Apostolico, A.,
Caianiello, E.R.,
Fischetti, E.,
Vitulano, S.,
An Application of C-Calculus to Texture Analysis: C-Transforms,
PR(10), No. 5-6, 1978, pp. 389-396.
Elsevier DOI
BibRef
7800
Caianiello, E.R.,
Gisolfi, A.,
Vitulano, S.,
A Technique for Texture Analysis Using C-Calculus,
SP(1), 1979, pp. 159-173.
BibRef
7900
Wechsler, H.[Harry],
Citron, T.[Todd],
Feature extraction for texture classification,
PR(12), No. 5, 1980, pp. 301-311.
Elsevier DOI
0309
BibRef
Ade, F.,
Characterization of Textures by 'Eigenfilters',
SP(5), 1983, pp. 451-457.
BibRef
8300
Beck, J.[Jacob],
Sutter, A.[Anne],
Ivry, R.[Richard],
Spatial Frequency Channels and Perceptual Grouping in
Texture Segregation,
CVGIP(37), No. 2, February 1987, pp. 299-325.
Elsevier DOI
BibRef
8702
Bergen, J.R.,
Adelson, E.H.,
Early Vision and Texture Perception,
Nature(333), 1988, pp. 363-367.
Textures are similar (to people) when similar response in a bank
of filters (e.g. Gabor).
BibRef
8800
Montes, J.,
Cristobal, G.,
Bescos, J.,
Texture Isolation by Adaptive Digital Filtering,
IVC(6), No. 3, August 1988, pp. 189-192.
Elsevier DOI
BibRef
8808
Kundu, A.[Amlan],
Chen, J.L.[Jia-Lin],
Texture Classification Using QMF Bank-Based Subband Decomposition,
GMIP(54), No. 5, September 1992, pp. 369-384.
BibRef
9209
Coggins, J.M.,
Jain, A.K.,
A Spatial Filtering Approach to Texture Analysis,
PRL(3), 1985, pp. 195-203.
BibRef
8500
He, D.C.[Dong-Chen],
Wang, L.[Li],
Textural filters based on the texture spectrum,
PR(24), No. 12, 1991, pp. 1187-1195.
Elsevier DOI
0401
BibRef
Olstad, B.[Bjørn],
Reasoning with entropy graphs for image operators,
PR(26), No. 8, August 1993, pp. 1255-1275.
Elsevier DOI
0401
Structuring of large sets of image operators. For Segmentation.
BibRef
Shang, C.J.[Chang-Jing],
Brown, K.[Keith],
Principal features-based texture classification with neural networks,
PR(27), No. 5, May 1994, pp. 675-687.
Elsevier DOI
0401
BibRef
Linnett, L.M.,
Carmichael, D.R.,
Clarke, S.J.,
Texture Classification Using a Spatial-Point Process Model,
VISP(142), No. 1, February 1995, pp. 1-6.
BibRef
9502
Francos, J.M.,
Meiri, A.Z.,
Porat, B.,
A Unified Texture Model Based on a 2-D Wold Like Decomposition,
TSP(41), August 1993, pp. 2665-2678.
BibRef
9308
Earlier: A1, A2, Only:
A unified structural-stochastic model for texture analysis and
synthesis,
ICPR88(I: 41-45).
IEEE DOI
8811
BibRef
Francos, J.M.,
Narasimhan, A.,
Woods, J.W.,
Maximum likelihood parameter estimation of textures using a
Wold-decomposition based model,
IP(4), No. 12, December 1995, pp. 1655-1666.
IEEE DOI
0402
BibRef
Sriram, R.,
Francos, J.M.,
Pearlman, W.A.,
Texture Coding Using a Wold Decomposition Model,
IP(5), No. 9, September 1996, pp. 1382-1386.
IEEE DOI
BibRef
9609
Earlier:
ICPR94(C:35-39).
IEEE DOI
9410
BibRef
Chen, J.L.[Jia-Lin],
Kundu, A.,
Rotation and gray scale transform invariant texture identification
using wavelet decomposition and hidden Markov model,
PAMI(16), No. 2, February 1994, pp. 208-214.
IEEE DOI
Wavelets.
Markov Model.
BibRef
9402
Chen, J.L.,
Kundu, A.,
Unsupervised Texture Segmentation Using Multichannel Decomposition
and Hidden Markov-Models,
IP(4), No. 5, May 1995, pp. 603-619.
IEEE DOI
BibRef
9505
Earlier:
Automatic Unsupervised Texture Segmentation Using Hidden Markov Model,
ICASSP93(V: 21-24).
BibRef
Hall, T.E.,
Giannakis, G.B.,
Image Modeling Using Inverse Filtering Criteria with
Application to Textures,
IP(5), No. 6, June 1996, pp. 938-949.
IEEE DOI
9607
BibRef
Earlier:
Image modeling using inverse filtering criteria with application to
texture images,
ICIP94(III: 392-396).
IEEE DOI
9411
BibRef
Hall, T.E.,
Giannakis, G.B.,
Bispectral analysis and model validation of texture images,
IP(4), No. 7, July 1995, pp. 996-1009.
IEEE DOI
0402
BibRef
Manian, V.[Vidya],
Vasquez, R.[Ramon],
Scaled and rotated texture classification using a class of basis
functions,
PR(31), No. 12, December 1998, pp. 1937-1948.
Elsevier DOI
BibRef
9812
Cristobal, G.[Gabriel],
Hormigo, J.[Javier],
Texture segmentation through eigen-analysis of the Pseudo-Wigner
distribution,
PRL(20), No. 3, March 1999, pp. 337-345.
BibRef
9903
Chen, C.C.[Chien-Chang],
Chen, C.C.[Chaur-Chin],
Filtering methods for texture discrimination,
PRL(20), No. 8, August 1999, pp. 783-790.
BibRef
9908
Manian, V.,
Vasquez, R.,
Katiyar, P.,
Texture Classification Using Logical Operators,
IP(9), No. 10, October 2000, pp. 1693-1703.
IEEE DOI
0010
BibRef
Bisoi, A.K.[Ajay Kumar],
Mishra, J.[Jibitesh],
On calculation of fractal dimension of images,
PRL(22), No. 6-7, May 2001, pp. 631-637.
Elsevier DOI
0105
BibRef
Bresch, M.[Manfred],
Optimizing filter banks for supervised texture recognition,
PR(35), No. 4, April 2002, pp. 783-790.
Elsevier DOI
0201
BibRef
Barsky, S.[Svetlana],
Petrou, M.[Maria],
On the Reliability of Computing Wigner Texture Features,
JMIV(16), No. 2, March 2002, pp. 107-129.
DOI Link
0202
BibRef
Zhu, S.C.[Song Chun],
Liu, X.W.[Xiu-Wen],
Learning in Gibbsian Fields: How Accurate and How Fast Can It Be?,
PAMI(24), No. 7, July 2002, pp. 1001-1006.
IEEE Abstract.
0207
BibRef
Earlier:
CVPR00(II: 2-9).
IEEE DOI
0005
Identify 2 issues: efficience in liklihood functions and variance
in approximating partitions functions.
See also Minimax Entropy Principles and Its Application to Texture Modeling.
BibRef
Huang, Y.[Yong],
Chan, K.L.[Kap Luk],
Zhang, Z.H.[Zhi-Hua],
Texture classification by multi-model feature integration using
Bayesian networks,
PRL(24), No. 1-3, January 2003, pp. 393-401.
Elsevier DOI
0211
BibRef
Li, Y.[Yan],
Peng, J.X.[Jia-Xiong],
Remote Sensing Texture Analysis Using Multi-Parameter and Multi-Scale
Features,
PhEngRS(69), No. 4, April 2003, pp. 351-356.
The new feature set, derived from fractional Brownian motion, is presented.
WWW Link.
0304
BibRef
Nunes, J.C.,
Bouaoune, Y.,
Delechelle, E.,
Niang, O.,
Bunel, P.,
Image analysis by bidimensional empirical mode decomposition,
IVC(21), No. 12, November 2003, pp. 1019-1026.
Elsevier DOI
0310
EMD (empirical mode decomposition) from Huang.
Apply to texture extraction and image filtering.
Multiple scales.
BibRef
Nunes, J.C.[Jean Claude],
Guyot, S.,
Deléchelle, E.[Eric],
Texture analysis based on local analysis of the Bidimensional Empirical
Mode Decomposition,
MVA(16), No. 3, May 2005, pp. 177-188.
Springer DOI
0505
BibRef
Nunes, J.C.[Jean Claude],
Niang, O.[Oumar],
Bouaoune, Y.[Yasmina],
Delechelle, E.[Eric],
Bunel, P.[Philippe],
Bidimensional Empirical Mode Decomposition Modified for Texture
Analysis,
SCIA03(171-177).
Springer DOI
0310
BibRef
Varma, M.[Manik],
Zisserman, A.[Andrew],
A Statistical Approach to Texture Classification from Single Images,
IJCV(62), No. 1-2, April-May 2005, pp. 61-81.
DOI Link
0411
BibRef
Earlier:
Texture classification: are filter banks necessary?,
CVPR03(II: 691-698).
IEEE DOI
0307
BibRef
And:
Classifying Images of Materials:
Achieving Viewpoint and Illumination Independence,
ECCV02(III: 255 ff.).
Springer DOI
0205
Texture classification. Clustered filter responses.
Compared to:
Leung and Malik (
See also Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons. ),
Schmid (
See also Constructing Models for Content-Based Image Retrieval. ) and
Cula and Dana (
See also 3D Texture Recognition Using Bidirectional Feature Histograms. ),
BibRef
Varma, M.[Manik],
Zisserman, A.[Andrew],
A Statistical Approach to Material Classification Using Image Patch
Exemplars,
PAMI(31), No. 11, November 2009, pp. 2032-2047.
IEEE DOI
0910
For material categories.
BibRef
Varma, M.[Manik],
Zisserman, A.[Andrew],
Unifying statistical texture classification frameworks,
IVC(22), No. 14, 1 December 2004, pp. 1175-1183.
Elsevier DOI
0412
BibRef
Chantler, M.J.,
Petrou, M.,
Penirsche, A.,
Schmidt, M.,
McGunnigle, G.,
Classifying Surface Texture while Simultaneously Estimating
Illumination Direction,
IJCV(62), No. 1-2, April-May 2005, pp. 83-96.
DOI Link
0411
BibRef
Penirsche, A.,
Chantler, M.J.,
Petrou, M.,
Illuminant Rotation Invariant Classification of 3D Surface Textures
using Lissajous`s Ellipses,
Texture02(103-108).
0207
BibRef
Chantler, M.J.,
Schmidt, M.,
Petrou, M.,
McGunnigle, G.,
The Effect of Illuminant Rotation on Texture Filters:
Lissajous's Ellipses,
ECCV02(III: 289 ff.).
Springer DOI
0205
BibRef
Dong, X.H.[Xing-Hui],
Chantler, M.J.[Mike J.],
Perceptually Motivated Image Features Using Contours,
IP(25), No. 11, November 2016, pp. 5050-5062.
IEEE DOI
1610
BibRef
Earlier:
Texture Similarity Estimation Using Contours,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Earlier:
The Importance of Long-Range Interactions to Texture Similarity,
CAIP13(425-432).
Springer DOI
1308
higher order statistics
BibRef
Clarke, A.[Alasdair],
Halley, F.[Fraser],
Newell, A.J.[Andrew J.],
Griffin, L.D.[Lewis D.],
Chantler, M.J.[Mike J.],
Perceptual Similarity: A Texture Challenge,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Wang, W.[Weibo],
Dong, X.H.[Xing-Hui],
Perception-Aware Texture Similarity Prediction,
IP(33), 2024, pp. 3536-3549.
IEEE DOI
2406
Feature extraction, Measurement, Task analysis, Transformers,
Prediction algorithms, Convolutional neural networks, ranking loss
BibRef
Gluckman, J.M.[Joshua M.],
Visually Distinct Patterns with Matching Subband Statistics,
PAMI(27), No. 2, February 2005, pp. 252-264.
IEEE Abstract.
0501
BibRef
Earlier:
On the use of marginal statistics of subband images,
ICCV03(448-455).
IEEE DOI
0311
BibRef
And:
Gradient field distributions for the registration of images,
ICIP03(II: 691-694).
IEEE DOI
0312
Analyze ability of various filters to distinguish different stimuli.
When statistics are the same.
BibRef
Knutsson, H.[Hans],
Andersson, M.[Mats],
Implications of invariance and uncertainty for local structure analysis
filter sets,
SP:IC(20), No. 6, July 2005, pp. 569-581.
Elsevier DOI
0506
BibRef
Bocher, P.K.,
McCloy, K.R.,
The Fundamentals of Average Local Variance:
Part I: Detecting Regular Patterns,
IP(15), No. 2, February 2006, pp. 300-310.
IEEE DOI
0602
Mean and StDev of 3X3 window.
BibRef
Bocher, P.K.,
McCloy, K.R.,
The Fundamentals of Average Local Variance:
Part II: Sampling Simple Regular Patterns With Optical Imagery,
IP(15), No. 2, February 2006, pp. 311-318.
IEEE DOI
0602
BibRef
Petrou, M.,
Piroddi, R.,
Talebpour, A.,
Texture recognition from sparsely and irregularly sampled data,
CVIU(102), No. 1, April 2006, pp. 95-104.
Elsevier DOI Texture classification; Irregularly sampled data; Trace transform
0604
BibRef
Kadyrov, A.,
Talebpour, A.,
Petrou, M.,
Texture classification with thousands of features,
BMVC02(Poster Session).
0208
BibRef
Brox, T.[Thomas],
Weickert, J.[Joachim],
A TV flow based local scale estimate and its application to texture
discrimination,
JVCIR(17), No. 5, October 2006, 1053-1073.
Elsevier DOI
0711
BibRef
Earlier:
A TV Flow Based Local Scale Measure for Texture Discrimination,
ECCV04(Vol II: 578-590).
Springer DOI
0405
See also Nonlinear Matrix Diffusion for Optic Flow Estimation. Scale; Texture; Nonlinear diffusion; Segmentation
BibRef
Brox, T.[Thomas],
Rousson, M.[Mikaël],
Deriche, R.[Rachid],
Weickert, J.[Joachim],
Unsupervised Segmentation Incorporating Colour, Texture, and Motion,
CAIP03(353-360).
Springer DOI
0311
BibRef
And:
INRIARR-4760, Mars 2003.
HTML Version.
0306
BibRef
Rousson, M.[Mikaël],
Brox, T.[Thomas],
Deriche, R.[Rachid],
Active Unsupervised Texture Segmentation on a Diffusion Based Feature
Space,
CVPR03(II: 699-704).
IEEE DOI
0307
BibRef
And:
INRIARR-4695, Janvier 2003.
HTML Version.
0306
BibRef
Tzagkarakis, G.,
Beferull-Lozano, B.,
Tsakalides, P.,
Rotation-Invariant Texture Retrieval With Gaussianized Steerable
Pyramids,
IP(15), No. 9, August 2006, pp. 2702-2718.
IEEE DOI
0608
BibRef
Tzagkarakis, G.,
Beferull-Lozano, B.,
Tsakalides, P.,
Rotation-Invariant Texture Retrieval via Signature Alignment Based on
Steerable Sub-Gaussian Modeling,
IP(17), No. 7, July 2008, pp. 1212-1225.
IEEE DOI
0806
BibRef
Beferull-Lozano, B.,
Xie, H.[Hua],
Orlegi, A.,
Rotation-invariant features based on steerable transforms with an
application to distributed image classification,
ICIP03(III: 521-524).
IEEE DOI
0312
BibRef
Cheng, K.O.,
Law, N.F.,
Siu, W.C.,
Multiscale directional filter bank with applications to structured and
random texture retrieval,
PR(40), No. 4, April 2007, pp. 1182-1194.
Elsevier DOI
0701
Texture characterization; Texture retrieval; Directional filter bank;
Multiscale directional filter bank; Rotation-invariant features
BibRef
Mellor, M.[Matthew],
Hong, B.W.[Byung-Woo],
Brady, M.[Michael],
Locally Rotation, Contrast, and Scale Invariant Descriptors for Texture
Analysis,
PAMI(30), No. 1, January 2008, pp. 52-61.
IEEE DOI
0711
New family of filters.
BibRef
Wang, M.S.[Ming-Shi],
Knoesen, A.[André],
Rotation- and scale-invariant texture features based on spectral moment
invariants,
JOSA-A(24), No. 9, September 2007, pp. 2550-2557.
WWW Link.
0801
BibRef
Salzenstein, F.[Fabien],
Boudraa, A.O.[Abdel-Ouahab],
Cexus, J.C.[Jean-Christophe],
Generalized higher-order nonlinear energy operators,
JOSA-A(24), No. 12, December 2007, pp. 3717-3727.
WWW Link.
0801
BibRef
Zhou, H.[Hui],
Wang, R.S.[Run-Sheng],
Wang, C.[Cheng],
A novel extended local-binary-pattern operator for texture analysis,
IS(178), No. 22, November, 2008, pp. 4314-4325.
Elsevier DOI
0905
BibRef
Xu, G.L.[Guan-Lei],
Wang, X.T.[Xiao-Tong],
Xu, X.G.[Xiao-Gang],
Improved bi-dimensional EMD and Hilbert spectrum for the analysis of
textures,
PR(42), No. 5, May 2009, pp. 718-734.
Elsevier DOI
0902
Empirical mode decomposition (EMD); Intrinsic mode functions (IMF);
Quaternion Hilbert transform; Pseudo extrema
BibRef
Xu, G.L.[Guan-Lei],
Wang, X.T.[Xiao-Tong],
Xu, X.G.[Xiao-Gang],
On analysis of bi-dimensional component decomposition via BEMD,
PR(45), No. 4, 2012, pp. 1617-1626.
Elsevier DOI
1410
Bi-dimensional empirical mode decomposition (BEMD)
BibRef
Xu, G.L.[Guan-Lei],
Wang, X.T.[Xiao-Tong],
Xu, X.G.[Xiao-Gang],
Improved bi-dimensional empirical mode decomposition based on
2d-assisted signals: analysis and application,
IET-IPR(5), No. 3, June 2011, pp. 205-221.
DOI Link
1105
BibRef
Xu, G.L.[Guan-Lei],
Wang, X.T.[Xiao-Tong],
Zhou, L.J.[Li-Jia],
Xu, X.G.[Xiao-Gang],
Image decomposition and texture analysis via combined bi-dimensional
Bedrosian's principles,
IET-IPR(12), No. 2, February 2018, pp. 262-273.
DOI Link
1801
BibRef
Earlier: A1, A3, A2, A4:
Assisted signals based mode decomposition,
ICIVC17(868-874)
IEEE DOI
1708
Manganese, Mathematical model, Robustness, assisted signal,
bi-dimensional empirical mode decomposition (BEMD), extremum, mode
BibRef
Xu, X.G.[Xiao-Gang],
Chen, Y.C.[Ying-Cong],
Tao, X.[Xin],
Jia, J.Y.[Jia-Ya],
Text-Guided Human Image Manipulation via Image-Text Shared Space,
PAMI(44), No. 10, October 2022, pp. 6486-6500.
IEEE DOI
2209
Aerospace electronics, Task analysis, Faces, Training,
Natural languages, Image reconstruction, Feature extraction,
image and text
BibRef
Pu, Y.F.,
Zhou, J.L.,
Yuan, X.,
Fractional Differential Mask: A Fractional Differential-Based Approach
for Multiscale Texture Enhancement,
IP(19), No. 2, February 2010, pp. 491-511.
IEEE DOI
1002
BibRef
Janney, P.[Pranam],
Geers, G.,
Texture classification using invariant features of local textures,
IET-IPR(4), No. 3, June 2010, pp. 158-171.
DOI Link
1006
BibRef
Janney, P.[Pranam],
Yu, Z.H.[Zheng-Hua],
Invariant Features of Local Textures: A rotation invariant local texture
descriptor,
BP07(1-7).
IEEE DOI
0706
BibRef
Tsai, Y.T.[Yu-Ting],
Fang, K.L.[Kuei-Li],
Lin, W.C.[Wen-Chieh],
Shih, Z.C.[Zen-Chung],
Modeling Bidirectional Texture Functions with Multivariate Spherical
Radial Basis Functions,
PAMI(33), No. 7, July 2011, pp. 1356-1369.
IEEE DOI
1106
SRBFs and optimized parameterization.
BibRef
Restrepo, A.[Alfredo],
Quiroga, J.[Julián],
Root and pre-constant signals of the 1D Teager-Kaiser operator,
SIViP(5), No. 3, September 2011, pp. 363-378.
WWW Link.
1109
BibRef
Quiroga, J.[Julian],
Restrepo, A.[Alfredo],
Wedefort, L.[Lina],
Velasco, M.[Margarita],
On the 2D Teager-Kaiser Operator,
ICIP07(V: 269-272).
IEEE DOI
0709
TK: a discrete, nonlinear moving window filter to compute energy.
BibRef
Zhao, Y.,
Huang, D.S.,
Jia, W.,
Completed Local Binary Count for Rotation Invariant Texture
Classification,
IP(21), No. 10, October 2012, pp. 4492-4497.
IEEE DOI
1209
Local descriptor of texture.
BibRef
Zhang, J.,
Liang, J.,
Zhao, H.,
Local Energy Pattern for Texture Classification Using Self-Adaptive
Quantization Thresholds,
IP(22), No. 1, January 2013, pp. 31-42.
IEEE DOI
1301
BibRef
Tang, L.M.[Li-Ming],
He, C.J.[Chuan-Jiang],
Multiscale Texture Extraction with Hierarchical (BV,Gp,L2)
Decomposition,
JMIV(45), No. 2, February 2013, pp. 148-163.
WWW Link.
1302
Scale space decomposition
BibRef
Sharan, L.[Lavanya],
Liu, C.[Ce],
Rosenholtz, R.[Ruth],
Adelson, E.H.[Edward H.],
Recognizing Materials Using Perceptually Inspired Features,
IJCV(103), No. 3, July 2013, pp. 348-371.
Springer DOI
1306
Plastic, glass, concrete in natural scenes.
BibRef
Yang, X.D.[Xiao-Dong],
Tian, Y.[Ying_Li],
Texture representations using subspace embeddings,
PRL(34), No. 10, 15 July 2013, pp. 1130-1137.
Elsevier DOI
1306
Texture representation; Texture classification; Subspace
embedding. Map texture patches into subspace.
BibRef
Hu, R.X.[Rong-Xiang],
Jia, W.[Wei],
Ling, H.B.[Hai-Bin],
Zhao, Y.[Yang],
Gui, J.[Jie],
Angular Pattern and Binary Angular Pattern for Shape Retrieval,
IP(23), No. 3, March 2014, pp. 1118-1127.
IEEE DOI
1403
video coding
BibRef
Vu, N.S.[Ngoc-Son],
Nguyen, T.P.[Thanh Phuong],
Garcia, C.[Christophe],
Improving texture categorization with biologically-inspired filtering,
IVC(32), No. 6-7, 2014, pp. 424-436.
Elsevier DOI
1406
Texture classification
BibRef
Safia, A.[Abdelmounaime],
He, D.C.[Dong-Chen],
Multiband compact texture unit descriptor for intra-band and
inter-band texture analysis,
PandRS(105), No. 1, 2015, pp. 169-185.
Elsevier DOI
1506
Texture analysis
BibRef
Wang, S.[Sheng],
Wu, Q.A.[Qi-Ang],
He, X.J.[Xiang-Jian],
Yang, J.[Jie],
Wang, Y.,
Local N-Ary Pattern and Its Extension for Texture Classification,
CirSysVideo(25), No. 9, September 2015, pp. 1495-1506.
IEEE DOI
1509
BibRef
Earlier: A1, A3, A2, A4, Only:
Generalized local N-ary patterns for texture classification,
AVSS13(324-329)
IEEE DOI
1311
Accuracy.
computer vision
BibRef
Albukhanajer, W.A.,
Briffa, J.A.,
Jin, Y.C.[Yao-Chu],
Evolutionary Multiobjective Image Feature Extraction in the Presence
of Noise,
Cyber(45), No. 9, September 2015, pp. 1757-1768.
IEEE DOI
1509
Pareto optimisation
BibRef
Wang, Y.[Yu],
Zhao, Y.S.[Yong-Sheng],
Cai, Q.A.[Qi-Ang],
Li, H.S.[Hai-Sheng],
Yan, H.X.[Huai-Xin],
A varied local edge pattern descriptor and its application to texture
classification,
JVCIR(34), No. 1, 2016, pp. 108-117.
Elsevier DOI
1601
Varied local edge pattern
BibRef
Mehta, R.[Rakesh],
Egiazarian, K.O.[Karen O.],
Texture Classification Using Dense Micro-Block Difference,
IP(25), No. 4, April 2016, pp. 1604-1616.
IEEE DOI
1604
BibRef
Earlier:
Texture Classification Using Dense Micro-block Difference (DMD),
ACCV14(II: 643-658).
Springer DOI
1504
image classification
BibRef
Mehta, R.[Rakesh],
Egiazarian, K.O.[Karen O.],
Rotation Invariant Texture Description Using Symmetric Dense
Microblock Difference,
SPLetters(23), No. 6, June 2016, pp. 833-837.
IEEE DOI
1606
Encoding
BibRef
Rubel, O.[Oleksii],
Lukin, V.[Vladimir],
Abramov, S.[Sergey],
Vozel, B.[Benoit],
Egiazarian, K.O.[Karen O.],
Pogrebnyak, O.[Oleksiy],
Efficiency of texture image filtering and its prediction,
SIViP(10), No. 8, November 2016, pp. 1543-1550.
Springer DOI
1610
BibRef
Cimpoi, M.[Mircea],
Maji, S.[Subhransu],
Kokkinos, I.[Iasonas],
Vedaldi, A.[Andrea],
Deep Filter Banks for Texture Recognition, Description, and
Segmentation,
IJCV(118), No. 1, June 2016, pp. 65-94.
Springer DOI
1605
BibRef
Earlier: A1, A2, A4, Only:
Deep filter banks for texture recognition and segmentation,
CVPR15(3828-3836)
IEEE DOI
1510
BibRef
Lin, T.Y.[Tsung-Yu],
Maji, S.[Subhransu],
Visualizing and Understanding Deep Texture Representations,
CVPR16(2791-2799)
IEEE DOI
1612
BibRef
Ahmadvand, A.[Ali],
Daliri, M.R.[Mohammad Reza],
Invariant texture classification using a spatial filter bank in
multi-resolution analysis,
IVC(45), No. 1, 2016, pp. 1-10.
Elsevier DOI
1601
Texture classification
BibRef
Du, H.[Hui],
Jin, X.G.[Xiao-Gang],
Willis, P.J.[Philip J.],
Two-level joint local laplacian texture filtering,
VC(32), No. 12, December 2016, pp. 1537-1548.
WWW Link.
1611
BibRef
Andrearczyk, V.[Vincent],
Whelan, P.F.[Paul F.],
Using filter banks in Convolutional Neural Networks for texture
classification,
PRL(84), No. 1, 2016, pp. 63-69.
Elsevier DOI
1612
Texture classification
BibRef
Andrearczyk, V.[Vincent],
Whelan, P.F.[Paul F.],
Convolutional neural network on three orthogonal planes for dynamic
texture classification,
PR(76), No. 1, 2018, pp. 36-49.
Elsevier DOI
1801
Dynamic texture
BibRef
Zhao, H.[Hanli],
Jiang, L.[Lei],
Jin, X.G.[Xiao-Gang],
Du, H.[Hui],
Li, X.J.[Xu-Jie],
Constant time texture filtering,
VC(34), No. 1, January 2018, pp. 83-92.
WWW Link.
1801
BibRef
Anwer, R.M.[Rao Muhammad],
Khan, F.S.[Fahad Shahbaz],
van de Weijer, J.[Joost],
Molinier, M.[Matthieu],
Laaksonen, J.T.[Jorma T.],
Binary patterns encoded convolutional neural networks for texture
recognition and remote sensing scene classification,
PandRS(138), 2018, pp. 74-85.
Elsevier DOI
1804
Remote sensing, Deep learning, Scene classification,
Local Binary Patterns, Texture analysis
BibRef
Xu, P.P.[Pan-Pan],
Wang, W.C.[Wen-Cheng],
Improved Bilateral Texture Filtering With Edge-Aware Measurement,
IP(27), No. 7, July 2018, pp. 3621-3630.
IEEE DOI
1805
Frequency measurement, Image edge detection,
Noise measurement, Shape, Smoothing methods, Visualization,
image texture analysis
BibRef
Song, T.C.[Tie-Cheng],
Li, H.L.[Hong-Liang],
Meng, F.M.[Fan-Man],
Wu, Q.B.[Qing-Bo],
Cai, J.F.[Jian-Fei],
LETRIST: Locally Encoded Transform Feature Histogram for
Rotation-Invariant Texture Classification,
CirSysVideo(28), No. 7, July 2018, pp. 1565-1579.
IEEE DOI
1807
Locally Encoded TRansform feature hISTogram.
Computational modeling, Feature extraction, Histograms, Lighting,
Quantization (signal), Robustness, Transforms,
texture analysis
BibRef
Ding, Y.Y.[Yan-Yun],
Xiao, Y.H.[Yun-Hai],
Symmetric Gauss-Seidel Technique-Based Alternating Direction Methods of
Multipliers for Transform Invariant Low-Rank Textures Problem,
JMIV(60), No. 8, October 2018, pp. 1220-1230.
Springer DOI
1810
Transform invariant low-rank textures: TILT.
BibRef
Liu, L.[Li],
Chen, J.[Jie],
Zhao, G.Y.[Guo-Ying],
Fieguth, P.W.[Paul W.],
Chen, X.L.[Xi-Lin],
Pietikäinen, M.[Matti],
Texture Classification in Extreme Scale Variations Using GANet,
IP(28), No. 8, August 2019, pp. 3910-3922.
IEEE DOI
1907
convolutional neural nets, genetic algorithms,
image classification, image coding, image filtering, image texture,
texture analysis
BibRef
Xu, P.,
Wang, W.,
Structure-Aware Window Optimization for Texture Filtering,
IP(28), No. 9, Sep. 2019, pp. 4354-4363.
IEEE DOI
1908
adaptive filters, image filtering, image texture, optimisation,
structure-aware window optimization, texture filtering,
image texture analysis
BibRef
Mihoubi, S.[Sofiane],
Losson, O.[Olivier],
Mathon, B.[Benjamin],
Macaire, L.[Ludovic],
Spatio-spectral binary patterns based on multispectral filter arrays
for texture classification,
JOSA-A(35), No. 9, September 2018, pp. 1532-1542.
DOI Link
1912
Image processing, Multispectral and hyperspectral imaging,
Color imaging, Image stacking, Light wavelength, Spectral discrimination
BibRef
Hu, Y.T.[Yu-Ting],
Wang, Z.[Zhen],
Al Regib, G.[Ghassan],
Texture classification using block intensity and gradient difference
(BIGD) descriptor,
SP:IC(83), 2020, pp. 115770.
Elsevier DOI
2003
Local descriptor, Block intensity and gradient difference (),
Local feature extraction, Multi-scale, Texture classification
BibRef
Mohammadi, S.[Sina],
Noori, M.[Mehrdad],
Bahri, A.[Ali],
Ribas, L.C.[Lucas C.],
de Mesquita Sá Junior, J.J.[Jarbas Joaci],
Scabini, L.F.S.[Leonardo F.S.],
Bruno, O.M.[Odemir M.],
Fusion of complex networks and randomized neural networks for texture
analysis,
PR(103), 2020, pp. 107189.
Elsevier DOI
2005
Randomized neural networks, Complex networks, Texture analysis,
Feature extraction
BibRef
Scabini, L.F.S.[Leonardo F.S.],
Zielinski, K.M.[Kallil M.],
Ribas, L.C.[Lucas C.],
Gonçalves, W.N.[Wesley N.],
de Baets, B.[Bernard],
Bruno, O.M.[Odemir M.],
RADAM: Texture recognition through randomized aggregated encoding of
deep activation maps,
PR(143), 2023, pp. 109802.
Elsevier DOI
2310
Texture analysis, Randomized neural networks,
Transfer learning, Convolutional networks, Feature extraction
BibRef
Zielinski, K.M.C.[Kallil M. C.],
Ribas, L.C.[Lucas C.],
Scabini, L.F.S.[Leonardo F. S.],
Bruno, O.M.[Odemir M.],
Complex Texture Features Learned by Applying Randomized Neural
Network on Graphs,
IPTA22(1-6)
IEEE DOI
2206
Visualization, Recurrent neural networks, Image recognition,
Databases, Plants (biology), Complex networks, Feature extraction,
Pattern Recognition
BibRef
Farfán, A.J.F.[Alex J. F.],
Scabini, L.F.S.[Leonardo F. S.],
Bruno, O.M.[Odemir M.],
A Web-Based System to Assess Texture Analysis Methods and Datasets,
CAIP19(II:425-437).
Springer DOI
1909
BibRef
Scabini, L.F.S.[Leonardo F. S.],
Condori, R.H.M.[Rayner H. M.],
Ribas, L.C.[Lucas C.],
Bruno, O.M.[Odemir M.],
Evaluating Deep Convolutional Neural Networks as Texture Feature
Extractors,
CIAP19(II:192-202).
Springer DOI
1909
BibRef
Bohra, M.[Murtuza],
Maheshwari, S.[Sajal],
Gandhi, V.[Vineet],
TextureToMTF: predicting spatial frequency response in the wild,
SIViP(14), No. 6, September 2020, pp. 1163-1170.
WWW Link.
2008
BibRef
Dong, X.,
Zhou, H.,
Dong, J.,
Texture Classification Using Pair-Wise Difference Pooling-Based
Bilinear Convolutional Neural Networks,
IP(29), 2020, pp. 8776-8790.
IEEE DOI
2009
Feature extraction, Visualization, Convolutional neural networks,
Principal component analysis, Machine learning,
BCNNs
BibRef
El Khadiri, I.[Issam],
El Merabet, Y.[Youssef],
Tarawneh, A.S.[Ahmad S.],
Ruichek, Y.[Yassine],
Chetverikov, D.[Dmitry],
Touahni, R.[Raja],
Hassanat, A.B.[Ahmad B.],
Petersen Graph Multi-Orientation Based Multi-Scale Ternary Pattern
(PGMO-MSTP): An Efficient Descriptor for Texture and Material
Recognition,
IP(30), 2021, pp. 4571-4586.
IEEE DOI
2105
Feature extraction, Image coding, Gray-scale,
Real-time systems, Histograms, LGS, LTP, wilcoxon signed rank test
BibRef
Amziane, A.[Anis],
Losson, O.[Olivier],
Mathon, B.[Benjamin],
Macaire, L.[Ludovic],
MSFA-Net: A convolutional neural network based on multispectral
filter arrays for texture feature extraction,
PRL(168), 2023, pp. 93-99.
Elsevier DOI
2304
Multispectral imaging, Texture feature extraction,
Multispectral filter array, Supervised classification, Precision farming
BibRef
Pham, M.T.[Minh-Tan],
Efficient Texture Retrieval Using Multiscale Local Extrema Descriptors
and Covariance Embedding,
CEFR-LCV18(IV:564-579).
Springer DOI
1905
BibRef
Zhang, H.[Hang],
Xue, J.[Jia],
Dana, K.J.[Kristin J.],
Zhang, H.,
Xue, J.,
Dana, K.,
Deep TEN: Texture Encoding Network,
CVPR17(2896-2905)
IEEE DOI
1711
Convolutional codes, Dictionaries, Encoding, Feature extraction,
Machine learning, Pipelines, Visualization
BibRef
Marcos, D.,
Volpi, M.,
Tuia, D.,
Learning rotation invariant convolutional filters for texture
classification,
ICPR16(2012-2017)
IEEE DOI
1705
Convolutional codes, Feature extraction, Interpolation, Lighting,
Neural networks, Standards, Training
BibRef
Brandtberg, T.,
Virtual hexagonal and multi-scale operator for fuzzy rank order
texture classification using one-dimensional generalised Fourier
analysis,
ICPR16(2018-2024)
IEEE DOI
1705
Feature extraction, Fourier transforms, Geometry,
Image edge detection, Lighting, Shape
BibRef
Shahriari, A.[Arash],
Learning of Separable Filters by Stacked Fisher Convolutional
Autoencoders,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
And:
Parametric Learning of Texture Filters by Stacked Fisher Autoencoders,
DICTA16(1-8)
IEEE DOI
1701
Convolutional codes
BibRef
Vieira, R.T.[Raissa Tavares],
Negri, T.T.[Tamiris Trevisan],
Gonzaga, A.[Adilson],
Robustness of Rotation Invariant Descriptors for Texture Classification,
ISVC16(I: 268-277).
Springer DOI
1701
BibRef
Shahriari, A.,
Learning deep filter banks in parallel for texture recognition,
ICIP16(1634-1638)
IEEE DOI
1610
Feature extraction
BibRef
Hu, Y.,
Long, Z.,
Al Regib, G.,
Completed local derivative pattern for rotation invariant texture
classification,
ICIP16(3548-3552)
IEEE DOI
1610
Databases
BibRef
Yang, H.[Hang],
Zhu, M.[Ming],
Niu, Y.[Yan],
Guan, Y.J.[Yu-Jing],
Zhang, Z.B.[Zhong-Bo],
Dual domain filters based texture and structure preserving image
non-blind deconvolution,
CVPR15(705-713)
IEEE DOI
1510
BibRef
Polisano, K.[Kevin],
Clausel, M.[Marianne],
Perrier, V.[Valerie],
Condat, L.[Laurent],
Texture modeling by Gaussian fields with prescribed local orientation,
ICIP14(6091-6095)
IEEE DOI
1502
Biological system modeling
BibRef
Gonzalez-Castro, V.[Victor],
Debayle, J.[Johan],
Curie, V.[Vladimir],
Pixel Classification Using General Adaptive Neighborhood-Based
Features,
ICPR14(3750-3755)
IEEE DOI
1412
Accuracy
General Adaptive Neighborhoods for texture.
BibRef
Mohammed, N.[Nabeel],
Squire, D.M.[David McG.],
ICFSIFT:
Improving Collection-Specific CBIR with ICF-Based Local Features,
DICTA13(1-8)
IEEE DOI
1402
BibRef
Earlier:
Efficient and accurate independent component filter-based features
for texure similarity,
ICIP13(2887-2891)
IEEE DOI
1402
content-based retrieval
BibRef
Hill, P.R.,
Achim, A.,
Bull, D.R.,
Al-Mualla, M.E.,
Image Denoising Using Dual Tree Statistical Models for Complex
Wavelet Transform Coefficient Magnitudes,
ICIP13(88-92)
IEEE DOI
1402
Equations
See also Rotationally Invariant Texture Based Features.
BibRef
Said, S.[Salem],
Bombrun, L.[Lionel],
Berthoumieu, Y.[Yannick],
Texture classification using Rao's distance:
An EM algorithm on the Poincare half plane,
ICIP15(3466-3470)
IEEE DOI
1512
EM algorithm
BibRef
Bombrun, L.[Lionel],
Berthoumieu, Y.[Yannick],
Multivariate texture retrieval using the Kullback-Leibler divergence
between bivariate generalized Gamma times an Uniform distribution,
ICIP12(2413-2416).
IEEE DOI
1302
BibRef
Guerreiro, R.F.C.[Rui F. C.],
Aguiar, P.M.Q.[Pedro M. Q.],
Learning simple texture discrimination filters,
ICIP10(261-264).
IEEE DOI
1009
BibRef
Nguyen, H.G.[Huu-Giao],
Fablet, R.[Ronan],
Boucher, J.M.[Jean-Marc],
Multivariate log-Gaussian Cox models of elementary shapes for
recognizing natural scene categories,
ICIP11(665-668).
IEEE DOI
1201
BibRef
And:
Visual textures as realizations of multivariate log-Gaussian Cox
processes,
CVPR11(2945-2952).
IEEE DOI
1106
BibRef
Earlier:
Spatial Statistics of Visual Keypoints for Texture Recognition,
ECCV10(IV: 764-777).
Springer DOI
1009
BibRef
Dollar, P.[Piotr],
Tu, Z.W.[Zhuo-Wen],
Perona, P.[Pietro],
Belongie, S.J.[Serge J.],
Integral Channel Features,
BMVC09(xx-yy).
PDF File.
0909
Multiple features computed from linear and non-linear operators.
Not just for textures.
BibRef
Kondra, S.[Shripad],
Torre, V.[Vincent],
Texture Classification Using Three Circular Filters,
ICCVGIP08(429-434).
IEEE DOI
0812
BibRef
Bors, A.G.[Adrian G.],
Nasios, N.[Nikolaos],
Kernel bandwidth estimation in methods based on probability density
function modelling,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Ray, N.[Nilanjan],
Saha, B.[Baidyanath],
Acton, S.T.[Scott T.],
Oil sand image segmentation using the inclusion filter,
ICIP08(2188-2191).
IEEE DOI
0810
BibRef
Ray, N.,
Acton, S.T.,
Self-dual inclusion filters for grayscale imagery,
ICIP03(I: 321-324).
IEEE DOI
0312
BibRef
Daurat, A.[Alain],
Tajine, M.[Mohamed],
Zouaoui, M.[Mahdi],
About the Frequencies of Some Patterns in Digital Planes:
Application to Area Estimators,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Muñiz, R.[Rubén],
Corrales, J.A.[José Antonio],
An Approach for Extracting Illumination-Independent Texture Features,
ICIAR07(93-104).
Springer DOI
0708
BibRef
Muñiz, R.[Rubén],
Corrales, J.A.[José Antonio],
Rico-Secades, M.[Manuel],
Use of band ratioing for building illumination independent texture
classification systems,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Chamorro-Martínez, J.,
Martínez-Jiménez, P.,
Texture Measuring by Means of Perceptually-Based Fineness Functions,
IbPRIA09(265-272).
Springer DOI
0906
BibRef
And:
A comparative study of texture coarseness measures,
ICIP09(1337-1340).
IEEE DOI
0911
BibRef
Chamorro-Martínez, J.,
Galán-Perales, E.,
Prados-Suárez, B.,
Soto-Hidalgo, J.M.,
Perceptually-Based Functions for Coarseness Textural Feature
Representation,
IbPRIA07(I: 579-586).
Springer DOI
0706
BibRef
Vidal-Naquet, M.[Michel],
Tanifuji, M.[Manabu],
The effective resolution of correlation filters applied to natural
scenes,
BP07(1-6).
IEEE DOI
0706
BibRef
Hussain, A.,
Rajpoot, N.,
Rajpoot, K.,
Texture Classification with Ants,
ICIP06(3013-3016).
IEEE DOI
0610
BibRef
Verzakov, S.,
Paclík, P.,
Duin, R.P.W.,
The Tangent Kernel Approach to Illumination-Robust Texture
Classification,
SCIA05(1009-1016).
Springer DOI
0506
BibRef
Silva Santos, C.,
Kogler, J.E.,
del Moral Hernandez, E.,
Using Independent Subspace Analysis for Selecting Filters Used in
Texture Processing,
ICIP05(I: 465-468).
IEEE DOI
0512
BibRef
van de Wouwer, G.,
Weyn, B.,
van Dyck, D.,
Multiscale, asymmetry signatures for texture analysis,
ICIP04(III: 1517-1520).
IEEE DOI
0505
BibRef
Sabri, M.,
Alirezaie, J.,
Optimized space frequency kernel for texture classification,
ICIP04(III: 1521-1524).
IEEE DOI
0505
BibRef
Costantini, R.,
Menegaz, G.,
Susstrunk, S.,
A measure for spatial dependence in natural stochastic textures,
ICIP04(III: 1525-1528).
IEEE DOI
0505
BibRef
Koroutchev, K.[Kostadin],
Dorronsoro, J.R.[José R.],
Factorization of Natural 4X4 Patch Distributions,
SMVP04(165-174).
Springer DOI
0505
BibRef
Cuenca, S.A.,
Texture analysis based on local semicovers,
CIAP03(588-593).
IEEE DOI
0310
BibRef
Liu, X.W.[Xiu-Wen],
Cheng, L.[Lei],
Independent filters for texture classification,
ICIP02(III: 113-116).
IEEE DOI
0210
BibRef
Schael, M.,
Invariant Texture Classification Using Group Averaging with Relational
Kernel Functions,
Texture02(129-134).
0207
BibRef
Clark, A.A.,
Texture Deconvolution for the Fourier-Based Analysis of Non-Rectangular
Regions,
BMVC99(Posters/Demos).
PDF File.
BibRef
9900
Heikkinen, K.,
Vuorimaa, P.,
Computation of two texture features in hardware,
CIAP99(125-129).
IEEE DOI
9909
BibRef
Huet, F.,
Mattioli, J.,
A textural analysis by mathematical morphology transformations:
structural opening and top-hat,
ICIP96(III: 49-52).
IEEE DOI
9610
BibRef
Jackson, S.,
Ahuja, N.,
Elliptical Gaussian Filters,
ICPR96(II: 775-779).
IEEE DOI
9608
(Intel Corporation, USA)
BibRef
Ma, W.Y.,
Manjunath, B.S.,
A Comparison of Wavelet Features for Texture Annotation,
ICIP95(II: 256-259).
IEEE DOI
PDF File.
9510
BibRef
Greenhill, D.,
Davies, E.R.,
Texture Analysis Using Neural Networks and Mode Filters,
BMVC93(xx-yy).
PDF File.
9309
BibRef
Lonnestad, T.,
A new set of texture features based on the Haar transform,
ICPR92(III:676-679).
IEEE DOI
9208
BibRef
Lee, H.Y.,
Extraction of Textured Regions in Aerial Imagery,
DARPA83(298-303).
BibRef
8300
Laws, K.I.[Kenneth I.],
Rapid Texture Identification,
SPIEConf. Image Processing for Missile Guidance, 1980, pp. 376-380.
BibRef
8000
Laws, K.I.[Kenneth I.],
Texture Energy Measures,
DARPAN79(47-51).
BibRef
7900
USC Computer VisionIntroduces the texture measures developed in his thesis.
See also Textured Image Segmentation.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Local Binary Patterns, LPB for Texture .