Sugumaran, R.,
Pavuluri, M.K.,
Zerr, D.,
The use of high-resolution imagery for identification of urban climax
forest species using traditional and rule-based classification approach,
GeoRS(41), No. 9, September 2003, pp. 1933-1939.
IEEE Abstract.
0310
BibRef
Plourde, L.C.[Lucie C.],
Ollinger, S.V.[Scott V.],
Smith, M.L.[Marie-Louise],
Martin, M.E.[Mary E.],
Estimating Species Abundance in a Northern Temperate Forest Using
Spectral Mixture Analysis,
PhEngRS(73), No. 7, July 2007, pp. 829-840.
WWW Link.
0709
Spectral mixture analysis is used to classify sugar maple and
American beech abundance in a heterogeneous forest in the northeastern U.S.
BibRef
Xie, Z.X.[Zhi-Xiao],
Roberts, C.[Charles],
Johnson, B.[Brian],
Object-based target search using remotely sensed data: A case study in
detecting invasive exotic Australian Pine in south Florida,
PandRS(63), No. 6, November 2008, pp. 647-660.
Elsevier DOI
0811
Geographic image retrieval; Object based; Regression tree; Similarity
threshold; Invasive exotic species
BibRef
Hassan, Q.,
Bourque, C.,
Potential Species Distribution of Balsam Fir Based on the Integration
of Biophysical Variables Derived with Remote Sensing and Process-Based
Methods,
RS(1), No. 3, September 2009, pp. 393-407.
DOI Link
1203
BibRef
Evangelista, P.,
Stohlgren, T.,
Morisette, J.,
Kumar, S.,
Mapping Invasive Tamarisk (Tamarix): A Comparison of Single-Scene and
Time-Series Analyses of Remotely Sensed Data,
RS(1), No. 3, September 2009, pp. 519-533.
DOI Link
1203
BibRef
Martins, J.,
Oliveira, L.S.,
Nisgoski, S.,
Sabourin, R.,
A database for automatic classification of forest species,
MVA(24), No. 3, April 2013, pp. 567-578.
WWW Link.
1303
BibRef
Heiskanen, J.[Janne],
Rautiainen, M.[Miina],
Stenberg, P.[Pauline],
Mõttus, M.[Matti],
Vesanto, V.H.[Veli-Heikki],
Sensitivity of narrowband vegetation indices to boreal forest LAI,
reflectance seasonality and species composition,
PandRS(78), No. 1, April 2013, pp. 1-14.
Elsevier DOI
1304
Boreal forest; Hyperion; Hyperspectral; Imaging spectroscopy; Leaf area
index
BibRef
Peerbhay, K.Y.[Kabir Yunus],
Mutanga, O.[Onisimo],
Ismail, R.[Riyad],
Commercial tree species discrimination using airborne AISA Eagle
hyperspectral imagery and partial least squares discriminant analysis
(PLS-DA) in KwaZulu-Natal, South Africa,
PandRS(79), No. 1, May 2013, pp. 19-28.
Elsevier DOI
1305
Commercial forest species; Partial least squares discriminant analysis
(PLS-DA); Variable importance in the projection (VIP)
BibRef
Dalponte, M.[Michele],
Ørka, H.O.[Hans Ole],
Gobakken, T.[Terje],
Gianelle, D.[Damiano],
Næsset, E.[Erik],
Tree Species Classification in Boreal Forests With Hyperspectral Data,
GeoRS(51), No. 5, May 2013, pp. 2632-2645.
IEEE DOI
1305
BibRef
Sothe, C.[Camile],
Dalponte, M.[Michele],
de Almeida, C.M.[Cláudia Maria],
Schimalski, M.B.[Marcos Benedito],
Lima, C.L.[Carla Luciane],
Liesenberg, V.[Veraldo],
Miyoshi, G.T.[Gabriela Takahashi],
Tommaselli, A.M.G.[Antonio Maria Garcia],
Tree Species Classification in a Highly Diverse Subtropical Forest
Integrating UAV-Based Photogrammetric Point Cloud and Hyperspectral
Data,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Stavrakoudis, D.G.[Dimitris G.],
Dragozi, E.[Eleni],
Gitas, I.Z.[Ioannis Z.],
Karydas, C.G.[Christos G.],
Decision Fusion Based on Hyperspectral and Multispectral Satellite
Imagery for Accurate Forest Species Mapping,
RS(6), No. 8, 2014, pp. 6897-6928.
DOI Link
1410
BibRef
Al-Hamdan, M.[Mohammad],
Cruise, J.[James],
Rickman, D.[Douglas],
Quattrochi, D.[Dale],
Forest Stand Size-Species Models Using Spatial Analyses of Remotely
Sensed Data,
RS(6), No. 10, 2014, pp. 9802-9828.
DOI Link
1411
BibRef
Martins, J.G.,
Oliveira, L.S.,
Britto, Jr., A.S.,
Sabourin, R.,
Forest species recognition based on dynamic classifier selection and
dissimilarity feature vector representation,
MVA(26), No. 2-3, April 2015, pp. 279-293.
Springer DOI
1504
BibRef
Mureriwa, N.[Nyasha],
Adam, E.[Elhadi],
Sahu, A.[Anshuman],
Tesfamichael, S.[Solomon],
Examining the Spectral Separability of Prosopis Glandulosa from
Co-Existent Species Using Field Spectral Measurement and Guided
Regularized Random Forest,
RS(8), No. 2, 2016, pp. 144.
DOI Link
1603
Honey mesquite tree or shrub
BibRef
Omer, G.[Galal],
Mutanga, O.[Onisimo],
Abdel-Rahman, E.M.[Elfatih M.],
Adam, E.[Elhadi],
Empirical Prediction of Leaf Area Index (LAI) of Endangered Tree
Species in Intact and Fragmented Indigenous Forests Ecosystems Using
WorldView-2 Data and Two Robust Machine Learning Algorithms,
RS(8), No. 4, 2016, pp. 324.
DOI Link
1604
BibRef
Stagakis, S.[Stavros],
Vanikiotis, T.[Theofilos],
Sykioti, O.[Olga],
Estimating forest species abundance through linear unmixing of
CHRIS/PROBA imagery,
PandRS(119), No. 1, 2016, pp. 79-89.
Elsevier DOI
1610
Hyperspectral
BibRef
Mohajane, M.[Meriame],
Essahlaoui, A.[Ali],
Oudija, F.[Fatiha],
El Hafyani, M.[Mohammed],
Teodoro, A.C.[Ana Cláudia],
Mapping Forest Species in the Central Middle Atlas of Morocco (Azrou
Forest) through Remote Sensing Techniques,
IJGI(6), No. 9, 2017, pp. xx-yy.
DOI Link
1710
BibRef
Tuominen, S.[Sakari],
Näsi, R.[Roope],
Honkavaara, E.[Eija],
Balazs, A.[Andras],
Hakala, T.[Teemu],
Viljanen, N.[Niko],
Pölönen, I.[Ilkka],
Saari, H.[Heikki],
Ojanen, H.[Harri],
Assessment of Classifiers and Remote Sensing Features of
Hyperspectral Imagery and Stereo-Photogrammetric Point Clouds for
Recognition of Tree Species in a Forest Area of High Species
Diversity,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Raczko, E.[Edwin],
Zagajewski, B.[Bogdan],
Tree Species Classification of the UNESCO Man and the Biosphere
Karkonoski National Park (Poland) Using Artificial Neural Networks
and APEX Hyperspectral Images,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Wessel, M.[Mathias],
Brandmeier, M.[Melanie],
Tiede, D.[Dirk],
Evaluation of Different Machine Learning Algorithms for Scalable
Classification of Tree Types and Tree Species Based on Sentinel-2
Data,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Dabiri, Z.[Zahra],
Lang, S.[Stefan],
Comparison of Independent Component Analysis, Principal Component
Analysis, and Minimum Noise Fraction Transformation for Tree Species
Classification Using APEX Hyperspectral Imagery,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Lim, J.[Joongbin],
Kim, K.M.[Kyoung-Min],
Jin, R.[Ri],
Tree Species Classification Using Hyperion and Sentinel-2 Data with
Machine Learning in South Korea and China,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Hoscilo, A.[Agata],
Lewandowska, A.[Aneta],
Mapping Forest Type and Tree Species on a Regional Scale Using
Multi-Temporal Sentinel-2 Data,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Liu, F.[Fan],
Wang, X.C.[Xing-Chang],
Wang, C.K.[Chuan-Kuan],
Measuring Vegetation Phenology with Near-Surface Remote Sensing in a
Temperate Deciduous Forest: Effects of Sensor Type and Deployment,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Feng, X.X.[Xiao-Xue],
Li, P.J.[Pei-Jun],
A Tree Species Mapping Method from UAV Images over Urban Area Using
Similarity in Tree-Crown Object Histograms,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Fricker, G.A.[Geoffrey A.],
Ventura, J.D.[Jonathan D.],
Wolf, J.A.[Jeffrey A.],
North, M.P.[Malcolm P.],
Davis, F.W.[Frank W.],
Franklin, J.[Janet],
A Convolutional Neural Network Classifier Identifies Tree Species in
Mixed-Conifer Forest from Hyperspectral Imagery,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Fromm, M.[Michael],
Schubert, M.[Matthias],
Castilla, G.[Guillermo],
Linke, J.[Julia],
McDermid, G.[Greg],
Automated Detection of Conifer Seedlings in Drone Imagery Using
Convolutional Neural Networks,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Karasiak, N.[Nicolas],
Dejoux, J.F.[Jean-François],
Fauvel, M.[Mathieu],
Willm, J.[Jérôme],
Monteil, C.[Claude],
Sheeren, D.[David],
Statistical Stability and Spatial Instability in Mapping Forest Tree
Species by Comparing 9 Years of Satellite Image Time Series,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Immitzer, M.[Markus],
Neuwirth, M.[Martin],
Böck, S.[Sebastian],
Brenner, H.[Harald],
Vuolo, F.[Francesco],
Atzberger, C.[Clement],
Optimal Input Features for Tree Species Classification in Central
Europe Based on Multi-Temporal Sentinel-2 Data,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Amiri, N.[Nina],
Krzystek, P.[Peter],
Heurich, M.[Marco],
Skidmore, A.[Andrew],
Classification of Tree Species as Well as Standing Dead Trees Using
Triple Wavelength ALS in a Temperate Forest,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Osinska-Skotak, K.[Katarzyna],
Radecka, A.[Aleksandra],
Piórkowski, H.[Hubert],
Michalska-Hejduk, D.[Dorota],
Kopec, D.[Dominik],
Tokarska-Guzik, B.[Barbara],
Ostrowski, W.[Wojciech],
Kania, A.[Adam],
Niedzielko, J.[Jan],
Mapping Succession in Non-Forest Habitats by Means of Remote Sensing:
Is the Data Acquisition Time Critical for Species Discrimination?,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Knauer, U.[Uwe],
von Rekowski, C.S.[Cornelius Styp],
Stecklina, M.[Marianne],
Krokotsch, T.[Tilman],
Minh, T.P.[Tuan Pham],
Hauffe, V.[Viola],
Kilias, D.[David],
Ehrhardt, I.[Ina],
Sagischewski, H.[Herbert],
Chmara, S.[Sergej],
Seiffert, U.[Udo],
Tree Species Classification Based on Hybrid Ensembles of a
Convolutional Neural Network (CNN) and Random Forest Classifiers,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Meiforth, J.J.[Jane J.],
Buddenbaum, H.[Henning],
Hill, J.[Joachim],
Shepherd, J.[James],
Norton, D.A.[David A.],
Detection of New Zealand Kauri Trees with AISA Aerial Hyperspectral
Data for Use in Multispectral Monitoring,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Meiforth, J.J.[Jane J.],
Buddenbaum, H.[Henning],
Hill, J.[Joachim],
Shepherd, J.[James],
Monitoring of Canopy Stress Symptoms in New Zealand Kauri Trees
Analysed with AISA Hyperspectral Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Hastings, J.H.[Jack H.],
Ollinger, S.V.[Scott V.],
Ouimette, A.P.[Andrew P.],
Sanders-DeMott, R.[Rebecca],
Palace, M.W.[Michael W.],
Ducey, M.J.[Mark J.],
Sullivan, F.B.[Franklin B.],
Basler, D.[David],
Orwig, D.A.[David A.],
Tree Species Traits Determine the Success of LiDAR-Based Crown
Mapping in a Mixed Temperate Forest,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Hacker, P.W.[Paul W.],
Coops, N.C.[Nicholas C.],
Townsend, P.A.[Philip A.],
Wang, Z.H.[Zhi-Hui],
Retrieving Foliar Traits of Quercus garryana var. garryana across a
Modified Landscape Using Leaf Spectroscopy and LiDAR,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Miyoshi, G.T.[Gabriela Takahashi],
Imai, N.N.[Nilton Nobuhiro],
Tommaselli, A.M.G.[Antonio Maria Garcia],
de Moraes, M.V.A.[Marcus Vinícius Antunes],
Honkavaara, E.[Eija],
Evaluation of Hyperspectral Multitemporal Information to Improve Tree
Species Identification in the Highly Diverse Atlantic Forest,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Dong, C.[Chao],
Zhao, G.X.[Geng-Xing],
Meng, Y.[Yan],
Li, B.H.[Bai-Hong],
Peng, B.[Bo],
The Effect of Topographic Correction on Forest Tree Species
Classification Accuracy,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Nezami, S.[Somayeh],
Khoramshahi, E.[Ehsan],
Nevalainen, O.[Olli],
Pölönen, I.[Ilkka],
Honkavaara, E.[Eija],
Tree Species Classification of Drone Hyperspectral and RGB Imagery
with Deep Learning Convolutional Neural Networks,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Cao, K.[Kaili],
Zhang, X.L.[Xiao-Li],
An Improved Res-UNet Model for Tree Species Classification Using
Airborne High-Resolution Images,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Bourque, C.P.A.[Charles P.A.],
Gachon, P.[Philippe],
MacLellan, B.R.[Benjamin R.],
MacLellan, J.I.[James I.],
Projected Wind Impact on Abies balsamea (Balsam fir)-Dominated Stands
in New Brunswick (Canada) Based on Remote Sensing and Regional
Modelling of Climate and Tree Species Distribution,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Miyoshi, G.T.[Gabriela Takahashi],
dos Santos Arruda, M.[Mauro],
Osco, L.P.[Lucas Prado],
Junior, J.M.[José Marcato],
Gonçalves, D.N.[Diogo Nunes],
Imai, N.N.[Nilton Nobuhiro],
Tommaselli, A.M.G.[Antonio Maria Garcia],
Honkavaara, E.[Eija],
Gonçalves, W.N.[Wesley Nunes],
A Novel Deep Learning Method to Identify Single Tree Species in
UAV-Based Hyperspectral Images,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Host, T.K.[Trevor K.],
Russell, M.B.[Matthew B.],
Windmuller-Campione, M.A.[Marcella A.],
Slesak, R.A.[Robert A.],
Knight, J.F.[Joseph F.],
Ash Presence and Abundance Derived from Composite Landsat and
Sentinel-2 Time Series and Lidar Surface Models in Minnesota, USA,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Scholl, V.M.[Victoria M.],
Cattau, M.E.[Megan E.],
Joseph, M.B.[Maxwell B.],
Balch, J.K.[Jennifer K.],
Integrating National Ecological Observatory Network (NEON) Airborne
Remote Sensing and In-Situ Data for Optimal Tree Species
Classification,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Xu, K.J.[Kai-Jian],
Tian, Q.J.[Qing-Jiu],
Zhang, Z.Y.[Zhao-Ying],
Yue, J.[Jibo],
Chang, C.T.[Chung-Te],
Tree Species (Genera) Identification with GF-1 Time-Series in A
Forested Landscape, Northeast China,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Legaard, K.[Kasey],
Simons-Legaard, E.[Erin],
Weiskittel, A.[Aaron],
Multi-Objective Support Vector Regression Reduces Systematic Error in
Moderate Resolution Maps of Tree Species Abundance,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Viinikka, A.[Arto],
Hurskainen, P.[Pekka],
Keski-Saari, S.[Sarita],
Kivinen, S.[Sonja],
Tanhuanpää, T.[Topi],
Mäyrä, J.[Janne],
Poikolainen, L.[Laura],
Vihervaara, P.[Petteri],
Kumpula, T.[Timo],
Detecting European Aspen (Populus tremula L.) in Boreal Forests Using
Airborne Hyperspectral and Airborne Laser Scanning Data,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Deepak, M.[Maya],
Keski-Saari, S.[Sarita],
Fauch, L.[Laure],
Granlund, L.[Lars],
Oksanen, E.[Elina],
Keinänen, M.[Markku],
Spectral Reflectance in Silver Birch Genotypes from Three Provenances
in Finland,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Biswas, S.[Sumalika],
Huang, Q.Y.[Qiong-Yu],
Anand, A.[Anupam],
Mon, M.S.[Myat Su],
Arnold, F.E.[Franz-Eugen],
Leimgruber, P.[Peter],
A Multi Sensor Approach to Forest Type Mapping for Advancing
Monitoring of Sustainable Development Goals (SDG) in Myanmar,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Guo, Y.[Ying],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Zhang, X.[Xu],
Zhao, L.[Lei],
Xu, E.[Enen],
Hou, Y.[Yanan],
Sun, R.[Rui],
An End-to-End Deep Fusion Model for Mapping Forests at Tree Species
Levels with High Spatial Resolution Satellite Imagery,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Guo, Y.[Ying],
Li, Z.Y.[Zeng-Yuan],
Chen, E.[Erxue],
Zhang, X.[Xu],
Zhao, L.[Lei],
Xu, E.[Enen],
Hou, Y.[Yanan],
Liu, L.Z.[Li-Zhi],
A Deep Fusion uNet for Mapping Forests at Tree Species Levels with
Multi-Temporal High Spatial Resolution Satellite Imagery,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Riddell, A.P.[Audrey P.],
Fitzgerald, S.A.[Stephen A.],
Qi, C.[Chu],
Strimbu, B.M.[Bogdan M.],
Classification Strategies for Unbalanced Binary Maps:
Finding Ponderosa Pine (Pinus ponderosa) in the Willamette Valley,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Schiefer, F.[Felix],
Kattenborn, T.[Teja],
Frick, A.[Annett],
Frey, J.[Julian],
Schall, P.[Peter],
Koch, B.[Barbara],
Schmidtlein, S.[Sebastian],
Mapping forest tree species in high resolution UAV-based RGB-imagery
by means of convolutional neural networks,
PandRS(170), 2020, pp. 205-215.
Elsevier DOI
2011
Deep learning, Forest inventory, Convolutional neural networks,
Tree species classification, Unmanned aerial systems, Temperate forests
BibRef
Abdollahnejad, A.[Azadeh],
Panagiotidis, D.[Dimitrios],
Tree Species Classification and Health Status Assessment for a Mixed
Broadleaf-Conifer Forest with UAS Multispectral Imaging,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Plakman, V.[Veerle],
Janssen, T.[Thomas],
Brouwer, N.[Nienke],
Veraverbeke, S.[Sander],
Mapping Species at an Individual-Tree Scale in a Temperate Forest,
Using Sentinel-2 Images, Airborne Laser Scanning Data, and Random
Forest Classification,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Deur, M.[Martina],
Gašparovic, M.[Mateo],
Balenovic, I.[Ivan],
Tree Species Classification in Mixed Deciduous Forests Using Very
High Spatial Resolution Satellite Imagery and Machine Learning
Methods,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Deur, M.[Martina],
Gašparovic, M.[Mateo],
Balenovic, I.[Ivan],
An Evaluation of Pixel- and Object-Based Tree Species Classification
in Mixed Deciduous Forests Using Pansharpened Very High Spatial
Resolution Satellite Imagery,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Egli, S.[Sebastian],
Höpke, M.[Martin],
CNN-Based Tree Species Classification Using High Resolution RGB Image
Data from Automated UAV Observations,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Vila-Viçosa, C.[Carlos],
Arenas-Castro, S.[Salvador],
Marcos, B.[Bruno],
Honrado, J.[João],
García, C.[Cristina],
Vázquez, F.M.[Francisco M.],
Almeida, R.[Rubim],
Gonçalves, J.[João],
Combining Satellite Remote Sensing and Climate Data in Species
Distribution Models to Improve the Conservation of Iberian White Oaks
(Quercus L.),
IJGI(9), No. 12, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wan, H.M.[Hao-Ming],
Tang, Y.W.[Yun-Wei],
Jing, L.H.[Lin-Hai],
Li, H.[Hui],
Qiu, F.[Fang],
Wu, W.J.[Wen-Jin],
Tree Species Classification of Forest Stands Using Multisource Remote
Sensing Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Bhattarai, R.[Rajeev],
Rahimzadeh-Bajgiran, P.[Parinaz],
Weiskittel, A.[Aaron],
Meneghini, A.[Aaron],
MacLean, D.A.[David A.],
Spruce budworm tree host species distribution and abundance mapping
using multi-temporal Sentinel-1 and Sentinel-2 satellite imagery,
PandRS(172), 2021, pp. 28-40.
Elsevier DOI
2101
Random forest, Sentinel-2, Synthetic aperture radar, Tree species
BibRef
Michalowska, M.[Maja],
Rapinski, J.[Jacek],
A Review of Tree Species Classification Based on Airborne LiDAR Data
and Applied Classifiers,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Yan, S.J.[Shi-Jie],
Jing, L.H.[Lin-Hai],
Wang, H.[Huan],
A New Individual Tree Species Recognition Method Based on a
Convolutional Neural Network and High-Spatial Resolution Remote
Sensing Imagery,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Bohlin, J.[Jonas],
Wallerman, J.[Jörgen],
Fransson, J.E.S.[Johan E. S.],
Extraction of Spectral Information from Airborne 3D Data for
Assessment of Tree Species Proportions,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Gyamfi-Ampadu, E.[Enoch],
Gebreslasie, M.[Michael],
Mendoza-Ponce, A.[Alma],
Evaluating Multi-Sensors Spectral and Spatial Resolutions for Tree
Species Diversity Prediction,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Chen, L.[Long],
Tian, X.M.[Xiao-Min],
Chai, G.Q.[Guo-Qi],
Zhang, X.L.[Xiao-Li],
Chen, E.[Erxue],
A New CBAM-P-Net Model for Few-Shot Forest Species Classification
Using Airborne Hyperspectral Images,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Harikumar, A.[Aravind],
Paris, C.[Claudia],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
A Crown Quantization-Based Approach to Tree-Species Classification
Using High-Density Airborne Laser Scanning Data,
GeoRS(59), No. 5, May 2021, pp. 4444-4453.
IEEE DOI
2104
Vegetation, Quantization (signal),
Feature extraction, Forestry, Histograms, Laser radar,
tree species
BibRef
Pearse, G.D.[Grant D.],
Watt, M.S.[Michael S.],
Soewarto, J.[Julia],
Tan, A.Y.S.[Alan Y. S.],
Deep Learning and Phenology Enhance Large-Scale Tree Species
Classification in Aerial Imagery during a Biosecurity Response,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Kuzmin, A.[Anton],
Korhonen, L.[Lauri],
Kivinen, S.[Sonja],
Hurskainen, P.[Pekka],
Korpelainen, P.[Pasi],
Tanhuanpää, T.[Topi],
Maltamo, M.[Matti],
Vihervaara, P.[Petteri],
Kumpula, T.[Timo],
Detection of European Aspen (Populus tremula L.) Based on an Unmanned
Aerial Vehicle Approach in Boreal Forests,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wang, L.[Lin],
Zhou, Y.Z.[Yu-Zhen],
Hu, Q.[Qiao],
Tang, Z.H.[Zheng-Hong],
Ge, Y.F.[Yu-Feng],
Smith, A.[Adam],
Awada, T.[Tala],
Shi, Y.[Yeyin],
Early Detection of Encroaching Woody Juniperus Virginiana and Its
Classification in Multi-Species Forest Using UAS Imagery and Semantic
Segmentation Algorithms,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Elbaz, S.[Shelly],
Sheffer, E.[Efrat],
Lensky, I.M.[Itamar M.],
Levin, N.[Noam],
The Impacts of Spatial Resolution, Viewing Angle, and Spectral
Vegetation Indices on the Quantification of Woody Mediterranean
Species Seasonality Using Remote Sensing,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Aygunes, B.[Bulut],
Cinbis, R.G.[Ramazan Gokberk],
Aksoy, S.[Selim],
Weakly supervised instance attention for multisource fine-grained
object recognition with an application to tree species classification,
PandRS(176), 2021, pp. 262-274.
Elsevier DOI
2106
Multisource classification, Fine-grained object recognition,
Weakly supervised learning, Deep learning
BibRef
Madonsela, S.[Sabelo],
Cho, M.A.[Moses A.],
Ramoelo, A.[Abel],
Mutanga, O.[Onisimo],
Investigating the Relationship between Tree Species Diversity and
Landsat-8 Spectral Heterogeneity across Multiple Phenological Stages,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Grybas, H.[Heather],
Congalton, R.G.[Russell G.],
A Comparison of Multi-Temporal RGB and Multispectral UAS Imagery for
Tree Species Classification in Heterogeneous New Hampshire Forests,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Tatum, J.[Julia],
Wallin, D.[David],
Using Discrete-Point LiDAR to Classify Tree Species in the Riparian
Pacific Northwest, USA,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Xu, K.J.[Kai-Jian],
Zhang, Z.Y.[Zhao-Ying],
Yu, W.[Wanwan],
Zhao, P.[Ping],
Yue, J.[Jibo],
Deng, Y.P.[Ya-Ping],
Geng, J.[Jun],
How Spatial Resolution Affects Forest Phenology and Tree-Species
Classification Based on Satellite and Up-Scaled Time-Series Images,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Noumonvi, K.D.[Koffi Dodji],
Oblišar, G.[Gal],
Žust, A.[Ana],
Vilhar, U.[Urša],
Empirical Approach for Modelling Tree Phenology in Mixed Forests
Using Remote Sensing,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
La Rosa, L.E.C.[Laura Elena Cué],
Sothe, C.[Camile],
Feitosa, R.Q.[Raul Queiroz],
de-Almeida, C.M.[Cláudia Maria],
Schimalski, M.B.[Marcos Benedito],
Oliveira, D.A.B.[Dário Augusto Borges],
Multi-task fully convolutional network for tree species mapping in
dense forests using small training hyperspectral data,
PandRS(179), 2021, pp. 35-49.
Elsevier DOI
2108
Semantic segmentation, Tree species identification,
Multi-task learning, Fully convolutional network, Sparse annotations
BibRef
Udali, A.[Alberto],
Lingua, E.[Emanuele],
Persson, H.J.[Henrik J.],
Assessing Forest Type and Tree Species Classification Using
Sentinel-1 C-Band SAR Data in Southern Sweden,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Rodriguez, R.[Roberto],
Perroy, R.L.[Ryan L.],
Leary, J.[James],
Jenkins, D.[Daniel],
Panoff, M.[Max],
Mandel, T.[Travis],
Perez, P.[Patricia],
Comparing Interpretation of High-Resolution Aerial Imagery by Humans
and Artificial Intelligence to Detect an Invasive Tree Species,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Marzialetti, F.[Flavio],
Frate, L.[Ludovico],
de Simone, W.[Walter],
Frattaroli, A.R.[Anna Rita],
Acosta, A.T.R.[Alicia Teresa Rosario],
Carranza, M.L.[Maria Laura],
Unmanned Aerial Vehicle (UAV)-Based Mapping of Acacia saligna
Invasion in the Mediterranean Coast,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Tamburlin, D.[Daniel],
Torresani, M.[Michele],
Tomelleri, E.[Enrico],
Tonon, G.[Giustino],
Rocchini, D.[Duccio],
Testing the Height Variation Hypothesis with the R rasterdiv Package
for Tree Species Diversity Estimation,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Waser, L.T.[Lars T.],
Rüetschi, M.[Marius],
Psomas, A.[Achilleas],
Small, D.[David],
Rehush, N.[Nataliia],
Mapping dominant leaf type based on combined Sentinel-1/-2 data:
Challenges for mountainous countries,
PandRS(180), 2021, pp. 209-226.
Elsevier DOI
2109
Broadleaved, Coniferous, Deep learning, Forestry practice,
Random forest, Wall-to-wall, National forest inventory
BibRef
Hologa, R.[Rafael],
Scheffczyk, K.[Konstantin],
Dreiser, C.[Christoph],
Gärtner, S.[Stefanie],
Tree Species Classification in a Temperate Mixed Mountain Forest
Landscape Using Random Forest and Multiple Datasets,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Malcolm, J.R.[Jay R.],
Brousseau, B.[Braiden],
Jones, T.[Trevor],
Thomas, S.C.[Sean C.],
Use of Sentinel-2 Data to Improve Multivariate Tree Species
Composition in a Forest Resource Inventory,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yang, R.R.[Ran-Ran],
Wang, L.[Lei],
Tian, Q.J.[Qing-Jiu],
Xu, N.Z.[Nian-Zxu],
Yang, Y.J.[Yan-Jun],
Estimation of the Conifer-Broadleaf Ratio in Mixed Forests Based on
Time-Series Data,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, J.C.[Jian-Chang],
Chen, Y.M.[Yi-Ming],
Liu, Z.J.[Zheng-Jun],
Classification of Typical Tree Species in Laser Point Cloud Based on
Deep Learning,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Räty, J.[Janne],
Varvia, P.[Petri],
Korhonen, L.[Lauri],
Savolainen, P.[Pekka],
Maltamo, M.[Matti],
Packalen, P.[Petteri],
A Comparison of Linear-Mode and Single-Photon Airborne LiDAR in
Species-Specific Forest Inventories,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Laser radar, Forestry, Vegetation, Photonics, Vegetation mapping,
Measurement by laser beam, Green products,
photon-counting LiDAR
BibRef
Roth, B.D.[Benjamin D.],
Saunders, M.G.[M. Grady],
Bachmann, C.M.[Charles M.],
van Aardt, J.[Jan],
Leaf Bidirectional Transmittance Distribution Function Estimates and
Models for Select Deciduous Tree Species,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Remote sensing, Scattering, Wavelength measurement, Vegetation,
Lighting, Data models, Goniometers,
spectroradiometer
BibRef
Li, Z.P.[Zhi-Peng],
Ding, J.[Jie],
Zhang, H.[Heyu],
Feng, Y.M.[Yi-Ming],
Classifying Individual Shrub Species in UAV Images:
A Case Study of the Gobi Region of Northwest China,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Jackson, C.M.[Colbert M.],
Adam, E.[Elhadi],
Machine Learning Classification of Endangered Tree Species in a
Tropical Submontane Forest Using WorldView-2 Multispectral Satellite
Imagery and Imbalanced Dataset,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, X.Y.[Xin-Yu],
Yuan, Y.X.[Ya-Xin],
Zhu, Z.Q.[Ze-Qun],
Ma, Q.S.[Qing-Shan],
Yu, H.Y.[Hong-Yan],
Li, M.[Meng],
Ma, J.H.[Jian-Hai],
Yi, S.H.[Shu-Hua],
He, X.Z.[Xiong-Zhao],
Sun, Y.[Yi],
Predicting the Distribution of Oxytropis ochrocephala Bunge in the
Source Region of the Yellow River (China) Based on UAV Sampling Data
and Species Distribution Model,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Finn, A.[Anthony],
Kumar, P.[Pankaj],
Peters, S.[Stefan],
O'Hehir, J.[Jim],
Unsupervised spectral-spatial processing of drone imagery for
identification of pine seedlings,
PandRS(183), 2022, pp. 363-388.
Elsevier DOI
2201
UAV, Seedling identification, Forest establishment,
Object detection, Unsupervised learning
BibRef
Carbonell-Rivera, J.P.[Juan Pedro],
Torralba, J.[Jesús],
Estornell, J.[Javier],
Ruiz, L.Á.[Luis Ángel],
Crespo-Peremarch, P.[Pablo],
Classification of Mediterranean Shrub Species from UAV Point Clouds,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Rana, P.[Parvez],
St-Onge, B.[Benoit],
Prieur, J.F.[Jean-François],
Cristina Budei, B.[Brindusa],
Tolvanen, A.[Anne],
Tokola, T.[Timo],
Effect of feature standardization on reducing the requirements of
field samples for individual tree species classification using ALS
data,
PandRS(184), 2022, pp. 189-202.
Elsevier DOI
2202
LiDAR, Model transferability, Species classification,
Multispectral, Forestry, Remote sensing
BibRef
Ling, Y.X.[Yu-Xiang],
Teng, S.[Shiwen],
Liu, C.[Chao],
Dash, J.[Jadunandan],
Morris, H.[Harry],
Pastor-Guzman, J.[Julio],
Assessing the Accuracy of Forest Phenological Extraction from
Sentinel-1 C-Band Backscatter Measurements in Deciduous and
Coniferous Forests,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Lu, T.T.[Ting-Ting],
Brandt, M.[Martin],
Tong, X.Y.[Xiao-Ye],
Hiernaux, P.[Pierre],
Leroux, L.[Louise],
Ndao, B.[Babacar],
Fensholt, R.[Rasmus],
Mapping the Abundance of Multipurpose Agroforestry Faidherbia albida
Trees in Senegal,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Rusnák, T.[Tomáš],
Halabuk, A.[Andrej],
Halada, L.[Luboš],
Hilbert, H.[Hubert],
Gerhátová, K.[Katarína],
Detection of Invasive Black Locust (Robinia pseudoacacia) in Small
Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Perles-Garcia, M.D.[Maria D.],
Kunz, M.[Matthias],
Fichtner, A.[Andreas],
Meyer, N.[Nora],
Härdtle, W.[Werner],
von Oheimb, G.[Goddert],
Neighbourhood Species Richness Reduces Crown Asymmetry of Subtropical
Trees in Sloping Terrain,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Yang, R.C.[Rong-Chao],
Kan, J.M.[Jiang-Ming],
Classification of Tree Species in Different Seasons and Regions Based
on Leaf Hyperspectral Images,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Jolly, B.[Ben],
Dymond, J.R.[John R.],
Shepherd, J.D.[James D.],
Greene, T.[Terry],
Schindler, J.[Jan],
Detection of Southern Beech Heavy Flowering Using Sentinel-2 Imagery,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Onishi, M.[Masanori],
Watanabe, S.[Shuntaro],
Nakashima, T.[Tadashi],
Ise, T.[Takeshi],
Practicality and Robustness of Tree Species Identification Using UAV
RGB Image and Deep Learning in Temperate Forest in Japan,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Olariu, H.G.[Horia G.],
Malambo, L.[Lonesome],
Popescu, S.C.[Sorin C.],
Virgil, C.[Clifton],
Wilcox, B.P.[Bradford P.],
Woody Plant Encroachment: Evaluating Methodologies for Semiarid Woody
Species Classification from Drone Images,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Hoffmann, J.[Janik],
Muro, J.[Javier],
Dubovyk, O.[Olena],
Predicting Species and Structural Diversity of Temperate Forests with
Satellite Remote Sensing and Deep Learning,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Cetin, Z.[Zehra],
Yastikli, N.[Naci],
The Use of Machine Learning Algorithms in Urban Tree Species
Classification,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Lechner, M.[Michael],
Dostálová, A.[Alena],
Hollaus, M.[Markus],
Atzberger, C.[Clement],
Immitzer, M.[Markus],
Combination of Sentinel-1 and Sentinel-2 Data for Tree Species
Classification in a Central European Biosphere Reserve,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Choi, K.[Kwanghun],
Lim, W.[Wontaek],
Chang, B.[Byungwoo],
Jeong, J.[Jinah],
Kim, I.[Inyoo],
Park, C.R.[Chan-Ryul],
Ko, D.W.W.[Dong-Wook W.],
An automatic approach for tree species detection and profile
estimation of urban street trees using deep learning and Google
street view images,
PandRS(190), 2022, pp. 165-180.
Elsevier DOI
2208
Deep learning, Innovation, Sustainable forest management,
Monitoring and data collection
BibRef
Li, Y.[Yingbo],
Chai, G.Q.[Guo-Qi],
Wang, Y.T.[Yue-Ting],
Lei, L.T.[Ling-Ting],
Zhang, X.L.[Xiao-Li],
ACE R-CNN: An Attention Complementary and Edge Detection-Based
Instance Segmentation Algorithm for Individual Tree Species
Identification Using UAV RGB Images and LiDAR Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Rösch, M.[Moritz],
Sonnenschein, R.[Ruth],
Buchelt, S.[Sebastian],
Ullmann, T.[Tobias],
Comparing PlanetScope and Sentinel-2 Imagery for Mapping Mountain
Pines in the Sarntal Alps, Italy,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Welle, T.[Torsten],
Aschenbrenner, L.[Lukas],
Kuonath, K.[Kevin],
Kirmaier, S.[Stefan],
Franke, J.[Jonas],
Mapping Dominant Tree Species of German Forests,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Hartley, R.J.L.[Robin J. L.],
Jayathunga, S.[Sadeepa],
Massam, P.D.[Peter D.],
de Silva, D.[Dilshan],
Estarija, H.J.[Honey Jane],
Davidson, S.J.[Sam J.],
Wuraola, A.[Adedamola],
Pearse, G.D.[Grant D.],
Assessing the Potential of Backpack-Mounted Mobile Laser Scanning
Systems for Tree Phenotyping,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Gara, T.W.[Tawanda W.],
Rahimzadeh-Bajgiran, P.[Parinaz],
Weiskittel, A.[Aaron],
Determination of foliar traits in an ecologically distinct conifer
species in Maine using Sentinel-2 imagery and site variables:
Assessing the effect of leaf trait expression and upscaling approach
on prediction accuracy,
PandRS(193), 2022, pp. 150-163.
Elsevier DOI
2210
Leaf traits, Content, Concentration, Scaling, Sentinel-2, Site variables
BibRef
Sivanandam, P.[Poornima],
Lucieer, A.[Arko],
Tree Detection and Species Classification in a Mixed Species Forest
Using Unoccupied Aircraft System (UAS) RGB and Multispectral Imagery,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Chen, W.H.[Wei-Hua],
Pan, J.[Jie],
Sun, Y.L.[Yu-Lin],
Tree Species Classification Based on Fusion Images by GF-5 and
Sentinel-2A,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Lei, Z.L.[Zhong-Lu],
Li, H.[Hui],
Zhao, J.[Jie],
Jing, L.H.[Lin-Hai],
Tang, Y.W.[Yun-Wei],
Wang, H.K.[Hong-Kun],
Individual Tree Species Classification Based on a Hierarchical
Convolutional Neural Network and Multitemporal Google Earth Images,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Lombardi, E.[Erica],
Rodríguez-Puerta, F.[Francisco],
Santini, F.[Filippo],
Chambel, M.R.[Maria Regina],
Climent, J.[José],
Resco-de Dios, V.[Víctor],
Voltas, J.[Jordi],
UAV-LiDAR and RGB Imagery Reveal Large Intraspecific Variation in
Tree-Level Morphometric Traits across Different Pine Species
Evaluated in Common Gardens,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhang, Y.[Yicen],
Wang, J.J.[Jun-Jie],
Wu, Z.F.[Zhi-Feng],
Lian, J.[Juyu],
Ye, W.[Wanhui],
Yu, F.Y.[Fang-Yuan],
Tree Species Classification Using Plant Functional Traits and Leaf
Spectral Properties along the Vertical Canopy Position,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Mielczarek, D.[Dominik],
Sikorski, P.[Piotr],
Archicinski, P.[Piotr],
Ciezkowski, W.[Wojciech],
Zaniewska, E.[Ewa],
Chormanski, J.[Jaroslaw],
The Use of an Airborne Laser Scanner for Rapid Identification of
Invasive Tree Species Acer negundo in Riparian Forests,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Gong, Y.L.[Yu-Lin],
Li, X.J.[Xue-Jian],
Du, H.Q.[Hua-Qiang],
Zhou, G.[Guomo],
Mao, F.J.[Fang-Jie],
Zhou, L.[Lv],
Zhang, B.[Bo],
Xuan, J.[Jie],
Zhu, D.[Dien],
Tree Species Classifications of Urban Forests Using UAV-LiDAR
Intensity Frequency Data,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Polyakova, A.[Alika],
Mukharamova, S.[Svetlana],
Yermolaev, O.[Oleg],
Shaykhutdinova, G.[Galiya],
Automated Recognition of Tree Species Composition of Forest
Communities Using Sentinel-2 Satellite Data,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Kluczek, M.[Marcin],
Zagajewski, B.[Bogdan],
Zwijacz-Kozica, T.[Tomasz],
Mountain Tree Species Mapping Using Sentinel-2, PlanetScope, and
Airborne HySpex Hyperspectral Imagery,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Sesnie, S.E.[Steven E.],
Espinosa, C.I.[Carlos I.],
Jara-Guerrero, A.K.[Andrea K.],
Tapia-Armijos, M.F.[María F.],
Ensemble Machine Learning for Mapping Tree Species Alpha-Diversity
Using Multi-Source Satellite Data in an Ecuadorian Seasonally Dry
Forest,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Zheng, P.F.[Peng-Fei],
Fang, P.[Panfei],
Wang, L.G.[Lei-Guang],
Ou, G.L.[Guang-Long],
Xu, W.[Weiheng],
Dai, F.[Fei],
Dai, Q.L.[Qin-Ling],
Synergism of Multi-Modal Data for Mapping Tree Species Distribution:
A Case Study from a Mountainous Forest in Southwest China,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wang, B.[Bin],
Liu, J.Y.[Jian-Yang],
Li, J.N.[Jia-Ning],
Li, M.Z.[Ming-Ze],
UAV LiDAR and Hyperspectral Data Synergy for Tree Species
Classification in the Maoershan Forest Farm Region,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Zhang, X.W.[Xian-Wei],
Huang, W.J.[Wen-Jiang],
Ye, H.[Huichun],
Lu, L.[Longhui],
Study on the Identification of Habitat Suitability Areas for the
Dominant Locust Species Dasyhippus Barbipes in Inner Mongolia,
RS(15), No. 6, 2023, pp. 1718.
DOI Link
2304
BibRef
Luo, H.J.[Hong-Jian],
Ming, D.P.[Dong-Ping],
Xu, L.[Lu],
Ling, X.[Xiao],
Tree Species Classification Based on ASDER and MALSTM-FCN,
RS(15), No. 7, 2023, pp. 1723.
DOI Link
2304
BibRef
Shi, W.[Weibo],
Liao, X.H.[Xiao-Han],
Sun, J.[Jia],
Zhang, Z.J.[Zheng-Jian],
Wang, D.L.[Dong-Liang],
Wang, S.Q.[Shao-Qiang],
Qu, W.Q.[Wen-Qiu],
He, H.B.[Hong-Bo],
Ye, H.[Huping],
Yue, H.[Huanyin],
Tagesson, T.[Torbern],
Optimizing Observation Plans for Identifying Faxon Fir (Abies
fargesii var. Faxoniana) Using Monthly Unmanned Aerial Vehicle
Imagery,
RS(15), No. 8, 2023, pp. 2205.
DOI Link
2305
BibRef
Lee, E.R.[Eu-Ru],
Baek, W.K.[Won-Kyung],
Jung, H.S.[Hyung-Sup],
Mapping Tree Species Using CNN from Bi-Seasonal High-Resolution Drone
Optic and LiDAR Data,
RS(15), No. 8, 2023, pp. 2140.
DOI Link
2305
BibRef
Usman, M.[Muhammad],
Ejaz, M.[Mahnoor],
Nichol, J.E.[Janet E.],
Farid, M.S.[Muhammad Shahid],
Abbas, S.[Sawaid],
Khan, M.H.[Muhammad Hassan],
A Comparison of Machine Learning Models for Mapping Tree Species
Using WorldView-2 Imagery in the Agroforestry Landscape of West
Africa,
IJGI(12), No. 4, 2023, pp. 142.
DOI Link
2305
BibRef
Chen, X.G.[Xiang-Gang],
Shen, X.[Xin],
Cao, L.[Lin],
Tree Species Classification in Subtropical Natural Forests Using
High-Resolution UAV RGB and SuperView-1 Multispectral Imageries Based
on Deep Learning Network Approaches: A Case Study within the Baima
Snow Mountain National Nature Reserve, China,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Rina, S.[Su],
Ying, H.[Hong],
Shan, Y.[Yu],
Du, W.[Wala],
Liu, Y.[Yang],
Li, R.[Rong],
Deng, D.Z.[Ding-Zhu],
Application of Machine Learning to Tree Species Classification Using
Active and Passive Remote Sensing: A Case Study of the Duraer
Forestry Zone,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Huang, Y.K.[Ying-Kang],
Wen, X.R.[Xiao-Rong],
Gao, Y.[Yuanyun],
Zhang, Y.L.[Yan-Li],
Lin, G.Z.[Guo-Zhong],
Tree Species Classification in UAV Remote Sensing Images Based on
Super-Resolution Reconstruction and Deep Learning,
RS(15), No. 11, 2023, pp. 2942.
DOI Link
2306
BibRef
Immitzer, M.[Markus],
Atzberger, C.[Clement],
Tree Species Diversity Mapping: Success Stories and Possible Ways
Forward,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Huang, Z.[Zehua],
Zhong, L.[Liheng],
Zhao, F.[Feng],
Wu, J.[Jin],
Tang, H.[Hao],
Lv, Z.G.[Zhen-Gang],
Xu, B.Y.[Bin-Yuan],
Zhou, L.F.[Long-Fei],
Sun, R.[Rui],
Meng, R.[Ran],
A spectral-temporal constrained deep learning method for tree species
mapping of plantation forests using time series Sentinel-2 imagery,
PandRS(204), 2023, pp. 397-420.
Elsevier DOI
2310
Tree species mapping, Key phenological stage, Transformer,
Attention mechanism, Deep learning, Plantation forests
BibRef
Yuan, X.G.[Xiao-Guang],
Liang, Y.[Yiduo],
Feng, W.[Wei],
Li, J.H.[Jun-Hang],
Ren, H.T.[Hong-Tao],
Han, S.[Shuo],
Liu, M.Q.[Meng-Qi],
Classification of Coniferous and Broad-Leaf Forests in China Based on
High-Resolution Imagery and Local Samples in Google Earth Engine,
RS(15), No. 20, 2023, pp. 5026.
DOI Link
2310
BibRef
Yao, Z.Q.[Zong-Qi],
Chai, G.Q.[Guo-Qi],
Lei, L.T.[Ling-Ting],
Jia, X.[Xiang],
Zhang, X.L.[Xiao-Li],
Individual Tree Species Identification and Crown Parameters
Extraction Based on Mask R-CNN: Assessing the Applicability of
Unmanned Aerial Vehicle Optical Images,
RS(15), No. 21, 2023, pp. 5164.
DOI Link
2311
BibRef
Xiong, N.[Nina],
Chen, H.L.[Hai-Long],
Li, R.P.[Rui-Ping],
Su, H.M.[Hui-Min],
Dai, S.Z.[Shou-Zheng],
Wang, J.[Jia],
A Method of Chestnut Forest Identification Based on Time Series and
Key Phenology from Sentinel-2,
RS(15), No. 22, 2023, pp. 5374.
DOI Link
2311
BibRef
Hou, C.C.[Cheng-Chao],
Liu, Z.J.[Zheng-Jun],
Chen, Y.M.[Yi-Ming],
Wang, S.[Shuo],
Liu, A.[Aixia],
Tree Species Classification from Airborne Hyperspectral Images Using
Spatial-Spectral Network,
RS(15), No. 24, 2023, pp. 5679.
DOI Link
2401
BibRef
Gaubert, T.[Thierry],
Adeline, K.[Karine],
Huesca, M.[Margarita],
Ustin, S.[Susan],
Briottet, X.[Xavier],
Estimation of Oak Leaf Functional Traits for California Woodland
Savannas and Mixed Forests: Comparison between Statistical, Physical,
and Hybrid Methods Using Spectroscopy,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Murray, B.A.[Brent A.],
Coops, N.C.[Nicholas C.],
Winiwarter, L.[Lukas],
White, J.C.[Joanne C.],
Dick, A.[Adam],
Barbeito, I.[Ignacio],
Ragab, A.[Ahmed],
Estimating tree species composition from airborne laser scanning data
using point-based deep learning models,
PandRS(207), 2024, pp. 282-297.
Elsevier DOI Code:
WWW Link.
2401
Tree species proportions, PointAugment, DGCNN,
Single-photon lidar, Forest resource inventory
BibRef
Jia, W.[Wen],
Pang, Y.[Yong],
Tortini, R.[Riccardo],
The influence of BRDF effects and representativeness of training data
on tree species classification using multi-flightline airborne
hyperspectral imagery,
PandRS(207), 2024, pp. 245-263.
Elsevier DOI
2401
Tree species classification, BRDF effects,
Airborne hyperspectral imagery, Training data selection, Random Forest
BibRef
Liu, P.[Pan],
Ren, C.Y.[Chun-Ying],
Wang, Z.M.[Zong-Ming],
Jia, M.M.[Ming-Ming],
Yu, W.S.[Wen-Sen],
Ren, H.X.[Hui-Xin],
Xia, C.Z.[Chen-Zhen],
Evaluating the Potential of Sentinel-2 Time Series Imagery and
Machine Learning for Tree Species Classification in a Mountainous
Forest,
RS(16), No. 2, 2024, pp. 293.
DOI Link
2402
BibRef
Chaity, M.D.[Manisha Das],
van Aardt, J.[Jan],
Exploring the Limits of Species Identification via a Convolutional
Neural Network in a Complex Forest Scene through Simulated Imaging
Spectroscopy,
RS(16), No. 3, 2024, pp. 498.
DOI Link
2402
BibRef
McGaughey, R.J.[Robert J.],
Kruper, A.[Ally],
Bobsin, C.R.[Courtney R.],
Bormann, B.T.[Bernard T.],
Tree Species Classification Based on Upper Crown Morphology Captured
by Uncrewed Aircraft System Lidar Data,
RS(16), No. 4, 2024, pp. 603.
DOI Link
2402
BibRef
Cook, M.[Maxwell],
Chapman, T.[Teresa],
Hart, S.[Sarah],
Paudel, A.[Asha],
Balch, J.[Jennifer],
Mapping Quaking Aspen Using Seasonal Sentinel-1 and Sentinel-2
Composite Imagery across the Southern Rockies, USA,
RS(16), No. 9, 2024, pp. 1619.
DOI Link
2405
BibRef
Wu, J.F.[Jin-Feng],
Huang, K.[Kesheng],
Luo, Y.[Youhao],
Long, X.Z.[Xiao-Ze],
Yu, C.[Chuying],
Xiong, H.[Hong],
Du, J.H.[Jian-Hui],
Identification of Dominant Species and Their Distributions on an
Uninhabited Island Based on Unmanned Aerial Vehicles (UAVs) and
Machine Learning Models,
RS(16), No. 10, 2024, pp. 1652.
DOI Link
2405
BibRef
Miao, S.J.[Sheng-Jie],
Zhang, K.F.[Kongwen Frank],
Zeng, H.[Hongda],
Liu, J.[Jane],
Improving Artificial-Intelligence-Based Individual Tree Species
Classification Using Pseudo Tree Crown Derived from Unmanned Aerial
Vehicle Imagery,
RS(16), No. 11, 2024, pp. 1849.
DOI Link
2406
BibRef
Verhulst, M.[Margot],
Heremans, S.[Stien],
Blaschko, M.B.[Matthew B.],
Somers, B.[Ben],
Temporal Transferability of Tree Species Classification in Temperate
Forests with Sentinel-2 Time Series,
RS(16), No. 14, 2024, pp. 2653.
DOI Link
2408
BibRef
Zhang, W.B.[Wen-Bo],
Liu, X.[Xiaohuang],
Xu, B.[Bin],
Liu, J.[Jiufen],
Li, H.Y.[Hong-Yu],
Zhao, X.F.[Xiao-Feng],
Luo, X.P.[Xin-Ping],
Wang, R.[Ran],
Xing, L.Y.[Li-Yuan],
Wang, C.[Chao],
Zhao, H.H.[Hong-Hui],
Remote Sensing Classification and Mapping of Forest Dominant Tree
Species in the Three Gorges Reservoir Area of China Based on Sample
Migration and Machine Learning,
RS(16), No. 14, 2024, pp. 2547.
DOI Link
2408
BibRef
Schadauer, T.[Tobias],
Karel, S.[Susanne],
Loew, M.[Markus],
Knieling, U.[Ursula],
Kopecky, K.[Kevin],
Bauerhansl, C.[Christoph],
Berger, A.[Ambros],
Graeber, S.[Stephan],
Winiwarter, L.[Lukas],
Evaluating Tree Species Mapping: Probability Sampling Validation of
Pure and Mixed Species Classes Using Convolutional Neural Networks
and Sentinel-2 Time Series,
RS(16), No. 16, 2024, pp. 2887.
DOI Link
2408
BibRef
Tran, T.C.N.[Thi Cam Nhung],
Caceres, M.L.L.[Maximo Larry Lopez],
Garcia i Riera, S.[Sergi],
Conciatori, M.[Marco],
Kuwabara, Y.[Yoshiki],
Tsou, C.Y.[Ching-Ying],
Diez, Y.[Yago],
Using UAV RGB Images for Assessing Tree Species Diversity in
Elevation Gradient of Zao Mountains,
RS(16), No. 20, 2024, pp. 3831.
DOI Link
2411
BibRef
Huang, Y.M.[Yun-Mei],
Ou, B.[Botong],
Meng, K.[Kexin],
Yang, B.[Baijian],
Carpenter, J.[Joshua],
Jung, J.[Jinha],
Fei, S.[Songlin],
Tree Species Classification from UAV Canopy Images with Deep Learning
Models,
RS(16), No. 20, 2024, pp. 3836.
DOI Link
2411
BibRef
Avtar, R.[Ram],
Chen, X.Y.[Xin-Yu],
Fu, J.J.[Jin-Jin],
Alsulamy, S.[Saleh],
Supe, H.[Hitesh],
Pulpadan, Y.A.[Yunus Ali],
Louw, A.S.[Albertus Stephanus],
Tatsuro, N.[Nakaji],
Tree Species Classification by Multi-Season Collected UAV Imagery in
a Mixed Cool-Temperate Mountain Forest,
RS(16), No. 21, 2024, pp. 4060.
DOI Link
2411
BibRef
Tusa, E.,
Monnet, J.M.,
Barré, J.B.,
Mura, M.D.[M. Dalla],
Chanussot, J.,
Fusion of Lidar and Hyperspectral Data for Semantic Segmentation Of
Forest Tree Species,
ISPRS20(B3:487-494).
DOI Link
2012
BibRef
Ganschow, L.,
Thiele, T.,
Deckers, N.,
Reulke, R.,
Classification of Tree Species On The Basis of Tree Bark Texture,
HyperMLPA19(1855-1859).
DOI Link
1912
BibRef
Miyoshi, G.T.,
Imai, N.N.,
Tommaselli, A.M.G.,
Honkavaara, E.,
Comparison of Pixel and Region-based Approaches for Tree Species
Mapping in Atlantic Forest Using Hyperspectral Images Acquired By Uav,
HyperMLPA19(1875-1880).
DOI Link
1912
BibRef
Pap, M.,
Kiraly, S.,
Moljak, S.,
Investigating The Usability of UAV Obtained Multispectral Imagery In
Tree Species Segmentation,
Optical3D19(159-165).
DOI Link
1912
BibRef
Guan, H.,
Yu, Y.,
Yan, W.,
Li, D.,
Li, J.,
3d-cnn Based Tree Species Classification Using Mobile Lidar Data,
Laser19(989-993).
DOI Link
1912
BibRef
Briechle, S.,
Krzystek, P.,
Vosselman, G.,
Semantic Labeling of Als Point Clouds for Tree Species Mapping Using
The Deep Neural Network Pointnet++,
Laser19(951-955).
DOI Link
1912
BibRef
Natesan, S.,
Armenakis, C.,
Vepakomma, U.,
Resnet-based Tree Species Classification Using UAV Images,
UAV-g19(475-481).
DOI Link
1912
BibRef
Iseli, C.,
Lucieer, A.,
Tree Species Classification Based On 3d Spectral Point Clouds And
Orthomosaics Acquired By Snapshot Hyperspectral Uas Sensor,
UAV-g19(379-384).
DOI Link
1912
BibRef
Hese, S.,
Thiel, C.,
Henkel, A.,
Uav Based Multi Seasonal Deciduous Tree Species Analysis in The Hainich
National Park Using Multi Temporal and Point Cloud Curvature Features,
UAV-g19(363-370).
DOI Link
1912
BibRef
Pilarska, M.,
Ostrowski, W.,
Evaluating The Possibility of Tree Species Classification With
Dual-Wavelength ALS Data,
Laser19(1097-1103).
DOI Link
1912
BibRef
Brovkina, O.,
Hanuš, J.,
Zemek, F.,
Mochalov, V.,
Grigorieva, O.,
Pikla, M.,
Evaluating The Potential Of Satellite Hyperspectral Resurs-p Data For
Forest Species Classification,
ISPRS16(B1: 443-448).
DOI Link
1610
BibRef
Chiang, S.H.[Shou Hao],
Valdez, M.[Miguel],
Chen, C.F.[Chi-Farn],
Forest Tree Species Distribution Mapping Using Landsat Satellite
Imagery And Topographic Variables With The Maximum Entropy Method In
Mongolia,
ISPRS16(B8: 593-596).
DOI Link
1610
BibRef
Näsi, R.,
Honkavaara, E.,
Tuominen, S.,
Saari, H.,
Pölönen, I.,
Hakala, T.,
Viljanen, N.,
Soukkamäki, J.,
Näkki, I.,
Ojanen, H.,
Reinikainen, J.,
UAS Based Tree Species Identification Using The Novel FPI Based
Hyperspectral Cameras In Visible, NIR and SWIR Spectral Ranges,
ISPRS16(B1: 1143-1148).
DOI Link
1610
BibRef
Tu, C.H.,
Lo, N.J.,
Chang, W.I.,
Huang, K.Y.,
Evaluating The Novel Methods On Species Distribution Modeling In
Complex Forest,
ISPRS12(XXXIX-B2:77-82).
DOI Link
1209
BibRef
Cord, A.[Anna],
Klein, D.[Doris],
Dech, S.[Stefan],
The impact of inter-annual variability in remote sensing time series on
modeling tree species distributions,
MultiTemp11(181-184).
IEEE DOI
1109
BibRef
Paula-Filho, P.L.[Pedro Luiz],
Oliveira, L.S.[Luiz S.],
de Souza Britto Jr., A.[Alceu],
Sabourin, R.[Robert],
Forest Species Recognition Using Color-Based Features,
ICPR10(4178-4181).
IEEE DOI
1008
BibRef
Hajek, F.,
Object analysis of Ikonos XS and pan-sharpened imagery in comparison
for purpose of tree species estimation,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Reulke, R.[Ralf],
Haala, N.[Norbert],
Tree Species Recognition with Fuzzy Texture Parameters,
IWCIA04(607-620).
Springer DOI
0505
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Orchards, Plantations, Trees as Crops .