7.1.10.4 Small Objects, Detect Small Objects

Chapter Contents (Back)
Object Detection. Small Objects.
See also ATR -- Small Targets IR, Infra-Red, Thermal, Applications.

Shirvaikar, M.V.[Mukul V.], and Trivedi, M.M.[Mohan M.],
A Neural Network Filter to Detect Small Targets in High-Clutter Backgrounds,
TNN(6), No. 1, January 1995, pp. 252-257. BibRef 9501

French, P.A., Zeidler, J.R., Ku, W.H.,
Enhanced Detectability of Small Objects in Correlated Clutter Using an Improved 2-D Adaptive Lattice Algorithm,
IP(6), No. 3, March 1997, pp. 383-397.
IEEE DOI 9703
< BibRef
Earlier:
An improved 2-D adaptive lattice filtering algorithm and its application to detection of small objects in correlated clutter,
ICIP94(I: 765-769).
IEEE DOI 9411
BibRef

Silva, D.M., Abdou, I.E., Warren, R.E.,
Optimum Detection of Small Targets in A Cluttered Background,
OptEng(37), No. 1, January 1998, pp. 83-92. 9802
BibRef

Chapple, P.B., Bertilone, D.C., Caprari, R.S., Newsam, G.N.,
Stochastic model-based processing for detection of small targets in non-gaussian natural imagery,
IP(10), No. 4, April 2001, pp. 554-564.
IEEE DOI 0104
BibRef

Segl, K.[Karl], Kaufmann, H.[Hermann],
Detection of small objects from high-resolution panchromatic satellite imagery based on supervised image segmentation,
GeoRS(39), No. 9, September 2001, pp. 2080-2083.
IEEE Top Reference. 0111
BibRef

Abe, D.[Daisuke], Segawa, E.[Eigo], Nakayama, O.[Osafumi], Shiohara, M.[Morito], Sasaki, S.[Shigeru], Sugano, N.[Nobuyuki], Kanno, H.[Hajime],
Robust Small-Object Detection for Outdoor Wide-Area Surveillance,
IEICE(E91-D), No. 7, July 2008, pp. 1922-1928.
DOI Link 0807
BibRef

Bai, X.Z.[Xiang-Zhi], Zhou, F.[Fugen],
Analysis of new top-hat transformation and the application for infrared dim small target detection,
PR(43), No. 6, June 2010, pp. 2145-2156.
Elsevier DOI 1003
Top-hat transformation; Structuring element; Infrared dim small target; Target detection BibRef

Deng, H.[He], Wei, Y.[Yantao], Tong, M.[Mingwen],
Background suppression of small target image based on fast local reverse entropy operator,
IET-CV(7), No. 5, October 2013, pp. 405-413.
DOI Link 1402
entropy BibRef

Zhang, M., Wu, T., Beeman, S.C., Cullen-McEwen, L., Bertram, J.F., Charlton, J.R., Baldelomar, E., Bennett, K.M.,
Efficient Small Blob Detection Based on Local Convexity, Intensity and Shape Information,
MedImg(35), No. 4, April 2016, pp. 1127-1137.
IEEE DOI 1604
biomedical MRI BibRef

Park, J.[Jinhee], Kwon, D.[Dokyeong], Choi, B.W.[Bo Won], Kim, G.Y.[Ga Young], Kim, K.Y.[Kwang Yong], Kwon, J.[Junseok],
Small object segmentation with fully convolutional network based on overlapping domain decomposition,
MVA(30), No. 4, June 2019, pp. 707-716.
Springer DOI 1906
BibRef

Shi, S., Liang, X., Shui, P., Zhang, J., Zhang, S.,
Low-Velocity Small Target Detection With Doppler-Guided Retrospective Filter in High-Resolution Radar at Fast Scan Mode,
GeoRS(57), No. 11, November 2019, pp. 8937-8953.
IEEE DOI 1911
Clutter, Sea surface, Market research, Radar clutter, Doppler effect, Radar detection, Doppler-guided retrospective filter (DGRF), structural trend BibRef

Guo, L.[Lie], Wang, D.X.[Dong-Xing], Li, L.H.[Lin-Hui], Feng, J.D.[Jin-Dun],
Accurate and fast single shot multibox detector,
IET-CV(14), No. 6, September 2020, pp. 391-398.
DOI Link 2010
Context enhancement. BibRef

Courtrai, L.[Luc], Pham, M.T.[Minh-Tan], Lefèvre, S.[Sébastien],
Small Object Detection in Remote Sensing Images Based on Super-Resolution with Auxiliary Generative Adversarial Networks,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Uzair, M., Brinkworth, R.S., Finn, A.,
Bio-Inspired Video Enhancement for Small Moving Target Detection,
IP(30), 2021, pp. 1232-1244.
IEEE DOI 2012
Object detection, Cameras, Photoreceptors, Biological system modeling, Computational modeling, background modeling BibRef

Stojnic, V.[Vladan], Risojevic, V.[Vladimir], Muštra, M.[Mario], Jovanovic, V.[Vedran], Filipi, J.[Janja], Kezic, N.[Nikola], Babic, Z.[Zdenka],
A Method for Detection of Small Moving Objects in UAV Videos,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Hou, Q.S.[Qing-Shan], Xing, J.S.[Jin-Sheng],
KSSD: Single-stage multi-object detection algorithm with higher accuracy,
IET-IPR(14), No. 15, 15 December 2020, pp. 3651-3661.
DOI Link 2103
Kullback-Leibler Single Shot Multibox Detector. For Small and medium objects. BibRef

Liu, B.Y.[Bi-Yuan], Chen, H.X.[Huai-Xin], Huang, Z.[Zhou], Liu, X.[Xing], Yang, Y.Z.[Yun-Zhi],
ZoomInNet: A Novel Small Object Detector in Drone Images with Cross-Scale Knowledge Distillation,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Liu, S.[Shuai], Tang, J.[Jialan],
Modified Deep Reinforcement Learning with Efficient Convolution Feature for Small Target Detection in VHR Remote Sensing Imagery,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Zheng, Q.Y.[Qi-Yuan], Chen, Y.[Ying],
Interactive multi-scale feature representation enhancement for small object detection,
IVC(108), 2021, pp. 104128.
Elsevier DOI 2104
Object detection, Small objects, Deep learning, Multi-scale feature fusion BibRef

Jia, F.W.[Feng-Wei], Wang, X.[Xuan], Guan, J.[Jian], Li, H.[Huale], Qiu, C.[Chen], Qi, S.[Shuhan],
WRGPruner: A new model pruning solution for tiny salient object detection,
IVC(109), 2021, pp. 104143.
Elsevier DOI 2105
Model compression, Model pruning, Salient objects detection, Small objects detection BibRef

Bosquet, B.[Brais], Mucientes, M.[Manuel], Brea, V.M.[Víctor M.],
STDnet-ST: Spatio-temporal ConvNet for small object detection,
PR(116), 2021, pp. 107929.
Elsevier DOI 2106
Small object detection, Spatio-temporal convolutional network, Object linking BibRef

Li, Z.K.[Zhao-Kun], Liu, X.L.[Xue-Liang], Zhao, Y.[Ye], Liu, B.[Bo], Huang, Z.[Zhen], Hong, R.C.[Ri-Chang],
A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs,
JVCIR(77), 2021, pp. 103058.
Elsevier DOI 2106
Objects of multiple scales. Multi-scale. Aerial images, UAVs, Small-size targets, Mutil-scale aggregation, Attention, Model compression BibRef

Lee, G.[Geonsoo], Hong, S.[Sungeun], Cho, D.H.[Dong-Hyeon],
Self-Supervised Feature Enhancement Networks for Small Object Detection in Noisy Images,
SPLetters(28), 2021, pp. 1026-1030.
IEEE DOI 2106
Feature extraction, Object detection, Noise measurement, Training, Detectors, Task analysis, Visualization, Small object detection, noisy image BibRef

Liu, G.[Gen], Han, J.[Jin], Rong, W.Z.[Wen-Zhong],
Feedback-driven loss function for small object detection,
IVC(111), 2021, pp. 104197.
Elsevier DOI 2106
Small object detection, Loss function, Feedback-driven, Loss distribution balance BibRef

Wu, J.Q.[Jing-Qian], Xu, S.[Shibiao],
From Point to Region: Accurate and Efficient Hierarchical Small Object Detection in Low-Resolution Remote Sensing Images,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
BibRef

He, Z.[Zheng], Huang, L.[Li], Zeng, W.J.[Wei-Jiang], Zhang, X.N.[Xi-Ning], Jiang, Y.X.[Yong-Xin], Zou, Q.[Qin],
Elongated Small Object Detection from Remote Sensing Images Using Hierarchical Scale-Sensitive Networks,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Ezzy, H.[Haitham], Charter, M.[Motti], Bonfante, A.[Antonello], Brook, A.[Anna],
How the Small Object Detection via Machine Learning and UAS-Based Remote-Sensing Imagery Can Support the Achievement of SDG2: A Case Study of Vole Burrows,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Huang, X.[Xiao], Qiao, H.[Hong], Li, H.[Hui], Jiang, Z.H.[Zhi-Hong],
A bioinspired retinal neural network for accurately extracting small-target motion information in cluttered backgrounds,
IVC(114), 2021, pp. 104266.
Elsevier DOI 2109
Bioinspiration, Small-target motion detector, Robotic visual perception, Spatiotemporal energy model BibRef

Yin, Q.J.[Qun-Jie], Yang, W.Z.[Wen-Zhu], Ran, M.Y.[Meng-Ying], Wang, S.[Sile],
FD-SSD: An improved SSD object detection algorithm based on feature fusion and dilated convolution,
SP:IC(98), 2021, pp. 116402.
Elsevier DOI 2109
Small object detection, Multi-layer feature fusion, Multi branch residual dilated convolution, Context information enhancement BibRef

Mu, J.Z.[Jin-Zhen], Li, S.[Shuang], Liu, Z.M.[Zong-Ming], Zhou, Y.[Yan],
Integration of gradient guidance and edge enhancement into super-resolution for small object detection in aerial images,
IET-IPR(15), No. 13, 2021, pp. 3037-3052.
DOI Link 2110
BibRef

Sun, L.[Long], Chen, J.[Jie], Feng, D.Z.[Da-Zheng], Xing, M.D.[Meng-Dao],
Parallel Ensemble Deep Learning for Real-Time Remote Sensing Video Multi-Target Detection,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
Small targets, from UAV image. Real-time. BibRef

Xu, X.K.[Xiang-Kai], Feng, Z.J.[Zhe-Jun], Cao, C.Q.[Chang-Qing], Li, M.Y.[Meng-Yuan], Wu, J.[Jin], Wu, Z.[Zengyan], Shang, Y.[Yajie], Ye, S.[Shubing],
An Improved Swin Transformer-Based Model for Remote Sensing Object Detection and Instance Segmentation,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Kim, M.[Munhyeong], Jeong, J.[Jongmin], Kim, S.[Sungho],
ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object Detection in Aerial Image,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Chen, D.L.[De-Lei], Zhang, L.[Lei], Huang, H.[Hua],
Robust Extraction and Super-Resolution of Low-Resolution Flying Airplane From Satellite Video,
GeoRS(60), 2022, pp. 1-16.
IEEE DOI 2112
Airplanes, Satellites, Image resolution, Atmospheric modeling, Shape, Image reconstruction, Superresolution, Airplane, matting, multiframe, symmetry BibRef

Zhang, J.[Jinpu], Zhang, L.[Lei], Liu, T.Y.[Tian-Yu], Wang, Y.H.[Yue-Huan],
YOLSO: You Only Look Small Object,
JVCIR(81), 2021, pp. 103348.
Elsevier DOI 2112
Small object detection, Background-aware, Granular feature aggregation, Accurate location, High speed BibRef

Chen, G.[Guang], Wang, H.T.[Hai-Tao], Chen, K.[Kai], Li, Z.J.[Zhi-Jun], Song, Z.[Zida], Liu, Y.L.[Yin-Long], Chen, W.K.[Wen-Kai], Knoll, A.[Alois],
A Survey of the Four Pillars for Small Object Detection: Multiscale Representation, Contextual Information, Super-Resolution, and Region Proposal,
SMCS(52), No. 2, February 2022, pp. 936-953.
IEEE DOI 2201
Object detection, Feature extraction, Detectors, Image resolution, Machine learning, Roads, Task analysis, Contextual information, super-resolution BibRef

Fang, X.L.[Xiao-Lin], Hu, F.[Fan], Yang, M.[Ming], Zhu, T.X.[Tong-Xin], Bi, R.[Ran], Zhang, Z.H.[Zeng-Hui], Gao, Z.Y.[Zhi-Yuan],
Small object detection in remote sensing images based on super-resolution,
PRL(153), 2022, pp. 107-112.
Elsevier DOI 2201
Remote sensing images, Object detection, Super-Resolution BibRef

Qi, G.[Guanqiu], Zhang, Y.[Yuanchuan], Wang, K.[Kunpeng], Mazur, N.[Neal], Liu, Y.[Yang], Malaviya, D.[Devanshi],
Small Object Detection Method Based on Adaptive Spatial Parallel Convolution and Fast Multi-Scale Fusion,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Gao, X.[Xin], Ram, S.[Sundaresh], Philip, R.C.[Rohit C.], Rodríguez, J.J.[Jeffrey J.], Szep, J.[Jeno], Shao, S.[Sicong], Satam, P.[Pratik], Pacheco, J.[Jesús], Hariri, S.[Salim],
Selecting Post-Processing Schemes for Accurate Detection of Small Objects in Low-Resolution Wide-Area Aerial Imagery,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Huang, Z.H.[Zhen-Hua], Yang, S.Z.[Shun-Zhi], Zhou, M.C.[Meng-Chu], Li, Z.T.[Zhe-Tao], Gong, Z.[Zheng], Chen, Y.[Yunwen],
Feature Map Distillation of Thin Nets for Low-Resolution Object Recognition,
IP(31), 2022, pp. 1364-1379.
IEEE DOI 2202
Knowledge engineering, Noise measurement, Feature extraction, Training, Object recognition, Image reconstruction, machine learning BibRef

Su, N.[Nan], He, J.[Jiayue], Yan, Y.M.[Yi-Ming], Zhao, C.H.[Chun-Hui], Xing, X.W.[Xiang-Wei],
SII-Net: Spatial Information Integration Network for Small Target Detection in SAR Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Seo, J.[Junghoon], Park, W.[Wonkyu], Kim, T.[Taejung],
Feature-Based Approach to Change Detection of Small Objects from High-Resolution Satellite Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Amudhan, A.N., Sudheer, A.P.,
Lightweight and computationally faster Hypermetropic Convolutional Neural Network for small size object detection,
IVC(119), 2022, pp. 104396.
Elsevier DOI 2202
Small-size object detection, Real-time, YOLO, Robotic vision, Faster RCNN, Light-weight models BibRef

Zhang, Y.[Yan], Liu, X.[Xi], Wa, S.Y.[Shi-Yun], Chen, S.Y.[Shu-Yu], Ma, Q.[Qin],
GANsformer: A Detection Network for Aerial Images with High Performance Combining Convolutional Network and Transformer,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhou, L.M.[Li-Ming], Zheng, C.[Chang], Yan, H.X.[Hao-Xin], Zuo, X.Y.[Xian-Yu], Liu, Y.[Yang], Qiao, B.[Baojun], Yang, Y.[Yong],
RepDarkNet: A Multi-Branched Detector for Small-Target Detection in Remote Sensing Images,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Hao, S.Y.[Si-Yuan], Wu, B.[Bin], Zhao, K.[Kun], Ye, Y.X.[Yuan-Xin], Wang, W.[Wei],
Two-Stream Swin Transformer with Differentiable Sobel Operator for Remote Sensing Image Classification,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Deng, C.F.[Chun-Fang], Wang, M.M.[Meng-Meng], Liu, L.[Liang], Liu, Y.[Yong], Jiang, Y.[Yunliang],
Extended Feature Pyramid Network for Small Object Detection,
MultMed(24), No. 2022, pp. 1968-1979.
IEEE DOI 2204
Feature extraction, Object detection, Detectors, Semantics, Superresolution, Signal resolution, Pipelines, deep learning, Small object detection BibRef

Koyun, O.C.[Onur Can], Keser, R.K.[Reyhan Kevser], Akkaya, I.B.[Ibrahim Batuhan], Töreyin, B.U.[Behçet Ugur],
Focus-and-Detect: A small object detection framework for aerial images,
SP:IC(104), 2022, pp. 116675.
Elsevier DOI 2204
Object detection, Small object detection, Region search, Aerial images BibRef

Zhu, R.X.[Rui-Xi], Zhuang, L.[Long],
Unsupervised Infrared Small-Object-Detection Approach of Spatial-Temporal Patch Tensor and Object Selection,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Qin, H.[Hong], Wu, Y.R.[Yi-Rong], Dong, F.M.[Fang-Min], Sun, S.F.[Shui-Fa],
Dense sampling and detail enhancement network: Improved small object detection based on dense sampling and detail enhancement,
IET-CV(16), No. 4, 2022, pp. 307-316.
DOI Link 2205
dense sampling, detail enhancement, object detection BibRef

Hu, M.S.[Meng-Shun], Xiao, J.[Jing], Liao, L.[Liang], Wang, Z.[Zheng], Lin, C.W.[Chia-Wen], Wang, M.[Mi], Satoh, S.[Shin'Ichi],
Capturing Small, Fast-Moving Objects: Frame Interpolation via Recurrent Motion Enhancement,
CirSysVideo(32), No. 6, June 2022, pp. 3390-3406.
IEEE DOI 2206
Interpolation, Optical feedback, Adaptive optics, Optical imaging, Kernel, Motion estimation, Estimation, Video frame interpolation, large motions BibRef

Wang, J.Y.[Jing-Yu], Zhang, G.J.[Guo-Jun], Zhang, K.[Ke], Zhao, Y.[Yue], Wang, Q.[Qi], Li, X.L.[Xue-Long],
Detection of Small Aerial Object Using Random Projection Feature With Region Clustering,
Cyber(52), No. 5, May 2022, pp. 3957-3970.
IEEE DOI 2206
Feature extraction, Object detection, Image color analysis, Heuristic algorithms, Colored noise, Robustness, Task analysis, variable search region clustering (VSRC) BibRef

Tong, K.[Kang], Wu, Y.[Yiquan],
Deep learning-based detection from the perspective of small or tiny objects: A survey,
IVC(123), 2022, pp. 104471.
Elsevier DOI 2206
Object detection, Small or tiny objects, Deep learning, Datasets, Convolutional neural networks BibRef

Gong, H.[Hang], Mu, T.K.[Ting-Kui], Li, Q.X.[Qiu-Xia], Dai, H.S.[Hai-Shan], Li, C.L.[Chun-Lai], He, Z.P.[Zhi-Ping], Wang, W.J.[Wen-Jing], Han, F.[Feng], Tuniyazi, A.[Abudusalamu], Li, H.Y.[Hao-Yang], Lang, X.C.[Xue-Chan], Li, Z.Y.[Zhi-Yuan], Wang, B.[Bin],
Swin-Transformer-Enabled YOLOv5 with Attention Mechanism for Small Object Detection on Satellite Images,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef


Liu, Z.[Ze], Lin, Y.T.[Yu-Tong], Cao, Y.[Yue], Hu, H.[Han], Wei, Y.X.[Yi-Xuan], Zhang, Z.[Zheng], Lin, S.[Stephen], Guo, B.N.[Bai-Ning],
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,
ICCV21(9992-10002)
IEEE DOI
WWW Link.
DOI Link 2203
Award, Marr Prize. Image segmentation, Visualization, Computational modeling, Semantics, Object detection, Computer architecture, grouping and shape BibRef

Swin-Transformer-Object-Detection,
Online2021.
WWW Link. Code, Swin Transform. BibRef 2100

Kang, S.[Sheng], Wang, Y.[Yang], Cao, Y.[Yang], Zha, Z.J.[Zheng-Jun],
Long-Range Feature Dependencies Capturing for Low-Resolution Image Classification,
MMMod22(II:3-14).
Springer DOI 2203
BibRef

Hu, Y.X.[Ya-Xuan], Dai, Y.H.[Yue-Hong], Wang, Z.X.[Zhong-Xiang],
Real-time Detection of Tiny Objects Based on a Weighted Bi-directional FPN,
MMMod22(I:3-14).
Springer DOI 2203
Best paper section BibRef

Feng, C.J.[Cheng-Jian], Zhong, Y.[Yujie], Huang, W.L.[Wei-Lin],
Exploring Classification Equilibrium in Long-Tailed Object Detection,
ICCV21(3397-3406)
IEEE DOI 2203
Training, Codes, Computational modeling, Training data, Object detection, Detectors, BibRef

Seo, J., Kim, T.,
Comparison of Pixel-based and Feature-based Approach for Small Object Change Detection,
ISPRS21(B3-2021: 353-357).
DOI Link 2201
BibRef

Chen, J.[Jun], Mai, H.[HongSheng], Luo, L.[Linbo], Chen, X.Q.[Xiao-Qiang], Wu, K.[Kangle],
Effective Feature Fusion Network in BIFPN for Small Object Detection,
ICIP21(699-703)
IEEE DOI 2201
Training, Graphics, Fuses, Memory management, Object detection, Feature extraction, Remote sensing, deep learning, feature fusion BibRef

Yoo, J.[Jaehyoung], Lee, D.W.[Dong-Wook], Son, C.Y.[Chang-Yong], Jung, S.[Sangil], Yoo, B.[ByungIn], Choi, C.K.[Chang-Kyu], Han, J.J.[Jae-Joon], Han, B.H.[Bo-Hyung],
RaScaNet: Learning Tiny Models by Raster-Scanning Images,
CVPR21(13668-13677)
IEEE DOI 2111
Image sensors, Deep learning, Visualization, Memory management, Signal processing algorithms, Feature extraction, System-on-chip BibRef

Qi, L.[Lu], Kuen, J.[Jason], Gu, J.[Jiuxiang], Lin, Z.[Zhe], Wang, Y.[Yi], Chen, Y.[Yukang], Li, Y.W.[Yan-Wei], Jia, J.Y.[Jia-Ya],
Multi-Scale Aligned Distillation for Low-Resolution Detection,
CVPR21(14438-14448)
IEEE DOI 2111
Training, Knowledge engineering, Runtime, Fuses, Computational modeling, Object detection, Feature extraction BibRef

Huang, D.M.[Dong-Mei], Zhang, J.[Jihan], Hu, T.T.[Ting-Ting], Fuchikami, R.[Ryuji], Ikenaga, T.[Takashi],
Contextual Information based Network with High-Frequency Feature Fusion for High Frame Rate and Ultra-Low Delay Small-Scale Object Detection,
MVA21(1-5)
DOI Link 2109
Correlation, Graphics processing units, Object detection, Feature extraction, Delays, High frequency BibRef

Gong, Y.[Yuqi], Yu, X.H.[Xue-Hui], Ding, Y.[Yao], Peng, X.K.[Xiao-Ke], Zhao, J.[Jian], Han, Z.J.[Zhen-Jun],
Effective Fusion Factor in FPN for Tiny Object Detection,
WACV21(1159-1167)
IEEE DOI 2106
Statistical analysis, Estimation, Object detection, Detectors, Propulsion BibRef

Xu, C.[Chang], Wang, J.W.[Jin-Wang], Yang, W.[Wen], Yu, L.[Lei],
Dot Distance for Tiny Object Detection in Aerial Images,
EarthVision21(1192-1201)
IEEE DOI 2109
Measurement, Object detection, Detectors, Euclidean distance, Pattern recognition BibRef

Wang, J.W.[Jin-Wang], Yang, W.[Wen], Guo, H.[Haowen], Zhang, R.X.[Rui-Xiang], Xia, G.S.[Gui-Song],
Tiny Object Detection in Aerial Images,
ICPR21(3791-3798)
IEEE DOI 2105
Location awareness, Earth, Neural networks, Object detection, Detectorss, Performance gain, Benchmark testing, convolutional neural network BibRef

Ji, H.[Hong], Gao, Z.[Zhi], Liu, X.D.[Xiao-Dong], Zhang, Y.J.[Yong-Jun], Mei, T.C.[Tian-Can],
Small Object Detection Leveraging on Simultaneous Super-resolution,
ICPR21(803-810)
IEEE DOI 2105
Training, Image segmentation, Superresolution, Object detection, Detectors, Generative adversarial networks BibRef

Bosquet, B.[Brais], Mucientes, M.[Manuel], Brea, V.M.[Víctor M.],
Correlation-based ConvNet for Small Object Detection in Videos,
ICPR21(1979-1984)
IEEE DOI 2105
Correlation, Viterbi algorithm, Object detection, Pattern recognition, Convolutional neural networks BibRef

Gu, Y.[Yi], Li, J.[Jie], Wu, C.[Chentao], Jia, W.J.[Wei-Jia], Chen, J.P.[Jian-Ping],
Small Object Detection by Generative and Discriminative Learning,
ICPR21(1926-1933)
IEEE DOI 2105
Object detection, Detectors, Feature extraction, Generators, Pattern recognition, High frequency, Convolutional neural networks BibRef

Drid, K.[Khaoula], Allaoui, M.[Mebarka], Kherfi, M.L.[Mohammed Lamine],
Object Detector Combination for Increasing Accuracy and Detecting More Overlapping Objects,
ICISP20(290-296).
Springer DOI 2009
BibRef

Zhang, J.Y.[Jia-Yi], Liu, Y.[Ying], Liu, Z.Q.[Zhi-Qiang],
An Improved FAsT_Match Algorithm for Micro Parts Detection,
ICIVC20(24-28)
IEEE DOI 2009
Classification algorithms, Image segmentation, Shape, Image recognition, Approximation algorithms, Target tracking, micro assembly BibRef

Liu, Z., Gao, G., Sun, L., Fang, L.,
IPG-Net: Image Pyramid Guidance Network for Small Object Detection,
Anti-UAV20(4422-4430)
IEEE DOI 2008
Feature extraction, Object detection, Fuses, Semantics, Convolution, Task analysis, Streaming media BibRef

Chen, P., Hsieh, J., Wang, C., Liao, H.M.[H. Mark],
Recursive Hybrid Fusion Pyramid Network for Real-Time Small Object Detection on Embedded Devices,
LPCV20(1612-1621)
IEEE DOI 2008
Feature extraction, Object detection, Computational modeling, Iron, Detectors, Computational efficiency, Real-time systems BibRef

van Etten, A.[Adam],
Satellite Imagery Multiscale Rapid Detection with Windowed Networks,
WACV19(735-743)
IEEE DOI 1904
Small objects. application program interfaces, geophysical image processing, geophysical techniques, BibRef

Yang, X., Yang, J., Yan, J., Zhang, Y., Zhang, T., Guo, Z., Sun, X., Fu, K.,
SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects,
ICCV19(8231-8240)
IEEE DOI 2004
Code, Object Detection.
WWW Link. feature extraction, image fusion, object detection, SCRDet, robust detection, natural images, Semantics BibRef

Liu, L., Muelly, M., Deng, J., Pfister, T., Li, L.,
Generative Modeling for Small-Data Object Detection,
ICCV19(6072-6080)
IEEE DOI 2004
learning (artificial intelligence), neural nets, object detection, machine learning, Generative adversarial networks BibRef

Razaak, M.[Manzoor], Kerdegari, H.[Hamideh], Argyriou, V.[Vasileios], Remagnino, P.[Paolo],
Multi-scale Feature Fused Single Shot Detector for Small Object Detection in UAV Images,
CVS19(778-786).
Springer DOI 1912
BibRef

Yang, Z.X.[Zi-Xuan], Chai, X.J.[Xiu-Juan], Wang, R.P.[Rui-Ping], Guo, W.J.[Wei-Jun], Wang, W.X.[Wei-Xuan], Pu, L.[Li], Chen, X.L.[Xi-Lin],
Prior Knowledge Guided Small Object Detection on High-Resolution Images,
ICIP19(86-90)
IEEE DOI 1910
small object detection, high-resolution image, prior knowledge, convolutional neural network BibRef

LaLonde, R., Zhang, D., Shah, M.,
ClusterNet: Detecting Small Objects in Large Scenes by Exploiting Spatio-Temporal Information,
CVPR18(4003-4012)
IEEE DOI 1812
Object detection, Detectors, Feature extraction, Proposals, Search problems, Cameras BibRef

Wilms, C.[Christian], Frintrop, S.[Simone],
AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects,
ACCV18(II:678-694).
Springer DOI 1906
BibRef

Menikdiwela, M., Nguyen, C., Li, H., Shaw, M.,
CNN-based small object detection and visualization with feature activation mapping,
IVCNZ17(1-5)
IEEE DOI 1902
cellular neural nets, feature extraction, object detection, fined-tuned faster R-CNN, feature activation mapping, feature activation map BibRef

Zhou, X.Q., Zou, Y.X., Wang, Y.,
Accurate small object detection via density map aided saliency estimation,
ICIP17(425-429)
IEEE DOI 1803
Estimation, Image reconstruction, Image segmentation, Object detection, Task analysis, Training, superpixel BibRef

Mittal, S.[Sudhandhu], Karthik, M.S.[M. Siva], Kumar, S.[Suryansh], Krishna, K.M.[K. Madhava],
Small Object Discovery and Recognition Using Actively Guided Robot,
ICPR14(4334-4339)
IEEE DOI 1412
Accuracy BibRef

Razakarivony, S.[Sebastien], Jurie, F.[Frederic],
Discriminative Autoencoders for Small Targets Detection,
ICPR14(3528-3533)
IEEE DOI 1412
Manifolds BibRef

Lin, T.[Tao], Marot, J.[Julien], Bourennane, S.[Salah],
Small Target Detection Improvement in Hyperspectral Image,
ACIVS13(460-469).
Springer DOI 1311
BibRef

Samur, R., Zagorodnov, V.,
Segmenting Small Regions in the Presence of Noise,
ICIP05(II: 1254-1257).
IEEE DOI 0512
BibRef

Hinz, S.,
Fast and Subpixel Precise Blob Detection and Attribution,
ICIP05(III: 457-460).
IEEE DOI 0512
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Maximally Stable Extremal Regions, MSER Descriptions .


Last update:Jun 27, 2022 at 12:58:02