5.1.3 Transforms, Radon, Haar, Hadamard, etc.

Chapter Contents (Back)
Transforms. Radon Transform. Haar Transform. Hadamard Transform. Walsh Transform. Mellin Transform.
See also Tomographic Image Reconstruction, Radon Transform.

Walsh, J.L.,
A Closed Set of Normal Orthogonal Functions,
AJM(45), 1923, pp. 5-24. Walsh Transform. 2^n Walsh functions of length n. Essentially using binary numbers to specify the 1/0 nature. Order them in different ways and the Hadamard Transform results. For a discussion see:
HTML Version. BibRef 2300

Yuen, C., 1972.
Remarks on the Ordering of Walsh Functions,
TC(21), No. 12, December 1972, pp. 1452. BibRef 7212

Fino, B.J.,
Relations between Haar and Walsh/Hadamard Transforms,
PIEEE(60), No. 5, May 1972, pp. 647-648. BibRef 7205

Carl, J., and Swartwood, R.,
A Hybrid Walsh Transform Computer,
TC(22), No. 7, July 1973, pp. 669-672. BibRef 7307

Hawkes, P.W.,
A note on inverse filtering for anisoplanatic systems with coherent illumination,
PR(7), No. 1-2, June 1975, pp. 59-60.
Elsevier DOI 0309
Use of Mellin transform to describe field curvature and astigmatism. BibRef

Tretiak, O.J., and Metz, C.E.,
The Exponential Radon Transform,
SIAM_JAM(39), 1980, pp. 341-354. BibRef 8000

Rattey, P.A., and Lindgren, A.G.,
Sampling the 2-D Radon transform,
ASSP(29), No. 4, October 1981, pp. 994-1002. BibRef 8110

Deans, S.R.,
The Radon Transform and Some of its Applications,
John Wiley& Sons, New York. 1983.
See also Hough Transform from the Radon Transform. BibRef 8300

Natterer, F.,
The Radon Transform,
WileyNew York, 1986. The book. BibRef 8600

Jahns, J.,
Efficient Hadamard Transformation of Large Images,
SP(5), 1983, pp. 75-80. BibRef 8300

Wang, Z.D.,
A New Algorithm for the Slant Transform,
PAMI(4), No. 5, September 1982, pp. 551-555. BibRef 8209

Mali, P.C., Chaudhuri, B.B., Dutta Majumder, D.,
Performance Bound of Walsh-Hadamard Transform for Feature Selection and Compression and Some Related Fast Algorithms,
PRL(2), 1983, pp. 5-12.
See also Some Algorithms for Image Enhancement Incorporating Human Visual Response. BibRef 8300

Mali, P.C., Chaudhuri, B.B., Dutta Majumder, D.,
Properties and Some Fast Algorithms of the Haar Transform in Image Processing and Pattern Recognition,
PRL(2), 1984, pp. 319-327. BibRef 8400

Hansen, E.W.,
Fast Hankel Transform Algorithm,
ASSP(33), 1985, pp. 666-671. BibRef 8500

Raghuramireddy, D., Unbehauen, R.,
The Two-Dimensional Differential Cepstrum,
ASSP(33), 1985, pp. 1335-1337. BibRef 8500

Zwicke, P.E., and Kiss, Jr., I.,
A New Implementation of the Mellin Transform and its Application to Radar Classification of Ships,
PAMI(5), No. 2, March 1983, pp. 191-199. BibRef 8303

Kumaresan, R., Gupta, P.K.,
Vector-Radix Algorithm for a 2-D Discrete Hartley Transform,
PIEEE(74), 1986, pp. 755-757. BibRef 8600

Bracewell, R.N., Buneman, O., Hao, H., Villasenor, J.D.,
Fast Two-Dimensional Hartley Transform,
PIEEE(74), 1986, pp. 1282-1283. BibRef 8600

Fitzpatrick, J.M., Louze, M.R.,
A Class of One-to-One Two-Dimensional Transformations,
CVGIP(39), No. 3, September 1987, pp. 369-382.
Elsevier DOI BibRef 8709

Leavers, V.F., Boyce, J.F.,
The Radon Transform and Its Application to Shape Parameterization in Machine Vision,
IVC(5), No. 2, May 1987, pp. 161-166.
Elsevier DOI BibRef 8705

Leavers, V.F.,
Statistical Properties of the Hybrid Radon-Fourier Technique,
BMVC00(xx-yy).
PDF File. 0009
BibRef

Leavers, V.F.[Violet F.],
Use of the Two-Dimensional Radon Transform to Generate a Taxonomy of Shape for the Characterization of Abrasive Powder Particles,
PAMI(22), No. 12, December 2000, pp. 1411-1423.
IEEE DOI 0012
Inspection, Wear. Shape and angularity of particles for edge map.
See also Use of the Radon Transform As a Method of Extracting Information About Shape in Two Dimensions. And
See also Dynamic Generalized Hough Transform: Its Relationship to the Probabilistic Hough Transforms and an Application to the Concurrent Detection of Circles and Ellipses, The. BibRef

Leavers, V.F.,
Analysis of Wear Particles Using the Radon Transform,
ICPR00(Vol IV: 764-766).
IEEE DOI 0009
BibRef

Berenyi, H.M., Leavers, V.F., Burge, R.E.,
Automatic Detection of Targets Against Cluttered Backgrounds Using a Fractal-Oriented Statistical Analysis and Radon Transform,
PRL(13), 1992, pp. 869-877. BibRef 9200

Temerinac, M., Edler, B.,
A unified approach to lapped orthogonal transforms,
IP(1), No. 1, January 1992, pp. 111-116.
IEEE DOI 0402
BibRef

Wang, W.L., Jin, G.F., Yan, Y.B., Wu, M.X.,
Image Feature-Extraction with the Optical Haar Wavelet Transform,
OptEng(34), No. 4, April 1995, pp. 1238-1242. BibRef 9504

Wang, W.L., Jin, G.F., Yan, Y.B., Wu, M.X.,
Joint Wavelet-Transform Correlator for Image Feature-Extraction,
AppOpt(34), No. 2, January 10 1995, pp. 370-376. BibRef 9501

0401

Götz, W.A., Druckmüller, H.J.,
A Fast Digital Radon-Transform: An Efficient Means for Evaluating the Hough Transform,
PR(28), No. 12, December 1995, pp. 1985-1992.
Elsevier DOI BibRef 9512
And: PR(29), No. 4, April 1996, pp. 711-718.
Elsevier DOI BibRef

Anguh, M.M., Martin, R.R.,
A Truncation Method for Computing Walsh Transforms with Applications to Image Processing,
GMIP(55), No. 6, November 1993, pp. 482-yy. BibRef 9311

Anguh, M.M., Martin, R.R.,
A 2-Dimensional Inplace Truncation Walsh Transform Method,
JVCIR(7), No. 2, June 1996, pp. 116-125. 9607
BibRef

Kelley, B.T., Madisetti, V.K.,
The Fast Discrete Radon Transform I: Theory,
IP(2), No. 3, July 1993, pp. 382-400.
IEEE DOI BibRef 9307

Sahiner, B., Yagle, A.E.,
Time-Frequency Distribution Inversion of the Radon Transform,
IP(2), No. 4, October 1993, pp. 539-543.
IEEE DOI BibRef 9310
Earlier:
Iterative inversion of the Radon transform using image-adaptive wavelet constraints,
ICIP98(II: 709-713).
IEEE DOI 9810
BibRef

Marzetta, T.L.,
Fan Filters, the 3-D Radon Transform, and Image Sequence Analysis,
IP(3), No. 3, May 1994, pp. 253-264.
IEEE DOI BibRef 9405

Dusaussoy, N.J.,
VOIR, A Volumetric Image-Reconstruction Algorithm-Based on Fourier Techniques for Inversion of the 3-D Radon-Transform,
IP(5), No. 1, January 1996, pp. 121-131.
IEEE DOI BibRef 9601

Heusdens, R.,
Design of Lapped Orthogonal-Transforms,
IP(5), No. 8, August 1996, pp. 1281-1284.
IEEE DOI 9608
BibRef

Hansen, K.V., Toft, P.A.,
Fast Curve Estimation Using Preconditioned Generalized Radon-Transform,
IP(5), No. 12, December 1996, pp. 1651-1661.
IEEE DOI 9701
BibRef

Falkowski, B.J., Rahardja, S.,
Walsh-Like Functions And Their Relations,
VISP(143), No. 5, October 1996, pp. 279-284. 9701
BibRef

Falkowski, B.J.,
Family of generalised multi-polarity complex Hadamard transforms,
VISP(145), No. 6, December 1998, pp. 371. BibRef 9812

Falkowski, B.J., Sasao, T.,
Unified algorithm to generate Walsh functions in four different orderings and its programmable hardware implementations,
VISP(152), No. 6, December 2005, pp. 819-826.
DOI Link 0512
BibRef

Fu, C., Falkowski, B.J.,
Linearly independent ternary arithmetic helix transforms, their properties and relations,
VISP(153), No. 2, April 2006, pp. 87-94.
DOI Link 0604
BibRef

Pitas, I., Karasaridis, A.,
Multichannel Transforms for Signal/Image Processing,
IP(5), No. 10, October 1996, pp. 1402-1413.
IEEE DOI 9610
BibRef

Prabhu, K.M.M., Sundaram, R.S.,
Fast Algorithm for Pseudodiscrete Wigner-Ville Distribution Using Moving Discrete Hartley Transform,
VISP(143), No. 6, December 1996, pp. 383-386. 9702
BibRef

Sundaram, R.S., Prabhu, K.M.M.,
Numerically Stable Algorithm for Computing Wigner-Ville Distribution,
VISP(144), No. 1, February 1997, pp. 46-48. 9706
BibRef

Martens, J.B.,
Local Orientation Analysis in Images by Means of the Hermite Transform,
IP(6), No. 8, August 1997, pp. 1103-1116.
IEEE DOI 9708
BibRef

Liang, Z.P., Munson, D.C.,
Partial Radon Transforms,
IP(6), No. 10, October 1997, pp. 1467-1469.
IEEE DOI 9710
BibRef

Martinst, A.C.G.[Antonio Cesar Germano], Rangayyan, R.M.[Rangaraj Mandayam],
Complex Cepstral Filtering of Images and Echo Removal in the Radon Domain,
PR(30), No. 11, November 1997, pp. 1931-1938.
Elsevier DOI 9801
BibRef

Bi, G.A.,
Split-Radix Algorithm for 2-D Discrete Hartley Transform,
SP(63), No. 1, November 1997, pp. 45-53. 9801
BibRef

Vardi, Y., Lee, D.,
Discrete Radon-Transform and Its Approximate Inversion via the EM Algorithm,
IJIST(9), No. 2-3, 1998, pp. 155-173. 9805
BibRef

Sundararajan, D., Ahmad, M.O.,
Fast Computation of the Discrete Walsh and Hadamard Transforms,
IP(7), No. 6, June 1998, pp. 898-904.
IEEE DOI 9806
BibRef

Pegna, J., Hilaire, T.P.,
Multifringe Pattern Analysis of Circular Zone Plates,
JEI(7), No. 1, January 1998, pp. 257-264. 9807
BibRef

Park, R.H., Yoon, K.S., Choi, W.Y.,
8-Point Discrete Hartley Transform as an Edge Operator and Its Interpretation in the Frequency-Domain,
PRL(19), No. 7, May 1998, pp. 569-574. 9808
BibRef

Pan, X.C.,
Quasi-Band-Limited Properties of Radon Transforms and Their Implications for Increasing Angular Sampling Densities,
MedImg(17), No. 3, June 1998, pp. 395-406.
IEEE Top Reference. 9809
BibRef

Alieva, T., Barbe, A.,
Fractional Fourier and Radon-Wigner Transforms Of Periodic Signals,
SP(69), No. 2, September 1998, pp. 183-189. 9811
BibRef

Brady, M.L.[Martin L.],
A Fast Discrete Approximation Algorithm for the Radon Transform,
SIAM_JC(27), No. 1, 1998, pp. 107-119 BibRef 9800

Souani, C.[Chokri], Atri, M.[Mohamed], Abid, M.[Mohamed], Torki, K.[Kholdoun], Tourki, R.[Rached],
Design of New Optimized Architecture Processor for DWT,
RealTimeImg(6), No. 4, August 2000, pp. 297-312. 0010
BibRef

Aach, T.[Til], Kunz, D.W.[Dietmar W.],
A lapped directional transform for spectral image analysis and its application to restoration and enhancement,
SP(80), No. 11, November 2000, pp. 2347-2364. 0010
BibRef

Fuderer, M.[Miha], Aach, T.[Til], Kunz, D.W.[Dietmar W.],
Directional adaptive noise reduction,
US_Patent6,049,623, Apr 11, 2000
WWW Link. BibRef 0004

Kunz, D.W.,
An Orientation-Selective Orthogonal Lapped Transform,
IP(17), No. 8, August 2008, pp. 1313-1322.
IEEE DOI 0808
BibRef

Rangayyan, R.M.[Rangaraj M.], Krishnan, S.[Sridhar],
Feature identification in the time-frequency plane by using the Hough-Radon transform,
PR(34), No. 6, June 2001, pp. 1147-1158.
Elsevier DOI 0103
BibRef

Pattichis, M.S., Bovik, A.C., Havlicek, J.W., Sidiropoulos, N.D.,
Multidimensional orthogonal FM transforms,
IP(10), No. 3, March 2001, pp. 448-464.
IEEE DOI 0104
BibRef

Pattichis, M.S., Havlicek, J.P., Acton, S.T., Bovik, A.C.,
Multidimensional AM-FM Models with Image Processing Applications,
AIPU02(277-306). 0905
BibRef

Rodriguez, V.P.[V. Paul], Pattichis, M.S.,
New Algorithms for Fast and Accurate AM-FM Demodulation of Digital Images,
ICIP05(II: 1294-1297).
IEEE DOI 0512
BibRef

Murray, V.[Victor], Pattichis, M.S.[Marios S.],
AM-FM Demodulation Methods for Reconstruction, Analysis and Motion Estimation in Video signals,
Southwest08(17-20).
IEEE DOI 0803
BibRef

Murray, V.[Victor], Rodriguez, V.P.[V. Paul], Pattichis, M.S.[Marios S.],
Multiscale AM-FM Demodulation and Image Reconstruction Methods With Improved Accuracy,
IP(19), No. 5, May 2010, pp. 1138-1152.
IEEE DOI 1004
BibRef
Earlier:
Robust Multiscale AM-FM Demodulation of Digital Images,
ICIP07(I: 465-468).
IEEE DOI 0709
BibRef

Boussakta, S., Alshibami, O., Aziz, M., Holt, A.G.J.,
3-D vector radix algorithm for the 3-D new mersenne number transform,
VISP(148), No. 2, April 2001, pp. 115-125. 0106
BibRef

Yu, P.[Pinneng], Hua, H.P.[He-Ping],
A new fast recursive algorithm for computing discrete Hartley transform and its implementation,
SP(81), No. 10, October 2001, pp. 2235-2241.
Elsevier DOI 0110
BibRef

Amira, A., Bouridane, A., Milligan, P., Roula, M.A.,
Novel FPGA Implementations of Walsh-Hadamard Transforms for Signal Processing,
VISP(148), No. 6, December 2001, pp. 377-383.
IEEE Top Reference. 0203

See also FPGA Implementations of Fast Fourier Transforms for Real-Time Signal and Image Processing. BibRef

Amira, A.,
An FPGA based parameterisable system for discrete Hartley transforms implementation,
ICIP03(II: 567-570).
IEEE DOI 0312
BibRef

Alshibami, O., Boussakta, S.,
Fast 3-D decimation-in-frequency algorithm for 3-D Hartley transform,
SP(82), No. 1, January 2002, pp. 121-126.
Elsevier DOI 0202
BibRef

Jing, C.Y., Tai, H.M.,
Design and implementation of a fast algorithm for modulated lapped transform,
VISP(149), No. 1, February 2002, pp. 27-32.
IEEE Top Reference. 0205
BibRef

Horbelt, S., Liebling, M., Unser, M.,
Discretization of the Radon Transform and of its Inverse by Spline Convolutions,
MedImg(21), No. 4, April 2002, pp. 363-376.
IEEE Top Reference. 0206
BibRef

Zeng, Y.H.[Yong-Hong], Bi, G.A.[Guo-An], Leyman, A.R.[Abdul Rahim],
New algorithms for multidimensional discrete Hartley transform,
SP(82), No. 8, August 2002, pp. 1086-1095.
Elsevier DOI 0206
BibRef

Egiazarian, K.O.[Karen O.], Astola, J.T.[Jaakko T.],
Tree-Structured Haar Transforms,
JMIV(16), No. 3, May 2002, pp. 269-279.
DOI Link 0211
BibRef

Lun, D.P.K.[Daniel P. K.], Hsung, T.C., Shen, T.W.,
Orthogonal discrete periodic Radon transform. Part I: theory and realization,
SP(83), No. 5, May 2003, pp. 941-955.
Elsevier DOI 0304
BibRef

Lun, D.P.K.[Daniel P. K.], Hsung, T.C., Shen, T.W.,
Orthogonal discrete periodic Radon transform. Part II: applications,
SP(83), No. 5, May 2003, pp. 957-971.
Elsevier DOI 0304
BibRef

Aburdene, M.F., Xie, J.[Jin], Kozick, R.J.,
Efficient computation of discrete polynomial transforms,
SPLetters(10), No. 10, October 2003, pp. 285-288.
IEEE Abstract. 0310
BibRef

Agaian, S.S., Tourshan, K., Noonan, J.P.,
Parameterisation of slant-Haar transforms,
VISP(150), No. 4, October 2003, pp. 306-311.
IEEE Abstract. 0401
BibRef

Djurovic, I., Stankovic, L.,
Nonparametric Algorithm for Local Frequency Estimation of Multidimensional Signals,
IP(13), No. 4, April 2004, pp. 467-474.
IEEE DOI 0404
BibRef

Djurovic, I., Stankovic, L., Stankovic, S., Stojanovic, R.,
Local Frequency Estimation Based on the Wigner Distribution,
ICIP01(III: 736-739).
IEEE DOI 0108
BibRef

Corinthios, M.J.,
Complex-variable distribution theory for Laplace and z transforms,
VISP(152), No. 1, February 2005, pp. 97-106.
IEEE Abstract. 0501
BibRef

Colonna, F.[Flavia], Easley, G.R.[Glenn R.],
Generalized Discrete Radon Transforms and Their Use in the Ridgelet Transform,
JMIV(23), No. 2, September 2005, pp. 145-165.
Springer DOI 0505
BibRef

Luengo Hendriks, C.L.[Cris L.], van Ginkel, M.[Michael], Verbeek, P.W.[Piet W.], van Vliet, L.J.[Lucas J.],
The generalized Radon transform: Sampling, accuracy and memory considerations,
PR(38), No. 12, December 2005, pp. 2494-2505.
Elsevier DOI 0510
BibRef
Earlier: (British spelling -- "-ised") CAIP03(681-688).
Springer DOI 0311
BibRef

Rouze, N.C.[Ned C.], Soon, V.C.[Victor C.], Hutchins, G.D.[Gary D.],
On the connection between the Zernike moments and Radon transform of an image,
PRL(27), No. 6, 15 April 2006, pp. 636-642.
Elsevier DOI 0604
Zernike moments; Radon transform; Image reconstruction BibRef

Wang, X.,
Moving Window-Based Double Haar Wavelet Transform for Image Processing,
IP(15), No. 9, August 2006, pp. 2771-2779.
IEEE DOI 0608
BibRef

Marti-Puig, P.,
A Family of Fast Walsh Hadamard Algorithms With Identical Sparse Matrix Factorization,
SPLetters(13), No. 11, November 2006, pp. 672-675.
IEEE DOI 0610
BibRef

Shu, H.Z.[Hua-Zhong], Wang, Y.[Yuan], Senhadji, L.[Lotfi], Luo, L.M.[Li-Min],
Direct Computation of Type-II Discrete Hartley Transform,
SPLetters(14), No. 5, May 2007, pp. 329-332.
IEEE DOI 0704
BibRef

Cruz, C., Foi, A.[Alessandro], Katkovnik, V.[Vladimir], Egiazarian, K.O.[Karen O.],
Nonlocality-Reinforced Convolutional Neural Networks for Image Denoising,
SPLetters(25), No. 8, August 2018, pp. 1216-1220.
IEEE DOI 1808
feedforward neural nets, image denoising, image filtering, sparse matrices, nonlocal filters
See also Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images. BibRef

Maggioni, M., Katkovnik, V.[Vladimir], Egiazarian, K.O.[Karen O.], Foi, A.[Alessandro],
Nonlocal Transform-Domain Filter for Volumetric Data Denoising and Reconstruction,
IP(22), No. 1, January 2013, pp. 119-133.
IEEE DOI 1301

See also spatially adaptive nonparametric regression image deblurring, A. BibRef

Foi, A., Trimeche, M., Katkovnik, V.[Vladimir], Egiazarian, K.O.[Karen O.],
Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data,
IP(17), No. 10, October 2008, pp. 1737-1754.
IEEE DOI 0809
BibRef

Danielyan, A., Foi, A.[Alessandro],
Noise variance estimation in nonlocal transform domain,
LNLA09(41-45).
IEEE DOI 0908
BibRef

Katkovnik, V.[Vladimir], Foi, A.[Alessandro], Egiazarian, K.O.[Karen O.], Astola, J.T.[Jaakko T.],
From Local Kernel to Nonlocal Multiple-Model Image Denoising,
IJCV(86), No. 1, January 2010, pp. xx-yy.
Springer DOI 1001

See also Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data.
See also Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images. BibRef

Borges, L.R.[Lucas Rodrigues], da Costa Vieira, M.A.[Marcelo Andrade], Foi, A.[Alessandro],
Unbiased Injection of Signal-Dependent Noise in Variance-Stabilized Range,
SPLetters(23), No. 10, October 2016, pp. 1494-1498.
IEEE DOI 1610
image noising. Simulate by injecting noise. BibRef

Katkovnik, V.[Vladimir], Astola, J.T.[Jaakko T.],
Compressive sensing computational ghost imaging,
JOSA-A(29), No. 8, August 2012, pp. 1556-1567.
DOI Link 1208
BibRef

Abramova, V.[Victoriya], Abramov, S.[Sergey], Lukin, V.[Vladimir], Egiazarian, K.O.[Karen O.], Astola, J.T.[Jaakko T.],
On required accuracy of mixed noise parameter estimation for image enhancement via denoising,
JIVP(2014), No. 1, 2014, pp. 3.
DOI Link 1402
BibRef

Minasyan, S., Astola, J.T., Egiazarian, K.O., Guevorkian, D.,
Parametric Haar-Like Transforms in Image Denoising,
ICIP06(2629-2632).
IEEE DOI 0610
BibRef

Hou, Y., Zhao, C., Yang, D., Cheng, Y.,
Comments on 'Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering',
IP(20), No. 1, January 2011, pp. 268-270.
IEEE DOI 1101

See also Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. BibRef

Hjouj, F., Kammler, D.W.,
Identification of Reflected, Scaled, Translated, and Rotated Objects From Their Radon Projections,
IP(17), No. 3, March 2008, pp. 301-310.
IEEE DOI 0802
BibRef

Bi, G., Aung, A., Ng, B.P.,
Pipelined Hardware Structure for Sequency-Ordered Complex Hadamard Transform,
SPLetters(15), No. 1, 2008, pp. 401-404.
IEEE DOI 0804
BibRef

Kingston, A.[Andrew], Autrusseau, F.[Florent],
Lossless image compression via predictive coding of discrete Radon projections,
SP:IC(23), No. 4, April 2008, pp. 313-324.
Elsevier DOI 0711
Lossless image coding; Discrete Radon transform; Mojette; Redundancy BibRef

Kingston, A., Parrein, B., Autrusseau, F.,
Redundant image representation via multi-scale digital Radon projections,
ICIP08(2920-2923).
IEEE DOI 0810
BibRef

Kingston, A.[Andrew], Colosimo, S., Campisi, P., Autrusseau, F.[Florent],
Lossless Image Compression and Selective Encryption using a Discrete Radon Transform,
ICIP07(IV: 465-468).
IEEE DOI 0709
BibRef

Huang, Q.[Qiu], Zeng, G.L.[Gengsheng L.], Gullberg, G.T.[Grant T.],
An Analytical Inversion of the 180deg Exponential Radon Transform with a Numerically Generated Kernel,
IJIG(7), No. 1, January 2007, pp. 71-85. 0701
BibRef

Zhu, C., Xiong, B.,
Transform-Exempted Calculation of Sum of Absolute Hadamard Transformed Differences,
CirSysVideo(19), No. 8, August 2009, pp. 1183-1188.
IEEE DOI 0909
BibRef

Ouyang, W.L.[Wan-Li], Cham, W.K.,
Fast Algorithm for Walsh Hadamard Transform on Sliding Windows,
PAMI(32), No. 1, January 2010, pp. 165-171.
IEEE DOI 0912
About 1.5 additions per projection vector per sample. BibRef

Anguelov, R.[Roumen], Fabris-Rotelli, I.[Inger],
LULU Operators and Discrete Pulse Transform for Multidimensional Arrays,
IP(19), No. 11, November 2010, pp. 3012-3023.
IEEE DOI 1011
BibRef
Earlier:
Discrete Pulse Transform of Images,
ICISP08(1-9).
Springer DOI 0807
BibRef

Anguelov, R.[Roumen],
Discrete Pulse Transform of images: Algorithm and applications,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Bartels, C., de Haan, G.,
Smoothness Constraints in Recursive Search Motion Estimation for Picture Rate Conversion,
CirSysVideo(20), No. 10, October 2010, pp. 1310-1319.
IEEE DOI 1011
BibRef
Earlier:
Direct Motion Estimation in the Radon Transform Domain using Match-Profile Backprojections,
ICIP07(VI: 153-156).
IEEE DOI 0709
BibRef

Laurie, D.P.,
The Roadmaker's Algorithm for the Discrete Pulse Transform,
IP(20), No. 2, February 2011, pp. 361-371.
IEEE DOI 1102
BibRef

Haltmeier, M.[Markus],
Inversion Formulas for a Cylindrical Radon Transform,
SIIMS(4), No. 3, 2011, pp. 789-806.
WWW Link. 1110
BibRef

Haltmeier, M.[Markus],
Sampling Conditions for the Circular Radon Transform,
IP(25), No. 6, June 2016, pp. 2910-2919.
IEEE DOI 1605
Detectors BibRef

Dreier, F.[Florian], Haltmeier, M.[Markus],
Explicit Inversion Formulas for the Two-Dimensional Wave Equation from Neumann Traces,
SIIMS(13), No. 2, 2020, pp. 589-608.
DOI Link 2007
BibRef

Chiper, D.F.,
Fast Radix-2 Algorithm for the Discrete Hartley Transform of Type II,
SPLetters(18), No. 11, November 2011, pp. 687-689.
IEEE DOI 1112
BibRef

Muramatsu, S., Han, D., Kobayashi, T., Kikuchi, H.,
Directional Lapped Orthogonal Transform: Theory and Design,
IP(21), No. 5, May 2012, pp. 2434-2448.
IEEE DOI 1204
Cited by: 1 BibRef

Shu, H., Wu, J., Yang, C., Senhadji, L.,
Fast Radix-3 Algorithm for the Generalized Discrete Hartley Transform of Type II,
SPLetters(19), No. 6, June 2012, pp. 348-351.
IEEE DOI 1202
BibRef

Su, T.[Teng], Yu, F.[Feng],
A Family of Fast Hadamard-Fourier Transform Algorithms,
SPLetters(19), No. 9, September 2012, pp. 583-586.
IEEE DOI 1208
BibRef

Arguello, H., Arce, G.R.,
Rank Minimization Code Aperture Design for Spectrally Selective Compressive Imaging,
IP(22), No. 3, March 2013, pp. 941-954.
IEEE DOI 1302
multiframe code aperture snapshot spectral imaging (CASSI). BibRef

Arguello, H., Arce, G.R.,
Colored Coded Aperture Design by Concentration of Measure in Compressive Spectral Imaging,
IP(23), No. 4, April 2014, pp. 1896-1908.
IEEE DOI 1404
focal planes BibRef

Mejia, Y., Arguello, H.,
Binary Codification Design for Compressive Imaging by Uniform Sensing,
IP(27), No. 12, December 2018, pp. 5775-5786.
IEEE DOI 1810
compressed sensing, data compression, image coding, image reconstruction, optimisation, singular value decomposition, singular values BibRef

Goel, N.[Navdeep], Singh, K.[Kulbir],
Analysis of Dirichlet, Generalized Hamming and Triangular window functions in the linear canonical transform domain,
SIViP(7), No. 5, September 2013, pp. 911-923.
WWW Link. 1309
BibRef

Goel, N.[Navdeep], Singh, K.[Kulbir],
Modified correlation theorem for the linear canonical transform with representation transformation in quantum mechanics,
SIViP(8), No. 3, March 2014, pp. 595-601.
WWW Link. 1403
BibRef

Li, Y., Li, H., Cai, Z.,
Fast Orthogonal Haar Transform Pattern Matching via Image Square Sum,
PAMI(36), No. 9, September 2014, pp. 1748-1760.
IEEE DOI 1408
Algorithm design and analysis for fast computation. BibRef

Zhang, Z.C.[Zhi-Chao], Luo, M.K.[Mao-Kang],
New Integral Transforms for Generalizing the Wigner Distribution and Ambiguity Function,
SPLetters(22), No. 4, April 2015, pp. 460-464.
IEEE DOI 1411
Wigner distribution BibRef

Bonneel, N.[Nicolas], Rabin, J.[Julien], Peyré, G.[Gabriel], Pfister, H.[Hanspeter],
Sliced and Radon Wasserstein Barycenters of Measures,
JMIV(51), No. 1, January 2015, pp. 22-45.
Springer DOI 1503
BibRef

Peyré, G.[Gabriel],
Entropic Approximation of Wasserstein Gradient Flows,
SIIMS(8), No. 4, 2015, pp. 2323-2351.
DOI Link 1601
BibRef

Xiao, B.[Bin], Cui, J.T.[Jiang-Tao], Qin, H.X.[Hong-Xing], Li, W.S.[Wei-Sheng], Wang, G.Y.[Guo-Yin],
Moments and moment invariants in the Radon space,
PR(48), No. 9, 2015, pp. 2772-2784.
Elsevier DOI 1506
Radon transform BibRef

ELouedi, I.[Ines], Fournier, R.[Régis], Naït-Ali, A.[Amine], Hamouda, A.[Atef],
The polynomial discrete Radon transform,
SIViP(9), No. 1 Supp, December 2015, pp. 145-154.
Springer DOI 1601
BibRef

Carranza, C.[Cesar], Llamocca, D.[Daniel], Pattichis, M.[Marios],
Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform,
IP(25), No. 1, January 2016, pp. 119-133.
IEEE DOI 1601
BibRef
Earlier:
A scalable architecture for implementing the fast discrete periodic radon transform for prime sized images,
ICIP14(1208-1212)
IEEE DOI 1502
BibRef
And:
The Fast Discrete Periodic Radon Transform for prime sized images: Algorithm, architecture, and VLSI/FPGA implementation,
Southwest14(169-172)
IEEE DOI 1406
Adders. Radon transforms BibRef

Carranza, C.[Cesar], Pattichis, M.[Marios], Llamocca, D.[Daniel],
Fast and Parallel Computation of the Discrete Periodic Radon Transform on GPUs, Multicore CPUs and FPGAs,
ICIP18(4158-4162)
IEEE DOI 1809
Graphics processing units, Instruction sets, Multicore processing, Radon, Transforms, FPGA BibRef

Carranza, C.[Cesar], Llamocca, D.[Daniel], Pattichis, M.[Marios],
Fast 2D Convolutions and Cross-Correlations Using Scalable Architectures,
IP(26), No. 5, May 2017, pp. 2230-2245.
IEEE DOI 1704
Clocks BibRef

d'Acunto, M.[Mario], Benassi, A.[Antonio], Moroni, D.[Davide], Salvetti, O.[Ovidio],
3D image reconstruction using Radon transform,
SIViP(10), No. 1, January 2016, pp. 1-8.
Springer DOI 1601
BibRef

Kolouri, S., Park, S.R., Rohde, G.K.,
The Radon Cumulative Distribution Transform and Its Application to Image Classification,
IP(25), No. 2, February 2016, pp. 920-934.
IEEE DOI 1601
Feature extraction BibRef

Wang, B., Gao, Y.,
Structure Integral Transform Versus Radon Transform: A 2D Mathematical Tool for Invariant Shape Recognition,
IP(25), No. 12, December 2016, pp. 5635-5648.
IEEE DOI 1612
Radon transforms BibRef

Wang, Z., Wang, Y., Xu, L.,
Parameter Estimation of Hybrid Linear Frequency Modulation-Sinusoidal Frequency Modulation Signal,
SPLetters(24), No. 8, August 2017, pp. 1238-1241.
IEEE DOI 1708
Radon transforms, frequency modulation, parameter estimation, signal processing, extended Radon transform, hybrid linear frequency modulation-sinusoidal frequency modulation signal, inverse Radon transform, parameter estimation, Estimation, Frequency estimation, Frequency modulation, Strips, Transforms, Hybrid linear frequency modulation (LFM)-sinusoidal frequency modulation (SFM) signal, parameters estimation, radon transform BibRef

Moon, S.[Sunghwan], Haltmeier, M.[Markus],
Analytic Inversion of a Conical Radon Transform Arising in Application of Compton Cameras on the Cylinder,
SIIMS(10), No. 2, 2017, pp. 535-557.
DOI Link 1708
BibRef

Zheng, P., Huang, J.,
Efficient Encrypted Images Filtering and Transform Coding With Walsh-Hadamard Transform and Parallelization,
IP(27), No. 5, May 2018, pp. 2541-2556.
IEEE DOI 1804
Cloud computing, Computational complexity, Discrete cosine transforms, Encryption, secure signal processing BibRef

Gallagher, M.[Martin], Chandra, S.I.[Sun-Il], Kapsalas, P.[Petros], Hughes, C.[Ciarán], Glavin, M.[Martin], Jones, E.[Edward],
Fourier Mellin transform characterisation in the automotive environment,
SIViP(12), No. 8, November 2018, pp. 1587-1594.
Springer DOI 1809
BibRef

Wang, Y.L.[Yu-Ling], Li, M.[Ming], Zhong, G.Y.[Guo-Yun], Li, J.H.[Jun-Hua], Lu, Y.M.[Yu-Ming],
Circular trace transform and its PCA-based fusion features for image representation,
IET-IPR(12), No. 10, October 2018, pp. 1797-1806.
DOI Link 1809
BibRef

Silván-Cárdenas, J.L.[José Luis], Salazar-Garibay, A.[Adán],
Local Geometric Deformations in the DHT Domain With Applications,
IP(28), No. 4, April 2019, pp. 1980-1992.
IEEE DOI 1901
DHT: discrete Hermite transform. computational geometry, image matching, image reconstruction, image segmentation, mathematical morphology, transforms, depth from defocus BibRef

Zhang, Z.,
The Optimal Linear Canonical Wigner Distribution of Noisy Linear Frequency-Modulated Signals,
SPLetters(26), No. 8, August 2019, pp. 1127-1131.
IEEE DOI 1908
frequency modulation, optimisation, transforms, Wigner distribution, BibRef

Wang, B., Zhang, Y., Lu, W., Geng, J.,
A Robust and Efficient Sparse Time-Invariant Radon Transform in the Mixed Time-Frequency Domain,
GeoRS(57), No. 10, October 2019, pp. 7558-7566.
IEEE DOI 1910
geophysical signal processing, geophysical techniques, interpolation, inverse problems, iterative methods, time-invariant Radon transform (TIRT) BibRef

Yang, J., Lu, Z., Tang, Y.Y., Yuan, Z., Chen, Y.,
Quasi Fourier-Mellin Transform for Affine Invariant Features,
IP(29), 2020, pp. 4114-4129.
IEEE DOI 2002
Quasi Fourier-Mellin transform, quasi Fourier-Mellin descriptor, Fourier-Mellin transform, feature extraction BibRef

Nguyen, T.P.[Thanh Phuong], Nguyen, X.S.[Xuan Son], Borgi, M.A.[Mohamed Anouar], Nguyen, M.K.,
A Projection-Based Method for Shape Measurement,
JMIV(62), No. 4, May 2020, pp. 489-504.
Springer DOI 2005
Projection space of Radon transform. BibRef

Ziou, D.[Djemel], Nacereddine, N.[Nafaa], Goumeidane, A.B.[Aicha Baya],
Scale space Radon transform,
IET-IPR(15), No. 9, 2021, pp. 2097-2111.
DOI Link 2106
BibRef

Beckmann, M.[Matthias], Bhandari, A.[Ayush], Krahmer, F.[Felix],
The Modulo Radon Transform: Theory, Algorithms, and Applications,
SIIMS(15), No. 2, 2022, pp. 455-490.
DOI Link 2205
BibRef

Zhang, Z.C.[Zhi-Chao], Shi, X.[Xiya],
Kernel Function-tau-Wigner Distribution Associated With the Linear Canonical Transform,
SPLetters(29), 2022, pp. 1764-1768.
IEEE DOI 2208
Kernel, Computational complexity, Uncertainty, Signal processing, Noise measurement, Time-frequency analysis, Tensors, tau-Wigner distribution BibRef

Ganster, K.[Kevin], Rieder, A.[Andreas],
Approximate Inversion of a Class of Generalized Radon Transforms,
SIIMS(16), No. 2, 2023, pp. 842-866.
DOI Link 2306
BibRef

Fan, Z.C.[Zi-Chen], Li, D.[Di], Rahardja, S.[Susanto],
Pure Number Discrete Fractional Complex Hadamard Transform,
SPLetters(30), 2023, pp. 1087-1091.
IEEE DOI 2310
BibRef

Lorenzana, M.B.[Marlon Bran], Chandra, S.S.[Shekhar S.],
Non-Separable Two-Dimensional Hadamard Transform via a Discrete Hadamard Slice Theorem,
SPLetters(30), 2023, pp. 1237-1241.
IEEE DOI 2310
BibRef

Wang, Y.[Yue], Gong, X.B.[Xiang-Bo], Hu, B.[Bin],
Seismic Data Reconstruction Using a Phase-Shift-Plus-Interpolation-Based Apex-Shifted Hyperbolic Radon Transform,
RS(16), No. 7, 2024, pp. 1114.
DOI Link 2404
BibRef

Katsevich, A.[Alexander],
Analysis of View Aliasing for the Generalized Radon Transform in R2,
SIIMS(17), No. 1, 2024, pp. 415-440.
DOI Link 2404
BibRef


Beier, F.[Florian],
Gromov-Wasserstein Transfer Operators,
SSVM23(614-626).
Springer DOI 2307
BibRef

Hertrich, J.[Johannes], Beinert, R.[Robert], Gräf, M.[Manuel], Steidl, G.[Gabriele],
Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on the Line,
SSVM23(431-443).
Springer DOI 2307
BibRef

Quellmalz, M.[Michael], Weissinger, L.[Lukas], Hubmer, S.[Simon], Erchinger, P.D.[Paul D.],
A Frame Decomposition of the Funk-Radon Transform,
SSVM23(42-54).
Springer DOI 2307
BibRef

Beckmann, M.[Matthias], Bhandari, A.[Ayush],
MR.TOMP: Inversion of the Modulo Radon Transform (MRT) via Orthogonal Matching Pursuit (OMP),
ICIP22(3748-3752)
IEEE DOI 2211
Photography, Heuristic algorithms, Radon, Matching pursuit algorithms, Transforms, Dynamic range, Tomography, Radon transform and sampling theory BibRef

Ricordel, V.[Vincent], Normand, N.[Nicolas], Guédon, J.[Jeanpierre],
Mojette Transform on Densest Lattices in 2D and 3D,
DGCI17(159-170).
Springer DOI 1711
an exact discrete form of the Radon transform. BibRef

Lin, R.P.[Rong-Ping], Du, C.H.[Chun-Hui], Luo, S.[Shan], Xu, Q.[Qi],
Performance on a combined representation for time-frequency analysis,
ICIVC17(858-862)
IEEE DOI 1708
Noise measurement, Wigner-Ville distribution, linear frequency modulated, local polynomial periodogram, time-frequency BibRef

Ceko, M.[Matthew], Svalbe, I.[Imants],
Symmetric Counterparts of Classical 1D Haar Filters for Improved Image Reconstruction via Discrete Back-Projection,
ISMM17(68-80).
Springer DOI 1706
BibRef

Pereira, P.M.M., Domingues, P., Rodrigues, N.M.M., Faria, S.M.M., Falcao, G.,
Optimized fast Walsh-Hadamard transform on OpenCL-GPU and OpenCL-CPU,
IPTA16(1-6)
IEEE DOI 1703
Hadamard transforms BibRef

Pitié, F.,
An alternative matting Laplacian,
ICIP16(3623-3627)
IEEE DOI 1610
Covariance matrices BibRef

Muramatsu, S., Ishii, M., Chen, Z.,
Efficient parameter optimization for example-based design of nonseparable oversampled lapped transform,
ICIP16(3618-3622)
IEEE DOI 1610
Dictionaries BibRef

Chou, P.A., de Queiroz, R.L.,
Gaussian process transforms,
ICIP16(1524-1528)
IEEE DOI 1610
Covariance matrices BibRef

Kaur, B.[Baljit], Majumder, M.K.[Manoj Kumar],
Modified PPPE architecture for two-dimensional Radon Transform computation,
ICIIP11(1-6).
IEEE DOI 1112
BibRef

Luisier, F.[Florian], Blu, T.[Thierry], Unser, M.[Michael],
Undecimated Haar thresholding for poisson intensity estimation,
ICIP10(1697-1700).
IEEE DOI 1009
BibRef

Hu, H.L.[Hong-Li], Zhang, J.Z.[Jian-Zhou],
Approximate inverse based implementation for Tuy's formula,
ICIP10(621-624).
IEEE DOI 1009
BibRef

Morvidone, M., Truong, T.T., Nguyen, M.K., Zaidi, H.,
A novel V-line Radon transform and its imaging applications,
ICIP10(629-632).
IEEE DOI 1009
BibRef

Sang, A.J.[Ai-Jun], Sun, T.N.[Tie-Ning], Chen, H.X.[He-Xin], Feng, H.[Hua],
A 4D nth-order Walsh orthogonal transform algorithm used for color image coding,
IASP10(206-209).
IEEE DOI 1004
BibRef

Chandra, S.[Shekhar], Svalbe, I.[Imants],
A Fast Number Theoretic Finite Radon Transform,
DICTA09(361-368).
IEEE DOI 0912
BibRef

Scherzer, O.[Otmar], Walch, B.[Birgit],
Sparsity Regularization for Radon Measures,
SSVM09(452-463).
Springer DOI 0906
BibRef

Averbuch, A., Coifman, R.R., Donoho, D.L., Israeli, M., and Walden, J.,
Fast slant stack: A notion of radon transform for data on a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful, and invertible,
TRStanford University, 2001. BibRef 0100

Agaian, S.S., Caglayan, O.,
New Fast Hartley Transform with Linear Multiplicative Complexity,
ICIP06(377-380).
IEEE DOI 0610
BibRef

Antoniol, G., Ceccarelli, M., Petrosino, A.,
Microarray Image Addressing Based on the Radon Transform,
ICIP05(I: 13-16).
IEEE DOI 0512
BibRef

Svalbe, I.[Imants], Kingston, A.[Andrew],
On Correcting the Unevenness of Angle Distributions Arising from Integer Ratios Lying in Restricted Portions of the Farey Plane,
IWCIA04(110-121).
Springer DOI 0505
Projections must go to image grid positions, but they don't always do that. BibRef

Svalbe, I.,
An Image Labeling Mechanism Using Digital Radon Projections,
ICIP01(III: 1015-1018).
IEEE DOI 0108
BibRef

Smeraldi, F., Rob, M.A.,
Ranklets on hexagonal pixel lattices,
BMVC03(xx-yy).
HTML Version. 0409
On square grid, similar to Haar. BibRef

Boussakta, S., Alshibami, O., Bouridane, A.,
Radix-4x4 for fast calculation of the 2-D NMNT,
ICIP03(I: 709-712).
IEEE DOI 0312
2D new Mersenne number transform. BibRef

Reichel, J., Ziliani, F.,
Controlled temporal Haar transform for video coding,
ICIP03(II: 767-770).
IEEE DOI 0312
BibRef

Crigoryan, A.M., Agaian, S.S., Manukyan, A.R.,
A novel method of splitting the 3-D discrete Hartley transform,
ICIP03(I: 1009-1012).
IEEE DOI 0312
BibRef

Ye, Q.G.[Qhi-Ghua], Huang, H.N.[Hai-Ning], He, X.Y.[Xin-Yi], Zhang, C.H.[Chun-Hua],
A SR-based radon transform to extract weak lines from noise images,
ICIP03(I: 849-852).
IEEE DOI 0312
BibRef

Yarman, C.E., Yazici, B.,
Exponential Radon Transform Inversion Based on Harmonic Analysis of the Euclidean Motion Group,
ICIP05(III: 613-615).
IEEE DOI 0512
BibRef
Earlier:
Radon Transform Inversion via Wiener Filtering over the Euclidean Motion Group,
ICIP03(II: 811-814).
IEEE DOI 0312
BibRef

Lienhart, R., Maydt, J.,
An extended set of Haar-like features for rapid object detection,
ICIP02(I: 900-903).
IEEE DOI 0210
BibRef

Grigoryan, A.M.,
Three Algorithms for Computing the 2-d Discrete Hartley Transform,
ICIP00(Vol II: 359-362).
IEEE DOI 0008
BibRef

Siebert, A.,
A linear shift invariant multiscale transform,
ICIP98(III: 688-691).
IEEE DOI 9810
BibRef

Kazantsev, I.,
A New Formula of the Radon Transform Inversion,
ICIP97(I: 189-191).
IEEE DOI BibRef 9700

Sarukhanyan, H.G.[Hakob G.],
Decomposition of the Hadamard matrices and fast Hadamard transform,
CAIP97(575-581).
Springer DOI 9709
BibRef

Stiller, C., Konrad, J.,
Region-adaptive transform based on a stochastic model,
ICIP95(II: 264-267).
IEEE DOI 9510
BibRef

Maragos, P., Bovik, A.C.,
Demodulation of images modeled by amplitude-frequency modulations using multidimensional energy separation,
ICIP94(III: 421-425).
IEEE DOI 9411
BibRef

Baringer, W.B., Brodersen, R.W., Petkovic, D.,
Computer vision hardware using the Radon transform,
CVPR91(508-513).
IEEE DOI 0403
BibRef

Gindi, G.R., Gmitro, A.F.,
Optical Feature Extraction Via the Radon Transform,
ICPR84(702-704). BibRef 8400

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Afine Transforms .


Last update:Sep 28, 2024 at 17:47:54