Voronoi, G.,
Nouvelles Applications des Parametres Continus a la Theorie des
Formse Quadratiques. Duesieme Memoire: Recherches sur les
Paralleloderes Primitifs,
J. Reine Angew. Math.(134), 1908, pp. 198-287.
BibRef
0800
Gold, C.[Chris],
The Voronoi Web Site,
Online Book2004.
WWW Link.
0410
The site devoted to the Voronoi Diagram, discussion, tutorials, everything you
ever wanted to know.
BibRef
Hjelle, Ř.[Řyvind],
Morten, D.[Dćhlen],
Triangulations and Applications,
Springer2006, ISBN: 978-3-540-33260-2.
WWW Link. Theory behind the Delaunay triangulation.
Theory necessary to construct and manipulate triangulations.
BibRef
0600
Boissonnat, J.D.[Jean-Daniel],
Pons, J.P.[Jean-Philippe],
Yvinec, M.[Mariette],
From Segmented Images to Good Quality Meshes Using Delaunay Refinement,
ETVC08(13-37).
Springer DOI
0811
BibRef
Aurenhammer, F.[Franz],
Voronoi Diagrams: A Survey of a Fundamental Geometric Data Structure,
Surveys(23), No. 3, September 1991, pp. 345-405.
Survey, Voronoi.
BibRef
9109
Sibson, R.,
A vector identity for the Dirichlet tessellation,
CambridgePhil(87), 1980, pp. 151-155.
BibRef
8000
Avis, D.,
Bhattacharya, B.K.,
Algorithms for Computing D-Dimensional Voronoi Diagrams and Their Duals,
ACR(1), 1983, pp. 159-180.
BibRef
8300
Ahuja, N.,
Dot Pattern Processing Using Voronoi Neighborhoods,
PAMI(4), No. 3, May 1982, pp. 336-343.
BibRef
8205
Earlier:
Dot Pattern Processing Using Voronoi Polygons as Neighborhoods,
ICPR80(1122-1127).
BibRef
Fairfield, J.,
Segmenting Dot Patterns by Voronoi Diagram Concavity,
PAMI(5), No. 1, January 1983, pp. 104-110.
BibRef
8301
Fairfield, J.,
Segmenting Blobs into Subregions,
SMC(13), No. 3, 1983, pp. 363-384.
BibRef
8300
Lee, D.T.,
On K-Nearest Neighbor Voronoi Diagrams in the Plane,
TC(31), 1982, pp. 478-487.
BibRef
8200
Gowda, I.G.,
Kirkpatrick, D.G.,
Lee, D.T.,
Naamad, A.,
Dynamic Voronoi Diagrams,
IT(29), 1983, 724-731.
BibRef
8300
Ahuja, N.[Narendra],
An, B.[Byong],
Schachter, B.[Bruce],
Image Representation Using Voronoi Tessellation,
CVGIP(29), No. 3, 1985, pp. 286-295.
Elsevier DOI
BibRef
8500
Earlier: A2, A1, Only:
Representation of Images Using Voronoi Tessellation,
CVPR83(188-189).
Tessellation drived from Poisson point process, for transmission.
BibRef
Guibas, L.J.,
Stolfi, J.,
Primitives for the Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams,
TOG(4), 1985, pp. 74-123.
BibRef
8500
Franklin, W.R.,
Akman, V.,
Verrilli, C.,
Voronoi Diagrams with Barriers and on Polyhedra for
Minimal Path Planning,
VC(1), 1985, pp. 133-150.
BibRef
8500
Lee, D.T.,
Relative neighborhood graphs in the Li-metric,
PR(18), No. 5, 1985, pp. 327-332.
Elsevier DOI
0309
Construct the relative neighborhood graph based on the
Delaunay triangulation.
BibRef
Su, T.H.[Tung-Hsin],
Chang, R.C.[Ruei-Chuan],
Computing the constrained relative neighborhood graphs and constrained
gabriel graphs in Euclidean plane,
PR(24), No. 3, 1991, pp. 221-230.
Elsevier DOI
0401
BibRef
Su, T.H.[Tung-Hsin],
Chang, R.C.[Ruei-Chuan],
Computing the k-relative neighborhood graphs in Euclidean plane,
PR(24), No. 3, 1991, pp. 231-239.
Elsevier DOI
0401
BibRef
Kooshesh, A.A.,
Moret, B.M.E.,
Three-coloring the vertices of a triangulated simple polygon,
PR(25), No. 4, April 1992, pp. 443.
Elsevier DOI
0401
BibRef
Sugihara, K.[Kokichi],
Approximation of Generalized Voronoi Diagrams by
Ordinary Voronoi Diagrams,
GMIP(55), No. 6, November 1993, pp. 522-yy.
BibRef
9311
Ogniewicz, R.L.,
Kubler, O.,
Hierarchical Voronoi Skeletons,
PR(28), No. 3, March 1995, pp. 343-359.
Elsevier DOI first regularize Voronoi diagram then skeleton.
BibRef
9503
Ogniewicz, R.L.,
Ilg, M.,
Voronoi Skeletons: Theory and Applications,
CVPR92(63-69).
IEEE DOI
BibRef
9200
Earlier: A2, A1:
The application of Voronoi skeletons to perceptual grouping in line
images,
ICPR92(III:382-385).
IEEE DOI
9208
BibRef
Oishi, Y.,
Sugihara, K.,
Topology-Oriented Divide-and-Conquer Algorithm for Voronoi Diagrams,
GMIP(57), No. 4, July 1995, pp. 303-314.
BibRef
9507
Ogniewicz, R.L.,
Kubler, O.,
Voronoi Tessellation of Points with Integer Coordinates:
Time-Efficient Implementation and Online Edge-List Generation,
PR(28), No. 12, December 1995, pp. 1839-1844.
Elsevier DOI
BibRef
9512
Koplowitz, J.,
de Leone, J.,
Hierarchical Representation of Chain-Encoded Binary Image Contours,
CVIU(63), No. 2, March 1996, pp. 344-352.
DOI Link
BibRef
9603
Aurenhammer, F.,
Edelsbrunner, H.,
An Optimal Algorithm for Constructing the Weighted Voronoi Diagram
in the Plane,
PR(17), No. 2, 1984, pp. 251-257.
Elsevier DOI
9611
BibRef
Mayya, N.,
Rajan, V.T.,
Voronoi Diagrams of Polygons: A Framework for Shape Representation,
JMIV(6), No. 4, December 1996, pp. 355-378.
9701
BibRef
Earlier:
CVPR94(638-643).
IEEE DOI
BibRef
Chou, J.J.,
Voronoi Diagrams for Planar Shapes,
IEEE_CGA(15), No. 2, 1995, pp. 52-59.
BibRef
9500
Gotsman, C.,
Lindenbaum, M.,
Euclidean Voronoi Labelling on the Multidimensional Grid,
PRL(16), 1995, pp. 409-415.
BibRef
9500
Arcelli, C.[Carlo],
Sanniti di Baja, G.[Gabriella],
Computing Voronoi Diagrams in Digital Pictures,
PRL(4), 1986, pp. 383-389.
BibRef
8600
Naf, M.,
Szekely, G.,
Kikinis, R.,
Shenton, M.E.,
Kubler, O.,
3D Voronoi Skeletons and Their Usage for the Characterization and
Recognition of 2D Organ Shape,
CVIU(66), No. 2, May 1997, pp. 147-161.
DOI Link
9705
BibRef
Naf, M.,
Kubler, O.,
Kikinis, R.,
Shenton, M.E.,
Szekely, G.,
Characterization and Recognition of 3D Organ Shape in
Medical Image Analysis Using Skeletonization,
MMBIA96(MEDIAL AXES)
BibRef
9600
Haidar, H.,
Bouix, S.,
Levitt, J.J.,
McCarley, R.W.,
Shenton, M.E.,
Soul, J.S.,
Characterizing the Shape of Anatomical Structures With Poisson's
Equation,
MedImg(25), No. 10, October 2006, pp. 1249-1257.
IEEE DOI
0609
BibRef
Fukushima, S.[Shigehiro],
Division-Based Analysis Of Symmetry And Its Application,
PAMI(19), No. 2, February 1997, pp. 144-148.
IEEE DOI
9703
Delaunay.
Voronoi. DAS determines the symmetric axis and the symmetric point pairs on
the curve using the duality of the Delaunay triangulation and the
Voronoi diagram.
BibRef
Sequeira, R.E.,
Preteux, F.J.,
Discrete Voronoi Diagrams and the Skiz Operator: A Dynamic Algorithm,
PAMI(19), No. 10, October 1997, pp. 1165-1170.
IEEE DOI
9710
BibRef
Guan, W.G.[Wei-Guang],
Ma, S.D.[Song-De],
A List Processing Approach to Compute Voronoi Diagrams and
the Euclidean Distance Transform,
PAMI(20), No. 7, July 1998, pp. 757-761.
IEEE DOI
9808
Voronoi from segments lists of rows (run length codes?).
BibRef
Amenta, N.,
Bern, M.,
Kamvysselis, M.,
A New Voronoi-Based Surface Reconstruction Algorithm,
SIGGraph-98(415-421).
BibRef
9800
Fabbri, R.,
Estrozi, L.F.,
da Fontoura Costa, L.,
On Voronoi Diagrams and Medial Axes,
JMIV(17), No. 1, July 2002, pp. 27-40.
DOI Link
0211
BibRef
Farin, G.E.,
Surfaces over Dirichlet tessellations,
CAGD(7), 1990, pp. 281-292.
BibRef
9000
Gross, L.,
Farin, G.E.,
A transfinite form of Sibson's interpolant,
DiscAppMath(93), 1999, pp. 33-50.
See also vector identity for the Dirichlet tessellation, A.
BibRef
9900
Hiyoshi, H.,
Sugihara, K.,
Voronoi-based interpolation with higher continuity,
ConferenceSymposium on Computational Geometry, 2000, pp. 242-250.
BibRef
0001
Sugihara, K.,
Surface interpolation based on new local coordinates,
CAD(13), No. 1, 1999, pp. 51-58.
BibRef
9900
Cohen, L.D.[Laurent D.],
Minimal Paths and Fast Marching Methods for Image Analysis,
MMCV05(xx-yy).
PDF File.
BibRef
0500
Du, Q.A.[Qi-Ang],
Gunzburger, M.[Max],
Ju, L.[Lili],
Wang, X.Q.[Xiao-Qiang],
Centroidal Voronoi Tessellation Algorithms for Image Compression,
Segmentation, and Multichannel Restoration,
JMIV(24), No. 2, March 2006, pp. 177-194.
Springer DOI
0605
BibRef
Wang, J.,
Ju, L.[Lili],
Wang, X.Q.[Xiao-Qiang],
An Edge-Weighted Centroidal Voronoi Tessellation Model for Image
Segmentation,
IP(18), No. 8, August 2009, pp. 1844-1858.
IEEE DOI
0907
BibRef
Wang, J.,
Ju, L.[Lili],
Wang, X.Q.[Xiao-Qiang],
Image Segmentation Using Local Variation and Edge-Weighted Centroidal
Voronoi Tessellations,
IP(20), No. 11, November 2011, pp. 3242-3256.
IEEE DOI
1110
For images with color distributions or inhomogeneous intensity.
See also 3D Superalloy Grain Segmentation Using a Multichannel Edge-Weighted Centroidal Voronoi Tessellation Algorithm.
BibRef
Wang, J.[Jie],
Wang, X.Q.[Xiao-Qiang],
VCells: Simple and Efficient Superpixels Using Edge-Weighted Centroidal
Voronoi Tessellations,
PAMI(34), No. 6, June 2012, pp. 1241-1247.
IEEE DOI
1205
Edge weighted voronoi tesselation. Generate oversegmentation of the image
then get local boundaries.
BibRef
Browne, M.[Matthew],
A geometric approach to non-parametric density estimation,
PR(40), No. 1, January 2007, pp. 134-140.
Elsevier DOI
0611
Centroidal; Voronoi; Tessellation; Non-parametric; Density estimation
BibRef
Morrison, P.[Paul],
Zou, J.J.[Ju Jia],
Triangle refinement in a constrained Delaunay triangulation skeleton,
PR(40), No. 10, October 2007, pp. 2754-2765.
Elsevier DOI
0707
Skeletonisation; Constrained Delaunay triangulation; Skeleton refinement;
Thinning; Medial axis; Binary image processing; Cartoon image processing
BibRef
Jones, T.R.[Thouis R.],
Durand, F.[Frédo],
Desbrun, M.[Mathieu],
Non-iterative, feature-preserving mesh smoothing,
TOG(22), No. 3, July 2003, pp. xx-yy.
WWW Link.
BibRef
0307
Reitsma, R.[René],
Trubin, S.[Stanislav],
Mortensen, E.[Eric],
Weight-proportional Space Partitioning Using Adaptive Voronoi Diagrams,
GeoInfo(11), No. 3, September 2007, pp. 383-405.
Springer DOI
0709
BibRef
Wang, X.Z.[Xiu-Zhong],
Devarajan, V.[Venkat],
Improved 2D mass-spring-damper model with unstructured triangular
meshes,
VC(24), No. 1, January 2008, pp. 57-75.
Springer DOI
0712
BibRef
Liu, D.Q.[Dong-Quan],
Nosovskiy, G.V.[Gleb V.],
Sourina, O.[Olga],
Effective clustering and boundary detection algorithm based on Delaunay
triangulation,
PRL(29), No. 9, 1 July 2008, pp. 1261-1273.
Elsevier DOI
0711
Clustering algorithms; Data mining; Delaunay triangulation
BibRef
Nosovskiy, G.V.[Gleb V.],
Liu, D.Q.[Dong-Quan],
Sourina, O.[Olga],
Automatic clustering and boundary detection algorithm based on adaptive
influence function,
PR(41), No. 9, September 2008, pp. 2757-2776.
Elsevier DOI
0806
Clustering algorithms; Data mining; Density-based clustering
BibRef
Nonato, L.G.[Luis Gustavo],
Lizier, M.A.S.,
Batista, J.,
de Oliveira, M.C.F.,
Castelo, A.,
Topological triangle characterization with application to object
detection from images,
IVC(26), No. 8, 1 August 2008, pp. 1081-1093.
Elsevier DOI
0806
Object detection; Object modeling from images;
Topological triangle characterization; Morse operators; 2D triangular meshes
BibRef
Cuadros-Vargas, A.J.,
Lizier, M.A.S.,
Minghim, R.,
Nonato, L.G.,
Generating Segmented Quality Meshes from Images,
JMIV(33), No. 1, January 2009, pp. xx-yy.
Springer DOI
0804
BibRef
Lizier, M.A.S.[Mario A.S.],
Martins, Jr., D.C.[David C.],
Cuadros-Vargas, A.J.[Alex J.],
Cesar, Jr., R.M.[Roberto M.],
Nonato, L.G.[Luis G.],
Generating segmented meshes from textured color images,
JVCIR(20), No. 3, April 2009, pp. 190-203.
Elsevier DOI
0903
Mesh generation; Delaunay triangulation; Feature evaluation and
selection; Texture classification; W-operators; Texture segmentation;
Imesh image; Mesh modeling; Mesh generation from image data; Mesh
segmentation
BibRef
Josephson, K.[Klas],
Kahl, F.[Fredrik],
Triangulation of Points, Lines and Conics,
JMIV(32), No. 2, October 2008, pp. xx-yy.
Springer DOI
0804
BibRef
Earlier:
SCIA07(162-172).
Springer DOI
0706
BibRef
Schlei, B.R.,
A new computational framework for 2D shape-enclosing contours,
IVC(27), No. 6, 4 May 2009, pp. 637-647.
Elsevier DOI
0904
Contour; Isocontour; Edge; Unstructured grid; Delaunay tessellation;
Skeleton; Shape morphology; Material surface; Bacterial colony;
Handwritten letter recognition; Constellation; Freeze-out
hyper-surface
BibRef
Pan, J.,
Wang, M.,
Li, D.,
Li, J.L.[Jun-Li],
Automatic Generation of Seamline Network Using Area Voronoi Diagrams
With Overlap,
GeoRS(47), No. 6, June 2009, pp. 1737-1744.
IEEE DOI
0905
BibRef
Pan, J.[Jun],
Wang, M.[Mi],
Ma, D.[Di],
Zhou, Q.H.[Qing-Hua],
Li, J.L.[Jun-Li],
Seamline Network Refinement Based on Area Voronoi Diagrams With
Overlap,
GeoRS(52), No. 3, March 2014, pp. 1658-1666.
IEEE DOI
1403
geophysical image processing
BibRef
de Moura Pinto, F.[Francisco],
Dal Sasso Freitas, C.M.[Carla Maria],
Dynamic Voronoi diagram of complex sites,
VC(27), No. 6-8, June 2011, pp. 463-472.
WWW Link.
1107
BibRef
Adams, M.D.[Michael D.],
A Flexible Content-Adaptive Mesh-Generation Strategy for Image
Representation,
IP(20), No. 9, September 2011, pp. 2414-2427.
IEEE DOI
1109
BibRef
And:
An incremental/decremental Delaunay mesh-generation framework for image
representation,
ICIP11(189-192).
IEEE DOI
1201
BibRef
Earlier:
An improved content-adaptive mesh-generation method for image
representation,
ICIP10(873-876).
IEEE DOI
1009
BibRef
Earlier:
An evaluation of several mesh-generation methods using a simple
mesh-based image coder,
ICIP08(1041-1044).
IEEE DOI
0810
BibRef
Li, P.,
Adams, M.D.[Michael D.],
A Tuned Mesh-Generation Strategy for Image Representation Based on
Data-Dependent Triangulation,
IP(22), No. 5, May 2013, pp. 2004-2018.
IEEE DOI
1304
BibRef
Beristain, A.[Andoni],
Grańa, M.[Manuel],
Gonzalez, A.I.[Ana I.],
A Pruning Algorithm for Stable Voronoi Skeletons,
JMIV(42), No. 2-3, February 2012, pp. 225-237.
WWW Link.
1202
BibRef
Bae, S.W.[Sang Won],
On Linear-Sized Farthest-Color Voronoi Diagrams,
IEICE(E95-D), No. 3, March 2012, pp. 731-736.
WWW Link.
1203
BibRef
Ayala, R.[Rafael],
Fernández-Ternero, D.[Desamparados],
Vilches, J.A.[José Antonio],
Perfect discrete Morse functions on 2-complexes,
PRL(33), No. 11, 1 August 2012, pp. 1495-1500.
Elsevier DOI
1206
BibRef
And:
Perfect Discrete Morse Functions on Triangulated 3-Manifolds,
CTIC12(11-19).
Springer DOI
1206
Perfect discrete Morse function; Pseudomanifold; Graph; Betti numbers
BibRef
Battaglino, D.[Daniela],
Frosini, A.[Andrea],
Rinaldi, S.[Simone],
A decomposition theorem for homogeneous sets with respect to diamond
probes,
CVIU(117), No. 4, April 2013, pp. 319-325.
Elsevier DOI
1303
BibRef
Earlier:
Planar Configurations Induced by Exact Polyominoes,
IWCIA11(275-283).
Springer DOI
1105
Discrete tomography; Diamonds; Tiling
BibRef
Attene, M.[Marco],
Campen, M.[Marcel],
Kobbelt, L.[Leif],
Polygon mesh repairing: An application perspective,
Surveys(45), No. 2, February 2013, pp. Article No 15.
DOI Link
1303
Survey, Mesh.
BibRef
Guo, J.W.[Jian-Wei],
Yan, D.M.[Dong-Ming],
Bao, G.B.[Guan-Bo],
Dong, W.M.[Wei-Ming],
Zhang, X.P.[Xiao-Peng],
Wonka, P.[Peter],
Efficient triangulation of Poisson-disk sampled point sets,
VC(30), No. 6-8, June 2014, pp. 773-785.
Springer DOI
1407
BibRef
Browne, M.[Matthew],
Regularized tessellation density estimation with bootstrap
aggregation and complexity penalization,
PR(45), No. 4, 2012, pp. 1531-1539.
Elsevier DOI
1410
Regularization
BibRef
Ying, S.[Shen],
Xu, G.[Guang],
Li, C.P.[Cheng-Peng],
Mao, Z.Y.[Zheng-Yuan],
Point Cluster Analysis Using a 3D Voronoi Diagram with Applications
in Point Cloud Segmentation,
IJGI(4), No. 3, 2015, pp. 1480.
DOI Link
1511
BibRef
Wang, J.[Jue],
Kwan, M.P.[Mei-Po],
Hexagon-Based Adaptive Crystal Growth Voronoi Diagrams Based on
Weighted Planes for Service Area Delimitation,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Yuan, X.X.[Xi-Xi],
Cai, Z.C.[Zhan-Chuan],
An Adaptive Triangular Partition Algorithm for Digital Images,
MultMed(21), No. 6, June 2019, pp. 1372-1383.
IEEE DOI
1906
Partitioning algorithms, Image coding, Heuristic algorithms,
Image reconstruction, Encryption, Distortion, Image processing,
information encryption
BibRef
Favreau, J.D.[Jean-Dominique],
Lafarge, F.[Florent],
Bousseau, A.[Adrien],
Auvolat, A.[Alex],
Extracting Geometric Structures in Images with Delaunay Point
Processes,
PAMI(42), No. 4, April 2020, pp. 837-850.
IEEE DOI
2003
Segments, triangles, line networks, polygons.
Kernel, Perturbation methods, Markov processes, Task analysis,
Image segmentation, image compression
BibRef
Li, X.L.[Xiao-Li],
Chen, J.S.[Jin-Song],
Zhao, L.L.[Long-Long],
Guo, S.X.[Shan-Xin],
Sun, L.[Luyi],
Zhao, X.M.[Xue-Mei],
Adaptive Distance-Weighted Voronoi Tessellation for Remote Sensing
Image Segmentation,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Chen, B.Y.[Bi Yu],
Huang, H.H.[Hui-Huang],
Chen, H.P.[Hui-Ping],
Liu, W.X.[Wen-Xuan],
Chen, X.Y.[Xuan-Yan],
Jia, T.[Tao],
Efficient Algorithm for Constructing Order K Voronoi Diagrams in Road
Networks,
IJGI(12), No. 4, 2023, pp. 172.
DOI Link
2305
BibRef
Liu, Q.P.[Qing-Ping],
Zhao, X.S.[Xue-Sheng],
Duan, Y.Z.[Yuan-Zheng],
Qin, M.M.[Meng-Meng],
Xie, W.[Wenlan],
Sun, W.B.[Wen-Bin],
Dynamic Construction of Spherical Raster Voronoi Diagrams Based on
Ordered Dilation,
IJGI(13), No. 6, 2024, pp. 202.
DOI Link
2406
BibRef
Li, X.P.[Xian-Ping],
Anisotropic Mesh Representation for Color Images,
ICIVC20(139-143)
IEEE DOI
2009
Measurement, Tensile stress, Color, Image color analysis, Gray-scale,
Image reconstruction, Finite element analysis, color image,
finite element interpolation
BibRef
Langer, M.[Maximilian],
Gabdulkhakova, A.[Aysylu],
Kropatsch, W.G.[Walter G.],
Non-centered Voronoi Skeletons,
DGCI19(355-366).
Springer DOI
1905
BibRef
Gabdulkhakova, A.[Aysylu],
Langer, M.[Maximilian],
Langer, B.W.[Bernhard W.],
Kropatsch, W.G.[Walter G.],
Line Voronoi Diagrams Using Elliptical Distances,
SSSPR18(258-267).
Springer DOI
1810
BibRef
Liao, W.H.[Wei-Hang],
Cheung, G.[Gene],
Hu, W.[Wei],
Path Coding on Geometric Planar Graph for 2D/3D Visual Data
Partitioning,
ICIP18(116-120)
IEEE DOI
1809
Coding irregularly sampled images.
Image coding, Encoding, Visualization, Tools, image compression
BibRef
Holcomb, J.W.[Jeffrey W.],
Cobb, J.A.[Jorge A.],
Computing Voronoi Diagrams of Line Segments in R K in O(n log n) Time,
ISVC15(II: 755-766).
Springer DOI
1601
BibRef
Earlier:
Voronoi Diagrams of Line Segments in 3D, with Application to Automatic
Rigging,
ISVC14(I: 75-86).
Springer DOI
1501
BibRef
Yu, W.,
Ai, T.,
A Time-constrained Network Voronoi Construction and Accessibility
Analysis in Location-based Service Technology,
Geospatial14(49-53).
DOI Link
1411
BibRef
Zhou, Y.J.[You-Jie],
Ju, L.[Lili],
Cao, Y.[Yu],
Waggoner, J.[Jarrell],
Lin, Y.W.[Yue-Wei],
Simmons, J.[Jeff],
Wang, S.[Song],
Edge-Weighted Centroid Voronoi Tessellation with Propagation of
Consistency Constraint for 3D Grain Segmentation in Microscopic
Superalloy Images,
PBVS14(258-265)
IEEE DOI
1409
3D image segmentation
BibRef
Hu, K.K.[Kang-Kang],
Zhang, Y.J.J.[Yong-Jie Jessica],
Xu, G.L.[Guo-Liang],
CVT-Based 3D Image Segmentation for Quality Tetrahedral Meshing,
CompIMAGE16(27-42).
Springer DOI
1704
BibRef
Earlier: A1, A2, Only:
Extended Edge-Weighted Centroidal Voronoi Tessellation for Image
Segmentation,
CompIMAGE14(164-175).
Springer DOI
1407
BibRef
Xu, M.[Ming],
Gao, Z.H.[Zhan-Heng],
Yu, Z.Y.[Ze-Yun],
Feature-Sensitive and Adaptive Mesh Generation of Grayscale Images,
CompIMAGE14(204-215).
Springer DOI
1407
BibRef
Fogtmann, M.[Mads],
Larsen, R.[Rasmus],
Adaptive mesh generation for image registration and segmentation,
ICIP13(757-760)
IEEE DOI
1402
Covariance matrices
BibRef
Wekel, T.[Tilman],
Hellwich, O.[Olaf],
Voronoi-Based Extraction of a Feature Skeleton from Noisy Triangulated
Surfaces,
ACCV12(II:108-119).
Springer DOI
1304
BibRef
Shen, J.,
Guo, L.,
Qi, L.,
Zhu, W.,
Delaunay Triangulation Parallel Construction Method And Its Application
In Map Generalization,
ISPRS12(XXXIX-B2:23-28).
DOI Link
1209
BibRef
Shen, X.M.[Xiao-Ming],
Zeng, G.Q.[Guo-Qi],
Wei, Z.M.[Zhi-Mian],
Nonuniform sampling and reconstruction for high resolution satellite
images,
IASP11(187-191).
IEEE DOI
1112
Samples around edges, not center of regions. Triangulated model.
BibRef
Massé, A.B.[Alexandre Blondin],
Frosini, A.[Andrea],
Rinaldi, S.[Simone],
Vuillon, L.[Laurent],
Tiling the Plane with Permutations,
DGCI11(381-393).
Springer DOI
1104
BibRef
Nagy, B.[Benedek],
Akkeles, A.[Arif],
Trajectories and Traces on Non-traditional Regular Tessellations of the
Plane,
IWCIA17(16-29).
Springer DOI
1706
BibRef
Nagy, B.[Benedek],
Barczi, K.[Krisztina],
Isoperimetrically Optimal Polygons in the Triangular Grid,
IWCIA11(194-207).
Springer DOI
1105
See also Neighborhood sequences in the diamond grid: Algorithms with two and three neighbors.
BibRef
van der Putte, T.[Tom],
Ledoux, H.[Hugo],
Modelling three-dimensional geoscientific datasets with the discrete
Voronoi diagram,
GeoInfo10(xx-yy).
PDF File.
1011
BibRef
Subramanian, K.G.,
Mahalingam, K.[Kalpana],
Abdullah, R.[Rosni],
Nagar, A.K.[Atulya K.],
Binary Images, M -Vectors, and Ambiguity,
IWCIA11(248-260).
Springer DOI
1105
BibRef
Robinson, T.,
Jebasingh, S.,
Nagar, A.K.[Atulya K.],
Subramanian, K.G.,
Tile Pasting Systems for Tessellation and Tiling Patterns,
CompIMAGE10(72-84).
Springer DOI
1006
BibRef
Samuel, M.J.[Mary Jemima],
Dare, V.R.,
Kalyani, T.,
Polyoisominoes,
CompIMAGE10(85-94).
Springer DOI
1006
BibRef
Geetha, H.,
Thomas, D.G.,
Kalyani, T.,
Online Tessellation Automaton Recognizing Various Classes of Convex
Polyominoes,
CompIMAGE10(107-118).
Springer DOI
1006
BibRef
Tu, T.K.[Tian-Kai],
A Scalable Database Approach to Computing Delaunay Triangulations,
CMU-CS-08-138, June 2008
BibRef
0806
Ph.D.Thesis, June 2008
HTML Version.
BibRef
Walter, N.[Nicolas],
Aubreton, O.[Olivier],
Laligant, O.[Olivier],
Salient point characterization for low resolution meshes,
ICIP08(1512-1515).
IEEE DOI
0810
BibRef
Vasconcelos, C.N.[Cristina N.],
Sá, A.[Asla],
Carvalho, P.C.P.[Paulo Cezar P.],
Gattass, M.[Marcelo],
Lloyd's Algorithm on GPU,
ISVC08(I: 953-964).
Springer DOI
0812
Voronoi computation on GPU
BibRef
Chen, C.I.[Chao-I],
Sargent, D.[Dusty],
Tsai, C.M.[Chang-Ming],
Wang, Y.F.[Yuan-Fang],
Koppel, D.[Dan],
Stabilizing Stereo Correspondence Computation Using Delaunay
Triangulation and Planar Homography,
ISVC08(I: 836-845).
Springer DOI
0812
BibRef
Hagbi, N.[Nate],
El-Sana, J.[Jihad],
A Carving Framework for Topology Simplification of Polygonal Meshes,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Hahmann, S.[Stefanie],
Bonneau, G.P.[Georges-Pierre],
Caramiaux, B.[Baptiste],
Bicubic G1 Interpolation of Irregular Quad Meshes Using a 4-Split,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Lehner, B.[Burkhard],
Umlauf, G.[Georg],
Hamann, B.[Bernd],
Image Compression Using Data-Dependent Triangulations,
ISVC07(I: 351-362).
Springer DOI
0711
BibRef
Hlawitschka, M.[Mario],
Scheuermann, G.[Gerik],
Hamann, B.[Bernd],
Interactive Glyph Placement for Tensor Fields,
ISVC07(I: 331-340).
Springer DOI
0711
BibRef
Hlawitschka, M.[Mario],
Scheuermann, G.[Gerik],
Anwander, A.[Alfred],
Knösche, T.[Thomas],
Tittgemeyer, M.[Marc],
Hamann, B.[Bernd],
Tensor Lines in Tensor Fields of Arbitrary Order,
ISVC07(I: 341-350).
Springer DOI
0711
BibRef
Kolingerová, I.[Ivana],
Kohout, J.[Josef],
Rulf, M.[Michal],
Uher, V.[Václav],
A Proper Choice of Vertices for Triangulation Representation of Digital
Images,
ICCVG10(II: 41-48).
Springer DOI
1009
BibRef
Kohout, J.[Josef],
On Digital Image Representation by the Delaunay Triangulation,
PSIVT07(826-840).
Springer DOI
0712
BibRef
Bobach, T.,
Bertram, M.,
Umlauf, G.,
Issues and Implementation of C1 and C2 Natural Neighbor Interpolation,
ISVC06(II: 186-195).
Springer DOI
0611
Extend Hiyoshi and Sugihara
(
See also Voronoi-based interpolation with higher continuity. )
and Sibson and Farin.
See also vector identity for the Dirichlet tessellation, A. and
See also transfinite form of Sibson's interpolant, A.
BibRef
Karavelas, M.[Menelaos],
Yvinec, M.[Mariette],
The Voronoi Diagram of Convex Objects in the Plane,
INRIARR-5023, 2003.
HTML Version.
BibRef
0300
Alvarez Cascos, I.,
Yang, Y.Y.[Yong-Yi],
Least-squares mesh model for image compression,
ICIP04(II: 1073-1076).
IEEE DOI
0505
BibRef
Gouaillard, A.,
Gelas, A.,
Valetle, S.,
Boix, E.,
Kanai, T.,
Prost, R.,
Remeshing algorithm for multiresolution prior model in segmentation,
ICIP04(IV: 2753-2756).
IEEE DOI
0505
BibRef
Kato, T.,
Wada, T.,
Direct condensing: an efficient voronoi condensing algorithm for
nearest neighbor classifiers,
ICPR04(III: 474-477).
IEEE DOI
0409
BibRef
Valette, S.[Sebastien],
Kim, Y.S.[Yun-Sang],
Jung, H.Y.[Ho-Youl],
Magnin, I.E.[Isabelle E.],
Prost, R.[Remy],
A multiresolution Wavelet Scheme for Irregularly Subdivided 3D
Triangular Mesh,
ICIP99(I:171-174).
IEEE DOI
BibRef
9900
Bertin, E.,
Chassery, J.M.,
3-D Voronoi diagram: application to segmentation,
ICPR92(III:197-200).
IEEE DOI
9208
BibRef
Melkemi, M.,
Chassery, J.M.,
Edge-region segmentation process based on generalized Voronoi diagram
representation,
ICPR92(III:323-326).
IEEE DOI
9208
BibRef
Robinson, G.,
Griffin, L.D.,
Colchester, A.C.F.,
The Delaunay/Voronoi Selection Graph: A Method for Extracting Shape
Information from 2-D Dot-patterns with an Extension to 3-D,
BMVC92(xx-yy).
PDF File.
9209
BibRef
Rom, H.,
Peleg, S.,
Image Representation Using Voronoi Tessellation: Adaptive and Secure,
CVPR88(282-285).
IEEE DOI
BibRef
8800
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Contour Coding, Boundary Coding .