Pau, L.F.,
Applications of pattern recognition to the diagnosis of equipment
failures,
PR(6), No. 1, June 1974, pp. 3-11.
Elsevier DOI
0309
BibRef
Pau, L.F.,
An adaptive signal classification procedure. Application to aircraft
engine condition monitoring,
PR(9), No. 3, October 1977, pp. 121-130.
Elsevier DOI
0309
BibRef
Braun, S.,
Signal analysis for rotating machinery vibrations,
PR(7), No. 1-2, June 1975, pp. 81-86.
Elsevier DOI
0309
BibRef
Varghese, K.C.,
Williams, J.H.[J. Hywel],
Towill, D.R.,
Computer aided feature selection for enhanced analogue system fault
location,
PR(10), No. 4, 1978, pp. 265-280.
Elsevier DOI
0309
BibRef
Cerullo, M.,
Fazio, G.,
Fabbri, M.,
Muzi, F.,
Sacerdoti, G.,
Acoustic Signal Processing to Diagnose Transiting Electric Trains,
ITS(6), No. 2, June 2005, pp. 238-243.
IEEE Abstract.
0506
BibRef
Wang, B.,
Omatu, S.,
Abe, T.,
Identification of the defective transmission devices using the wavelet
transform,
PAMI(27), No. 6, June 2005, pp. 919-928.
IEEE Abstract.
0506
Identify failure mode by analysis of acoustic signals.
BibRef
Subramanian, S.C.,
Darbha, S.,
Rajagopal, K.R.,
A Diagnostic System for Air Brakes in Commercial Vehicles,
ITS(7), No. 3, September 2006, pp. 360-376.
IEEE DOI
0609
BibRef
Johannesson, L.,
Asbogard, M.,
Egardt, B.,
Assessing the Potential of Predictive Control for Hybrid Vehicle
Powertrains Using Stochastic Dynamic Programming,
ITS(8), No. 1, March 2007, pp. 71-83.
IEEE DOI
0703
BibRef
Wu, Z.,
Wu, Q.,
Cheng, H.,
Pan, G.,
Zhao, M.,
Sun, J.,
ScudWare:
A Semantic and Adaptive Middleware Platform for Smart Vehicle Space,
ITS(8), No. 1, March 2007, pp. 121-132.
IEEE DOI
0703
BibRef
Cao, J.T.[Jiang-Tao],
Li, P.[Ping],
Liu, H.H.[Hong-Hai],
An Interval Fuzzy Controller for Vehicle Active Suspension Systems,
ITS(11), No. 4, December 2010, pp. 885-895.
IEEE DOI
1101
BibRef
Srivastav, A.[Abhishek],
Ray, A.[Asok],
Self-organization of sensor networks for detection of pervasive faults,
SIViP(4), No. 1, March 2010, pp. xx-yy.
Springer DOI
1003
BibRef
Martins, J.F.[Joao F.],
Pires, V.F.[Vitor F.],
Amaral, T.[Tito],
Induction motor fault detection and diagnosis using a current state
space pattern recognition,
PRL(32), No. 2, 15 January 2011, pp. 321-328.
Elsevier DOI
1101
Fault diagnosis; Induction motor; Stator currents; Current patterns;
Features extraction
BibRef
Ning, H.,
Xu, W.,
Zhou, Y.,
Gong, Y.,
Huang, T.S.,
A General Framework to Detect Unsafe System States From Multisensor
Data Stream,
ITS(11), No. 1, March 2010, pp. 4-15.
IEEE DOI
1003
BibRef
McBain, J.[Jordan],
Timusk, M.[Markus],
Feature extraction for novelty detection as applied to fault detection
in machinery,
PRL(32), No. 7, 1 May 2011, pp. 1054-1061.
Elsevier DOI
1101
Novelty detection; One class classification; Feature selection;
Feature reduction
BibRef
Daou, R.A.Z.[Roy Abi Zeid],
Moreau, X.[Xavier],
Francis, C.[Clovis],
Study of the effects of structural uncertainties on a fractional system
of the first kind: application in vibration isolation with the CRONE
suspension,
SIViP(6), No. 3, September 2012, pp. 463-478.
WWW Link.
1209
BibRef
Shames, I.,
Teixeira, A.M.H.,
Sandberg, H.,
Johansson, K.H.,
Fault Detection and Mitigation in Kirchhoff Networks,
SPLetters(19), No. 11, November 2012, pp. 749-752.
IEEE DOI
1210
BibRef
Anami, B.S.,
Pagi, V.B.,
Magi, S.M.,
Comparative performance analysis of three classifiers for acoustic
signal-based recognition of motorcycles using time- and
frequency-domain features,
IET-ITS(6), No. 2, 2012, pp. 235-242.
DOI Link
1209
BibRef
Mehmood, A.[Asif],
Damarla, T.[Thyagaraju],
Sabatier, J.[James],
Separation of human and animal seismic signatures using non-negative
matrix factorization,
PRL(33), No. 16, 1 December 2012, pp. 2085-2093.
Elsevier DOI
1210
Non negative matrix factorization; Dimensionality reduction; Sparsity;
Single channel source separation; Spectrogram
BibRef
Sun, M.[Ming],
Demirtas, S.,
Sahinoglu, Z.,
Joint Voltage and Phase Unbalance Detector for Three Phase Power
Systems,
SPLetters(20), No. 1, January 2013, pp. 11-14.
IEEE DOI
1212
BibRef
Nehaoua, L.,
Djemai, M.,
Pudlo, P.,
Virtual Prototyping of an Electric Power Steering Simulator,
ITS(14), No. 1, March 2013, pp. 274-283.
IEEE DOI
1303
BibRef
Hajj-Ahmad, A.,
Garg, R.,
Wu, M.[Min],
Spectrum Combining for ENF Signal Estimation,
SPLetters(20), No. 9, 2013, pp. 885-888.
IEEE DOI
1308
Power distribution networks.
BibRef
Rudin, C.[Cynthia],
Waltz, D.[David],
Anderson, R.[Roger],
Boulanger, A.[Albert],
Salleb-Aouissi, A.[Ansaf],
Chow, M.[Maggie],
Dutta, H.[Haimonti],
Gross, P.[Philip],
Huang, B.[Bert],
Ierome, S.[Steve],
Machine Learning for the New York City Power Grid,
PAMI(34), No. 2, February 2012, pp. 328-345.
IEEE DOI
1112
BibRef
Marmaroli, P.,
Carmona, M.,
Odobez, J.M.,
Falourd, X.,
Lissek, H.,
Observation of Vehicle Axles Through Pass-by Noise:
A Strategy of Microphone Array Design,
ITS(14), No. 4, 2013, pp. 1654-1664.
IEEE DOI
1312
Acoustic signal processing
BibRef
Anami, B.S.,
Pagi, V.B.,
Localisation of multiple faults in motorcycles based on the wavelet
packet analysis of the produced sounds,
IET-ITS(7), No. 3, September 2013, pp. 296-304.
DOI Link
1402
approximation theory
BibRef
Anami, B.S.,
Pagi, V.B.,
Acoustic signal based detection and localisation of faults in
motorcycles,
IET-ITS(8), No. 4, June 2014, pp. 345-351.
DOI Link
1407
BibRef
Anami, B.S.,
Pagi, V.B.,
Acoustic signal-based approach for fault detection in motorcycles
using chaincode of the pseudospectrum and dynamic time warping
classifier,
IET-ITS(8), No. 1, February 2014, pp. 21-27.
DOI Link
1406
acoustic signal processing
BibRef
Wang, R.R.[Rong-Rong],
Wang, J.M.[Jun-Min],
Actuator-Redundancy-Based Fault Diagnosis for Four-Wheel
Independently Actuated Electric Vehicles,
ITS(15), No. 1, February 2014, pp. 239-249.
IEEE DOI
1403
actuators
BibRef
Henriquez, P.,
Alonso, J.B.,
Ferrer, M.A.,
Travieso, C.M.,
Review of Automatic Fault Diagnosis Systems Using Audio and Vibration
Signals,
SMCS(44), No. 5, May 2014, pp. 642-652.
IEEE DOI
1405
condition monitoring
BibRef
Rajpathak, D.G.,
Singh, S.,
An Ontology-Based Text Mining Method to Develop D-Matrix From
Unstructured Text,
SMCS(44), No. 7, July 2014, pp. 966-977.
IEEE DOI
1407
Data models
BibRef
Bregon, A.,
Alonso-Gonzalez, C.J.,
Pulido, B.,
Integration of Simulation and State Observers for Online Fault
Detection of Nonlinear Continuous Systems,
SMCS(44), No. 12, December 2014, pp. 1553-1568.
IEEE DOI
1412
fault diagnosis
BibRef
Codetta-Raiteri, D.,
Portinale, L.,
Dynamic Bayesian Networks for Fault Detection, Identification, and
Recovery in Autonomous Spacecraft,
SMCS(45), No. 1, January 2015, pp. 13-24.
IEEE DOI
1502
aerospace computing
BibRef
Sipola, T.[Tuomo],
Ristaniemi, T.[Tapani],
Averbuch, A.[Amir],
Gear classification and fault detection using a diffusion map
framework,
PRL(53), No. 1, 2015, pp. 53-61.
Elsevier DOI
1502
System health monitoring
BibRef
Vasu, J.Z.,
Deb, A.K.,
Mukhopadhyay, S.,
MVEM-Based Fault Diagnosis of Automotive Engines Using
Dempster-Shafer Theory and Multiple Hypotheses Testing,
SMCS(45), No. 7, July 2015, pp. 977-989.
IEEE DOI
1506
Automotive engineering
BibRef
Martínez-Rego, D.[David],
Fontenla-Romero, O.[Oscar],
Alonso-Betanzos, A.[Amparo],
Principe, J.C.[José C.],
Fault detection via recurrence time statistics and one-class
classification,
PRL(84), No. 1, 2016, pp. 8-14.
Elsevier DOI
1612
Vibration analysis
BibRef
Anarado, I.,
Andreopoulos, Y.,
Core Failure Mitigation in Integer Sum-of-Product Computations on
Cloud Computing Systems,
MultMed(18), No. 4, April 2016, pp. 789-801.
IEEE DOI
1604
Cloud computing
BibRef
Song, L.,
Chen, P.,
Wang, H.,
Kato, M.,
Intelligent Condition Diagnosis Method for Rotating Machinery Based
on Probability Density and Discriminant Analyses,
SPLetters(23), No. 8, August 2016, pp. 1111-1115.
IEEE DOI
1608
acoustic signal processing
BibRef
Lu, S.,
He, Q.,
Yuan, T.,
Kong, F.,
Online Fault Diagnosis of Motor Bearing via
Stochastic-Resonance-Based Adaptive Filter in an Embedded System,
SMCS(47), No. 7, July 2017, pp. 1111-1122.
IEEE DOI
1706
Brushless DC motors, Fault diagnosis, Induction motors,
Permanent magnet motors, Signal to noise ratio,
Acoustic signal processing, adaptive filters, ball bearings,
brushless motors, dc motors, digital signal processing,
embedded software, fault diagnosis, optimization methods,
stochastic, resonance, (SR)
BibRef
Xiao, B.[Bing],
Yin, S.[Shen],
An Intelligent Actuator Fault Reconstruction Scheme for Robotic
Manipulators,
Cyber(48), No. 2, February 2018, pp. 639-647.
IEEE DOI
1801
Actuators, Manipulator dynamics, Observers, Service robots, Torque,
Actuator fault, finite-time convergence, observer, reconstruction, robotic manipulators
BibRef
Agrawal, V.,
Panigrahi, B.K.,
Subbarao, P.M.V.,
Increasing Reliability of Fault Detection Systems for Industrial
Applications,
IEEE_Int_Sys(33), No. 3, May 2018, pp. 28-39.
IEEE DOI
1808
Fault detection, Coal mining, Data models, Noise reduction,
Mathematical model, Wavelet transforms, Adaptive learning,
robust fault detection
BibRef
Yu, Q.,
Qin, Y.,
Liu, P.,
Ren, G.,
A Panel Data Model-Based Multi-Factor Predictive Model of Highway
Electromechanical Equipment Faults,
ITS(19), No. 9, September 2018, pp. 3039-3045.
IEEE DOI
1809
Road transportation, Data models, Humidity, Circuit faults,
Predictive models, Wind speed, Temperature,
panel data model
BibRef
Kwong, R.H.,
Yonge-Mallo, D.L.,
Fault Diagnosis in Discrete-Event Systems with Incomplete Models:
Learnability and Diagnosability,
Cyber(45), No. 7, July 2015, pp. 1236-1249.
IEEE DOI
1506
Communities
BibRef
Yu, H.,
Wang, K.,
Li, Y.,
Multiscale Representations Fusion With Joint Multiple Reconstructions
Autoencoder for Intelligent Fault Diagnosis,
SPLetters(25), No. 12, December 2018, pp. 1880-1884.
IEEE DOI
1812
fault diagnosis, learning (artificial intelligence),
sensor fusion, signal classification, signal reconstruction,
multiscale representations learning
BibRef
Yu, H.,
Wang, K.,
Li, Y.,
Zhao, W.,
Representation Learning With Class Level Autoencoder for Intelligent
Fault Diagnosis,
SPLetters(26), No. 10, October 2019, pp. 1476-1480.
IEEE DOI
1909
Vibrations, Feature extraction, Fault diagnosis, Training, Decoding,
Linear programming, Degradation, Intelligent fault diagnosis,
autoencoder
BibRef
Hu, L.Q.[Li-Qiang],
He, C.F.[Chao-Feng],
Cai, Z.Q.[Zhao-Quan],
Wen, L.[Long],
Ren, T.[Teng],
Track circuit fault prediction method based on grey theory and expert
system,
JVCIR(58), 2019, pp. 37-45.
Elsevier DOI
1901
Track circuit, Fault prediction, Grey theory, Expert system
BibRef
Xie, N.[Ning],
Li, H.[Hui],
Zhao, W.Z.[Wen-Zhong],
Ni, Y.[Ying],
Liu, C.W.[Chen-Wen],
Zhang, Y.[Yi],
Xu, Z.G.[Zhi-Gang],
Measurement of dynamic vibration in cycling using portable terminal
measurement system,
IET-ITS(13), No. 3, March 2019, pp. 469-474.
DOI Link
1903
BibRef
Su, J.,
Chen, W.,
Model-Based Fault Diagnosis System Verification Using Reachability
Analysis,
SMCS(49), No. 4, April 2019, pp. 742-751.
IEEE DOI
1903
Observers, Uncertainty, Robustness, Algorithm design and analysis,
Reachability analysis, Uncertain systems, Fault diagnosis,
verification and validation
BibRef
Zhang, K.,
Jiang, B.,
Yan, X.,
Mao, Z.,
Incipient Fault Detection for Traction Motors of High-Speed Railways
Using an Interval Sliding Mode Observer,
ITS(20), No. 7, July 2019, pp. 2703-2714.
IEEE DOI
1907
Observers, Traction motors, Stators, Circuit faults, Fault detection,
Uncertainty, Generators, Incipient fault detection,
traction motors
BibRef
Qian, W.W.[Wei-Wei],
Li, S.M.[Shun-Ming],
Jiang, X.X.[Xing-Xing],
Deep transfer network for rotating machine fault analysis,
PR(96), 2019, pp. 106993.
Elsevier DOI
1909
Intelligent fault diagnosis, Rotating machine,
Deep transfer network,
Weighted joint domain adaptation
BibRef
Sultan, V.[Vivian],
Hilton, B.[Brian],
A Spatial Analytics Framework to Investigate Electric Power-Failure
Events and Their Causes,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Zhou, M.,
Cao, Z.,
Zhou, M.,
Wang, J.,
Wang, Z.,
Zonotoptic Fault Estimation for Discrete-Time LPV Systems With
Bounded Parametric Uncertainty,
ITS(21), No. 2, February 2020, pp. 690-700.
IEEE DOI
2002
Uncertainty, Observers, Perturbation methods,
Measurement uncertainty, Fault detection,
discrete-time LPV systems
BibRef
van Wyk, F.,
Wang, Y.,
Khojandi, A.,
Masoud, N.,
Real-Time Sensor Anomaly Detection and Identification in Automated
Vehicles,
ITS(21), No. 3, March 2020, pp. 1264-1276.
IEEE DOI
2003
Cyber-physical systems, fault diagnosis, intelligent vehicles,
intrusion detection, vehicle safety
BibRef
Wang, Y.,
Masoud, N.,
Khojandi, A.,
Real-Time Sensor Anomaly Detection and Recovery in Connected
Automated Vehicle Sensors,
ITS(22), No. 3, March 2021, pp. 1411-1421.
IEEE DOI
2103
Anomaly detection, Delays, Adaptation models, Acceleration,
Fault detection, Safety, Intelligent transportation systems,
automated vehicles
BibRef
de Vita, F.[Fabrizio],
Bruneo, D.[Dario],
Das, S.K.[Sajal K.],
On the use of a full stack hardware/software infrastructure for
sensor data fusion and fault prediction in industry 4.0,
PRL(138), 2020, pp. 30-37.
Elsevier DOI
2010
Industry4.0, Deep learning, Data fusion, IIoT industrial testbed
BibRef
Canal, R.[Ramon],
Hernandez, C.[Carles],
Tornero, R.[Rafa],
Cilardo, A.[Alessandro],
Massari, G.[Giuseppe],
Reghenzani, F.[Federico],
Fornaciari, W.[William],
Zapater, M.[Marina],
Atienza, D.[David],
Oleksiak, A.[Ariel],
Piundefinedtek, W.[Wojciech],
Abella, J.[Jaume],
Predictive Reliability and Fault Management in Exascale Systems:
State of the Art and Perspectives,
Surveys(53), No. 5, September 2020, pp. xx-yy.
DOI Link
2010
survey, faults, HPC, supercomputing, failures, exascale,
prediction, reliability
BibRef
Zhang, J.T.[Jing-Ting],
Yuan, C.Z.[Cheng-Zhi],
Stegagno, P.[Paolo],
He, H.B.[Hai-Bo],
Wang, C.[Cong],
Small Fault Detection of Discrete-Time Nonlinear Uncertain Systems,
Cyber(51), No. 2, February 2021, pp. 750-764.
IEEE DOI
2101
Artificial neural networks, System dynamics, Uncertain systems,
Adaptive systems, Nonlinear dynamical systems, Adaptation models,
small fault detection (sFD)
BibRef
Liu, Z.H.[Zhao-Hua],
Lu, B.L.[Bi-Liang],
Wei, H.L.[Hua-Liang],
Chen, L.[Lei],
Li, X.H.[Xiao-Hua],
Rätsch, M.[Matthias],
Deep Adversarial Domain Adaptation Model for Bearing Fault Diagnosis,
SMCS(51), No. 7, July 2021, pp. 4217-4226.
IEEE DOI
2106
Fault diagnosis, Feature extraction, Rolling bearings,
Deep learning, Data mining, Data models, Training,
unsupervised learning
BibRef
Javed, A.R.[Abdul Rehman],
Usman, M.[Muhammad],
Ur Rehman, S.[Saif],
Khan, M.U.[Mohib Ullah],
Haghighi, M.S.[Mohammad Sayad],
Anomaly Detection in Automated Vehicles Using Multistage
Attention-Based Convolutional Neural Network,
ITS(22), No. 7, July 2021, pp. 4291-4300.
IEEE DOI
2107
Anomaly detection, Machine learning, Kalman filters,
Convolutional neural networks, Computer crime, Accidents,
multi-source anomaly detection
BibRef
Chen, H.[Hao],
Liu, R.N.[Ruo-Nan],
Xie, Z.X.[Zong-Xia],
Hu, Q.H.[Qing-Hua],
Dai, J.H.[Jian-Hua],
Zhai, J.H.[Jun-Hai],
Majorities help minorities: Hierarchical structure guided transfer
learning for few-shot fault recognition,
PR(123), 2022, pp. 108383.
Elsevier DOI
2112
Transfer learning, Fault recognition, Few-shot problem,
Hierarchical category structure, Complex systems
BibRef
Jumaboev, S.[Sherozbek],
Jurakuziev, D.[Dadajon],
Lee, M.[Malrey],
Photovoltaics Plant Fault Detection Using Deep Learning Techniques,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yan, S.[Shuai],
Sun, W.C.[Wei-Chao],
Yu, X.H.[Xing-Hu],
Gao, H.J.[Hui-Jun],
Adaptive Sensor Fault Accommodation for Vehicle Active Suspensions
via Partial Measurement Information,
Cyber(52), No. 11, November 2022, pp. 12290-12301.
IEEE DOI
2211
Observers, Suspensions (mechanical systems), Adaptive systems,
Actuators, Measurement uncertainty, Adaptation models, sensor bias fault
BibRef
Jeon, Y.[Youngbae],
Han, H.[Hyekyung],
Yoon, J.W.[Ji Won],
Manifold Learning-based Frequency Estimation for extracting ENF
signal from digital video,
ICPR22(189-195)
IEEE DOI
2212
Electric network frequency (ENF).
Manifolds, Forensics, Frequency conversion, Frequency estimation,
Manifold learning
BibRef
Huang, D.J.[Da-Jian],
Zhang, W.A.[Wen-An],
Guo, F.[Fanghong],
Liu, W.J.[Wei-Jiang],
Shi, X.M.[Xiao-Ming],
Wavelet Packet Decomposition-Based Multiscale CNN for Fault Diagnosis
of Wind Turbine Gearbox,
Cyber(53), No. 1, January 2023, pp. 443-453.
IEEE DOI
2301
Feature extraction, Vibrations, Convolutional neural networks,
Fault diagnosis, Wavelet packets, Wind turbines, Wind farms,
wind turbine (WT) gearbox
BibRef
Tian, S.[Sheng],
Li, J.[Jia],
Zhang, J.M.[Jin-Ming],
Li, C.W.[Cheng-Wei],
STLRF-Stack: A fault prediction model for pure electric vehicles
based on a high dimensional imbalanced dataset,
IET-ITS(17), No. 2, 2023, pp. 400-417.
DOI Link
2302
BibRef
Samal, L.[Laxmipriya],
Palo, H.K.[Hemanta Kumar],
Sahu, B.N.[Badri Narayan],
The recognition of 3-phase power quality events using optimal feature
selection and random forest classifier,
IJCVR(13), No. 3, 2023, pp. 235-246.
DOI Link
2305
BibRef
Wang, Z.P.[Zhi-Peng],
Wang, N.[Ning],
Zhang, H.Y.[Hui-Yue],
Jia, L.M.[Li-Min],
Qin, Y.[Yong],
Zuo, Y.K.[Ya-Kun],
Zhang, Y.S.[Yu-Sheng],
Dong, H.H.[Hong-Hui],
Segmentalized mRMR Features and Cost-Sensitive ELM With Fixed Inputs
for Fault Diagnosis of High-Speed Railway Turnouts,
ITS(24), No. 5, May 2023, pp. 4975-4987.
IEEE DOI
2305
Fault diagnosis, Feature extraction, Rail transportation,
Power systems, Rails, Force, Indexes, High-speed railway turnout,
imbalanced data
BibRef
Wei, Z.X.[Ze-Xian],
He, D.Q.[De-Qiang],
Jin, Z.Z.[Zhen-Zhen],
Liu, B.[Bin],
Shan, S.[Sheng],
Chen, Y.J.[Yan-Jun],
Miao, J.[Jian],
Density-Based Affinity Propagation Tensor Clustering for Intelligent
Fault Diagnosis of Train Bogie Bearing,
ITS(24), No. 6, June 2023, pp. 6053-6064.
IEEE DOI
2306
Tensors, Fault diagnosis, Clustering algorithms,
Signal processing algorithms, Monitoring, Rails, Time complexity,
intelligent fault diagnosis
BibRef
Chen, L.[Liheng],
Fu, S.[Shasha],
Qiu, J.B.[Jian-Bin],
Feng, Z.G.[Zhi-Guang],
An Adaptive Fuzzy Approach to Fault Estimation Observer Design With
Actuator Fault and Digital Communication,
Cyber(53), No. 8, August 2023, pp. 5048-5058.
IEEE DOI
2307
Observers, Iron, Quantization (signal), Actuators, Adaptive systems,
Digital communication, Nonlinear systems,
output quantization
BibRef
Insausti, X.[Xabier],
Zárraga-Rodríguez, M.[Marta],
Nolasco-Ferencikova, C.[Carolina],
Gutiérrez-Gutiérrez, J.[Jesús],
In-Network Algorithm for Passive Sensors in Structural Health
Monitoring,
SPLetters(30), 2023, pp. 952-956.
IEEE DOI
2308
Sensors, Wireless sensor networks, Monitoring,
Wireless communication, Signal processing algorithms,
iterative algorithm
BibRef
Su, N.[Naiquan],
Zhang, Q.H.[Qing-Hua],
Zhou, L.[Lingmeng],
Chang, X.X.[Xiao-Xiao],
Xu, T.[Ting],
A Fault Diagnosis of Rotating Machinery Based on a Mutual
Dimensionless Index and a Convolution Neural Network,
IEEE_Int_Sys(38), No. 4, July 2023, pp. 33-41.
IEEE DOI
2309
BibRef
Shi, Z.[Zengshu],
Du, Y.[Yiman],
Yao, X.W.[Xin-Wen],
Fault diagnosis of ZDJ7 railway point machine based on improved DCNN
and SVDD classification,
IET-ITS(17), No. 8, 2023, pp. 1649-1674.
DOI Link
2309
classification, fault diagnosis,
improved deep convolutional neural network, unbalanced samples
BibRef
Coskun, O.[Osman],
Pages, G.[Gaël],
Vilà-Valls, J.[Jordi],
Vincent, F.[François],
Chaumette, E.[Eric],
Invariance Approach to Integrity Monitoring Fault Detectors,
SPLetters(30), 2023, pp. 1062-1066.
IEEE DOI
2309
BibRef
Shan, N.L.[Nan-Liang],
Xu, X.H.[Xing-Hua],
Bao, X.Q.[Xian-Qiang],
Xu, C.C.[Cheng-Cheng],
Zhu, G.Y.[Guang-Yu],
Wu, E.Q.[Edmond Q.],
Multisensor Anomaly Detection and Interpretable Analysis for Linear
Induction Motors,
ITS(24), No. 9, September 2023, pp. 9861-9870.
IEEE DOI
2310
BibRef
Wang, N.[Ning],
Jia, L.M.[Li-Min],
Zhang, H.Y.[Hui-Yue],
Qin, Y.[Yong],
Zhao, X.J.[Xue-Jun],
Wang, Z.P.[Zhi-Peng],
Manifold-Contrastive Broad Learning System for Wheelset Bearing Fault
Diagnosis,
ITS(24), No. 9, September 2023, pp. 9886-9900.
IEEE DOI
2310
BibRef
Yan, X.Y.[Xu-Yang],
Sarkar, M.[Mrinmoy],
Lartey, B.[Benjamin],
Gebru, B.[Biniam],
Homaifar, A.[Abdollah],
Karimoddini, A.[Ali],
Tunstel, E.[Edward],
An Online Learning Framework for Sensor Fault Diagnosis Analysis in
Autonomous Cars,
ITS(24), No. 12, December 2023, pp. 14467-14479.
IEEE DOI
2312
BibRef
Fu, R.[Rao],
Bi, Y.G.[Yuan-Guo],
Han, G.J.[Guang-Jie],
Zhang, X.L.[Xiao-Ling],
Liu, L.[Li],
Zhao, L.[Liang],
Hu, B.[Bing],
MAGVA: An Open-Set Fault Diagnosis Model Based on Multi-Hop Attentive
Graph Variational Autoencoder for Autonomous Vehicles,
ITS(24), No. 12, December 2023, pp. 14873-14889.
IEEE DOI
2312
BibRef
Wei, Y.[Yang],
Wang, K.[Kai],
Domain Invariant Feature Learning Based on Cluster Contrastive
Learning for Intelligence Fault Diagnosis With Limited Labeled Data,
SPLetters(30), 2023, pp. 1787-1791.
IEEE DOI
2312
BibRef
Wan, W.Q.[Wen-Qing],
Chen, J.L.[Jing-Long],
Xie, J.S.[Jing-Song],
Graph-Based Model Compression for HSR Bogies Fault Diagnosis at IoT
Edge via Adversarial Knowledge Distillation,
ITS(25), No. 2, February 2024, pp. 1787-1796.
IEEE DOI
2402
Fault diagnosis, Internet of Things,
Generative adversarial networks, Feature extraction,
Internet of Things (IoT)
BibRef
Xu, Z.T.[Zong-Tang],
Ma, Y.[Yumei],
Pan, Z.K.[Zhen-Kuan],
Zheng, X.Y.[Xiao-Yang],
Deep Spiking Residual Shrinkage Network for Bearing Fault Diagnosis,
Cyber(54), No. 3, March 2024, pp. 1608-1613.
IEEE DOI
2402
Neurons, Fault diagnosis, Noise reduction, Training,
Machine learning, Hidden Markov models,
spiking neural network (SNN)
BibRef
Qian, S.[Shenyi],
Tian, Z.Q.[Zi-Qiao],
Wang, G.Z.[Guo-Zhu],
Zou, Q.[Qiang],
Research on Industrial Monitoring Model Based on Neural Network
Improvement,
CVIDL23(609-612)
IEEE DOI
2403
Process monitoring, Training, Fault diagnosis, Deep learning,
Analytical models, Fault detection, Neural networks, fault diagnosis
BibRef
Liu, Y.[Yun],
Fault Signal Perception of Nanofiber Sensor for 3D Human Motion
Detection Using Multi-Task Deep Learning,
IJIG(24), No. 2, March 2024, pp. 2550060.
DOI Link
2404
BibRef
Song, W.Q.[Wan-Qing],
Deng, W.[Wujin],
Cattani, P.[Piercarlo],
Qi, D.Y.[De-Yu],
Yang, X.H.[Xian-Hua],
Yao, X.[Xuyin],
Chen, D.D.[Dong-Dong],
Yan, W.[Wenduan],
Zio, E.[Enrico],
On the prediction of power outage length based on linear
multifractional Lévy stable motion,
PRL(181), 2024, pp. 120-125.
Elsevier DOI
2405
Power system reliability, Power outage length, Multifractal,
Long-range dependence, Non-Gaussian, Heavy tail,
Linear multifractional Lévy stable motion
BibRef
Gupta, A.[Aditi],
Onumanyi, A.J.[Adeiza J.],
Ahlawat, S.[Satyadev],
Prasad, Y.[Yamuna],
Singh, V.[Virendra],
Abu-Mahfouz, A.M.[Adnan M.],
DAT: A robust Discriminant Analysis-based Test of unimodality for
unknown input distributions,
PRL(182), 2024, pp. 125-132.
Elsevier DOI
2405
Discriminant analysis, Fault detection, Distributions,
Statistics, Unimodality
BibRef
Ma, Q.H.[Qing-Hua],
Dong, M.[Ming],
Xia, C.J.[Chang-Jie],
He, X.Y.[Xin-Yi],
Chen, R.[Rongfa],
Ren, M.[Ming],
Song, M.Y.[Mei-Yan],
A Multivariate Normal Distribution Data Generative Model in
Small-Sample-Based Fault Diagnosis: Taking Traction Circuit Breaker
as an Example,
ITS(25), No. 6, June 2024, pp. 5825-5841.
IEEE DOI
2406
Training, Fault diagnosis, Data models, Circuit faults,
Feature extraction, Maximum likelihood estimation, circuit breakers
BibRef
Zabihi, M.[Mehdi],
Mehrizi, R.V.[Reza Valiollahi],
Kasaiezadeh, A.[Alireza],
Pirani, M.[Mohammad],
Khajepour, A.[Amir],
A Hybrid Model-Data Vehicle Sensor and Actuator Fault Detection and
Diagnosis System,
ITS(25), No. 7, July 2024, pp. 8121-8133.
IEEE DOI
2407
Fault detection, Estimation, Actuators, Kernel, Data models,
Kalman filters, Real-time systems, Hybrid fault detection, hybrid estimator
BibRef
Zhang, S.[Shuang],
Puig, V.[Vicenç],
Ifqir, S.[Sara],
Robust LPV Fault Diagnosis Using the Set-Based Approach for
Autonomous Ground Vehicles,
ITS(25), No. 8, August 2024, pp. 9078-9090.
IEEE DOI
2408
Linear Parameter Varying.
Mathematical models, Fault diagnosis, Fault detection, Observers,
Uncertainty, Computational modeling, Actuators, Fault diagnosis,
autonomous ground vehicles
BibRef
Manchadi, O.[Oumaima],
Dehbi, Z.E.[Zineb El_Otmani],
Ben-Bouazza, F.E.[Fatima-Ezzahraa],
Edder, A.[Ayman],
Tafala, I.[Idriss],
Jioudi, B.[Bassma],
IoT-Powered Predictive Maintenance Framework for ICU Ventilators,
ISCV24(1-7)
IEEE DOI
2408
Mechanical sensors, Ventilators, Medical conditions, Hospitals,
Safety, Internet of Things, Smart devices, Internet of things,
Mechanical ventilator
BibRef
Li, S.[Shuo],
Zhang, J.F.[Jin-Feng],
Tian, Y.P.[Yu-Ping],
Fault Detection for Switched Positive Systems With Application to
Traffic Signal Systems,
SMCS(54), No. 10, October 2024, pp. 6162-6175.
IEEE DOI
2410
Observers, Fault detection, Switches, Time factors, Indexes,
Sensitivity, Vectors, L_ fault detection functional observer,
traffic signal systems
BibRef
Xing, C.[Chao],
Zhu, Y.[Yueying],
Wang, J.Y.[Jia-Ying],
Lin, Y.[Yier],
Braking Torque Distribution Reconfiguration Strategy of Vehicle With
Faults of In-Wheel Motor Drive System,
ITS(25), No. 10, October 2024, pp. 14476-14485.
IEEE DOI
2410
Torque, Circuit faults, Force, Wheels, Fault diagnosis, Optimization,
Motors, Electric vehicle, hierarchical control, regenerative braking
BibRef
Fu, S.[Shui],
Tang, W.T.[Wen-Tao],
Wang, R.[Rui],
Wen, S.X.[Si-Xin],
Sun, X.M.[Xi-Ming],
Actuator Fault-Tolerant Control for Aero-Engine Control System:
A Zonotope-Based Approach,
ITS(25), No. 11, November 2024, pp. 18861-18871.
IEEE DOI
2411
Control systems, Aircraft propulsion, Observers, Fault tolerant systems,
Fault tolerance, Actuators, Uncertainty, sliding surface
BibRef
Li, J.[Jing],
Lu, Q.C.[Qing-Chang],
Xu, P.C.[Peng-Cheng],
Wang, S.X.[Shi-Xin],
Xie, C.[Chi],
Cascading Failures on Multimodal Public Transportation Networks:
The Role of Station Coupling Strength,
ITS(25), No. 11, November 2024, pp. 17187-17199.
IEEE DOI
2411
Power system protection, Power system faults, Couplings,
Network topology, Topology, Load modeling, Public transportation,
metro-bus coupled networks
BibRef
Schmidt, J.[Jonas],
Kühnberger, K.U.[Kai-Uwe],
Pape, D.[Dennis],
Pobandt, T.[Tobias],
Detecting Loose Wheel Bolts of a Vehicle Using Accelerometers in the
Chassis,
IbPRIA23(665-679).
Springer DOI
2307
BibRef
Liu, B.[Boya],
Bi, X.W.[Xiao-Wen],
Gu, L.J.[Li-Juan],
Liu, B.Z.[Bao-Zhong],
Application of Radar Fault Diagnosis Method Based on Bayesian Network,
ICRVC22(239-243)
IEEE DOI
2301
Fault diagnosis, Condition monitoring, Knowledge engineering,
Fuses, Maintenance engineering, Fault location, Radar antennas, precision
BibRef
Li, M.H.[Ming Hang],
Wang, M.[Mei],
Bao, Y.F.[Yu-Fei],
Review of the Intelligent Diagnosis Methods for the Power
Transmission Lines,
ICIVC22(836-842)
IEEE DOI
2301
Power transmission lines, Pollution, Lightning, Fault location,
Power systems, intelligent diagnoses, power transmission,
traveling wave signals
BibRef
Marinel, C.[Cédric],
Mathon, B.[Benjamin],
Losson, O.[Olivier],
Macaire, L.[Ludovic],
Comparison of Phase-based Sub-Pixel Motion Estimation Methods,
ICIP22(561-565)
IEEE DOI
2211
Vibrations, Quantization (signal), Motion estimation,
Modal analysis, Estimation, White noise, Vibration measurement,
mechanical structure
BibRef
Zhou, G.X.[Guan-Xing],
Zhuang, Y.H.[Yi-Hong],
Ding, X.H.[Xing-Hao],
Huang, Y.[Yue],
Abbas, S.[Saqlain],
Tu, X.T.[Xiao-Tong],
A Simple Siamese Framework for Vibration Signal Representations,
ICIP22(2456-2460)
IEEE DOI
2211
Fault diagnosis, Vibrations, Representation learning,
Learning systems, Face recognition, Data collection, SigSiam,
class imbalanced fault diagnosis
BibRef
Oubouaddi, H.[Hafid],
Brouri, A.[Adil],
Ouannou, A.[Abdelmalek],
Speed control of Switched Reluctance Machine using fuzzy controller
and neural network,
ISCV22(1-6)
IEEE DOI
2208
Vibrations, Torque, Neural networks, Windings, Velocity control,
Switches, Switched reluctance motors, SRM,
proportional-integral-derivative controller (PID)
BibRef
Maliuk, A.[Andrei],
Ahmad, Z.[Zahoor],
Kim, J.M.[Jong-Myon],
GMM-Aided DNN Bearing Fault Diagnosis Using Sparse Autoencoder Feature
Extraction,
IbPRIA22(555-564).
Springer DOI
2205
BibRef
Baireddy, S.[Sriram],
Desai, S.R.[Sundip R.],
Mathieson, J.L.[James L.],
Foster, R.H.[Richard H.],
Chan, M.W.[Moses W.],
Comer, M.L.[Mary L.],
Delp, E.J.[Edward J.],
Spacecraft Time-Series Anomaly Detection Using Transfer Learning,
AI4Space21(1951-1960)
IEEE DOI
2109
Space vehicles, Training, Adaptation models, Transfer learning,
Predictive models, Data models
BibRef
He, J.[Jia],
Cheng, M.[Maggie],
Graph Convolutional Neural Networks for Power Line Outage
Identification,
ICPR21(4198-4205)
IEEE DOI
2105
Graph Convolutional Neural Network, Spatial Domain,
Spectral Domain, Graph Fourier Transform
BibRef
Sabir, R.[Russell],
Rosato, D.[Daniele],
Hartmann, S.[Sven],
Gühmann, C.[Clemens],
Signal Generation using 1d Deep Convolutional Generative Adversarial
Networks for Fault Diagnosis of Electrical Machines,
ICPR21(3907-3914)
IEEE DOI
2105
Training, Machine learning algorithms, Convolution,
Current measurement, Probability density function, Stators,
deep learning
BibRef
Liu, S.,
Ji, Z.,
Wang, Y.,
Improving Anomaly Detection Fusion Method of Rotating Machinery Based
on ANN and Isolation Forest,
CVIDL20(581-584)
IEEE DOI
2102
condition monitoring, data mining, fault diagnosis,
feature extraction, learning (artificial intelligence),
Empirical Mode Decomposition.
BibRef
Sun, C.,
Jiang, C.,
Yang, J.,
Song, Z.,
Optimization of Structural Parameters of Spark Gap Switch Based on
ANSYS,
CVIDL20(646-650)
IEEE DOI
2102
electric breakdown, electrodes, finite element analysis,
spark gaps, erosion, self-breakdown field strength, cathode, anode,
electric field analysis
BibRef
Gao, J.J.[Jian-Jun],
Yang, X.Y.[Xiao-Yan],
Li, Q.P.[Qiu-Ping],
Guo, Q.[Qiang],
Hao, H.Y.[He-Yuan],
Research on the Problems of Equipment Dynamic Maintenance Dispatch to
Make the Amount of Restoration Maximum,
CVIDL20(401-403)
IEEE DOI
2102
decision making, dispatching, maintenance engineering,
optimisation, equipment dynamic maintenance dispatch,
Algorithm
BibRef
Zhao, H.Q.[Hong-Qiang],
Guo, F.[Feng],
A combination approach to forecast the spare parts faults of
shipboard aircraft,
CVIDL20(711-714)
IEEE DOI
2102
aircraft maintenance, decision making, forecasting theory,
naval engineering, optimisation, regression analysis,
shipboard aircraft
BibRef
Wu, Y.H.[Yu-Hui],
Zhang, M.J.[Man-Jiao],
Application of Nonlinear Convolutional Neural Network in Small
Samples Bearing Fault Classification,
CVIDL20(715-720)
IEEE DOI
2102
convolutional neural nets, fault diagnosis, feature extraction,
learning (artificial intelligence),
classification
BibRef
Cheng, D.L.,
Lai, W.H.,
Application of Self-organizing Map On Flight Data Analysis For
Quadcopter Health Diagnosis System,
UAV-g19(241-246).
DOI Link
1912
BibRef
Salazar-d'Antonio, D.[Diego],
Meneses-Casas, N.[Nohora],
Forero, M.G.[Manuel G.],
López-Santos, O.[Oswaldo],
Automatic Fault Detection in a Cascaded Transformer Multilevel Inverter
Using Pattern Recognition Techniques,
IbPRIA19(I:378-385).
Springer DOI
1910
BibRef
Carbone, R.[Rosario],
Montella, R.[Raffaele],
Narducci, F.[Fabio],
Petrosino, A.[Alfredo],
DeepNautilus: A Deep Learning Based System for Nautical Engines' Live
Vibration Processing,
CAIP19(II:120-131).
Springer DOI
1909
BibRef
Balouji, E.[Ebrahim],
Salor, O.[Ozgul],
Classification of power quality events using deep learning on event
images,
IPRIA17(216-221)
IEEE DOI
1712
data analysis, image classification,
learning (artificial intelligence),
power quality (PQ)
BibRef
Jarmolowicz, M.,
Kornatowski, E.,
Method of vibroacoustic signal spectrum optimization in diagnostics
of devices,
WSSIP17(1-5)
IEEE DOI
1707
Engines, Harmonic analysis, Optimization, Power transformers,
Signal processing algorithms, Signal resolution, Vibrations,
signal resampling, spectral resolution, vibroacoustic, diagnostics
BibRef
Islam, M.R.,
Tushar, A.K.,
Kim, J.M.,
Efficient bearing fault diagnosis by extracting intrinsic fault
information using envelope power spectrum,
IVPR17(1-5)
IEEE DOI
1704
Fault diagnosis
BibRef
Bedoui, M.,
Mestiri, H.,
Bouallegue, B.,
Machhout, M.,
A reliable fault detection scheme for the AES hardware implementation,
ISIVC16(47-52)
IEEE DOI
1704
Algorithm design and analysis
BibRef
López-Lopera, A.F.[Andrés F.],
Álvarez, M.A.[Mauricio A.],
Orozco, Á.Á.[Álvaro Á.],
Sparse Linear Models Applied to Power Quality Disturbance
Classification,
CIARP16(521-529).
Springer DOI
1703
BibRef
Ridi, A.[Antonio],
Gisler, C.[Christophe],
Hennebert, J.[Jean],
A Survey on Intrusive Load Monitoring for Appliance Recognition,
ICPR14(3702-3707)
IEEE DOI
1412
Power grid monitoring.
BibRef
He, W.P.[Wang-Peng],
Zi, Y.Y.[Yan-Yang],
Sparsity-assisted signal representation for rotating machinery fault
diagnosis using the tunable Q-factor wavelet transform with
overlapping group shrinkage,
ICWAPR14(18-23)
IEEE DOI
1402
Fault diagnosis
BibRef
Tacón, J.[Juan],
Melgarejo, D.[Damián],
Rodríguez, F.[Fernanda],
Lecumberry, F.[Federico],
Fernández, A.[Alicia],
Semisupervised Approach to Non Technical Losses Detection,
CIARP14(698-705).
Springer DOI
1411
electrical losses detection.
BibRef
Carbajal-Hernández, J.J.[José Juan],
Sánchez-Fernández, L.P.[Luis Pastor],
Suárez-Guerra, S.[Sergio],
Hernández-Bautista, I.[Ignacio],
Rotor Unbalance Detection in Electrical Induction Motors Using Orbital
Analysis,
MCPR14(371-379).
Springer DOI
1407
BibRef
Earlier: A1, A2, Only:
Misalignment Identification in Induction Motors Using Orbital Pattern
Analysis,
CIARP13(II:50-58).
Springer DOI
1311
BibRef
Rauber, T.W.[Thomas W.],
Varejão, F.M.[Flávio M.],
Motor Pump Fault Diagnosis with Feature Selection and
Levenberg-Marquardt Trained Feedforward Neural Network,
CAIP13(449-456).
Springer DOI
1308
BibRef
Weiss, P.[Patrick],
Zenker, P.[Patrick],
Maehle, E.[Erik],
Feed-forward friction and inertia compensation for improving
backdrivability of motors,
ICARCV12(288-293).
IEEE DOI
1304
BibRef
Wong, P.K.[Pak Kin],
Wong, H.C.[Hang Cheong],
Vong, C.M.[Chi Man],
Modelling and prediction of automotive engine air-ratio using relevance
vector machine,
ICARCV12(1710-1715).
IEEE DOI
1304
BibRef
Dais, J.,
Ying, J.[Jin],
Multivariable robust H-inf control for aeroengines using modified Particle
Swarm Optimization algorithm,
ICARCV12(1605-1609).
IEEE DOI
1304
BibRef
Lin, S.Q.[Shao-Qian],
Jia, Y.K.[Yu-Kun],
Lei, I.P.[Iok Peng],
Xu, Q.S.[Qing-Song],
Design and optimization of a long-stroke compliant micropositioning
stage driven by voice coil motor,
ICARCV12(1716-1721).
IEEE DOI
1304
BibRef
Lu, Y.[Ye],
Qi, R.[Ruiyun],
Adaptive observer-based output feedback control design for fault
compensation and tolerance,
ICARCV12(731-736).
IEEE DOI
1304
BibRef
Chen, J.L.[Jian-Liang],
Cao, Y.Y.[Yong-Yan],
Robust fault detection observer design for LPV systems,
ICARCV12(504-511).
IEEE DOI
1304
BibRef
Wang, Z.F.[Ze-Feng],
Zarader, J.L.[Jean-Luc],
Argentieri, S.[Sylvain],
A novel aircraft fault diagnosis and prognosis system based on Gaussian
Mixture Models,
ICARCV12(1794-1799).
IEEE DOI
1304
BibRef
Miraliakbari, A.,
Hahn, M.,
Engels, J.,
Vibrations of a Gyrocopter: An Analysis Using IMUS,
ISPRS12(XXXIX-B1:497-502).
DOI Link
1209
BibRef
Robertson, P.[Paul],
Coney, W.B.[William B.],
Bobrow, R.[Robert],
Vehicle load estimation from observation of vibration response,
AIPR10(1-8).
IEEE DOI
1010
BibRef
Pérez, E.I.[Eduardo Islas],
Rada, J.B.[Jessica Bahena],
Lima, J.R.[Jesus Romero],
Marín, M.M.[Mirna Molina],
Design and Costs Estimation of Electrical Substations Based on
Three-Dimensional Building Blocks,
ISVC10(III: 574-583).
Springer DOI
1011
BibRef
Koprinska, I.[Irena],
Sood, R.[Rohen],
Agelidis, V.[Vassilios],
Variable Selection for Five-Minute Ahead Electricity Load Forecasting,
ICPR10(2901-2904).
IEEE DOI
1008
BibRef
Liu, Q.J.[Qing-Jie],
Liu, X.F.[Xiao-Fang],
Chen, G.M.[Gui-Ming],
Study on feature extraction of high speed precision electric machine
vibration signal,
IASP10(466-469).
IEEE DOI
1004
BibRef
Mei, W.[Wang],
Dan, Z.[Zhou],
Li, W.[Wang],
Power Cable Faults Diagnosis Based on the Convex Hull Binary Tree SVM,
CISP09(1-5).
IEEE DOI
0910
BibRef
Nor, M.A.[Mohammed Asri],
Abdullah, A.H.[Abdul Halim],
Saman, A.M.[Alias Mat],
Harmonic Balance Simulation for the Nonlinear Analysis of Vibration
Isolation System Using Negative Stiffness,
ICMV09(339-342).
IEEE DOI
0912
BibRef
Wang, S.C.[Sheng-Chun],
Song, S.J.[Shi-Jun],
Jin, T.H.[Tong-Hong],
Wang, X.W.[Xiao-Wei],
Adaptive Chirplet Decomposition Method and Its Application in Machine
Fault Diagnosis,
CISP09(1-5).
IEEE DOI
0910
BibRef
Passadis, K.,
Loizos, G.,
Core Power Losses Estimation of Wound Core Distribution Transformers
with Support Vector Machines,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Xiang, L.[Ling],
Chen, X.J.[Xiu-Juan],
Tang, G.J.[Gui-Ji],
The Torsional Vibration of Turbo-Generator Groups in Mechanically and
Electrically Coupled Influences,
CISP09(1-4).
IEEE DOI
0910
BibRef
Dong, Y.H.[Yu-Hua],
Xiao, Y.[Ying],
Xu, S.[Shuang],
Research on Telemetry Vibration Signal Processing by Hilbert-Huang
Transform,
CISP09(1-4).
IEEE DOI
0910
BibRef
Kumar, M.[Mahendra],
Kar, I.N.,
Fault Diagnosis of an Air-Conditioning System Using LS-SVM,
PReMI09(555-560).
Springer DOI
0912
BibRef
Peng, D.G.[Dao-Gang],
Zhang, H.[Hao],
Weng, J.N.[Jian-Nian],
Xia, F.[Fei],
Research of the Embedded Data Pre-Processing and Fault Prognostics
System for Turbine-Generator Units,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, H.[Hui],
Fu, L.H.[Li-Hui],
Zheng, H.Q.[Hai-Qi],
Bearings Fault Detection and Diagnosis Using Envelope Spectrum of
Laplace Wavelet Transform,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, H.[Hui],
Fu, L.H.[Li-Hui],
Zheng, H.Q.[Hai-Qi],
Bearings Fault Diagnosis Based on Second Order Cyclostationary Analysis,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zhang, W.B.[Wen-Bin],
Cai, Q.[Qun],
Shen, L.[Lu],
Wang, H.J.[Hong-Jun],
Li, J.S.[Jun-Sheng],
A New Method for Fault Diagnosis of Rotating Machinery Based on
Harmonic Wavelet Filtering,
CISP09(1-3).
IEEE DOI
0910
BibRef
Guo, T.D.[Tian-Dong],
Wang, Q.[Qi],
Song, K.[Kai],
Shen, Z.G.[Zheng-Guang],
Voltage Flicker Analysis Based on Second Order Blind Identification,
CISP09(1-4).
IEEE DOI
0910
BibRef
Kaur, A.[Arashdeep],
Sandhu, P.S.[Parvinder S.],
Bra, A.S.[Amanpreet Singh],
Early Software Fault Prediction Using Real Time Defect Data,
ICMV09(242-245).
IEEE DOI
0912
BibRef
Xing, H.J.[Hao-Jiang],
Zhang, D.L.[Dong-Lai],
Phase Error Measurement Algorithm for Sampling System in Power Fault
Recorder,
CISP09(1-5).
IEEE DOI
0910
BibRef
Huang, N.[Nantian],
Xu, D.G.[Dian-Guo],
Liu, X.S.[Xiao-Sheng],
Qi, J.J.[Jia-Jin],
Power Quality Disturbance Recognition Based on S-Transform and SOM
Neural Network,
CISP09(1-5).
IEEE DOI
0910
BibRef
Zhao, W.Q.[Wen-Qing],
Zhang, Y.F.[Yan-Fang],
Zhu, Y.L.[Yong-Li],
Diagnosis for Transformer Faults Based on Combinatorial Bayes Network,
CISP09(1-3).
IEEE DOI
0910
BibRef
Krishnanand, K.R.,
Nayak, S.K.[Santanu Kumar],
Panigrahi, B.K.,
Pandi, V.R.[V. Ravikumar],
Dash, P.[Priyadarshini],
Classification of Power Quality Disturbances Using GA Based Optimal
Feature Selection,
PReMI09(561-566).
Springer DOI
0912
BibRef
Wang, Z.X.[Zhong-Xing],
Lin, J.[Jun],
Rong, L.L.[Liang-Liang],
Jiang, C.D.[Chuan-Dong],
Real-Time Power Line Harmonics Suppression from MRS Based on Stacking
and ANC,
CISP09(1-5).
IEEE DOI
0910
BibRef
Rognvaldsson, T.[Thorsteinn],
Panholzer, G.[Georg],
Byttner, S.[Stefan],
Svensson, M.[Magnus],
A self-organized approach for unsupervised fault detection in multiple
systems,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Hulkkonen, J.[Jenni],
Heikkonen, J.[Jukka],
A minimum description length principle based method for signal change
detection in machine condition monitoring,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Estupiñan, E.[Edgar],
White, P.[Paul],
Martin, C.S.[César San],
A Cyclostationary Analysis Applied to Detection and Diagnosis of Faults
in Helicopter Gearboxes,
CIARP07(61-70).
Springer DOI
0711
BibRef
Rajshekhar,
Gupta, A.[Ankur],
Samanta, A.N.,
Kulkarni, B.D.,
Jayaraman, V.K.,
Fault Diagnosis Using Dynamic Time Warping,
PReMI07(57-66).
Springer DOI
0712
BibRef
Chen, H.F.[Hai-Feng],
Jiang, G.F.[Guo-Fei],
Yoshihira, K.[Kenji],
Fault Detection in Distributed Systems by Representative Subspace
Mapping,
ICPR06(IV: 912-915).
IEEE DOI
0609
Faults in computing systems.
BibRef
Ilonen, J.,
Paalanen, P.,
Kamarainen, J.K.,
Lindh, T.,
Ahola, J.,
Kälviäinen, H.,
Partanen, J.,
Toward Automatic Motor Condition Diagnosis,
SCIA05(970-977).
Springer DOI
0506
BibRef
Gerek, Ö.N.[Ömer N.],
Ece, D.G.,
A 2D representation for analysis and coding of power quality events,
ICIP03(III: 561-564).
IEEE DOI
0312
BibRef
Stevens, M.R.,
Snorrason, M.,
Petrovich, D.,
Identifying vehicles using vibrometry signatures,
ICPR02(III: 253-256).
IEEE DOI
0211
BibRef
Ben Dhaou, I.[Imed],
Akopian, D.,
Kuosmanen, P.,
Astola, J.T.,
Fault detection in stack filter circuits based on sample selection
probabilities,
ICIP96(I: 765-768).
IEEE DOI
9610
BibRef
Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Financial Analysis, Business Systems .