8292.
IEEE DOI
2110
Alternating Direction Method of Multiplier.
Task analysis, Convergence, Convex functions, Optimization, Plugs,
Noise reduction, Linear programming, Task-specific ADMM,
computer vision applications
BibRef
Zhu, Y.N.[Ya-Nan],
Zhang, X.Q.[Xiao-Qun],
A Stochastic Variance Reduced Primal Dual Fixed Point Method for
Linearly Constrained Separable Optimization,
SIIMS(14), No. 3, 2021, pp. 1326-1353.
DOI Link
2110
BibRef
Chai, W.H.,
Ho, S.S.,
Quek, H.C.,
A Novel Quasi-Newton Method for Composite Convex Minimization,
PR(122), 2022, pp. 108281.
Elsevier DOI
2112
non-smooth, proximal mapping, quasi-Newton
BibRef
Huang, Z.[Zeren],
Wang, K.[Kerong],
Liu, F.[Furui],
Zhen, H.L.[Hui-Ling],
Zhang, W.N.[Wei-Nan],
Yuan, M.X.[Ming-Xuan],
Hao, J.Y.[Jian-Ye],
Yu, Y.[Yong],
Wang, J.[Jun],
Learning to Select Cuts for Efficient Mixed-Integer Programming,
PR(123), 2022, pp. 108353.
Elsevier DOI
2112
Mixed-Integer programming, Cutting plane,
Multiple instance learning, Generalization ability
BibRef
Vural, M.[Metin],
Aravkin, A.Y.[Aleksandr Y.],
Stanczak, S.[Slawomir],
L_1-Norm Minimization With Regula Falsi Type Root Finding Methods,
SPLetters(28), 2021, pp. 2132-2136.
IEEE DOI
2112
Newton method, Mathematical models, Pareto optimization,
Minimization, Convergence, Shape, Nonlinear equations,
root-finding
BibRef
Wei, D.[Dong],
Shen, X.B.[Xiao-Bo],
Sun, Q.S.[Quan-Sen],
Gao, X.Z.[Xi-Zhan],
Ren, Z.W.[Zhen-Wen],
Neighborhood preserving embedding on Grassmann manifold for image-set
analysis,
PR(122), 2022, pp. 108335.
Elsevier DOI
2112
Neighborhood preserving embedding, Dimensionality reduction,
Grassmann manifold, Twin learning
BibRef
Lam, B.S.Y.[Benson Shu Yan],
Liew, A.W.C.[Alan Wee-Chung],
A Fast Binary Quadratic Programming Solver Based on Stochastic
Neighborhood Search,
PAMI(44), No. 1, January 2022, pp. 32-49.
IEEE DOI
2112
Search problems, Quadratic programming,
Computational complexity, Image restoration, optimization
BibRef
Driggs, D.[Derek],
Tang, J.Q.[Jun-Qi],
Liang, J.W.[Jing-Wei],
Davies, M.[Mike],
Schönlieb, C.B.[Carola-Bibiane],
A Stochastic Proximal Alternating Minimization for Nonsmooth and
Nonconvex Optimization,
SIIMS(14), No. 4, 2021, pp. 1932-1970.
DOI Link
2112
BibRef
Sarada, B.,
Vinayaka Murthy, M.,
Udaya Rani, V.,
Combined secure approach based on whale optimization to improve the
data classification for data analytics,
PRL(152), 2021, pp. 327-332.
Elsevier DOI
2112
Data clustering, Multi-layer propagation, Optimization, Attacks,
DoS, DDoS, K means
BibRef
Diepeveen, W.[Willem],
Lellmann, J.[Jan],
An Inexact Semismooth Newton Method on Riemannian Manifolds with
Application to Duality-Based Total Variation Denoising,
SIIMS(14), No. 4, 2021, pp. 1565-1600.
DOI Link
2112
BibRef
Helala, M.A.[Mohamed A.],
Qureshi, F.Z.[Faisal Z.],
Pu, K.Q.[Ken Q.],
A Stream Algebra for Performance Optimization of Large Scale Computer
Vision Pipelines,
PAMI(44), No. 2, February 2022, pp. 905-923.
IEEE DOI
2201
Streaming media, Algebra, Pipelines,
Approximation algorithms, Optimization, Buildings, Stream algebra,
performance optimization
BibRef
Zhang, L.H.[Lei-Hong],
Wang, L.[Li],
Bai, Z.J.[Zhao-Jun],
Li, R.C.[Ren-Cang],
A Self-Consistent-Field Iteration for Orthogonal Canonical
Correlation Analysis,
PAMI(44), No. 2, February 2022, pp. 890-904.
IEEE DOI
2201
Correlation, Feature extraction, Eigenvalues and eigenfunctions,
Manifolds, Data visualization,
orthogonal multiset canonical correlation analysis
BibRef
Liu, R.S.[Ri-Sheng],
Ma, L.[Long],
Yuan, X.M.[Xiao-Ming],
Zeng, S.Z.[Shang-Zhi],
Zhang, J.[Jin],
Task-Oriented Convex Bilevel Optimization With Latent Feasibility,
IP(31), 2022, pp. 1190-1203.
IEEE DOI
2202
Task analysis, Optimization, Convergence, Convex functions,
Data models, Computational modeling, Standards, image processing
BibRef
Ali, A.[Anum],
Moinuddin, M.[Muhammad],
Al-Naffouri, T.Y.[Tareq Y.],
NLMS is More Robust to Input-Correlation Than LMS: A Proof,
SPLetters(29), 2022, pp. 279-283.
IEEE DOI
2202
Eigenvalues and eigenfunctions, Signal processing algorithms,
Sensitivity, Random variables, Closed-form solutions, Standards,
eigenvalue-spread
BibRef
Yan, D.[Dong],
Weng, J.Y.[Jia-Yi],
Huang, S.Y.[Shi-Yu],
Li, C.X.[Chong-Xuan],
Zhou, Y.[Yichi],
Su, H.[Hang],
Zhu, J.[Jun],
Deep reinforcement learning with credit assignment for combinatorial
optimization,
PR(124), 2022, pp. 108466.
Elsevier DOI
2203
Combinatorial optimization, Reinforcement learning, Credit assignment
BibRef
Xue, C.[Chao],
Hu, M.T.[Meng-Ting],
Huang, X.Q.[Xue-Qi],
Li, C.G.[Chun-Guang],
Automated search space and search strategy selection for AutoML,
PR(124), 2022, pp. 108474.
Elsevier DOI
2203
AutoML, Search space selection, Combinatorial optimization for AutoML
BibRef
Deng, W.[Wu],
Xu, J.J.[Jun-Jie],
Zhao, H.M.[Hui-Min],
Song, Y.J.[Ying-Jie],
A Novel Gate Resource Allocation Method Using Improved PSO-Based QEA,
ITS(23), No. 3, March 2022, pp. 1737-1745.
IEEE DOI
2203
Gate allocation at airport.
Resource management, Airports, Atmospheric modeling,
Sociology, Statistics, Optimization, Gate allocation model, QEA, PSO,
multi-objective
BibRef
Lai, Q.D.[Qi-Dong],
Zhang, Z.Z.[Zi-Zhen],
Yu, M.Z.[Ming-Zhu],
Wang, J.[Jiahai],
Split-Delivery Capacitated Arc-Routing Problem With Time Windows,
ITS(23), No. 3, March 2022, pp. 2882-2887.
IEEE DOI
2203
Routing, Intelligent transportation systems,
Heuristic algorithms, Computational modeling, Mathematical model,
tabu search
BibRef
Qing, Z.[Zhu],
Ni, J.G.[Jin-Gen],
An Improved Least Stochastic Entropy Algorithm for Strong Noncircular
Inputs and Noise,
SPLetters(29), 2022, pp. 1007-1011.
IEEE DOI
2205
Signal processing algorithms, Convergence, Steady-state,
Noise measurement, Entropy, Prediction algorithms,
performance analysis
BibRef
Wang, S.J.[Shu-Jian],
Xu, M.[Ming],
Zhang, X.[Xunhe],
Wang, Y.T.[Yu-Ting],
Fitting Nonlinear Equations with the Levenberg-Marquardt Method
on Google Earth Engine,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Wang, K.X.[Kuang-Xu],
Ye, S.J.[Si-Jing],
Gao, P.C.[Pei-Chao],
Yao, X.C.[Xiao-Chuang],
Zhao, Z.L.[Zu-Liang],
Optimization of Numerical Methods for Transforming UTM Plane
Coordinates to Lambert Plane Coordinates,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Béjar, B.[Benjamín],
Dokmanic, I.[Ivan],
Vidal, R.[René],
The Fastest L_1,inf Prox in the West,
PAMI(44), No. 7, July 2022, pp. 3858-3869.
IEEE DOI
2206
Convex functions, Sorting, Signal processing algorithms,
Linear programming, Iterative methods, Complexity theory,
block sparsity
BibRef
Yu, H.[Hang],
Lu, J.[Jie],
Zhang, G.Q.[Guang-Quan],
Continuous Support Vector Regression for Nonstationary Streaming Data,
Cyber(52), No. 5, May 2022, pp. 3592-3605.
IEEE DOI
2206
Support vector machines, Prediction algorithms, Vegetation,
Cybernetics, Quadratic programming, Training, Concept drift,
support vector regression (SVR)
BibRef
Mirjalili, S.[Seyedali],
Gandomi, A.H.[Amir H.],
Mirjalili, S.Z.[Seyedeh Zahra],
Saremi, S.[Shahrzad],
Faris, H.[Hossam],
Mirjalili, S.M.[Seyed Mohammad],
Salp Swarm Algorithm: A bio-inspired optimizer for
engineering design problems,
AdvSoftEng(114), 2017, pp. 163-191.
Elsevier DOI
Salp optimizing.
BibRef
1700
Phuong, T.T.[Tran Thi],
Phong, L.T.[Le Trieu],
Decentralized Stochastic Optimization With Random Attendance,
SPLetters(29), 2022, pp. 1322-1326.
IEEE DOI
2206
Training, Optimization, Signal processing algorithms, Convergence,
Machine-to-machine communications, Quantization (signal), Costs,
random attendance
BibRef
Gonzalez, M.[Mario],
Almansa, A.[Andres],
Tan, P.[Pauline],
Solving Inverse Problems by Joint Posterior Maximization with
Autoencoding Prior,
SIIMS(15), No. 2, 2022, pp. 822-859.
DOI Link
2206
BibRef
Zhang, D.P.[Dao-Ping],
Choi, G.P.T.[Gary P. T.],
Zhang, J.P.[Jian-Ping],
Lui, L.M.[Lok Ming],
A Unifying Framework for n-Dimensional Quasi-Conformal Mappings,
SIIMS(15), No. 2, 2022, pp. 960-988.
DOI Link
2207
BibRef
Huang, M.[Meng],
Wang, Y.[Yang],
Linear Convergence of Randomized Kaczmarz Method for Solving
Complex-Valued Phaseless Equations,
SIIMS(15), No. 2, 2022, pp. 989-1016.
DOI Link
2207
BibRef
Xiong, H.[Huan],
Yu, M.Y.[Meng-Yang],
Liu, L.[Li],
Zhu, F.[Fan],
Qin, J.[Jie],
Shen, F.M.[Fu-Min],
Shao, L.[Ling],
A Generalized Method for Binary Optimization:
Convergence Analysis and Applications,
PAMI(44), No. 9, September 2022, pp. 4524-4543.
IEEE DOI
2208
Convergence, Optimization methods, Approximation algorithms,
Quantization (signal), Image segmentation, Matrix decomposition,
constrained image segmentation
BibRef
Liu, L.[Liu],
Liu, J.[Ji],
Tao, D.C.[Da-Cheng],
Variance Reduced Methods for Non-Convex Composition Optimization,
PAMI(44), No. 9, September 2022, pp. 5813-5825.
IEEE DOI
2208
Complexity theory, Optimization, Radio frequency, Estimation,
Convergence, Approximation algorithms, Acceleration,
biased estimation
BibRef
Bauermeister, H.[Hartmut],
Laude, E.[Emanuel],
Mollenhoff, T.[Thomas],
Moeller, M.[Michael],
Cremers, D.[Daniel],
Lifting the Convex Conjugate in Lagrangian Relaxations:
A Tractable Approach for Continuous Markov Random Fields,
SIIMS(15), No. 3, 2022, pp. 1253-1281.
DOI Link
2208
BibRef
Xia, Y.X.[Yu-Xin],
Wang, W.[Wei],
Han, B.[Bo],
A Fast Averaged Kaczmarz Iteration with Convex Penalty for Inverse
Problems in Hilbert Spaces,
SIIMS(15), No. 3, 2022, pp. 1079-1103.
DOI Link
2208
BibRef
Zhao, J.Q.[Jia-Qi],
Hu, S.[Shuai],
Liu, X.C.[Xi-Chuan],
Li, S.L.[Shu-Lei],
The Computational Optimization of the Invariant Imbedding T Matrix
Method for the Particles with N-Fold Symmetry,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lim, Y.C.[Yong Ching],
Liu, Q.L.[Qing-Lai],
Diniz, P.S.R.[Paulo S. R.],
Saramäki, T.[Tapio],
Efficient Scaling of Window Function Expressed as Sum of Exponentials,
SPLetters(29), 2022, pp. 1814-1817.
IEEE DOI
2209
Fourier series, Chebyshev approximation,
Computational efficiency, Laboratories, Iterative methods, Indexes,
sidelobe magnitude
BibRef
Zhou, P.[Pan],
Yuan, X.T.[Xiao-Tong],
Lin, Z.C.[Zhou-Chen],
Hoi, S.C.H.[Steven C.H.],
A Hybrid Stochastic-Deterministic Minibatch Proximal Gradient Method
for Efficient Optimization and Generalization,
PAMI(44), No. 10, October 2022, pp. 5933-5946.
IEEE DOI
2209
Stochastic processes, Optimization, Computational modeling,
Signal processing algorithms, Prediction algorithms,
stochastic variance-reduced algorithm
BibRef
Feng, K.Y.[Kai-Yuan],
Fei, X.[Xia],
Gong, M.[Maoguo],
Qin, A.K.,
Li, H.[Hao],
Wu, Y.[Yue],
An Automatically Layer-Wise Searching Strategy for Channel Pruning
Based on Task-Driven Sparsity Optimization,
CirSysVideo(32), No. 9, September 2022, pp. 5790-5802.
IEEE DOI
2209
Task analysis, Knowledge engineering, Training, Cost function,
Convolutional neural networks, Computational modeling, Tensors, compression
BibRef
Dytso, A.[Alex],
Cardone, M.[Martina],
Zieder, I.[Ian],
High-Noise Asymptotics of the Ziv-Zakai Bound,
SPLetters(29), 2022, pp. 1933-1937.
IEEE DOI
2209
Noise level, Bayes methods, Random variables, Noise measurement,
Upper bound, Probability density function, Estimation, MMSE
BibRef
Zhang, X.J.[Xue-Jun],
Feng, D.Z.[Da-Zheng],
An Efficient MUSIC Algorithm Enhanced by Iteratively Estimating
Signal Subspace and Its Applications in Spatial Colored Noise,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
MUSIC -- multiple signal classification.
BibRef
Bieker, K.[Katharina],
Gebken, B.[Bennet],
Peitz, S.[Sebastian],
On the Treatment of Optimization Problems With L1 Penalty Terms via
Multiobjective Continuation,
PAMI(44), No. 11, November 2022, pp. 7797-7808.
IEEE DOI
2210
Optimization, Training, Neural networks, Mathematical models,
Linear programming, Signal processing, Pareto optimization, sparsity
BibRef
Pokala, P.K.[Praveen Kumar],
Hemadri, R.V.[Raghu Vamshi],
Seelamantula, C.S.[Chandra Sekhar],
Iteratively Reweighted Minimax-Concave Penalty Minimization for
Accurate Low-rank Plus Sparse Matrix Decomposition,
PAMI(44), No. 12, December 2022, pp. 8992-9010.
IEEE DOI
2212
Sparse matrices, Optimization, Matrix decomposition, Minimization,
Convergence, Image reconstruction, Costs,
nonconvex penalty
BibRef
Li, X.Y.[Xiao-Yong],
Li, H.[Houpu],
Liu, G.H.[Guo-Hui],
Bian, S.F.[Shao-Feng],
Optimization of Complex Function Expansions for Gauss-Kruger
Projections,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Liu, R.S.[Ri-Sheng],
Mu, P.[Pan],
Yuan, X.M.[Xiao-Ming],
Zeng, S.Z.[Shang-Zhi],
Zhang, J.[Jin],
A General Descent Aggregation Framework for Gradient-Based Bi-Level
Optimization,
PAMI(45), No. 1, January 2023, pp. 38-57.
IEEE DOI
2212
Optimization, Convergence, Task analysis, Heuristic algorithms,
Dynamical systems, Approximation algorithms, meta-learning
BibRef
Ma, J.[Jun],
Cheng, Z.L.[Zi-Long],
Zhang, X.X.[Xiao-Xue],
Tomizuka, M.[Masayoshi],
Lee, T.H.[Tong Heng],
Alternating Direction Method of Multipliers for Constrained Iterative
LQR in Autonomous Driving,
ITS(23), No. 12, December 2022, pp. 23031-23042.
IEEE DOI
2212
Trajectory, Autonomous vehicles, Optimization, Planning,
Convex functions, Vehicle dynamics, Safety, Autonomous driving,
non-convex optimization
BibRef
Zheng, Z.Y.[Zi-Yang],
Dai, W.R.[Wen-Rui],
Xue, D.D.[Duo-Duo],
Li, C.L.[Cheng-Lin],
Zou, J.[Junni],
Xiong, H.K.[Hong-Kai],
Hybrid ISTA: Unfolding ISTA With Convergence Guarantees Using
Free-Form Deep Neural Networks,
PAMI(45), No. 3, March 2023, pp. 3226-3244.
IEEE DOI
2302
Iterative Shrinkage Thresholding Algorithm.
Convergence, Inverse problems, Neural networks, Deep learning, Logic gates,
Iterative algorithms, Network architecture, theoretical convergence
BibRef
Xie, X.Y.[Xing-Yu],
Wang, Q.[Qiuhao],
Ling, Z.[Zenan],
Li, X.[Xia],
Liu, G.C.[Guang-Can],
Lin, Z.C.[Zhou-Chen],
Optimization Induced Equilibrium Networks: An Explicit Optimization
Perspective for Understanding Equilibrium Models,
PAMI(45), No. 3, March 2023, pp. 3604-3616.
IEEE DOI
2302
Optimization, Mathematical models, Artificial neural networks,
Training, Convex functions, Analytical models, Semantics,
interpretability
BibRef
Look, A.[Andreas],
Kandemir, M.[Melih],
Rakitsch, B.[Barbara],
Peters, J.[Jan],
A Deterministic Approximation to Neural SDEs,
PAMI(45), No. 4, April 2023, pp. 4023-4037.
IEEE DOI
2303
Neural Stochastic Differential Equations.
Kernel, Uncertainty, Monte Carlo methods, Stochastic processes,
Calibration, Costs, Computational efficiency,
uncertainty propagation
BibRef
Deshmukh, A.[Aditya],
Liu, J.[Jing],
Veeravalli, V.V.[Venugopal V.],
Verma, G.[Gunjan],
Information Flow Optimization for Estimation in Linear Models Using a
Sensor Network,
SPLetters(30), 2023, pp. 170-174.
IEEE DOI
2303
Optimization, Relays, Bayes methods, Estimation,
Quantization (signal), Task analysis, Upper bound, Internet of Things
BibRef
Wang, Z.[Zitai],
Xu, Q.Q.[Qian-Qian],
Yang, Z.Y.[Zhi-Yong],
He, Y.[Yuan],
Cao, X.C.[Xiao-Chun],
Huang, Q.M.[Qing-Ming],
Optimizing Partial Area Under the Top-k Curve: Theory and Practice,
PAMI(45), No. 4, April 2023, pp. 5053-5069.
IEEE DOI
2303
Measurement, Semantics, Benchmark testing, Training, Loss measurement,
Fasteners, Upper bound, Machine learning, AUTKC optimization
BibRef
Rusu, C.[Cristian],
Gonzalez-Prelcic, N.[Nuria],
A Novel Approach for Unit-Modulus Least-Squares Optimization Problems,
SPLetters(30), 2023, pp. 224-228.
IEEE DOI
2303
Optimization, Iterative methods, Millimeter wave communication,
Linear programming, Signal processing algorithms,
hybrid precoding and combining
BibRef
Yang, M.H.[Ming-Han],
Xu, D.[Dong],
Cui, Q.W.[Qi-Wen],
Wen, Z.[Zaiwen],
Xu, P.X.[Peng-Xiang],
An Efficient Fisher Matrix Approximation Method for Large-Scale
Neural Network Optimization,
PAMI(45), No. 5, May 2023, pp. 5391-5403.
IEEE DOI
2304
Convergence, Stochastic processes, Loss measurement,
Risk management, Residual neural networks, Task analysis, Shape,
convergence
BibRef
Lutter, M.[Michael],
Belousov, B.[Boris],
Mannor, S.[Shie],
Fox, D.[Dieter],
Garg, A.[Animesh],
Peters, J.[Jan],
Continuous-Time Fitted Value Iteration for Robust Policies,
PAMI(45), No. 5, May 2023, pp. 5534-5548.
IEEE DOI
2304
Mathematical models, Optimization, Differential equations, Robots,
Heuristic algorithms, Reinforcement learning, Costs,
dynamic programming adversarial reinforcement learning
BibRef
Paul, D.[Debolina],
Chakraborty, S.[Saptarshi],
Das, S.[Swagatam],
Xu, J.[Jason],
Implicit Annealing in Kernel Spaces:
A Strongly Consistent Clustering Approach,
PAMI(45), No. 5, May 2023, pp. 5862-5871.
IEEE DOI
2304
Kernel, Annealing, Clustering algorithms, Optimization, Convergence,
Unsupervised learning, Task analysis, Kernel clustering,
strong consistency
BibRef
Gao, Z.[Zhi],
Wu, Y.W.[Yu-Wei],
Fan, X.M.[Xiao-Meng],
Harandi, M.[Mehrtash],
Jia, Y.D.[Yun-De],
Learning to Optimize on Riemannian Manifolds,
PAMI(45), No. 5, May 2023, pp. 5935-5952.
IEEE DOI
2304
Optimization, Manifolds, Training, Task analysis, Geometry, Trajectory,
Stochastic processes, Riemannian optimization, meta-optimization,
Riemannian manifolds
BibRef
Li, C.R.[Chao-Ran],
Jiang, P.L.[Peng-Long],
Zhou, H.[Hui],
Wang, X.F.[Xiao-Feng],
Zhao, X.B.[Xiong-Bo],
HAW: Hardware-Aware Point Selection for Efficient Winograd
Convolution,
SPLetters(30), 2023, pp. 269-273.
IEEE DOI
2304
Convolution, Hardware, Quantization (signal), Kernel,
Neural networks, Standards, Task analysis, Convolution, Winograd convolution
BibRef
Bai, F.[Fang],
Bartoli, A.[Adrien],
The Proxy Step-Size Technique for Regularized Optimization on the
Sphere Manifold,
PAMI(45), No. 5, May 2023, pp. 6428-6444.
IEEE DOI
2304
Manifolds, Convergence, Costs, Cost function, Gradient methods,
Minimization, Mathematical models, Proxy step-size,
computer vision
BibRef
Zhang, X.Q.[Xiao-Qin],
Zheng, J.J.[Jing-Jing],
Wang, D.[Di],
Tang, G.Y.[Gui-Ying],
Zhou, Z.Y.[Zheng-Yuan],
Lin, Z.C.[Zhou-Chen],
Structured Sparsity Optimization With Non-Convex Surrogates of
L_l2,0-Norm: A Unified Algorithmic Framework,
PAMI(45), No. 5, May 2023, pp. 6386-6402.
IEEE DOI
2304
Optimization, Convergence, Sparse matrices, Machine learning,
Minimization, Mathematical models, Iterative algorithms,
fixed-point algorithm
BibRef
Wang, C.X.[Chen-Xin],
Zhang, Z.W.[Zhen-Wei],
Guo, Z.C.[Zhi-Chang],
Zeng, T.Y.[Tie-Yong],
Duan, Y.P.[Yu-Ping],
Efficient SAV Algorithms for Curvature Minimization Problems,
CirSysVideo(33), No. 4, April 2023, pp. 1624-1642.
IEEE DOI
WWW Link.
2304
Scalar Auxiliary Variable.
Minimization, Mathematical models, Task analysis,
Image restoration, TV, Numerical models, Mathematics, Mean curvature,
image deblurring
BibRef
Jiang, Y.[Yuan],
Cao, Z.G.[Zhi-Guang],
Zhang, J.[Jie],
Learning to Solve 3-D Bin Packing Problem via Deep Reinforcement
Learning and Constraint Programming,
Cyber(53), No. 5, May 2023, pp. 2864-2875.
IEEE DOI
2305
Optimization, Decoding, Reinforcement learning, Search problems,
Routing, Task analysis, Standards, Bin packing problem (BPP),
multi-task learning
BibRef
Dantas, C.F.[Cássio F.],
Soubies, E.[Emmanuel],
Févotte, C.[Cédric],
Sphere Refinement in Gap Safe Screening,
SPLetters(30), 2023, pp. 608-612.
IEEE DOI
2306
Iterative methods, Signal processing algorithms,
Closed-form solutions, Optimization, Convergence,
logistic regression
BibRef
Ranaweera, S.[Sandushan],
Weeraddana, C.[Chathuranga],
Dharmawansa, P.[Prathapasinghe],
Fischione, C.[Carlo],
On the Convergence of Inexact Gradient Descent With Controlled
Synchronization Steps,
SPLetters(30), 2023, pp. 703-707.
IEEE DOI
2307
Signal processing algorithms, Convergence, Quantization (signal),
Linear programming, Heuristic algorithms, Synchronization, Indexes,
inexact algorithms
BibRef
Granot, N.[Nerya],
Diskin, T.[Tzvi],
Dobigeon, N.[Nicolas],
Wiesel, A.[Ami],
Probabilistic Simplex Component Analysis by Importance Sampling,
SPLetters(30), 2023, pp. 683-687.
IEEE DOI
2307
Signal to noise ratio, Monte Carlo methods,
Approximation algorithms, Proposals,
simplex-structured matrix factorization
BibRef
Guo, J.[Jing],
Moses, S.[Skip],
Wang, Z.H.[Zhao-Hong],
Graph Learning From Signals With Smoothness Superimposed by
Regressors,
SPLetters(30), 2023, pp. 942-946.
IEEE DOI
2308
Laplace equations, Signal processing algorithms, Topology,
Optimization, Network topology, Predictive models, Laplacian matrix
BibRef
Wang, Y.S.[Yin-Song],
Ding, Y.[Yu],
Shahrampour, S.[Shahin],
TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time
Dynamic Density Estimation,
PAMI(45), No. 11, November 2023, pp. 13831-13843.
IEEE DOI
2310
BibRef
Gnanasambandam, R.[Raghav],
Shen, B.[Bo],
Chung, J.[Jihoon],
Yue, X.[Xubo],
Kong, Z.Y.[Zhen-Yu],
Self-Scalable Tanh (Stan):
Multi-Scale Solutions for Physics-Informed Neural Networks,
PAMI(45), No. 12, December 2023, pp. 15588-15603.
IEEE DOI
2311
BibRef
Goehle, G.[Geoff],
Cowen, B.[Benjamin],
Joint Sparse Coding and Frame Optimization,
SPLetters(31), 2024, pp. 301-305.
IEEE DOI
2402
Signal processing algorithms, Transforms, Machine learning,
Convergence, Noise reduction, Minimization, Encoding,
compressed-sensing
BibRef
Joseph, G.[Geethu],
Convergence of Expectation-Maximization Algorithm With Mixed-Integer
Optimization,
SPLetters(31), 2024, pp. 1229-1233.
IEEE DOI
2405
Convergence, Signal processing algorithms, Heuristic algorithms,
Sparse matrices, Maximum likelihood estimation, Bayes methods,
bursty missing data
BibRef
Chen, J.H.[Jun-Hong],
Li, H.[Hong],
Chen, C.L.P.[C.L. Philip],
Boosting sharpness-aware training with dynamic neighborhood,
PR(153), 2024, pp. 110496.
Elsevier DOI
2405
Flat minima, Generalization, Optimization, Sharpness-aware minimization
BibRef
Liu, H.[He],
Wang, T.[Tao],
Lang, C.[Congyan],
Feng, S.[Songhe],
Jin, Y.[Yi],
Li, Y.D.[Yi-Dong],
GLAN: A graph-based linear assignment network,
PR(155), 2024, pp. 110694.
Elsevier DOI
2408
Linear assignment, Graph networks, Learning-based solver, Multi-object tracking
BibRef
Guan, L.[Lei],
Li, D.S.[Dong-Sheng],
Shi, Y.Q.[Yan-Qi],
Meng, J.[Jian],
XGrad: Boosting Gradient-Based Optimizers With Weight Prediction,
PAMI(46), No. 10, October 2024, pp. 6731-6747.
IEEE DOI
2409
Training, Artificial neural networks, Convergence,
Computational modeling, Backpropagation, Proposals, weight prediction
BibRef
Boquet-Pujadas, A.[Aleix],
del Aguila-Pla, P.[Pol],
Unser, M.[Michael],
Sensitivity-Aware Density Estimation in Multiple Dimensions,
PAMI(46), No. 11, November 2024, pp. 7120-7135.
IEEE DOI
2410
Splines (mathematics), Bandwidth, Sensitivity, Kernel, Imaging,
Estimation, Standards, Weighted density estimation, PET
BibRef
Akaishi, N.[Natsuki],
Yamada, K.[Koki],
Yatabe, K.[Kohei],
Harmonic/Percussive Source Separation Based on Anisotropic Smoothness
of Magnitude Spectrograms via Convex Optimization,
SPLetters(31), 2024, pp. 2575-2579.
IEEE DOI
2410
Spectrogram, Anisotropic, Time-frequency analysis,
Harmonic analysis, Optimization, Smoothing methods, primal-dual splitting
BibRef
Yang, R.H.[Rui-Heng],
Chen, Z.[Zhikun],
Hu, L.T.[Ling-Tong],
Cui, X.[Xihang],
Guo, Y.F.[Yun-Fei],
An FPGA-Based Approach for Compressing and Accelerating Depthwise
Separable Convolution,
SPLetters(31), 2024, pp. 2590-2594.
IEEE DOI
2410
Convolution, Optimization, Throughput, Resource management,
Quantization (signal), Parallel processing,
hardware accelerator
BibRef
Wang, H.B.[Hui-Bing],
Yao, M.Z.[Ming-Ze],
Chen, Y.[Yawei],
Xu, Y.Q.[Yun-Qiu],
Liu, H.P.[Hai-Peng],
Jia, W.[Wei],
Fu, X.P.[Xian-Ping],
Wang, Y.[Yang],
Manifold-Based Incomplete Multi-View Clustering via Bi-Consistency
Guidance,
MultMed(26), 2024, pp. 10001-10014.
IEEE DOI
2410
Task analysis, Manifolds, Kernel, Clustering algorithms,
Optimization, Data models, Tensors, Biconsistency guidance,
reverse regularization
BibRef
Wang, J.[Jie],
Wang, Z.H.[Zhi-Hai],
Li, X.[Xijun],
Kuang, Y.F.[Yu-Fei],
Shi, Z.H.[Zhi-Hao],
Zhu, F.Z.[Fang-Zhou],
Yuan, M.X.[Ming-Xuan],
Zeng, J.[Jia],
Zhang, Y.D.[Yong-Dong],
Wu, F.[Feng],
Learning to Cut via Hierarchical Sequence/Set Model for Efficient
Mixed-Integer Programming,
PAMI(46), No. 12, December 2024, pp. 9697-9713.
IEEE DOI
2411
Training, Linear programming, Learning systems, Benchmark testing,
Vehicle routing, Task analysis, Production planning,
sequence/set to sequence learning
BibRef
Chen, H.[Hao],
Barthel, T.[Thomas],
Machine Learning With Tree Tensor Networks, CP Rank Constraints, and
Tensor Dropout,
PAMI(46), No. 12, December 2024, pp. 7825-7832.
IEEE DOI
2411
Tensors, Vectors, Costs, Physics, Machine learning, Quantum state,
Quantum entanglement, Machine learning, image classification,
tensor dropout
BibRef
Farzaneh, A.[Amirmohammad],
Park, S.[Sangwoo],
Simeone, O.[Osvaldo],
Quantile Learn-Then-Test: Quantile-Based Risk Control for
Hyperparameter Optimization,
SPLetters(31), 2024, pp. 3044-3048.
IEEE DOI
2411
Reliability, Calibration, Artificial intelligence, Testing,
Optimization, Wireless communication, quantiles
BibRef
Rydell, F.[Felix],
Torres, A.[Angélica],
Larsson, V.[Viktor],
Revisiting Sampson Approximations for Geometric Estimation Problems,
CVPR24(4990-4998)
IEEE DOI
2410
Measurement, Geometry, Computational modeling, Perturbation methods,
Fitting, Estimation, Sampson approximation, geometric estimation
BibRef
Jeong, W.[Wooseong],
Yoon, K.J.[Kuk-Jin],
Quantifying Task Priority for Multi-Task Optimization,
CVPR24(363-372)
IEEE DOI
2410
Training, Backpropagation, Pareto optimization, Multitasking,
Linear programming, Boosting, Multi-Task Learning (MTL), Task Priority
BibRef
Abraham, S.[Sophia],
Maduranga, K.D.G.[Kehelwala Dewage Gayan],
Kinnison, J.[Jeffery],
Hauenstein, J.[Jonathan],
Scheirer, W.[Walter],
NCQS: Nonlinear Convex Quadrature Surrogate Hyperparameter
Optimization,
REDLCV23(1187-1195)
IEEE DOI
2401
BibRef
Chiaroni, F.[Florent],
Dolz, J.[Jose],
Masud, Z.I.[Ziko Imtiaz],
Mitiche, A.[Amar],
Ben Ayed, I.[Ismail],
Parametric Information Maximization for Generalized Category
Discovery,
ICCV23(1729-1739)
IEEE DOI Code:
WWW Link.
2401
BibRef
Xu, J.Y.[Jing-Yi],
Vaidya, T.[Tushar],
Wu, Y.F.[Yu-Fei],
Chandra, S.[Saket],
Lai, Z.[Zhangsheng],
Chong, K.F.E.[Kai Fong Ernest],
Abstract Visual Reasoning: An Algebraic Approach for Solving Raven's
Progressive Matrices,
CVPR23(6715-6724)
IEEE DOI
2309
BibRef
Zhang, T.Y.[Tian-Yu],
Banitalebi-Dehkordi, A.[Amin],
Zhang, Y.[Yong],
Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch,
ICPR22(3105-3111)
IEEE DOI
2212
Deep learning, Systematics, Monte Carlo methods, NP-hard problem,
Input variables, Reinforcement learning
BibRef
Lin, G.X.[Gang-Xuan],
Hu, S.W.[Shih-Wei],
Lu, C.S.[Chun-Shien],
QISTA-ImageNet: A Deep Compressive Image Sensing Framework Solving
Lq-Norm Optimization Problem,
ECCV22(XXIII:406-422).
Springer DOI
2211
BibRef
Xi, T.[Teng],
Sun, Y.F.[Yi-Fan],
Yu, D.L.[De-Li],
Li, B.[Bi],
Peng, N.[Nan],
Zhang, G.[Gang],
Zhang, X.Y.[Xin-Yu],
Wang, Z.G.[Zhi-Gang],
Chen, J.W.[Jin-Wen],
Wang, J.[Jian],
Liu, L.[Lufei],
Feng, H.C.[Hao-Cheng],
Han, J.Y.[Jun-Yu],
Liu, J.[Jingtuo],
Ding, E.[Errui],
Wang, J.D.[Jing-Dong],
UFO: Unified Feature Optimization,
ECCV22(XXVI:472-488).
Springer DOI
2211
BibRef
Yurtsever, A.[Alp],
Birdal, T.[Tolga],
Golyanik, V.[Vladislav],
Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization,
ECCV22(XXIII:352-369).
Springer DOI
2211
BibRef
Lin, Y.[Yong],
Dong, H.[Hanze],
Wang, H.[Hao],
Zhang, T.[Tong],
Bayesian Invariant Risk Minimization,
CVPR22(16000-16009)
IEEE DOI
2210
Representation learning, Deep learning, Computational modeling,
Training data, Feature extraction, Data models, Statistical methods
BibRef
Hruby, P.[Petr],
Duff, T.[Timothy],
Leykin, A.[Anton],
Pajdla, T.[Tomas],
Learning to Solve Hard Minimal Problems,
CVPR22(5522-5532)
IEEE DOI
2210
Codes, Machine learning, Cameras, Resource description framework,
Sensors, 3D from multi-view and sensors, Photogrammetry and remote sensing
BibRef
Yeh, R.A.[Raymond A.],
Hu, Y.T.[Yuan-Ting],
Ren, Z.Z.[Zhong-Zheng],
Schwing, A.G.[Alexander G.],
Total Variation Optimization Layers for Computer Vision,
CVPR22(701-711)
IEEE DOI
2210
Location awareness, TV, Smoothing methods, Image edge detection,
Minimization, Optimization methods
BibRef
Xu, N.[Nuo],
Chang, J.L.[Jian-Long],
Nie, X.[Xing],
Huo, C.L.[Chun-Lei],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
AME: Attention and Memory Enhancement in Hyper-Parameter Optimization,
CVPR22(480-489)
IEEE DOI
2210
Training, Performance evaluation, Visualization, Semantics,
Reinforcement learning, Search problems, Transformers,
grouping and shape analysis
BibRef
Kong, K.Z.[Ke-Zhi],
Li, G.H.[Guo-Hao],
Ding, M.[Mucong],
Wu, Z.[Zuxuan],
Zhu, C.[Chen],
Ghanem, B.[Bernard],
Taylor, G.[Gavin],
Goldstein, T.[Tom],
Robust Optimization as Data Augmentation for Large-scale Graphs,
CVPR22(60-69)
IEEE DOI
2210
Training, Privacy, Social networking (online),
Perturbation methods, Pipelines, Data models, Stability analysis
BibRef
El Hajjami, I.[Imad],
Benhala, B.[Bachir],
Simulation Experiments of Different Metaheuristics Algorithms using
Benchmark Functions: A Performance Study,
ISCV22(1-6)
IEEE DOI
2208
Computational modeling, Metaheuristics, Benchmark testing,
Search problems, Robustness, Problem-solving,
Invasive Weed Optimization (IWO)
BibRef
Nakano, G.[Gaku],
Algebraic Constraint for Preserving Convexity of Planar Homography,
3DV21(126-135)
IEEE DOI
2201
Transmission line matrix methods, Estimation,
Eigenvalues and eigenfunctions, Linear matrix inequalities,
Computational efficiency
BibRef
Vajargah, B.F.[Behrouz Fathi],
Yousefpanah, K.[Kolsoum],
Efficient scramble for quasi-random numbers in Monte Carlo
computations,
IPRIA21(1-6)
IEEE DOI
2201
Monte Carlo methods, Image analysis, Generators,
Computational efficiency, Matlab, p-quasi random numbers
BibRef
Hasan, M.R.[Mohammad Rakib],
Mondal, D.[Debajyoti],
Tasnim, J.[Jarin],
Schneider, K.A.[Kevin A.],
Putting Table Cartograms into Practice,
ISVC21(I:91-102).
Springer DOI
2112
BibRef
Sun, C.X.[Chen-Xiang],
Gan, Y.H.[Yan-Hai],
Zhang, J.H.[Jian-Hui],
Dong, J.Y.[Jun-Yu],
InterAdam:
Interpolating Dull Intervention to Adaptive Gradient Method,
ICIVC21(215-221)
IEEE DOI
2112
Training, Interpolation, Gradient methods, Adaptive learning,
Robustness, Convergence, Adaptive learning rate,
saddle point
BibRef
Zhang, E.[Erchuan],
Suter, D.[David],
Tennakoon, R.[Ruwan],
Chin, T.J.[Tat-Jun],
Bab-Hadiashar, A.[Alireza],
Truong, G.[Giang],
Gilani, S.Z.[Syed Zulqarnain],
Maximum Consensus by Weighted Influences of Monotone Boolean
Functions,
CVPR22(8954-8962)
IEEE DOI
2210
Weight measurement, Boolean functions, Atmospheric measurements,
Machine vision, Estimation, Gain measurement,
Vision applications and systems
BibRef
Tennakoon, R.[Ruwan],
Suter, D.[David],
Zhang, E.[Erchuan],
Chin, T.J.[Tat-Jun],
Bab-Hadiashar, A.[Alireza],
Consensus Maximisation Using Influences of Monotone Boolean Functions,
CVPR21(2865-2874)
IEEE DOI
2111
For fitting.
Visualization, Boolean functions, Runtime,
Computational modeling, Fitting, Memory management
BibRef
Wang, P.[Pei],
Nagrecha, K.[Kabir],
Vasconcelos, N.M.[Nuno M.],
Gradient-based Algorithms for Machine Teaching,
CVPR21(1387-1396)
IEEE DOI
2111
Training, Machine learning algorithms, Education, Sociology,
Classification algorithms, Risk management
BibRef
Tancik, M.[Matthew],
Mildenhall, B.[Ben],
Wang, T.[Terrance],
Schmidt, D.[Divi],
Srinivasan, P.P.[Pratul P.],
Barron, J.T.[Jonathan T.],
Ng, R.[Ren],
Learned Initializations for Optimizing Coordinate-Based Neural
Representations,
CVPR21(2845-2854)
IEEE DOI
2111
Solid modeling, Limiting, Shape,
Trajectory, Task analysis
BibRef
Pamplona, D.[Daniela],
Manzanera, A.[Antoine],
Naturally Constrained Online Expectation Maximization,
ICPR21(5429-5435)
IEEE DOI
2105
Protocols, Transfer learning, Training data, Interference,
Probabilistic logic, Time-varying systems
BibRef
Pande, N.[Nilay],
Awate, S.P.[Suyash P.],
Generative Deep-Neural-Network Mixture Modeling with Semi-Supervised
MinMax+EM Learning,
ICPR21(5666-5673)
IEEE DOI
2105
Neural networks, Mixture models, Transforms,
Semisupervised learning, Generative adversarial networks,
image clustering
BibRef
Kawashima, T.[Takumi],
Yu, Q.[Qina],
Asai, A.[Akari],
Ikami, D.[Daiki],
Aizawa, K.[Kiyoharu],
The Aleatoric Uncertainty Estimation Using a Separate Formulation
with Virtual Residuals,
ICPR21(1438-1445)
IEEE DOI
2105
Measurement, Deep learning, Estimation error, Uncertainty,
Estimation, Data models
BibRef
Petunin, A.[Alexander],
Khalyavka, A.[Alexander],
Khachay, M.[Michael],
Kudriavtsev, A.[Andrei],
Chentsov, P.[Pavel],
Polishchuk, E.[Efim],
Ukolov, S.[Stanislav],
Library of Sample Image Instances for the Cutting Path Problem,
IMTA20(227-233).
Springer DOI
2103
Complex continuous and combinatorial optimization problem that is
about finding an optimal tool path for CNC technologies equipment.
BibRef
Li, N.[Na],
Lei, T.F.[Teng-Fei],
Dynamics Analysis on T chaotic systems with absolute,
CVIDL20(291-296)
IEEE DOI
2102
bifurcation, chaos, Lyapunov methods, system dynamics,
dynamics analysis, T chaotic systems, system parameters,
bifurcation diagram
BibRef
Basmassi, M.A.,
Benameur, L.,
Chentoufi, J.A.,
A Novel Greedy Genetic Algorithm to Solve Combinatorial Optimization
Problem,
SmartCityApp20(117-120).
DOI Link
2012
BibRef
Qaraad, M.,
Amjad, S.,
El-Kafrawy, P.,
Fathi, H.,
Manhrawy, I.I.M.,
Parameters Optimization of Elastic NET for High Dimensional Data
using PSO Algorithm,
ISCV20(1-7)
IEEE DOI
2011
bioinformatics, cancer, data analysis, feature selection, genetics,
medical computing, particle swarm optimisation,
Particle Swarm Optimization (PSO) and Parameter Optimization
BibRef
Zach, C.[Christopher],
Le, H.[Huu],
Truncated Inference for Latent Variable Optimization Problems:
Application to Robust Estimation and Learning,
ECCV20(XXVI:464-480).
Springer DOI
2011
BibRef
Kuo, N.I.H.[Nicholas I-Hsien],
Harandi, M.[Mehrtash],
Fourrier, N.[Nicolas],
Walder, C.[Christian],
Ferraro, G.[Gabriela],
Suominen, H.[Hanna],
M2SGD: Learning to Learn Important Weights,
CLVision20(957-964)
IEEE DOI
2008
WWW Link. Training, Optimization, Recurrent neural networks,
Computer architecture, Task analysis, Image recognition, Australia
BibRef
Liu, J.J.[Jun-Jie],
Wen, D.C.[Dong-Chao],
Wang, D.Y.[De-Yu],
Tao, W.,
Chen, T.W.[Tse-Wei],
Osa, K.[Kinya],
Kato, M.[Masami],
BAMSProd: A Step towards Generalizing the Adaptive Optimization
Methods to Deep Binary Model,
EDLCV20(2880-2889)
IEEE DOI
2008
Convergence, Quantization (signal), Adaptation models, Training,
Optimization methods, Analytical models
BibRef
Sadeghi, B.,
Boddeti, V.N.,
Imparting Fairness to Pre-Trained Biased Representations,
TCV20(75-82)
IEEE DOI
2008
Optimization, Task analysis, Kernel, Neural networks,
Closed-form solutions, Stochastic processes
BibRef
Sun, W.,
Jiang, W.,
Trulls, E.,
Tagliasacchi, A.,
Yi, K.M.,
ACNe: Attentive Context Normalization for Robust
Permutation-Equivariant Learning,
CVPR20(11283-11292)
IEEE DOI
2008
Robustness, Neural networks, Kernel, Optimization, Standards
BibRef
Kato, Z.[Zoltan],
Nagy, G.[Gabor],
Humenberger, M.[Martin],
Csurka, G.[Gabriela],
Detecting Low-Rank Regions in Omnidirectional Images,
OmniCV21(3677-3687)
IEEE DOI
2109
Training, Adaptation models, Predictive models, Distortion
BibRef
Csurka, G.,
Kato, Z.,
Juhasz, A.,
Humenberger, M.,
Estimating Low-Rank Region Likelihood Maps,
CVPR20(13773-13782)
IEEE DOI
2008
Cameras,
Transmission line matrix methods, Windows, Sparse matrices,
Optimization
BibRef
Messaoud, S.[Safa],
Kumar, M.[Maghav],
Schwing, A.G.[Alexander G.],
Can We Learn Heuristics for Graphical Model Inference Using
Reinforcement Learning?,
CVPR20(7586-7596)
IEEE DOI
2008
BibRef
And:
DeepVision20(3313-3323)
IEEE DOI
2008
Semantics, Optimization, Image segmentation, Task analysis,
Inference algorithms, Approximation algorithms, Learning (artificial intelligence)
BibRef
Rolínek, M.[Michal],
Swoboda, P.[Paul],
Zietlow, D.[Dominik],
Paulus, A.[Anselm],
Musil, V.[Vít],
Martius, G.[Georg],
Deep Graph Matching via Blackbox Differentiation of Combinatorial
Solvers,
ECCV20(XXVIII:407-424).
Springer DOI
2011
BibRef
Rolínek, M.[Michal],
Musil, V.[Vít],
Paulus, A.[Anselm],
Vlastelica, M.,
Michaelis, C.,
Martius, G.[Georg],
Optimizing Rank-Based Metrics With Blackbox Differentiation,
CVPR20(7617-7627)
IEEE DOI
2008
Measurement, Optimization, Task analysis, Object detection,
Image retrieval, Interpolation
BibRef
Li, D.,
Chen, Q.,
Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives,
CVPR20(7639-7648)
IEEE DOI
2008
Training, Optimization, Neural networks, Computational modeling,
Probabilistic logic, Task analysis, Visualization
BibRef
Gao, Z.,
Wu, Y.,
Jia, Y.,
Harandi, M.,
Learning to Optimize on SPD Manifolds,
CVPR20(7697-7706)
IEEE DOI
2008
Manifolds, Optimization, Symmetric matrices, Task analysis,
Matrix decomposition, Geometry
BibRef
Chen, B.,
Parra, Á.,
Cao, J.,
Li, N.,
Chin, T.,
End-to-End Learnable Geometric Vision by Backpropagating PnP
Optimization,
CVPR20(8097-8106)
IEEE DOI
2008
Optimization, Cameras, Task analysis,
Pose estimation, Machine learning, Neural networks
BibRef
Valtonen Örnhag, M.,
Olsson, C.,
A Unified Optimization Framework for Low-Rank Inducing Penalties,
CVPR20(8471-8480)
IEEE DOI
2008
Optimization, Principal component analysis, Standards,
Image reconstruction, Linear programming
BibRef
Benkner, M.S.,
Golyanik, V.,
Theobalt, C.,
Moeller, M.,
Adiabatic Quantum Graph Matching with Permutation Matrix Constraints,
3DV20(583-592)
IEEE DOI
2102
computational complexity, graph theory, matrix algebra,
quadratic programming, quantum computing,
Shape
BibRef
Golyanik, V.,
Theobalt, C.,
A Quantum Computational Approach to Correspondence Problems on Point
Sets,
CVPR20(9179-9188)
IEEE DOI
2008
Quantum computing, Annealing, Adiabatic, Stationary state,
Optimization
BibRef
Werner, T.[Tomáš],
Pruša, D.[Daniel],
Dlask, T.[Tomáš],
Relative Interior Rule in Block-Coordinate Descent,
CVPR20(7556-7564)
IEEE DOI
2008
Convex functions, Linear programming,
Message passing, Graphical models, Standards
BibRef
Bhayani, S.[Snehal],
Kukelova, Z.[Zuzana],
Heikkilä, J.[Janne],
Computing stable resultant-based minimal solvers by hiding a variable,
ICPR21(6104-6111)
IEEE DOI
2105
BibRef
Earlier:
A Sparse Resultant Based Method for Efficient Minimal Solvers,
CVPR20(1767-1776)
IEEE DOI
2008
Geometry, Pose estimation, Tools, Cameras,
Eigenvalues and eigenfunctions,
multiple view geometry.
Cameras, Estimation, Generators, Robustness
BibRef
Li, C.M.[Chu-Ming],
Yuan, X.[Xin],
Lin, C.[Chen],
Guo, M.H.[Ming-Hao],
Wu, W.[Wei],
Yan, J.J.[Jun-Jie],
Ouyang, W.L.[Wan-Li],
AM-LFS: AutoML for Loss Function Search,
ICCV19(8409-8418)
IEEE DOI
2004
learning (artificial intelligence),
optimisation, AutoML, hand-crafted heuristics, design space,
Face
BibRef
Volpi, R.[Riccardo],
Murino, V.[Vittorio],
Addressing Model Vulnerability to Distributional Shifts Over Image
Transformation Sets,
ICCV19(7979-7988)
IEEE DOI
2004
combinatorial mathematics, image classification,
image segmentation, optimisation, search problems,
Learning systems
BibRef
Zach, C.,
Bourmaud, G.,
Pareto Meets Huber:
Efficiently Avoiding Poor Minima in Robust Estimation,
ICCV19(10242-10250)
IEEE DOI
2004
estimation theory, least squares approximations,
optimisation, search problems, robust estimation,
BibRef
Baráth, D.,
Matas, J.G.,
Progressive-X: Efficient, Anytime, Multi-Model Fitting Algorithm,
ICCV19(3779-3787)
IEEE DOI
2004
computational geometry, curve fitting, Prog-X,
repetitive hypothesis proposal, any-time algorithm, Minimization
BibRef
Zhang, Z.W.[Zai-Wei],
Liang, Z.X.[Zhen-Xiao],
Wu, L.[Lemeng],
Zhou, X.W.[Xiao-Wei],
Huang, Q.X.[Qi-Xing],
Path-Invariant Map Networks,
CVPR19(11076-11086).
IEEE DOI
2002
BibRef
Zisselman, E.[Ev],
Sulam, J.[Jeremias],
Elad, M.[Michael],
A Local Block Coordinate Descent Algorithm for the CSC Model,
CVPR19(8200-8209).
IEEE DOI
2002
CSC: Convolutional Sparse Coding.
BibRef
Lee, K.[Kwonjoon],
Maji, S.[Subhransu],
Ravichandran, A.[Avinash],
Soatto, S.[Stefano],
Meta-Learning With Differentiable Convex Optimization,
CVPR19(10649-10657).
IEEE DOI
2002
BibRef
Jeong, Y.[Yeonwoo],
Kim, Y.[Yoonsung],
Song, H.O.[Hyun Oh],
End-To-End Efficient Representation Learning via Cascading
Combinatorial Optimization,
CVPR19(11371-11379).
IEEE DOI
2002
BibRef
He, Z.Z.[Zhe-Zhi],
Fan, D.L.[De-Liang],
Simultaneously Optimizing Weight and Quantizer of Ternary Neural
Network Using Truncated Gaussian Approximation,
CVPR19(11430-11438).
IEEE DOI
2002
BibRef
Probst, T.[Thomas],
Paudel, D.P.[Danda Pani],
Chhatkuli, A.[Ajad],
Van Gool, L.J.[Luc J.],
Unsupervised Learning of Consensus Maximization for 3D Vision Problems,
CVPR19(929-938).
IEEE DOI
2002
BibRef
Xu, W.,
Hu, L.,
Tsakiris, M.C.,
Kneip, L.,
Online Stability Improvement of Gröbner Basis Solvers using Deep
Learning,
3DV19(544-552)
IEEE DOI
1911
Cameras, Geometry, Generators, MONOS devices, Deep learning, Gold, Groebner basis,
BibRef
Wang, D.[Dan],
Ji, M.Q.[Meng-Qi],
Wang, Y.[Yong],
Wang, H.Q.[Hao-Qian],
Fang, L.[Lu],
SPI-Optimizer:
An Integral-Separated PI Controller for Stochastic Optimization,
ICIP19(2129-2133)
IEEE DOI
1910
BibRef
Tómasson, J.A.[Jón Arnar],
Ochs, P.[Peter],
Weickert, J.[Joachim],
AFSI: Adaptive Restart for Fast Semi-Iterative Schemes for Convex
Optimisation,
GCPR18(669-681).
Springer DOI
1905
BibRef
Keller, S.M.[Sebastian Mathias],
Murezzan, D.[Damian],
Roth, V.[Volker],
Invexity Preserving Transformations for Projection Free Optimization
with Sparsity Inducing Non-convex Constraints,
GCPR18(682-697).
Springer DOI
1905
BibRef
Malmberg, F.[Filip],
Ciesielski, K.C.[Krzysztof Chris],
Strand, R.[Robin],
Optimization of Max-Norm Objective Functions in Image Processing and
Computer Vision,
DGCI19(206-218).
Springer DOI
1905
BibRef
Abdolshah, M.[Majid],
Shilton, A.[Alistair],
Rana, S.[Santu],
Gupta, S.I.[Sun-Il],
Venkatesh, S.[Svetha],
Expected Hypervolume Improvement with Constraints,
ICPR18(3238-3243)
IEEE DOI
1812
Optimization, Bayes methods, Linear programming, Benchmark testing,
Gaussian processes, Evolutionary computation, Frequency modulation
BibRef
Bernard, F.[Florian],
Thunberg, J.,
Swoboda, P.,
Theobalt, C.[Christian],
HiPPI: Higher-Order Projected Power Iterations for Scalable
Multi-Matching,
ICCV19(10283-10292)
IEEE DOI
2004
computer graphics, image matching,
iterative methods, quadratic programming, Sparse matrices
BibRef
Bernard, F.[Florian],
Theobalt, C.[Christian],
Moeller, M.[Michael],
DS*: Tighter Lifting-Free Convex Relaxations for Quadratic Matching
Problems,
CVPR18(4310-4319)
IEEE DOI
1812
Informatics, Runtime, Relaxation methods,
Cost function
BibRef
Tanaka, D.,
Ikami, D.,
Yamasaki, T.,
Aizawa, K.,
Joint Optimization Framework for Learning with Noisy Labels,
CVPR18(5552-5560)
IEEE DOI
1812
Noise measurement, Training, Optimization, Entropy, Neural networks, Degradation
BibRef
Mohapatra, P.,
Rolinek, M.,
Jawahar, C.V.,
Kolmogorov, V.,
Kumar, M.P.,
Efficient Optimization for Rank-Based Loss Functions,
CVPR18(3693-3701)
IEEE DOI
1812
Award, CVPR, HM. Loss measurement, Training, Inference algorithms, Upper bound,
Minimization, Complexity theory, Fasteners
BibRef
Roy, S.K.,
Mhammedi, Z.,
Harandi, M.,
Geometry Aware Constrained Optimization Techniques for Deep Learning,
CVPR18(4460-4469)
IEEE DOI
1812
Manifolds, Optimization, Linear programming, Geometry,
Machine learning algorithms, Machine learning, Mathematical model
BibRef
Zach, C.[Christopher],
Bourmaud, G.[Guillaume],
Descending, Lifting or Smoothing: Secrets of Robust Cost Optimization,
ECCV18(XII: 558-574).
Springer DOI
1810
BibRef
Li, C.[Chong],
Shi, C.J.R.[C. J. Richard],
Constrained Optimization Based Low-Rank Approximation of Deep Neural
Networks,
ECCV18(X: 746-761).
Springer DOI
1810
BibRef
Rodriguez, P.,
Improved Solution to the L_0 Regularized Optimization Problem via
Dictionary-Reduced Initial Guess,
IVMSP18(1-5)
IEEE DOI
1809
Optimization, Iterative methods, Convergence, Acceleration,
Dictionaries, Approximation algorithms, Encoding,
escape procedure. Nesterov's AGD
BibRef
Grosche, S.,
Seiler, J.,
Kaup, A.,
Iterative Optimization of Quarter Sampling Masks for Non-Regular
Sampling Sensors,
ICIP18(26-30)
IEEE DOI
1809
Image resolution, Image reconstruction, Sensors, Optimization,
Energy resolution, Reconstruction algorithms, Image sensors,
Image reconstruction
BibRef
Purkait, P.[Pulak],
Zach, C.[Christopher],
Eriksson, A.P.[Anders P.],
Maximum Consensus Parameter Estimation by Reweighted L_1 Methods,
EMMCVPR17(312-327).
Springer DOI
1805
BibRef
Shen, X.,
Zou, D.,
Zhang, X.,
A Self-Adaptive Differential Evolution with Dynamic Selecting
Mutation Strategy,
ICVISP17(5-10)
IEEE DOI
1712
Signal processing, algorithm improvements,
differential evolution algorithm,
stagnation solutions
BibRef
Zhang, X.,
Zou, D.,
Shen, X.,
A Simplified and Efficient Gravitational Search Algorithm for
Unconstrained Optimization Problems,
ICVISP17(11-17)
IEEE DOI
1712
Signal processing, benchmark function,
gravitational search algorithm, search strategy, simplified, unconstrained problems
BibRef
Haubold, C.[Carsten],
Uhlmann, V.[Virginie],
Unser, M.[Michael],
Hamprecht, F.A.[Fred A.],
Diverse M-Best Solutions by Dynamic Programming,
GCPR17(255-267).
Springer DOI
1711
BibRef
Dani, V.[Vivek],
Sarswat, A.[Aparna],
Swaroop, V.[Vishnu],
Domanal, S.[Shridhar],
Guddeti, R.M.R.[Ram Mohana Reddy],
Fast Convergence to Near Optimal Solution for Job Shop Scheduling Using
Cat Swarm Optimization,
PReMI17(282-288).
Springer DOI
1711
BibRef
Hong, B.W.[Byung-Woo],
Koo, J.K.[Ja-Keoung],
Dirks, H.[Hendrik],
Burger, M.[Martin],
Adaptive Regularization in Convex Composite Optimization for
Variational Imaging Problems,
GCPR17(268-280).
Springer DOI
1711
BibRef
Shanmugasundaram, K.,
Mohamed, A.S.A.,
Ruhaiyem, N.I.R.,
Hybrid Improved Bacterial Swarm (HIBS) Optimization Algorithm,
IVIC17(71-78).
Springer DOI
1711
BibRef
Yuan, G.Z.[Gan-Zhao],
Zheng, W.S.[Wei-Shi],
Ghanem, B.[Bernard],
A Matrix Splitting Method for Composite Function Minimization,
CVPR17(5310-5319)
IEEE DOI
1711
Convergence, Gradient methods, Linear systems,
Minimization, Sparse matrices, Symmetric matrices
BibRef
Ikami, D.,
Yamasaki, T.,
Aizawa, K.,
Residual Expansion Algorithm: Fast and Effective Optimization for
Nonconvex Least Squares Problems,
CVPR17(7206-7214)
IEEE DOI
1711
Clustering algorithms, Convergence,
Image restoration, Linear programming, Optimization methods
BibRef
Kannan, H.,
Komodakis, N.[Nikos],
Paragios, N.,
Newton-Type Methods for Inference in Higher-Order Markov Random
Fields,
CVPR17(7224-7233)
IEEE DOI
1711
Convergence, Markov random fields, Newton method,
Optimization, Probability distribution, Smoothing methods
BibRef
Speciale, P.,
Paudel, D.P.,
Oswald, M.R.,
Kroeger, T.,
Van Gool, L.J.[Luc J.],
Pollefeys, M.,
Consensus Maximization with Linear Matrix Inequality Constraints,
CVPR17(5048-5056)
IEEE DOI
1711
Linear matrix inequalities,
Optimization methods, Orbits, Robustness, Symmetric, matrices
BibRef
Lange, J.H.[Jan-Hendrik],
Andres, B.[Bjoern],
Swoboda, P.[Paul],
Combinatorial Persistency Criteria for Multicut and Max-Cut,
CVPR19(6086-6095).
IEEE DOI
2002
BibRef
Swoboda, P.,
Kuske, J.,
Savchynskyy, B.,
A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial
Problems,
CVPR17(4950-4960)
IEEE DOI
1711
Computational modeling, Couplings,
Inference algorithms, Linear programming, Optimization,
Partitioning, algorithms
BibRef
Levinkov, E.[Evgeny],
Uhrig, J.[Jonas],
Tang, S.[Siyu],
Omran, M.[Mohamed],
Insafutdinov, E.[Eldar],
Kirillov, A.[Alexander],
Rother, C.[Carsten],
Brox, T.[Thomas],
Schiele, B.[Bernt],
Andres, B.[Bjoern],
Joint Graph Decomposition Node Labeling:
Problem, Algorithms, Applications,
CVPR17(1904-1912)
IEEE DOI
1711
Cost function, Labeling, Object tracking, Semantics
BibRef
Wang, Q.,
Gao, J.,
Li, H.,
Grassmannian Manifold Optimization Assisted Sparse Spectral
Clustering,
CVPR17(3145-3153)
IEEE DOI
1711
Clustering algorithms, Eigenvalues and eigenfunctions, Geometry,
Linear programming, Manifolds, Optimization
BibRef
Le, H.,
Chin, T.J.,
Suter, D.,
RATSAC - Random Tree Sampling for Maximum Consensus Estimation,
DICTA17(1-8)
IEEE DOI
1804
BibRef
And:
An Exact Penalty Method for Locally Convergent Maximum Consensus,
CVPR17(379-387)
IEEE DOI
1711
Monte Carlo methods, random processes,
sampling methods, tree searching, LP-type problems,
Search problems.
Computational modeling, Estimation, Minimization,
Pollution measurement, Robustness
BibRef
Rosa, G.H.[Gustavo H.],
Afonso, L.C.S.[Luis C. S.],
Baldassin, A.[Alexandro],
Papa, J.P.[João P.],
Yang, X.S.[Xin-She],
Quaternionic Flower Pollination Algorithm,
CAIP17(II: 47-58).
Springer DOI
1708
BibRef
Zhang, Y.[Ying],
Wang, H.W.[Hong-Wei],
Wang, Y.B.[Yu-Bing],
Guo, P.C.[Peng-Cheng],
A novel optimization algorithm for BP neural network based on RS-MEA,
ICIVC17(1073-1078)
IEEE DOI
1708
Convergence, Evolutionary computation, Indexes, Rough sets,
BP neural network, attribute reduction, global optimal,
mind evolutionary algorithm, rough, set
BibRef
Zhu, M.K.[Ming-Kang],
Chen, J.L.[Jian-Li],
Computational comparison of GRASP and DCTSP methods for the Traveling
Salesman Problem,
ICIVC17(1044-1048)
IEEE DOI
1708
Annealing, GRASP, dynamic convexized method, traveling, salesman, problem
BibRef
Dalmau-Cedeño, O.[Oscar],
Oviedo, H.[Harry],
A Projection Method for Optimization Problems on the Stiefel Manifold,
MCPR17(84-93).
Springer DOI
1706
BibRef
Osmanlioglu, Y.[Yusuf],
Ontañón, S.[Santiago],
Hershberg, U.[Uri],
Shokoufandeh, A.[Ali],
Efficient approximation of labeling problems with applications to
immune repertoire analysis,
ICPR16(2410-2415)
IEEE DOI
1705
Approximation algorithms, Cost function, Distortion, Labeling,
Linear programming, Measurement
BibRef
Weissenberg, J.,
Riemenschneider, H.,
Dragon, R.,
Van Gool, L.J.,
Dilemma First Search for effortless optimization of NP-hard problems,
ICPR16(4154-4159)
IEEE DOI
1705
Algorithm design and analysis, Decision trees,
Genetic algorithms, Inference algorithms, Optimization,
Search problems, Vegetation
BibRef
Awate, S.P.,
Dhar, M.,
Kulkarni, N.,
Robust kernel principal nested spheres,
ICPR16(402-407)
IEEE DOI
1705
Algorithm design and analysis, Data models, Kernel, Manifolds,
Optimization, Principal component analysis, Robustness
BibRef
Samejima, M.[Masaki],
Matsushita, Y.[Yasuyuki],
Fast General Norm Approximation via Iteratively Reweighted Least
Squares,
eHeritage16(II: 207-221).
Springer DOI
1704
BibRef
Shcherbatyi, I.[Iaroslav],
Andres, B.[Bjoern],
Convexification of Learning from Constraints,
GCPR16(79-90).
Springer DOI
1611
BibRef
Matsuzawa, T.[Tomoki],
Relator, R.[Raissa],
Sese, J.[Jun],
Kato, T.[Tsuyoshi],
Stochastic Dykstra Algorithms for Metric Learning with Positive
Definite Covariance Descriptors,
ECCV16(VI: 786-799).
Springer DOI
1611
BibRef
Hafner, D.[David],
Ochs, P.[Peter],
Weickert, J.[Joachim],
Reißel, M.[Martin],
Grewenig, S.[Sven],
FSI Schemes: Fast Semi-Iterative Solvers for PDEs and Optimisation
Methods,
GCPR16(91-102).
Springer DOI
1611
Award, GCPR.
BibRef
Swoboda, P.,
Andres, B.,
A Message Passing Algorithm for the Minimum Cost Multicut Problem,
CVPR17(4990-4999)
IEEE DOI
1711
Algorithm design and analysis,
Image segmentation, Message passing, Optimization,
Software algorithms, Wheels
BibRef
Beier, T.[Thorsten],
Andres, B.[Björn],
Köthe, U.[Ullrich],
Hamprecht, F.A.[Fred A.],
An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut
Problem,
ECCV16(II: 715-730).
Springer DOI
1611
BibRef
Kovnatsky, A.[Artiom],
Glashoff, K.[Klaus],
Bronstein, M.M.[Michael M.],
MADMM: A Generic Algorithm for Non-smooth Optimization on Manifolds,
ECCV16(V: 680-696).
Springer DOI
1611
BibRef
Talbot, H.[Hugues],
Discrete Calculus, Optimisation and Inverse Problems in Imaging,
DGCI16(18-27).
WWW Link.
1606
BibRef
Diamond, S.,
Boyd, S.,
Convex Optimization with Abstract Linear Operators,
ICCV15(675-683)
IEEE DOI
1602
Convex functions
BibRef
Henry, M.[Morgane],
Maitre, E.[Emmanuel],
Perrier, V.[Valerie],
Optimal transport using Helmholtz-Hodge decomposition and first-order
primal-dual algorithms,
ICIP15(4748-4752)
IEEE DOI
1512
Convex optimization
BibRef
Zielosko, B.[Beata],
Global Optimization of Exact Association Rules Relative to Coverage,
PReMI15(428-437).
Springer DOI
1511
BibRef
Cheng, Y.,
Lopez, J.A.,
Camps, O.,
Sznaier, M.,
A convex optimization approach to robust fundamental matrix
estimation,
CVPR15(2170-2178)
IEEE DOI
1510
BibRef
Dong, G.Z.[Guo-Zhi],
Patrone, A.R.[Aniello Raffaele],
Scherzer, O.[Otmar],
Öktem, O.[Ozan],
Infinite Dimensional Optimization Models and PDEs for Dejittering,
SSVM15(678-689).
Springer DOI
1506
BibRef
Serra, J.[Jean],
Kiran, B.R.[Bangalore Ravi],
Digitization of Partitions and Tessellations,
DGCI16(323-334).
WWW Link.
1606
BibRef
And:
Constrained Optimization on Hierarchies and Braids of Partitions,
ISMM15(229-240).
Springer DOI
1506
BibRef
Pavlovskaia, M.[Maira],
Tu, K.W.[Ke-Wei],
Zhu, S.C.[Song-Chun],
Mapping the Energy Landscape of Non-convex Optimization Problems,
EMMCVPR15(421-435).
Springer DOI
1504
BibRef
Liu, K.[Kangwei],
Zhang, J.[Junge],
Huang, K.Q.[Kai-Qi],
Improved Optimization Based on Graph Cuts for Discrete Energy
Minimization,
ICPR14(2424-2429)
IEEE DOI
1412
Algorithm design and analysis
BibRef
Eriksson, A.P.[Anders P.],
Isaksson, M.[Mats],
Pseudoconvex Proximal Splitting for L-infinity Problems in Multiview
Geometry,
CVPR14(4066-4073)
IEEE DOI
1409
Optimization.
BibRef
Dolz, J.,
Ben Ayed, I.[Ismail],
Desrosiers, C.,
DOPE: Distributed Optimization for Pairwise Energies,
CVPR17(4095-4104)
IEEE DOI
1711
Computational modeling, Convergence,
Image segmentation, Optimization, Partitioning algorithms,
BibRef
Tang, M.[Meng],
Ben Ayed, I.[Ismail],
Boykov, Y.Y.[Yuri Y.],
Pseudo-bound Optimization for Binary Energies,
ECCV14(V: 691-707).
Springer DOI
1408
BibRef
Xu, J.[Jia],
Ithapu, V.K.[Vamsi K.],
Mukherjee, L.[Lopamudra],
Rehg, J.M.[James M.],
Singh, V.[Vikas],
GOSUS: Grassmannian Online Subspace Updates with Structured-Sparsity,
ICCV13(3376-3383)
IEEE DOI
1403
Manifold optimization
BibRef
Yang, S.[Shulin],
Wang, J.[Jue],
Shapiro, L.G.[Linda G.],
Supervised Semantic Gradient Extraction Using Linear-Time
Optimization,
CVPR13(2826-2833)
IEEE DOI
1309
BibRef
Windheuser, T.[Thomas],
Ishikawa, H.[Hiroshi],
Cremers, D.[Daniel],
Generalized Roof Duality for Multi-Label Optimization:
Optimal Lower Bounds and Persistency,
ECCV12(VI: 400-413).
Springer DOI
1210
BibRef
Mu, Y.D.[Ya-Dong],
Wright, J.[John],
Chang, S.F.[Shih-Fu],
Accelerated Large Scale Optimization by Concomitant Hashing,
ECCV12(I: 414-427).
Springer DOI
1210
BibRef
Kuang, Y.B.[Yu-Bin],
Åström, K.[Kalle],
Numerically Stable Optimization of Polynomial Solvers for Minimal
Problems,
ECCV12(III: 100-113).
Springer DOI
1210
BibRef
Brédif, M.,
Tournaire, O.,
Librjmcmc: An Open-source Generic C++ Library For Stochastic
Optimization,
ISPRS12(XXXIX-B3:259-264).
DOI Link
1209
Code, Optimization.
BibRef
Naroditsky, O.[Oleg],
Daniilidis, K.[Kostas],
Optimizing polynomial solvers for minimal geometry problems,
ICCV11(975-982).
IEEE DOI
1201
BibRef
Akhtar, S.[Sohail],
Abdel-Rahman, E.M.[Eihab M.],
Ahmad, A.R.[Abdul-Rahim],
A New Fitness Based Adaptive Parameter Particle Swarm Optimizer,
CRV14(336-343)
IEEE DOI
1406
Acceleration
BibRef
Akhtar, S.[Sohail],
Ahmad, A.R.[Abdul-Rahim],
Abdel-Rahman, E.M.[Eihab M.],
Naqvi, T.,
A PSO Accelerated Immune Particle Filter for Dynamic State Estimation,
CRV11(72-79).
IEEE DOI
1105
PSO: Particle Swarm Optimization. Avoid local minima.
BibRef
Chen, Y.S.[Yi-Song],
Sun, J.W.[Jie-Wei],
Wang, G.P.[Guo-Ping],
Minimizing Geometric Distance by Iterative Linear Optimization,
ICPR10(1-4).
IEEE DOI
1008
BibRef
Kohli, P.[Pushmeet],
Lempitsky, V.[Victor],
Rother, C.[Carsten],
Uncertainty Driven Multi-scale Optimization,
DAGM10(242-251).
Springer DOI
1009
multi-scale energy minimization
BibRef
Olsson, C.[Carl],
Kahl, F.[Fredrik],
Hartley, R.I.[Richard I.],
Projective least-squares: Global solutions with local optimization,
CVPR09(1216-1223).
IEEE DOI
0906
BibRef
Olsson, C.[Carl],
Byröd, M.[Martin],
Kahl, F.[Fredrik],
Globally Optimal Least Squares Solutions for Quasiconvex 1D Vision
Problems,
SCIA09(686-695).
Springer DOI
0906
BibRef
Kopylov, A.[Andrey],
Tree-serial dynamic programming for image processing,
ICPR08(1-4).
IEEE DOI
0812
Optimization technique.
BibRef
Yang, F.Q.[Feng-Qin],
Zhang, C.H.[Chang-Hai],
Sun, T.[Tieli],
Comparison of Particle Swarm Optimization and Genetic Algorithm for HMM
training,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Unger, M.[Markus],
Pock, T.[Thomas],
Bischof, H.[Horst],
Global Relabeling for Continuous Optimization in Binary Image
Segmentation,
EMMCVPR11(104-117).
Springer DOI
1107
See also TVSeg: Interactive Total Variation Based Image Segmentation.
BibRef
Huang, X.F.[Xiao-Fei],
Cooperative Optimization for Energy Minimization in Computer Vision:
A Case Study of Stereo Matching,
DAGM04(302-309).
Springer DOI
0505
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Regression .