Cramér, H.,
Mathematical Methods of Statistics,
PrincetonUniversity Press, Princeton, NJ, 1946.
The mean-squared error for any estimate of a nonrandom parameter has a
lower bound, the Cramér-Rao Bound, which defines the ultimate accuracy
of any estimation procedure. This lower bound is intimately related
to the maximum likelihood estimator.
BibRef
4600
Bonner, R.E.,
On Some Clustering Techniques,
IBMRD(8), January 1964, pp. 22-31.
BibRef
6401
Jain, A.K.,
Murty, M.N., and
Flynn, P.J.,
Data clustering: A review,
Surveys(31), 1999, No. 3, pp. 264-323.
DOI Link
Survey, Pattern Recognition.
BibRef
9900
Jain, A.K.[Anil K.],
Data clustering: 50 years beyond K-means,
PRL(31), No. 8, 1 June 2010, pp. 651-666.
Elsevier DOI
1004
Survey, Clustering.
Award, PRL Most Cited. 2019-2011
Award, PRL Most Cited. 2010-2012
Data clustering; User's dilemma; Historical developments; Perspectives
on clustering; King-Sun Fu prize
BibRef
Forgey, E.,
Cluster Analysis of Multivariate Data:
Efficiency vs. Interpretability of Classification,
Biometrics(21), 1965, pp. 768.
BibRef
6500
Nahi, N.E.,
Estimation Theory and Applications,
John
Wileyand Sons Inc., 1969.
BibRef
6900
Jain, A.K.,
Cluster Analysis,
HPRIP86(33-57).
BibRef
8600
Jain, A.K., and
Dubes, R.C.,
Algorithms for Clustering Data,
Prentice HallInc., Englewood Cliffs, NJ 1988.
ISBN 0-13-022278-X.
PDF File.
BibRef
8800
Dubes, R.C.,
Cluster Analysis and Related Issues,
HPRCV97(Chapter I:1).
(Michigan State Univ.).
BibRef
9700
Dubes, R.C.[Richard C.],
Jain, A.K.[Anil K.],
Clustering techniques: The user's dilemma,
PR(8), No. 4, October 1976, pp. 247-260.
Elsevier DOI
0309
BibRef
Dubes, R.C.[Richard C.],
Jain, A.K.[Anil K.],
Validity studies in clustering methodologies,
PR(11), No. 4, 1979, pp. 235-254.
Elsevier DOI
0309
BibRef
Bailey, Jr., T.A.[Thomas A.],
Dubes, R.C.[Richard C.],
Cluster validity profiles,
PR(15), No. 2, 1982, pp. 61-83.
Elsevier DOI
0309
BibRef
Panayirci, E.[Erdal],
Dubes, R.C.[Richard C.],
A test for multidimensional clustering tendency,
PR(16), No. 4, 1983, pp. 433-444.
Elsevier DOI
BibRef
8300
Earlier:
Abstract:
PR(16), No. 3, 1983, pp. Page 357.
Elsevier DOI
0309
BibRef
Kaminuma, T.,
Takekawa, T.,
Watanabe, S.,
Reduction of clustering problem to pattern recognition,
PR(1), No. 3, March 1969, pp. 195-205.
Elsevier DOI
0309
BibRef
Freeman, J.J.,
Experiments in discrimination and classification,
PR(1), No. 3, March 1969, pp. 207-218.
Elsevier DOI
0309
BibRef
Holdermann, F.,
Classification by cascaded threshold elements,
PR(3), No. 3, October 1971, pp. 243-251.
Elsevier DOI
0309
BibRef
Diday, E.[Edwin],
Optimization in non-hierarchical clustering,
PR(6), No. 1, June 1974, pp. 17-33.
Elsevier DOI
0309
Biological profiles. Minerals.
BibRef
Diday, E.[Edwin],
Cucumel, G.,
Compatibility and consensus in numerical taxonomy,
ICPR88(II: 1059-1061).
IEEE DOI
8811
BibRef
Coray, G.,
Noetzel, A.,
Selkow, S.M.,
Order independence in local clustering algorithms,
CGIP(4), No. 2, June 1975, pp. 120-132.
Elsevier DOI
0501
BibRef
Slagle, J.R.,
Chang, C.L.,
Heller, S.R.,
A Clustering and Data Reorganizing Algorithm,
SMC(5), 1975, pp. 125-128.
BibRef
7500
Yau, S.S.,
Chang, S.C.,
A direct method for cluster analysis,
PR(7), No. 4, December 1975, pp. 215-224.
Elsevier DOI
0309
BibRef
Kittler, J.V.,
A locally sensitive method for cluster analysis,
PR(8), No. 1, January 1976, pp. 23-33.
Elsevier DOI
0309
BibRef
Apostolico, A.,
Caianiello, E.R.,
Fischetti, E.,
Vitulano, S.,
C-calculus:
An elementary approach to some problems in pattern recognition,
PR(10), No. 5-6, 1978, pp. 375-387.
Elsevier DOI
0309
BibRef
Wong, A.K.C., and
Wang, D.C.C.,
DECA: A Discrete-Valued Data Clustering Algorithm,
PAMI(1), No. 4, October 1979, 342-349.
BibRef
7910
Chittineni, C.B.,
Utilization of Spectral-Spatial Information in the
Classification of Imagery Data,
CGIP(16), No. 4, August 1981, pp. 305-340.
Elsevier DOI
BibRef
8108
Chittineni, C.B.,
Some approaches to optimal cluster labeling with applications to remote
sensing,
PR(15), No. 3, 1982, pp. 201-216.
Elsevier DOI
0309
BibRef
Chittineni, C.B.,
Signature extension in remote sensing,
PR(12), No. 4, 1980, pp. 243-249.
Elsevier DOI
0309
BibRef
Massart, D.L.[Désiré L.],
Plastria, F.[Frank],
Kaufman, L.[Leonard],
Non-hierarchical clustering with MASLOC,
PR(16), No. 5, 1983, pp. 507-516.
Elsevier DOI
0309
based on the p-median model of location theory.
BibRef
Lowitz, G.E.,
What the Fourier Transform Can Really Bring to Clustering,
PR(17), No. 6, 1984, pp. 657-665.
Elsevier DOI
See also What a Histogram Can Really Tell the Classifier.
BibRef
8400
Kusiak, A.[Andrew],
Analysis of integer programming formulations of clustering problems,
IVC(2), No. 1, February 1984, pp. 35-40.
Elsevier DOI
0401
BibRef
Dehne, F.,
Optical Clustering,
VC(2), 1986, pp. 39-43.
BibRef
8600
Kim, J.H.,
Distributed Inference for Plausible Classification,
PRL(5), 1987, pp. 195-201.
BibRef
8700
Jain, A.K.,
Moreau, J.V.,
Bootstrap technique in cluster analysis,
PR(20), No. 5, 1987, pp. 547-568.
Elsevier DOI
0309
BibRef
Umesh, R.M.,
A technique for cluster formation,
PR(21), No. 4, 1988, pp. 393-400.
Elsevier DOI
0309
BibRef
Bryant, J.[Jack],
A fast classifier for image data,
PR(22), No. 1, 1989, pp. 45-48.
Elsevier DOI
0309
BibRef
Shekar, B.,
Murty, M.N.[M. Narasimha],
Krishna, G.,
Structural aspects of semantic-directed clusters,
PR(22), No. 1, 1989, pp. 65-74.
Elsevier DOI
0309
BibRef
Liu, S.T.[Song-Tyang],
Tsai, W.H.[Wen-Hsiang],
Moment-preserving clustering,
PR(22), No. 4, 1989, pp. 433-447.
Elsevier DOI
0309
BibRef
Postaire, J.G.,
Touzani, A.,
Mode boundary detection by relaxation for cluster analysis,
PR(22), No. 5, 1989, pp. 477-489.
Elsevier DOI
0309
BibRef
Wilson, R.,
Spann, M.,
A new approach to clustering,
PR(23), No. 12, 1990, pp. 1413-1425.
Elsevier DOI
0401
BibRef
Kaneko, K.[Kunihiko],
Clustering, coding, switching, hierarchical ordering, and control in
a network of chaotic elements,
PhysicaD(41), No. 2, March 1990, Pages 137-172.
Elsevier DOI
BibRef
9003
Valev, V.[Ventzeslav],
Zhuravlev, J.I.[Jurey Ivanovich],
Integer-valued problems of transforming the training tables in k-valued
code in pattern recognition problems,
PR(24), No. 4, 1991, pp. 283-288.
Elsevier DOI
0401
BibRef
Rose, K.,
Gurewitz, E.,
Fox, G.C.,
Constrained clustering as an optimization method,
PAMI(15), No. 8, August 1993, pp. 785-794.
IEEE DOI
0401
BibRef
Postaire, J.G.,
Zhang, R.D.,
Lecocq-Botte, C.,
Cluster analysis by binary morphology,
PAMI(15), No. 2, February 1993, pp. 170-180.
IEEE DOI
0401
BibRef
Lakroum, S.,
Devlaminck, V.,
Terrier, P.,
Biela-Enberg, P.,
Postaire, J.G.,
Clustering of The Poincaré Vectors,
ICIP05(II: 1190-1193).
IEEE DOI
0512
BibRef
Lin, J.C.,
Tsai, W.H.,
Feature-Preserving Clustering of 2-D Data for 2-Class Problems Using
Analytical Formulas: An Automatic and Fast Approach,
PAMI(16), No. 5, May 1994, pp. 554-560.
IEEE DOI
BibRef
9405
Ramdas, V.,
Sridhar, V.,
Krishna, G.,
An Effective Clustering Technique for Feature-Extraction,
PRL(15), No. 9, September 1994, pp. 885-891.
BibRef
9409
Pellegretti, P.,
Roli, F.,
Serpico, S.B.,
Vernazza, G.,
Supervised learning of descriptions for image recognition purposes,
PAMI(16), No. 1, January 1994, pp. 92-98.
IEEE DOI
0401
BibRef
Cubanski, D.,
Cyganski, D.,
Multivariate Classification through Adaptive Delaunay-Based
C-0 Spline Approximation,
PAMI(17), No. 4, April 1995, pp. 403-417.
IEEE DOI
BibRef
9504
Osbourn, G.C.,
Martinez, R.F.,
Empirically defined regions of influence for clustering analyses,
PR(28), No. 11, November 1995, pp. 1793-1806.
Elsevier DOI
0401
Use human cluster judgments as the cluster criteria.
BibRef
McLachlan, G.J.,
Krishnan, T.,
The EM Algorithm and Extensions,
John
Wiley& Sons, 1996.
BibRef
9600
Pei, S.C.[Soo-Chang],
Cheng, C.M.[Ching-Min],
A Fast 2-Class Classifier for 2D Data Using Complex-Moment-Preserving
Principle,
PR(29), No. 3, March 1996, pp. 519-531.
Elsevier DOI
BibRef
9603
Kim, J.W.,
Krishnapuram, R.,
Dave, R.,
Application of the Least Trimmed Squares Technique to
Prototype-Based Clustering,
PRL(17), No. 6, May 15 1996, pp. 633-641.
9607
BibRef
Lin, J.C.[Ja-Chen],
Lin, W.J.[Wu-Ja],
Real-Time And Automatic 2-Class Clustering By Analytical Formulas,
PR(29), No. 11, November 1996, pp. 1919-1930.
Elsevier DOI
9612
BibRef
Wharton, S.W.[Stephen W.],
A Generalized Histogram Clustering Scheme for
Multidimensional Image Data,
PR(16), No. 2, 1983, pp. 193-199.
Elsevier DOI
9611
BibRef
Li, Q.,
Tufts, D.W.,
Principal Feature Classification,
TNN(8), No. 1, January 1997, pp. 155-160.
9701
BibRef
Murtagh, F.,
Contiguity-Constrained Clustering for Image Analysis,
PRL(13), 1992, pp. 677-683.
BibRef
9200
Doncarli, C., and
Carpentier, E.L.,
An Optimal Approach for Random Signals Classification,
PAMI(13), No. 11, November 1991, pp. 1192-1196.
IEEE DOI
BibRef
9111
Boberg, J.[Jorma],
Salakoski, T.[Tapio],
Representative Noise-Free Complete-Link Classification with
Application to Protein Structures,
PR(30), No. 3, March 1997, pp. 467-482.
Elsevier DOI
9705
BibRef
Velthuizen, R.P.[Robert P.],
Hall, L.O.[Lawrence O.],
Clarke, L.P.[Laurence P.],
Silbiger, M.L.[Martin L.],
An Investigation of Mountain Method Clustering for Large Data Sets,
PR(30), No. 7, July 1997, pp. 1121-1135.
Elsevier DOI
9707
BibRef
Ha, T.M.,
The Optimum Class-Selective Rejection Rule,
PAMI(19), No. 6, June 1997, pp. 608-615.
IEEE DOI
9708
BibRef
Earlier:
An Optimum Class-Selective Rejection Rule for Pattern Recognition,
ICPR96(II: 75-80).
IEEE DOI
9608
(Univ. of Berne, CH)
BibRef
Cheung, J.,
Ferris, D.,
Kurz, L.,
On Classification of Multispectral Infrared Image Data,
IP(6), No. 10, October 1997, pp. 1456-1460.
IEEE DOI
9710
BibRef
Kastella, K.,
Discrimination Gain to Optimize Detection and Classification,
SMC-A(27), No. 1, January 1997, pp. 112-116.
IEEE Top Reference.
9701
BibRef
Muzzolini, R.[Russell],
Yang, Y.H.[Yee-Hong],
Pierson, R.[Roger],
Classifier Design with Incomplete Knowledge,
PR(31), No. 4, April 1998, pp. 345-369.
Elsevier DOI
9803
BibRef
Erol, H.,
Akdeniz, F.,
A New Supervised Classification Method for Quantitative-Analysis of
Remotely Sensed Multispectral Data,
JRS(19), No. 4, March 10 1998, pp. 775-782.
9803
BibRef
Mandal, D.P.[Deba Prasad],
Partitioning of Feature Space for Pattern Classification,
PR(30), No. 12, December 1997, pp. 1971-1990.
Elsevier DOI
9805
BibRef
Zhu, Q.M.,
Cai, Y.,
A Subclass Model for Nonlinear Pattern Classification,
PRL(19), No. 1, January 1998, pp. 19-29.
9807
BibRef
Sukanya, P.[Phongsuphap],
Takamatsu, R.[Ryo],
Sato, M.[Makoto],
The Surface Shape Operator and Multiscale Approach for
Image Classification,
IEICE(E81-A), No. 8, August 1998, pp. 1683-1689.
9809
BibRef
Earlier:
Image Classification Using the Surface-shape Operator
and Multiscale Features,
ICPR98(Vol I: 334-337).
IEEE DOI
9808
BibRef
Earlier:
The surface-shape operator based shading-tolerant method for multiscale
image analysis,
ICIP98(I: 221-225).
IEEE DOI
9810
BibRef
Judd, D.,
McKinley, P.K., and
Jain, A.K.,
Large-Scale Parallel Data Clustering,
PAMI(20), No. 8, August 1998, pp. 871-876.
IEEE DOI
BibRef
9808
Earlier:
ICPR96(IV: 488-493).
IEEE DOI
9608
Parallel Algorithms. (Michigan State Univ., USA)
Reduce mean-square-error in data clustering. Use a network of
workstations. Apply to texture segmentation.
BibRef
Hogg, T.[Trevor],
Talhami, H.[Habib],
Rees, D.[David],
An improved synergetic algorithm for image classification,
PR(31), No. 12, December 1998, pp. 1893-1903.
Elsevier DOI
BibRef
9812
Chaudhuri, B.B.,
Bhowmik, P.R.,
An approach of clustering data with noisy or imprecise feature
measurement,
PRL(19), No. 14, December 1998, pp. 1307-1317.
BibRef
9812
Baram, Y.[Yoram],
A geometric approach to consistent classification,
PR(33), No. 2, February 2000, pp. 177-184.
Elsevier DOI
0001
BibRef
Ichino, M.[Manabu],
Yaguchi, H.[Hiroyuki],
An apparent simplicity appearing in pattern classification problems,
PR(33), No. 9, September 2000, pp. 1467-1474.
Elsevier DOI
0005
BibRef
Wong, C.C.[Ching-Chang],
Chen, C.C.[Chia-Chong],
Su, M.C.[Mu-Chun],
A novel algorithm for data clustering,
PR(34), No. 2, February 2001, pp. 425-442.
Elsevier DOI
0011
BibRef
Chau, T.[Tom],
Marginal Maximum Entropy Partitioning Yields Asymptotically Consistent
Probability Density Functions,
PAMI(23), No. 4, April 2001, pp. 414-417.
IEEE DOI
0104
BibRef
Kim, D.J.[Dai-Jin],
Data classification based on tolerant rough set,
PR(34), No. 8, August 2001, pp. 1613-1624.
Elsevier DOI
0105
BibRef
Wang, J.H.,
Rau, J.D.,
VQ-agglomeration: a novel approach to clustering,
VISP(148), No. 1, February 2001, pp. 36-44.
0105
BibRef
Ananthanarayana, V.S.,
Murty, M.N.,
Subramanian, D.K.,
An incremental data mining algorithm for compact realization of
prototypes,
PR(34), No. 11, November 2001, pp. 2249-2251.
Elsevier DOI
0108
BibRef
Kuncheva, L.I.[Ludmila I.],
Kountchev, R.K.[Roumen K.],
Generating classifier outputs of fixed accuracy and diversity,
PRL(23), No. 5, March 2002, pp. 593-600.
Elsevier DOI
0202
BibRef
Boutsinas, B.,
Gnardellis, T.,
On distributing the clustering process,
PRL(23), No. 8, June 2002, pp. 999-1008.
Elsevier DOI
0204
BibRef
Schöll, J.[Joachim],
Schöll-Paschinger, E.[Elisabeth],
Classification by restricted random walks,
PR(36), No. 6, June 2003, pp. 1279-1290.
Elsevier DOI
0304
BibRef
Leski, J.K.[Jacek K.],
Ho-Kashyap classifier with generalization control,
PRL(24), No. 14, October 2003, pp. 2281-2290.
Elsevier DOI
0307
See also Algorithm for Linear Inequalities and its Applications, An.
BibRef
Largeron-Leténo, C.[Christine],
Prediction suffix trees for supervised classification of sequences,
PRL(24), No. 16, December 2003, pp. 3153-3164.
Elsevier DOI
0310
DNA sequences.
BibRef
Bandyopadhyay, S.[Sanghamitra],
An automatic shape independent clustering technique,
PR(37), No. 1, January 2004, pp. 33-45.
Elsevier DOI
0311
BibRef
Ma, E.W.M.[Eden W.M.],
Chow, T.W.S.[Tommy W. S.],
A new shifting grid clustering algorithm,
PR(37), No. 3, March 2004, pp. 503-514.
Elsevier DOI
0401
BibRef
Lee, E.W.M.,
Lim, C.P.,
Yuen, R.K.K.,
Lo, S.M.,
A Hybrid Neural Network Model for Noisy Data Regression,
SMC-B(34), No. 2, April 2004, pp. 951-960.
IEEE Abstract.
0404
BibRef
Diatta, J.[Jean],
A relation between the theory of formal concepts and multiway
clustering,
PRL(25), No. 10, 16 July 2004, pp. 1183-1189.
Elsevier DOI
0407
BibRef
Kim, D.W.[Dae-Won],
Lee, K.Y.[Ki-Young],
Lee, D.[Doheon],
Lee, K.H.[Kwang H.],
A kernel-based subtractive clustering method,
PRL(26), No. 7, 15 May 2005, pp. 879-891.
Elsevier DOI
0506
Use kernel distance rather than sum of squares.
BibRef
Zheng, L.Y.[Li-Ying],
Tang, X.L.[Xiang-Long],
A new parameter control method for S-GCM,
PRL(26), No. 7, 15 May 2005, pp. 939-942.
Elsevier DOI
0506
Globally coupled map.
See Kaneko (
See also Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements. ),
and Ishii (
See also net work of chaotic elements for information processing, A. )
BibRef
Chang, K.C.,
Yeh, M.F.,
Grey relational analysis based approach for data clustering,
VISP(152), No. 2, April 2005, pp. 165-172.
DOI Link
0510
BibRef
Blekas, K.,
Lagaris, I.E.,
Newtonian clustering:
An approach based on molecular dynamics and global optimization,
PR(40), No. 6, June 2007, pp. 1734-1744.
Elsevier DOI
0704
Clustering; Molecular dynamics; Global optimization; Order statistics
BibRef
Culp, M.[Mark],
Michailidis, G.[George],
Graph-Based Semisupervised Learning,
PAMI(30), No. 1, January 2008, pp. 174-179.
IEEE DOI
0711
BibRef
Cazzanti, L.[Luca],
Gupta, M.R.[Maya R.],
Koppal, A.J.[Anjali J.],
Generative models for similarity-based classification,
PR(41), No. 7, July 2008, pp. 2289-2297.
Elsevier DOI
0804
Similarity; Maximum entropy; Discriminant analysis
BibRef
Yue, S.H.[Shi-Hong],
Wei, M.M.[Miao-Miao],
Wang, J.S.[Jeen-Shing],
Wang, H.X.[Hua-Xiang],
A general grid-clustering approach,
PRL(29), No. 9, 1 July 2008, pp. 1372-1384.
Elsevier DOI
0711
Clustering; Core grid; Grid size; Locality
BibRef
Raghuraj, R.[Rao],
Lakshminarayanan, S.[Samavedham],
Variable predictive models: A new multivariate classification approach
for pattern recognition applications,
PR(42), No. 1, January 2009, pp. 7-16.
Elsevier DOI
0809
Data classification; Variable predictive models;
Discriminant analysis; Machine learning; Multivariate statistics
BibRef
Grall-Maes, E.[Edith],
Beauseroy, P.[Pierre],
Optimal Decision Rule with Class-Selective Rejection and Performance
Constraints,
PAMI(31), No. 11, November 2009, pp. 2073-2082.
IEEE DOI
0910
Include cost to be minimized, and decision options in classifier design.
BibRef
Jrad, N.[Nisrine],
Grall-Maes, E.[Edith],
Beauseroy, P.[Pierre],
Supervised learning rule selection for multiclass decision with
performance constraints,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Raj, A.[Anil],
Wiggins, C.H.[Chris H.],
An Information-Theoretic Derivation of Min-Cut-Based Clustering,
PAMI(32), No. 6, June 2010, pp. 988-995.
IEEE DOI
1004
Min-cut clustering, based on minimizing one of two
heuristic cost functions proposed by Shi and Malik.
See also Normalized Cuts and Image Segmentation. Analyze to understand general applications.
BibRef
Yu, Z.W.[Zhi-Wen],
Wong, H.S.[Hau-San],
Quantization-based clustering algorithm,
PR(43), No. 8, August 2010, pp. 2698-2711.
Elsevier DOI
1006
BibRef
Earlier:
GCA: A real-time grid-based clustering algorithm for large data set,
ICPR06(II: 740-743).
IEEE DOI
0609
BibRef
Earlier:
Mining Uncertain Data in Low-dimensional Subspace,
ICPR06(II: 748-751).
IEEE DOI
0609
BibRef
And:
Genetic-based K-means algorithm for selection of feature variables,
ICPR06(II: 744-747).
IEEE DOI
0609
Histogram; Clustering algorithm; K-means
BibRef
Canals, V.[Vincent],
Morro, A.[Antoni],
Rossello, J.L.[Josep L.],
Stochastic-based pattern-recognition analysis,
PRL(31), No. 15, 1 November 2010, pp. 2353-2356.
Elsevier DOI
1003
Stochastic logic; Pattern-recognition; Robotics navigation
BibRef
Kawahara, Y.[Yoshinobu],
Nagano, K.[Kiyohito],
Okamoto, Y.[Yoshio],
Submodular fractional programming for balanced clustering,
PRL(32), No. 2, 15 January 2011, pp. 235-243.
Elsevier DOI
1101
Submodular function optimization; Balanced clustering; Discrete optimization
BibRef
Sugihara, K.[Kokichi],
Okabe, A.[Atsuyuki],
Satoh, T.[Toshiaki],
Computational method for the point cluster analysis on networks,
GeoInfo(15), No. 1, January 2011, pp. 167-189.
WWW Link.
1102
BibRef
Li, J.L.[Jun-Lin],
Fu, H.G.[Hong-Guang],
Molecular dynamics-like data clustering approach,
PR(44), No. 8, August 2011, pp. 1721-1737.
Elsevier DOI
1104
Molecular dynamics; Dynamics clustering; Data mining; Data clustering
BibRef
Kwedlo, W.[Wojciech],
A clustering method combining differential evolution with the K-means
algorithm,
PRL(32), No. 12, 1 September 2011, pp. 1613-1621.
Elsevier DOI
1108
Cluster analysis; Differential evolution; K-means algorithm
BibRef
Krinidis, S.[Stelios],
Krinidis, M.[Michail],
Chatzis, V.,
Workspace for image clustering based on empirical mode decomposition,
IET-IPR(6), No. 6, 2012, pp. 778-785.
DOI Link
1210
empirical mode decomposition decompose into intrinsic mode functions.
BibRef
Krinidis, S.[Stelios],
Krinidis, M.[Michail],
Empirical mode decomposition on skeletonization pruning,
IVC(31), No. 8, August 2013, pp. 533-541.
Elsevier DOI
1306
Empirical mode decomposition; Ensemble empirical mode
decomposition; Intrinsic mode; Skeleton; Skeletonization; Pruning
BibRef
Sun, B.,
Wu, D.,
Self-Organizing-Queue Based Clustering,
SPLetters(19), No. 12, December 2012, pp. 902-905.
IEEE DOI
1212
BibRef
Esfahani, M.S.[Mohammad Shahrokh],
Knight, J.[Jason],
Zollanvari, A.[Amin],
Yoon, B.J.[Byung-Jun],
Dougherty, E.R.[Edward R.],
Classifier design given an uncertainty class of feature distributions
via regularized maximum likelihood and the incorporation of biological
pathway knowledge in steady-state phenotype classification,
PR(46), No. 10, October 2013, pp. 2783-2797.
Elsevier DOI
1306
Steady-state classifier; Biological-pathway knowledge;
Uncertainty class; Regularized maximum-likelihood; Prior knowledge
BibRef
Olszewski, D.[Dominik],
ter, B.[Branko],
Asymmetric clustering using the alpha-beta divergence,
PR(47), No. 5, 2014, pp. 2031-2041.
Elsevier DOI
1402
Clustering
BibRef
Huang, H.B.[Hong-Bing],
Huo, H.[Hong],
Fang, T.[Tao],
Hierarchical Manifold Learning With Applications to Supervised
Classification for High-Resolution Remotely Sensed Images,
GeoRS(52), No. 3, March 2014, pp. 1677-1692.
IEEE DOI
1403
geophysical image processing
BibRef
Niu, D.L.[Dong-Lin],
Dy, J.G.[Jennifer G.],
Jordan, M.I.[Michael I.],
Iterative Discovery of Multiple Alternative Clustering Views,
PAMI(36), No. 7, July 2014, pp. 1340-1353.
IEEE DOI
1407
Algorithm design and analysis. Clusters that are clear in alternative
projections. Circles, curves.
BibRef
Chalmers, E.[Eric],
Mizianty, M.[Marcin],
Parent, E.[Eric],
Yuan, Y.[Yan],
Lou, E.[Edmond],
Toward maximum-predictive-value classification,
PR(47), No. 12, 2014, pp. 3949-3958.
Elsevier DOI
1410
Classification
BibRef
Yang, S.M.[Shang-Ming],
Yi, Z.[Zhang],
He, X.F.[Xiao-Fei],
Li, X.L.[Xue-Long],
A Class of Manifold Regularized Multiplicative Update Algorithms for
Image Clustering,
IP(24), No. 12, December 2015, pp. 5302-5314.
IEEE DOI
1512
graph theory
BibRef
Peng, H.[Hong],
Wang, J.[Jun],
Shi, P.[Peng],
Riscos-Núńez, A.[Agustín],
Pérez-Jiménez, M.J.[Mario J.],
An automatic clustering algorithm inspired by membrane computing,
PRL(68, Part 1), No. 1, 2015, pp. 34-40.
Elsevier DOI
1512
Membrane computing
BibRef
Hong, S.H.[Seung-Hoon],
Choi, J.H.[Jong-Hyun],
Feyereisl, J.[Jan],
Han, B.Y.[Boh-Yung],
Davis, L.S.[Larry S.],
Joint Image Clustering and Labeling by Matrix Factorization,
PAMI(38), No. 7, July 2016, pp. 1411-1424.
IEEE DOI
1606
Clustering algorithms. Cluster and annotate set of images jointly.
BibRef
Lee, Y.M.[Young-Min],
Kwon, P.[Pil],
Yu, K.[Kiyun],
Park, W.[Woojin],
Method for Determining Appropriate Clustering Criteria of
Location-Sensing Data,
IJGI(5), No. 9, 2016, pp. 151.
DOI Link
1610
From location-based services.
BibRef
Tong, Q.H.[Qiu-Hui],
Li, X.[Xiu],
Yuan, B.[Bo],
A highly scalable clustering scheme using boundary information,
PRL(89), No. 1, 2017, pp. 1-7.
Elsevier DOI
1704
Clustering
BibRef
Sadatnejad, K.[Khadijeh],
Ghidary, S.S.[Saeed Shiry],
Adaptive spectrum transformation by topology preservation on
indefinite proximity data,
PRL(98), No. 1, 2017, pp. 59-67.
Elsevier DOI
1710
Proximity data
BibRef
Abe, S.[Shigeo],
Unconstrained large margin distribution machines,
PRL(98), No. 1, 2017, pp. 96-102.
Elsevier DOI
1710
Large margin distribution machines.
trained by solving a set of linear equations.
BibRef
Wang, B.J.[Bang-Jun],
Zhang, L.[Li],
Li, F.Z.[Fan-Zhang],
Supervised orthogonal discriminant projection based on double adjacency
graphs for image classification,
IET-IPR(11), No. 11, November 2017, pp. 1050-1058.
DOI Link
1711
BibRef
Dimitropoulos, K.[Kosmas],
Barmpoutis, P.[Panagiotis],
Kitsikidis, A.[Alexandros],
Grammalidis, N.[Nikos],
Classification of Multidimensional Time-Evolving Data Using
Histograms of Grassmannian Points,
CirSysVideo(28), No. 4, April 2018, pp. 892-905.
IEEE DOI
1804
Autoregressive processes, Computational modeling, Data models,
Hidden Markov models, Kernel, Manifolds, Tensile stress,
multidimensional signal processing
BibRef
Wu, T.,
Bajwa, W.U.,
A Low Tensor-Rank Representation Approach for Clustering of Imaging
Data,
SPLetters(25), No. 8, August 2018, pp. 1196-1200.
IEEE DOI
1808
matrix algebra, pattern clustering, tensors, vectors,
low tensor-rank representation approach, two-dimensional data,
tensor multirank
BibRef
Wu, T.[Tong],
Online Tensor Low-Rank Representation for Streaming Data Clustering,
CirSysVideo(33), No. 2, February 2023, pp. 602-617.
IEEE DOI
2302
Tensors, Optimization, Clustering algorithms, Matrix decomposition,
Memory management, Iterative methods, Costs,
tensor low-rank representation
BibRef
Li, X.[Xi],
Ma, H.M.[Hui-Min],
Wang, X.[Xiang],
Feature proposal model on multidimensional data clustering and its
application,
PRL(112), 2018, pp. 41-48.
Elsevier DOI
1809
Feature proposal, Feature non-maximum suppression, Grouped weighted clustering
BibRef
Patel, N.[Nilesh],
Tyagi, G.[Gaurav],
Marcinek, P.[Pawel],
Random neighbourhood dynamic clustering,
IJCVR(8), No. 5, 2018, pp. 476-491.
DOI Link
1810
BibRef
Adolfsson, A.[Andreas],
Ackerman, M.[Margareta],
Brownstein, N.C.[Naomi C.],
To cluster, or not to cluster: An analysis of clusterability methods,
PR(88), 2019, pp. 13-26.
Elsevier DOI
1901
Clusterability, Cluster structure, Cluster tendency,
Dimension reduction, Multimodality tests
BibRef
Luchi, D.[Diego],
Rodrigues, A.L.[Alexandre Loureiros],
Varejăo, F.M.[Flávio Miguel],
Sampling approaches for applying DBSCAN to large datasets,
PRL(117), 2019, pp. 90-96.
Elsevier DOI
1901
Clustering, Sampling, DBSCAN
BibRef
Qv, H.[Hui],
Yin, J.[Jihao],
Luo, X.Y.[Xiao-Yan],
LG: A clustering framework supported by point proximity relations,
PR(103), 2020, pp. 107265.
Elsevier DOI
2005
Two stages:
Local Energy Gradient Oppression (LEGO) and the Guide Point Assignation (GPA).
Clustering, Proximity relation, Local energy, Guide point, Face clustering
BibRef
Leopold, N.[Nadiia],
Rose, O.[Oliver],
UNIC: A fast nonparametric clustering,
PR(100), 2020, pp. 107117.
Elsevier DOI
2005
Cluster analysis, Hard (conventional, crisp) clustering,
Nonparametric algorithms, Data mining, Big data
BibRef
Dhariwal, S.[Sumit],
Palaniappan, S.[Sellappan],
Image Normalization and Weighted Classification Using an Efficient
Approach for SVM Classifiers,
IJIG(20), No. 4, October 2020, pp. 2050035.
DOI Link
2011
BibRef
Laloë, T.[Thomas],
Quantization based clustering: An iterative approach,
PRL(142), 2021, pp. 51-57.
Elsevier DOI
2101
Quantization, Clustering, Manhattan distance
Based on Alter algorithm.
BibRef
Gong, C.Y.[Chao-Yu],
Su, Z.G.[Zhi-Gang],
Wang, P.H.[Pei-Hong],
Wang, Q.[Qian],
An evidential clustering algorithm by finding belief-peaks and
disjoint neighborhoods,
PR(113), 2021, pp. 107751.
Elsevier DOI
2103
Evidential clustering, Belief-peaks, Disjoint neighborhood, Proximity data
BibRef
Rosenfeld, J.[Jean],
de Smet, Y.[Yves],
Debeir, O.[Olivier],
Decaestecker, C.[Christine],
Assessing partially ordered clustering in a multicriteria comparative
context,
PR(114), 2021, pp. 107850.
Elsevier DOI
2103
Clustering for data characterized by peculiar quantitative features: i.e.
large or small.
Clustering, -means, Multicriteria, Partial ordering, Partition,
Preference, Quality assessment
BibRef
Liang, Z.[Zhou],
Chen, P.[Pei],
An automatic clustering algorithm based on the density-peak framework
and Chameleon method,
PRL(150), 2021, pp. 40-48.
Elsevier DOI
2109
DPC method, Cluster stability, Automatic clustering
BibRef
Andrade, D.[Daniel],
Fukumizu, K.[Kenji],
Okajima, Y.[Yuzuru],
Convex covariate clustering for classification,
PRL(151), 2021, pp. 193-199.
Elsevier DOI
2110
Alternating direction method of multipliers, ADMM,
Convex optimization, Model selection, Marginal likelihood, Text classification
BibRef
Strobl, E.V.[Eric V.],
Automated hyperparameter selection for the PC algorithm,
PRL(151), 2021, pp. 288-293.
Elsevier DOI
2110
Infers causal relations using conditional independence.
Causal discovery, Hyperparameter, PC Algorithm
BibRef
Kurama, O.[Onesfole],
A new similarity-based classifier with Dombi aggregative operators,
PRL(151), 2021, pp. 229-235.
Elsevier DOI
2110
Classification, Similarity classifier, Dombi operator,
OWA operator, Generalized mean
BibRef
Hattori, T.[Takayuki],
Inoue, K.[Kohei],
Hara, K.[Kenji],
Rolling Guidance Filter as a Clustering Algorithm,
IEICE(E104-D), No. 10, October 2021, pp. 1576-1579.
WWW Link.
2110
BibRef
Zhao, S.P.[Shu-Ping],
Wu, J.G.[Ji-Gang],
Zhang, B.[Bob],
Fei, L.[Lunke],
Low-rank inter-class sparsity based semi-flexible target least
squares regression for feature representation,
PR(123), 2022, pp. 108346.
Elsevier DOI
2112
Least squares regression, Low-rank inter-class sparsity,
Feature representation, Image classification
BibRef
Ma, W.C.[Wen-Chi],
Tu, X.M.[Xue-Min],
Luo, B.[Bo],
Wang, G.H.[Guang-Hui],
Semantic clustering based deduction learning for image recognition
and classification,
PR(124), 2022, pp. 108440.
Elsevier DOI
2203
Deduction learning, Clustering prior, Semantic space, Smooth semantic clustering
BibRef
Kadioglu, B.[Berkan],
Tian, P.[Peng],
Dy, J.[Jennifer],
Erdogmus, D.[Deniz],
Ioannidis, S.[Stratis],
Sample complexity of rank regression using pairwise comparisons,
PR(130), 2022, pp. 108688.
Elsevier DOI
2206
Bradley-Terry and Thurstone.
Sample complexity, Rank regression, Pairwise comparisons, Features
BibRef
Zhao, Q.C.[Qing-Chao],
Li, L.[Long],
Chu, Y.[Yan],
Yang, Z.[Zhen],
Wang, Z.K.[Zheng-Kui],
Shan, W.[Wen],
Efficient Supervised Image Clustering Based on Density Division and
Graph Neural Networks,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Hou, J.[Jian],
Yuan, H.Q.[Hua-Qiang],
Pelillo, M.[Marcello],
Towards Parameter-Free Clustering for Real-World Data,
PR(134), 2023, pp. 109062.
Elsevier DOI
2212
Clustering, Real-world data, Dominant set, Density peak
BibRef
Niu, C.[Chuang],
Shan, H.M.[Hong-Ming],
Wang, G.[Ge],
SPICE: Semantic Pseudo-Labeling for Image Clustering,
IP(31), 2022, pp. 7264-7278.
IEEE DOI
2212
WWW Link. Improve intra-class similarity and inter-class difference.
Semantics, Training, Head, Clustering algorithms, SPICE,
Clustering methods, Prototypes, Deep clustering, representation learning
BibRef
Ding, S.F.[Shi-Fei],
Li, C.[Chao],
Xu, X.[Xiao],
Ding, L.[Ling],
Zhang, J.[Jian],
Guo, L.[Lili],
Shi, T.H.[Tian-Hao],
A Sampling-Based Density Peaks Clustering Algorithm for Large-Scale
Data,
PR(136), 2023, pp. 109238.
Elsevier DOI
2301
Density peaks clustering, Sampling method, TI search strategy, Large-scale data
BibRef
del Aguila-Pla, P.[Pol],
Boquet-Pujadas, A.[Aleix],
Jaldén, J.[Joakim],
Convex Quantization Preserves Logconcavity,
SPLetters(29), 2022, pp. 2697-2701.
IEEE DOI
2301
Quantization (signal), Data models, Detectors,
Biological system modeling, Programmable logic arrays, inverse problems
BibRef
Acampora, G.[Giovanni],
Chiatto, A.[Angela],
Vitiello, A.[Autilia],
Training circuit-based quantum classifiers through memetic algorithms,
PRL(170), 2023, pp. 32-38.
Elsevier DOI
2306
Quantum machine learning, Variational quantum circuits,
Quantum classifiers, Memetic algorithms, Optimization
BibRef
Ye, H.J.[Han-Jia],
Zhou, D.W.[Da-Wei],
Hong, L.Q.[Lan-Qing],
Li, Z.G.[Zhen-Guo],
Wei, X.S.[Xiu-Shen],
Zhan, D.C.[De-Chuan],
Contextualizing Meta-Learning via Learning to Decompose,
PAMI(46), No. 1, January 2024, pp. 117-133.
IEEE DOI
2312
Encoding a learning strategy.
Attribute discovery, contextualized model, few-shot learning,
meta representation, meta-learning.
BibRef
Davashi, R.[Razieh],
IME: Efficient list-based method for incremental mining of maximal
erasable patterns,
PR(148), 2024, pp. 110166.
Elsevier DOI
2402
Erasable pattern mining, Maximal erasable patterns,
Incremental mining, Dynamic data
BibRef
Nie, F.P.[Fei-Ping],
Xue, J.J.[Jing-Jing],
Yu, W.Z.[Wei-Zhong],
Li, X.L.[Xue-Long],
Fast Clustering With Anchor Guidance,
PAMI(46), No. 4, April 2024, pp. 1898-1912.
IEEE DOI
2403
Bipartite graph, Clustering methods, Optimization methods, Costs,
Data models, Convex functions, Tuning, Bipartite graph, trivial solution
BibRef
Nie, F.P.[Fei-Ping],
Xie, F.Y.[Fang-Yuan],
Wang, J.Y.[Jing-Yu],
Li, X.L.[Xue-Long],
Fast adaptively balanced min-cut clustering,
PR(158), 2025, pp. 111027.
Elsevier DOI
2411
BibRef
And:
Corrigendum:
PR(159), 2025, pp. 111084.
Elsevier DOI
2412
Fast clustering, Bipartite graph, Balanced min-cut clustering,
Coordinate descent method
BibRef
Liu, B.X.[Bo-Xiao],
Song, G.L.[Guang-Lu],
Zhang, M.Y.[Man-Yuan],
You, H.H.[Hai-Hang],
Liu, Y.[Yu],
Switchable K-class Hyperplanes for Noise-Robust Representation
Learning,
ICCV21(2999-3008)
IEEE DOI
2203
WWW Link. Representation learning, Training, Codes, Switches, Data models,
Noise robustness, Faces, Recognition and classification, Representation learning
BibRef
Mehrmohammadi, P.[Pooya],
Hatami, M.[Mohammad],
Moradi, P.[Parham],
A Graph-based Density Peaks Method by Employing Shortest Path for
Data Clustering,
IPRIA21(1-8)
IEEE DOI
2201
Sensitivity, Image analysis, Shape, Clustering methods,
Machine learning, Task analysis, Data clustering,
Shortest path distance
BibRef
Qian, R.[Rui],
Meng, T.J.[Tian-Jian],
Gong, B.Q.[Bo-Qing],
Yang, M.H.[Ming-Hsuan],
Wang, H.[Huisheng],
Belongie, S.[Serge],
Cui, Y.[Yin],
Spatiotemporal Contrastive Video Representation Learning,
CVPR21(6960-6970)
IEEE DOI
2111
Visualization, Codes, Semisupervised learning,
Spatial databases, Spatiotemporal phenomena
BibRef
Yuan, X.[Xin],
Lin, Z.[Zhe],
Kuen, J.[Jason],
Zhang, J.M.[Jian-Ming],
Wang, Y.L.[Yi-Lin],
Maire, M.[Michael],
Kale, A.[Ajinkya],
Faieta, B.[Baldo],
Multimodal Contrastive Training for Visual Representation Learning,
CVPR21(6991-7000)
IEEE DOI
2111
Training, Visualization, Image segmentation, Protocols, Scalability,
Semantics, Object detection
BibRef
Hu, W.[Wei],
Zhao, Q.[QiHao],
Huang, Y.[Yangyu],
Zhang, F.[Fan],
P-DIFF: Learning Classifier with Noisy Labels based on Probability
Difference Distributions,
ICPR21(1882-1889)
IEEE DOI
2105
Training, Neural networks, Benchmark testing,
Computational efficiency, Noise measurement, Task analysis
BibRef
Davis, J.[Jim],
Liang, T.[Tong],
Enouen, J.[James],
Ilin, R.[Roman],
Hierarchical Classification with Confidence using Generalized Logits,
ICPR21(1874-1881)
IEEE DOI
2105
Estimation, Probabilistic logic, Reliability
BibRef
Astorga, N.[Nicolás],
Huijse, P.[Pablo],
Protopapas, P.[Pavlos],
Estévez, P.[Pablo],
MPCC: Matching Priors and Conditionals for Clustering,
ECCV20(XXIII:658-677).
Springer DOI
2011
BibRef
Hadad, N.[Naama],
Wolf, L.B.[Lior B.],
Shahar, M.[Moni],
A Two-Step Disentanglement Method,
CVPR18(772-780)
IEEE DOI
1812
Training, Encoding, Task analysis, Image reconstruction,
Image color analysis, Visualization
Code:
WWW Link.
BibRef
Zhang, Z.[Zheng],
Liu, L.[Li],
Qin, J.[Jie],
Zhu, F.[Fan],
Shen, F.M.[Fu-Min],
Xu, Y.[Yong],
Shao, L.[Ling],
Shen, H.T.[Heng Tao],
Highly-Economized Multi-view Binary Compression for Scalable Image
Clustering,
ECCV18(XII: 731-748).
Springer DOI
1810
BibRef
Hjouji, A.,
Jourhmane, M.,
El-Mekkaoui, J.,
Qjidaa, H.,
El Khalfi, A.,
Image clustering based on hermetian positive definite matrix and
radial Jacobi moments,
ISCV18(1-6)
IEEE DOI
1807
Hermitian matrices, Jacobian matrices, Zernike polynomials,
image processing, pattern clustering,
Radial Jacobi moment
BibRef
Adil, B.H.,
Youssef, G.,
Abderrahim, E.Q.,
HVS-MRMR wrapper method for variables selection,
ISCV17(1-4)
IEEE DOI
1710
multilayer perceptrons, pattern classification,
classification problems, heuristic variable selection,
multilayer perceptron, Classification algorithms,
Heuristic Variable Selection HVS.
Minimum Redundancy Maximum Relevance MRMR, classification,
BibRef
Tasaki, H.[Hajime],
Lenz, R.[Reiner],
Chao, J.H.[Jin-Hui],
Simplex-based dimension estimation of topological manifolds,
ICPR16(3609-3614)
IEEE DOI
1705
Clustering algorithms, Estimation, Manifolds,
Principal component analysis, Topology
BibRef
Bandyopadhyay, S.,
Murty, M.N.,
Axioms to characterize efficient incremental clustering,
ICPR16(450-455)
IEEE DOI
1705
Algorithm design and analysis, Big Data, Clustering algorithms,
Computational complexity, Machine learning algorithms, Merging,
Partitioning, algorithms
BibRef
Spampinato, G.,
Bruna, A.R.,
Curti, S.,
d'Alto, V.,
Advanced low cost clustering system,
IPTA16(1-5)
IEEE DOI
1703
cameras
BibRef
Babaeian, A.,
Bayestehtashlc, A.,
Babaee, M.,
Bandarabadi, M.,
Ghadesi, A.,
Dourado, A.,
Angle constrained path for clustering of multiple manifolds,
ICIP15(4446-4450)
IEEE DOI
1512
BibRef
Slaoui, S.C.,
Lamari, Y.,
Clustering of large data based on the relational analysis,
ISCV15(1-7)
IEEE DOI
1506
integer programming
BibRef
Zhang, Q.L.[Qi-Lin],
Hua, G.[Gang],
Liu, W.[Wei],
Liu, Z.C.[Zi-Cheng],
Zhang, Z.Y.[Zheng-You],
Can Visual Recognition Benefit from Auxiliary Information in Training?,
ACCV14(I: 65-80).
Springer DOI
1504
BibRef
Jayaraman, D.[Dinesh],
Sha, F.[Fei],
Grauman, K.[Kristen],
Decorrelating Semantic Visual Attributes by Resisting the Urge to
Share,
CVPR14(1629-1636)
IEEE DOI
1409
attribute conflation
Also use structure.
BibRef
Feng, J.S.[Jia-Shi],
Jegelka, S.[Stefanie],
Yan, S.C.[Shui-Cheng],
Darrell, T.J.[Trevor J.],
Learning Scalable Discriminative Dictionary with Sample Relatedness,
CVPR14(1645-1652)
IEEE DOI
1409
BibRef
Moraes, R.M.[Ronei M.],
Machado, L.S.[Liliane S.],
Prade, H.[Henri],
Richard, G.[Gilles],
Supervised Classification Using Homogeneous Logical Proportions for
Binary and Nominal Features,
CIARP13(I:165-173).
Springer DOI
1311
BibRef
Song, C.F.[Chun-Feng],
Liu, F.[Feng],
Huang, Y.Z.[Yong-Zhen],
Wang, L.[Liang],
Tan, T.N.[Tie-Niu],
Auto-encoder Based Data Clustering,
CIARP13(I:117-124).
Springer DOI
1311
BibRef
Bagdanov, A.D.[Andrew D.],
del Bimbo, A.[Alberto],
di Fina, D.[Dario],
Karaman, S.[Svebor],
Lisanti, G.[Giuseppe],
Masi, I.[Iacopo],
Multi-target Data Association Using Sparse Reconstruction,
CIAP13(II:239-248).
Springer DOI
1309
Rely on multiple instances rather than average of them.
BibRef
Hernŕndez-Leňn, R.[Raudel],
Improving the Accuracy of CAR-based Classifiers by Combining Netconf
Measure and Dynamic -K Mechanism,
CIARP15(603-610).
Springer DOI
1511
BibRef
Earlier:
Dynamic K: A Novel Satisfaction Mechanism for CAR-Based Classifiers,
CIARP13(I:141-148).
Springer DOI
1311
BibRef
Hernández-León, R.[Raudel],
Hernández-Palancar, J.[José],
Carrasco-Ochoa, J.A.[Jesús Ariel],
Martínez-Trinidad, J.F.[José Francisco],
CAR-NF+: An Improved Version of CAR-NF Classifier,
CIARP12(455-462).
Springer DOI
1209
Class Association Rules
BibRef
Pinilla-Buitrago, L.A.[Laura Alejandra],
Martínez-Trinidad, J.F.[José Francisco],
New Penalty Scheme for Optimal Subsequence Bijection,
CIARP13(I:206-213).
Springer DOI
1311
BibRef
Cope, J.S.[James S.],
Remagnino, P.[Paolo],
Classification of High-Dimension PDFs Using the Hungarian Algorithm,
SSSPR12(727-733).
Springer DOI
1211
BibRef
And:
Utilizing the Hungarian Algorithm for Improved Classification of
High-Dimension Probability Density Functions in an Image Recognition
Problem,
ACIVS12(268-277).
Springer DOI
1209
BibRef
Dubout, C.[Charles],
Fleuret, F.[Francois],
Tasting families of features for image classification,
ICCV11(929-936).
IEEE DOI
1201
Different types of features.
BibRef
Zdunek, R.[Rafal],
Uni-orthogonal Nonnegative Tucker Decomposition for Supervised Image
Classification,
CIAP11(I: 88-97).
Springer DOI
1109
BibRef
Yáńez-Márquez, C.[Cornelio],
López-Yáńez, I.[Itzamá],
Sáenz Morales, G.D.[Guadalupe De_la_Luz],
Analysis and Prediction of Air Quality Data with the Gamma Classifier,
CIARP08(651-658).
Springer DOI
0809
BibRef
Lukin, V.V.[Vladimir V.],
Ponomarenko, N.N.[Nikolay N.],
Kurekin, A.A.[Andrey A.],
Lever, K.[Kenneth],
Pogrebnyak, O.[Oleksiy],
Sanchez Fernandez, L.P.[Luis Pastor],
Approaches to Classification of Multichannel Images,
CIARP06(794-803).
Springer DOI
0611
BibRef
Awad, M.,
Wang, L.[Lei],
Chin, Y.H.[Yu-Han],
Khan, L.,
Chen, G.,
Chebil, F.,
A framework for image classification,
Southwest06(134-138).
IEEE DOI
0603
BibRef
Beder, C.[Christian],
Agglomerative Grouping of Observations by Bounding Entropy Variation,
DAGM05(101).
Springer DOI
0509
BibRef
Zhou, D.Y.[Deng-Yong],
Schölkopf, B.[Bernhard],
Learning from Labeled and Unlabeled Data Using Random Walks,
DAGM04(237-244).
Springer DOI
0505
BibRef
Zhu, H.[Hui],
Huang, J.H.[Jian-Hua],
Tang, X.L.[Xiang-Long],
Comparing decision boundary curvature,
ICPR04(III: 450-453).
IEEE DOI
0409
BibRef
Tomiya, M.[Mitsuyoshi],
Kikuchi, S.[Seitaro],
Application of Modified Counter-Propagation for Satellite Image
Classification,
PCV02(B: 277).
0305
BibRef
Veeramachaneni, S.,
Fujisawa, H.,
Liu, C.L.[Cheng-Lin],
Nagy, G.,
Style-conscious quadratic field classifier,
ICPR02(II: 72-75).
IEEE DOI
0211
BibRef
Aujol, J.F.[Jean-François],
Aubert, G.[Gilles],
Blanc-Féraud, L.[Laure],
Supervised classification for textured images,
INRIARR-4640, Novembre 2002.
HTML Version.
0306
BibRef
Aubert, G.[Gilles],
Blanc-Feraud, L.[Laure],
March, R.[Riccardo],
Gamma-convergence of discrete functionals with non convex perturbation
for image classification,
INRIARR-4560, September 2002.
HTML Version.
0211
BibRef
Barata, T.,
Pina, P.,
Improving classification rates by modelling the clusters of trainings
sets in features space using mathematical morphology operators,
ICPR02(II: 328-331).
IEEE DOI
0211
BibRef
And:
ICPR02(IV: 90-93).
IEEE DOI
0211
BibRef
Carrilero, A.C.,
Maitre, H.,
Roux, M.,
Material determination from reflectance properties in aerial urban
images,
CIAP01(553-558).
IEEE DOI
0210
BibRef
Elad, M.[Michael],
Hel-Or, Y.[Yacov],
Keshet, R.[Renato],
Pattern Detection Using a Maximal Rejection Classifier,
VF01(514 ff.).
Springer DOI
0209
BibRef
de Souza, K.M.A.,
Kent, J.T.,
Mardia, K.V.,
Estimation of Objects in Highly Variable Images Using Markov Chain
Monte Carlo,
BMVC97(xx-yy).
HTML Version.
0209
BibRef
Hoque, S.,
Sirlantzis, K.,
Fairhurst, M.C.,
Bit plane decomposition and the scanning n-tuple classifier,
FHR02(207-211).
IEEE Top Reference.
0209
BibRef
Li, C.H.,
Constrained Minimum Cut for Classification Using Labeled
and Unlabeled Data,
CVPR01(II:597-602).
IEEE DOI
0110
BibRef
Chen, H.,
Meer, P.,
Tyler, D.E.,
Robust Regression for Data with Multiple Structures,
CVPR01(I:1069-1075).
IEEE DOI
0110
To be able to
cope with data containing multiple structures the techniques
innate to vision (Hough and RANSAC) should be combined
with the robust methods customary in statistics.
BibRef
Duin, R.P.W.[Robert P.W.],
Classifiers in Almost Empty Spaces,
ICPR00(Vol II: 1-7).
IEEE DOI
0009
BibRef
Hartelius, K.,
A CART Extension using Quadratic Decision Borders,
SCIA99(Statistical Methods).
BibRef
9900
Erenshteyn, R.,
Saxe, D.,
Laskov, P.,
Foulds, R.,
Distributed output encoding for multi-class pattern recognition,
CIAP99(229-234).
IEEE DOI
9909
BibRef
Abrantes, A.J.,
Marques, J.S.,
A Method for Dynamic Clustering of Data,
BMVC98(xx-yy).
BibRef
9800
Simon, U.[Ute],
Berndtgen, M.[Manfred],
WaveStat: Cluster Analysis of Image Data and Wavelet Coefficients,
ICPR98(Vol II: 1622-1625).
IEEE DOI
9808
BibRef
Shah, S.[Shishir],
Aggarwal, J.,
A Hybrid Architecture for Performance Reasoning in
Classification Systems,
ICPR98(Vol I: 326-330).
IEEE DOI
9808
BibRef
Le Bourgeois, F.[Frank],
Frelicot, C.[Carl],
A Pretopology-Based Supervised Pattern Classifier,
ICPR98(Vol I: 106-109).
IEEE DOI
9808
BibRef
Le Bourgeois, F.[Frank],
Emptoz, H.[Hubert],
Pretopological approach for supervised learning,
ICPR96(IV: 256-260).
IEEE DOI
9608
(I.N.S.A. de Lyon, F)
BibRef
Ho, T.,
Kleinberg, E.,
Building Projectable Classifiers of Arbitrary Complexity,
ICPR96(II: 880-885).
IEEE DOI
9608
(ATT Bell Laboratories, USA)
BibRef
Sinclair, D.,
Cluster Based Texture Analysis,
ICPR96(II: 825-829).
IEEE DOI
9608
(Technical Univ. Graz, A)
BibRef
Chang, I.,
Loew, M.,
Classification with Nonexclusive Patterns,
ICPR96(II: 116-120).
IEEE DOI
9608
(The George Washington Univ., USA)
BibRef
Chang, I.,
Loew, M.,
Pattern recognition with new class discovery,
CVPR91(438-443).
IEEE DOI
0403
BibRef
Sipper, M.,
Yeshurun, Y.,
Pattern classification using teurons,
ICPR90(I: 433-437).
IEEE DOI
9006
BibRef
Hilbert, E.E.[Edward E.],
Cluster Compression Algorithm,
A Joint Clustering Data Compression Concept,
JPLPublication 77-43,
December 1, 1977. (NASA, JPL, CIT, Pasadena, CA 91103).
Cluster compression algorithm - Landsat application area: describe
by cluster, represent points coded from cluster; removal of
redundant data method suited to computer interpretation.
BibRef
7712
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Density Based Clustering .