Walsh, J.L.,
A Closed Set of Normal Orthogonal Functions,
AJM(45), 1923, pp. 5-24.
Walsh Transform. 2^n Walsh functions of length n.
Essentially using binary numbers to specify the 1/0 nature.
Order them in different ways and the Hadamard Transform results.
For a discussion see:
HTML Version.
BibRef
2300
Yuen, C., 1972.
Remarks on the Ordering of Walsh Functions,
TC(21), No. 12, December 1972, pp. 1452.
BibRef
7212
Fino, B.J.,
Relations between Haar and Walsh/Hadamard Transforms,
PIEEE(60), No. 5, May 1972, pp. 647-648.
BibRef
7205
Carl, J., and
Swartwood, R.,
A Hybrid Walsh Transform Computer,
TC(22), No. 7, July 1973, pp. 669-672.
BibRef
7307
Hawkes, P.W.,
A note on inverse filtering for anisoplanatic systems with coherent
illumination,
PR(7), No. 1-2, June 1975, pp. 59-60.
Elsevier DOI
0309
Use of Mellin transform to describe field curvature and astigmatism.
BibRef
Tretiak, O.J., and
Metz, C.E.,
The Exponential Radon Transform,
SIAM_JAM(39), 1980, pp. 341-354.
BibRef
8000
Rattey, P.A., and
Lindgren, A.G.,
Sampling the 2-D Radon transform,
ASSP(29), No. 4, October 1981, pp. 994-1002.
BibRef
8110
Deans, S.R.,
The Radon Transform and Some of its Applications,
John
Wiley& Sons, New York. 1983.
See also Hough Transform from the Radon Transform.
BibRef
8300
Natterer, F.,
The Radon Transform,
WileyNew York, 1986.
The book.
BibRef
8600
Jahns, J.,
Efficient Hadamard Transformation of Large Images,
SP(5), 1983, pp. 75-80.
BibRef
8300
Wang, Z.D.,
A New Algorithm for the Slant Transform,
PAMI(4), No. 5, September 1982, pp. 551-555.
BibRef
8209
Mali, P.C.,
Chaudhuri, B.B.,
Dutta Majumder, D.,
Performance Bound of Walsh-Hadamard Transform for Feature Selection and
Compression and Some Related Fast Algorithms,
PRL(2), 1983, pp. 5-12.
See also Some Algorithms for Image Enhancement Incorporating Human Visual Response.
BibRef
8300
Mali, P.C.,
Chaudhuri, B.B.,
Dutta Majumder, D.,
Properties and Some Fast Algorithms of the Haar Transform in
Image Processing and Pattern Recognition,
PRL(2), 1984, pp. 319-327.
BibRef
8400
Hansen, E.W.,
Fast Hankel Transform Algorithm,
ASSP(33), 1985, pp. 666-671.
BibRef
8500
Raghuramireddy, D.,
Unbehauen, R.,
The Two-Dimensional Differential Cepstrum,
ASSP(33), 1985, pp. 1335-1337.
BibRef
8500
Zwicke, P.E., and
Kiss, Jr., I.,
A New Implementation of the Mellin Transform and its
Application to Radar Classification of Ships,
PAMI(5), No. 2, March 1983, pp. 191-199.
BibRef
8303
Kumaresan, R.,
Gupta, P.K.,
Vector-Radix Algorithm for a 2-D Discrete Hartley Transform,
PIEEE(74), 1986, pp. 755-757.
BibRef
8600
Bracewell, R.N.,
Buneman, O.,
Hao, H.,
Villasenor, J.D.,
Fast Two-Dimensional Hartley Transform,
PIEEE(74), 1986, pp. 1282-1283.
BibRef
8600
Fitzpatrick, J.M.,
Louze, M.R.,
A Class of One-to-One Two-Dimensional Transformations,
CVGIP(39), No. 3, September 1987, pp. 369-382.
Elsevier DOI
BibRef
8709
Leavers, V.F.,
Boyce, J.F.,
The Radon Transform and Its Application to Shape Parameterization
in Machine Vision,
IVC(5), No. 2, May 1987, pp. 161-166.
Elsevier DOI
BibRef
8705
Leavers, V.F.,
Statistical Properties of the Hybrid Radon-Fourier Technique,
BMVC00(xx-yy).
PDF File.
0009
BibRef
Leavers, V.F.[Violet F.],
Use of the Two-Dimensional Radon Transform to Generate a Taxonomy of
Shape for the Characterization of Abrasive Powder Particles,
PAMI(22), No. 12, December 2000, pp. 1411-1423.
IEEE DOI
0012
Inspection, Wear. Shape and angularity of particles for edge map.
See also Use of the Radon Transform As a Method of Extracting Information About Shape in Two Dimensions. And
See also Dynamic Generalized Hough Transform: Its Relationship to the Probabilistic Hough Transforms and an Application to the Concurrent Detection of Circles and Ellipses, The.
BibRef
Leavers, V.F.,
Analysis of Wear Particles Using the Radon Transform,
ICPR00(Vol IV: 764-766).
IEEE DOI
0009
BibRef
Berenyi, H.M.,
Leavers, V.F.,
Burge, R.E.,
Automatic Detection of Targets Against Cluttered Backgrounds Using a
Fractal-Oriented Statistical Analysis and Radon Transform,
PRL(13), 1992, pp. 869-877.
BibRef
9200
Temerinac, M.,
Edler, B.,
A unified approach to lapped orthogonal transforms,
IP(1), No. 1, January 1992, pp. 111-116.
IEEE DOI
0402
BibRef
Wang, W.L.,
Jin, G.F.,
Yan, Y.B.,
Wu, M.X.,
Image Feature-Extraction with the Optical Haar Wavelet Transform,
OptEng(34), No. 4, April 1995, pp. 1238-1242.
BibRef
9504
Wang, W.L.,
Jin, G.F.,
Yan, Y.B.,
Wu, M.X.,
Joint Wavelet-Transform Correlator for Image Feature-Extraction,
AppOpt(34), No. 2, January 10 1995, pp. 370-376.
BibRef
9501
Götz, W.A.,
Druckmüller, H.J.,
A Fast Digital Radon-Transform:
An Efficient Means for Evaluating the Hough Transform,
PR(28), No. 12, December 1995, pp. 1985-1992.
Elsevier DOI
BibRef
9512
And:
PR(29), No. 4, April 1996, pp. 711-718.
Elsevier DOI
BibRef
Anguh, M.M.,
Martin, R.R.,
A Truncation Method for Computing Walsh Transforms with
Applications to Image Processing,
GMIP(55), No. 6, November 1993, pp. 482-yy.
BibRef
9311
Anguh, M.M.,
Martin, R.R.,
A 2-Dimensional Inplace Truncation Walsh Transform Method,
JVCIR(7), No. 2, June 1996, pp. 116-125.
9607
BibRef
Kelley, B.T.,
Madisetti, V.K.,
The Fast Discrete Radon Transform I: Theory,
IP(2), No. 3, July 1993, pp. 382-400.
IEEE DOI
BibRef
9307
Sahiner, B.,
Yagle, A.E.,
Time-Frequency Distribution Inversion of the Radon Transform,
IP(2), No. 4, October 1993, pp. 539-543.
IEEE DOI
BibRef
9310
Earlier:
Iterative inversion of the Radon transform using image-adaptive wavelet
constraints,
ICIP98(II: 709-713).
IEEE DOI
9810
BibRef
Marzetta, T.L.,
Fan Filters, the 3-D Radon Transform, and Image Sequence Analysis,
IP(3), No. 3, May 1994, pp. 253-264.
IEEE DOI
BibRef
9405
Dusaussoy, N.J.,
VOIR, A Volumetric Image-Reconstruction Algorithm-Based on
Fourier Techniques for Inversion of the 3-D Radon-Transform,
IP(5), No. 1, January 1996, pp. 121-131.
IEEE DOI
BibRef
9601
Heusdens, R.,
Design of Lapped Orthogonal-Transforms,
IP(5), No. 8, August 1996, pp. 1281-1284.
IEEE DOI
9608
BibRef
Hansen, K.V.,
Toft, P.A.,
Fast Curve Estimation Using Preconditioned Generalized Radon-Transform,
IP(5), No. 12, December 1996, pp. 1651-1661.
IEEE DOI
9701
BibRef
Falkowski, B.J.,
Rahardja, S.,
Walsh-Like Functions And Their Relations,
VISP(143), No. 5, October 1996, pp. 279-284.
9701
BibRef
Falkowski, B.J.,
Family of generalised multi-polarity complex Hadamard transforms,
VISP(145), No. 6, December 1998, pp. 371.
BibRef
9812
Falkowski, B.J.,
Sasao, T.,
Unified algorithm to generate Walsh functions in four different
orderings and its programmable hardware implementations,
VISP(152), No. 6, December 2005, pp. 819-826.
DOI Link
0512
BibRef
Fu, C.,
Falkowski, B.J.,
Linearly independent ternary arithmetic helix transforms, their
properties and relations,
VISP(153), No. 2, April 2006, pp. 87-94.
DOI Link
0604
BibRef
Pitas, I.,
Karasaridis, A.,
Multichannel Transforms for Signal/Image Processing,
IP(5), No. 10, October 1996, pp. 1402-1413.
IEEE DOI
9610
BibRef
Prabhu, K.M.M.,
Sundaram, R.S.,
Fast Algorithm for Pseudodiscrete Wigner-Ville Distribution Using
Moving Discrete Hartley Transform,
VISP(143), No. 6, December 1996, pp. 383-386.
9702
BibRef
Sundaram, R.S.,
Prabhu, K.M.M.,
Numerically Stable Algorithm for Computing Wigner-Ville Distribution,
VISP(144), No. 1, February 1997, pp. 46-48.
9706
BibRef
Martens, J.B.,
Local Orientation Analysis in Images by Means of the Hermite Transform,
IP(6), No. 8, August 1997, pp. 1103-1116.
IEEE DOI
9708
BibRef
Liang, Z.P.,
Munson, D.C.,
Partial Radon Transforms,
IP(6), No. 10, October 1997, pp. 1467-1469.
IEEE DOI
9710
BibRef
Martinst, A.C.G.[Antonio Cesar Germano],
Rangayyan, R.M.[Rangaraj Mandayam],
Complex Cepstral Filtering of Images and Echo Removal in
the Radon Domain,
PR(30), No. 11, November 1997, pp. 1931-1938.
Elsevier DOI
9801
BibRef
Bi, G.A.,
Split-Radix Algorithm for 2-D Discrete Hartley Transform,
SP(63), No. 1, November 1997, pp. 45-53.
9801
BibRef
Vardi, Y.,
Lee, D.,
Discrete Radon-Transform and Its Approximate Inversion via
the EM Algorithm,
IJIST(9), No. 2-3, 1998, pp. 155-173.
9805
BibRef
Sundararajan, D.,
Ahmad, M.O.,
Fast Computation of the Discrete Walsh and Hadamard Transforms,
IP(7), No. 6, June 1998, pp. 898-904.
IEEE DOI
9806
BibRef
Pegna, J.,
Hilaire, T.P.,
Multifringe Pattern Analysis of Circular Zone Plates,
JEI(7), No. 1, January 1998, pp. 257-264.
9807
BibRef
Park, R.H.,
Yoon, K.S.,
Choi, W.Y.,
8-Point Discrete Hartley Transform as an Edge Operator and
Its Interpretation in the Frequency-Domain,
PRL(19), No. 7, May 1998, pp. 569-574.
9808
BibRef
Pan, X.C.,
Quasi-Band-Limited Properties of Radon Transforms and
Their Implications for Increasing Angular Sampling Densities,
MedImg(17), No. 3, June 1998, pp. 395-406.
IEEE Top Reference.
9809
BibRef
Alieva, T.,
Barbe, A.,
Fractional Fourier and Radon-Wigner Transforms Of Periodic Signals,
SP(69), No. 2, September 1998, pp. 183-189.
9811
BibRef
Brady, M.L.[Martin L.],
A Fast Discrete Approximation Algorithm for the Radon Transform,
SIAM_JC(27), No. 1, 1998, pp. 107-119
BibRef
9800
Souani, C.[Chokri],
Atri, M.[Mohamed],
Abid, M.[Mohamed],
Torki, K.[Kholdoun],
Tourki, R.[Rached],
Design of New Optimized Architecture Processor for DWT,
RealTimeImg(6), No. 4, August 2000, pp. 297-312.
0010
BibRef
Aach, T.[Til],
Kunz, D.W.[Dietmar W.],
A lapped directional transform for spectral image analysis and its
application to restoration and enhancement,
SP(80), No. 11, November 2000, pp. 2347-2364.
0010
BibRef
Fuderer, M.[Miha],
Aach, T.[Til],
Kunz, D.W.[Dietmar W.],
Directional adaptive noise reduction,
US_Patent6,049,623, Apr 11, 2000
WWW Link.
BibRef
0004
Kunz, D.W.,
An Orientation-Selective Orthogonal Lapped Transform,
IP(17), No. 8, August 2008, pp. 1313-1322.
IEEE DOI
0808
BibRef
Rangayyan, R.M.[Rangaraj M.],
Krishnan, S.[Sridhar],
Feature identification in the time-frequency plane by using the
Hough-Radon transform,
PR(34), No. 6, June 2001, pp. 1147-1158.
Elsevier DOI
0103
BibRef
Pattichis, M.S.,
Bovik, A.C.,
Havlicek, J.W.,
Sidiropoulos, N.D.,
Multidimensional orthogonal FM transforms,
IP(10), No. 3, March 2001, pp. 448-464.
IEEE DOI
0104
BibRef
Pattichis, M.S.,
Havlicek, J.P.,
Acton, S.T.,
Bovik, A.C.,
Multidimensional AM-FM Models with Image Processing Applications,
AIPU02(277-306).
0905
BibRef
Rodriguez, V.P.[V. Paul],
Pattichis, M.S.,
New Algorithms for Fast and Accurate AM-FM Demodulation of Digital
Images,
ICIP05(II: 1294-1297).
IEEE DOI
0512
BibRef
Murray, V.[Victor],
Pattichis, M.S.[Marios S.],
AM-FM Demodulation Methods for Reconstruction, Analysis and Motion
Estimation in Video signals,
Southwest08(17-20).
IEEE DOI
0803
BibRef
Murray, V.[Victor],
Rodriguez, V.P.[V. Paul],
Pattichis, M.S.[Marios S.],
Multiscale AM-FM Demodulation and Image Reconstruction Methods With
Improved Accuracy,
IP(19), No. 5, May 2010, pp. 1138-1152.
IEEE DOI
1004
BibRef
Earlier:
Robust Multiscale AM-FM Demodulation of Digital Images,
ICIP07(I: 465-468).
IEEE DOI
0709
BibRef
Boussakta, S.,
Alshibami, O.,
Aziz, M.,
Holt, A.G.J.,
3-D vector radix algorithm for the 3-D new mersenne number transform,
VISP(148), No. 2, April 2001, pp. 115-125.
0106
BibRef
Yu, P.[Pinneng],
Hua, H.P.[He-Ping],
A new fast recursive algorithm for computing discrete Hartley transform
and its implementation,
SP(81), No. 10, October 2001, pp. 2235-2241.
Elsevier DOI
0110
BibRef
Amira, A.,
Bouridane, A.,
Milligan, P.,
Roula, M.A.,
Novel FPGA Implementations of Walsh-Hadamard Transforms for Signal
Processing,
VISP(148), No. 6, December 2001, pp. 377-383.
IEEE Top Reference.
0203
See also FPGA Implementations of Fast Fourier Transforms for Real-Time Signal and Image Processing.
BibRef
Amira, A.,
An FPGA based parameterisable system for discrete Hartley transforms
implementation,
ICIP03(II: 567-570).
IEEE DOI
0312
BibRef
Alshibami, O.,
Boussakta, S.,
Fast 3-D decimation-in-frequency algorithm for 3-D Hartley transform,
SP(82), No. 1, January 2002, pp. 121-126.
Elsevier DOI
0202
BibRef
Jing, C.Y.,
Tai, H.M.,
Design and implementation of a fast algorithm for modulated lapped
transform,
VISP(149), No. 1, February 2002, pp. 27-32.
IEEE Top Reference.
0205
BibRef
Horbelt, S.,
Liebling, M.,
Unser, M.,
Discretization of the Radon Transform and of its Inverse by Spline
Convolutions,
MedImg(21), No. 4, April 2002, pp. 363-376.
IEEE Top Reference.
0206
BibRef
Zeng, Y.H.[Yong-Hong],
Bi, G.A.[Guo-An],
Leyman, A.R.[Abdul Rahim],
New algorithms for multidimensional discrete Hartley transform,
SP(82), No. 8, August 2002, pp. 1086-1095.
Elsevier DOI
0206
BibRef
Egiazarian, K.O.[Karen O.],
Astola, J.T.[Jaakko T.],
Tree-Structured Haar Transforms,
JMIV(16), No. 3, May 2002, pp. 269-279.
DOI Link
0211
BibRef
Lun, D.P.K.[Daniel P. K.],
Hsung, T.C.,
Shen, T.W.,
Orthogonal discrete periodic Radon transform. Part I: theory and
realization,
SP(83), No. 5, May 2003, pp. 941-955.
Elsevier DOI
0304
BibRef
Lun, D.P.K.[Daniel P. K.],
Hsung, T.C.,
Shen, T.W.,
Orthogonal discrete periodic Radon transform. Part II: applications,
SP(83), No. 5, May 2003, pp. 957-971.
Elsevier DOI
0304
BibRef
Aburdene, M.F.,
Xie, J.[Jin],
Kozick, R.J.,
Efficient computation of discrete polynomial transforms,
SPLetters(10), No. 10, October 2003, pp. 285-288.
IEEE Abstract.
0310
BibRef
Agaian, S.S.,
Tourshan, K.,
Noonan, J.P.,
Parameterisation of slant-Haar transforms,
VISP(150), No. 4, October 2003, pp. 306-311.
IEEE Abstract.
0401
BibRef
Djurovic, I.,
Stankovic, L.,
Nonparametric Algorithm for Local Frequency Estimation of
Multidimensional Signals,
IP(13), No. 4, April 2004, pp. 467-474.
IEEE DOI
0404
BibRef
Djurovic, I.,
Stankovic, L.,
Stankovic, S.,
Stojanovic, R.,
Local Frequency Estimation Based on the Wigner Distribution,
ICIP01(III: 736-739).
IEEE DOI
0108
BibRef
Corinthios, M.J.,
Complex-variable distribution theory for Laplace and z transforms,
VISP(152), No. 1, February 2005, pp. 97-106.
IEEE Abstract.
0501
BibRef
Colonna, F.[Flavia],
Easley, G.R.[Glenn R.],
Generalized Discrete Radon Transforms and Their Use in the Ridgelet
Transform,
JMIV(23), No. 2, September 2005, pp. 145-165.
Springer DOI
0505
BibRef
Luengo Hendriks, C.L.[Cris L.],
van Ginkel, M.[Michael],
Verbeek, P.W.[Piet W.],
van Vliet, L.J.[Lucas J.],
The generalized Radon transform: Sampling, accuracy and memory
considerations,
PR(38), No. 12, December 2005, pp. 2494-2505.
Elsevier DOI
0510
BibRef
Earlier:
(British spelling -- "-ised")
CAIP03(681-688).
Springer DOI
0311
BibRef
Rouze, N.C.[Ned C.],
Soon, V.C.[Victor C.],
Hutchins, G.D.[Gary D.],
On the connection between the Zernike moments and Radon transform of an
image,
PRL(27), No. 6, 15 April 2006, pp. 636-642.
Elsevier DOI
0604
Zernike moments; Radon transform; Image reconstruction
BibRef
Wang, X.,
Moving Window-Based Double Haar Wavelet Transform for Image Processing,
IP(15), No. 9, August 2006, pp. 2771-2779.
IEEE DOI
0608
BibRef
Marti-Puig, P.,
A Family of Fast Walsh Hadamard Algorithms With Identical Sparse Matrix
Factorization,
SPLetters(13), No. 11, November 2006, pp. 672-675.
IEEE DOI
0610
BibRef
Shu, H.Z.[Hua-Zhong],
Wang, Y.[Yuan],
Senhadji, L.[Lotfi],
Luo, L.M.[Li-Min],
Direct Computation of Type-II Discrete Hartley Transform,
SPLetters(14), No. 5, May 2007, pp. 329-332.
IEEE DOI
0704
BibRef
Cruz, C.,
Foi, A.[Alessandro],
Katkovnik, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Nonlocality-Reinforced Convolutional Neural Networks for Image
Denoising,
SPLetters(25), No. 8, August 2018, pp. 1216-1220.
IEEE DOI
1808
feedforward neural nets, image denoising, image filtering,
sparse matrices,
nonlocal filters
See also Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images.
BibRef
Maggioni, M.,
Katkovnik, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Foi, A.[Alessandro],
Nonlocal Transform-Domain Filter for Volumetric Data Denoising and
Reconstruction,
IP(22), No. 1, January 2013, pp. 119-133.
IEEE DOI
1301
See also spatially adaptive nonparametric regression image deblurring, A.
BibRef
Foi, A.,
Trimeche, M.,
Katkovnik, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Practical Poissonian-Gaussian Noise Modeling and Fitting for
Single-Image Raw-Data,
IP(17), No. 10, October 2008, pp. 1737-1754.
IEEE DOI
0809
BibRef
Danielyan, A.,
Foi, A.[Alessandro],
Noise variance estimation in nonlocal transform domain,
LNLA09(41-45).
IEEE DOI
0908
BibRef
Katkovnik, V.[Vladimir],
Foi, A.[Alessandro],
Egiazarian, K.O.[Karen O.],
Astola, J.T.[Jaakko T.],
From Local Kernel to Nonlocal Multiple-Model Image Denoising,
IJCV(86), No. 1, January 2010, pp. xx-yy.
Springer DOI
1001
See also Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data.
See also Pointwise Shape-Adaptive DCT for High-Quality Denoising and Deblocking of Grayscale and Color Images.
BibRef
Borges, L.R.[Lucas Rodrigues],
da Costa Vieira, M.A.[Marcelo Andrade],
Foi, A.[Alessandro],
Unbiased Injection of Signal-Dependent Noise in Variance-Stabilized
Range,
SPLetters(23), No. 10, October 2016, pp. 1494-1498.
IEEE DOI
1610
image noising. Simulate by injecting noise.
BibRef
Katkovnik, V.[Vladimir],
Astola, J.T.[Jaakko T.],
Compressive sensing computational ghost imaging,
JOSA-A(29), No. 8, August 2012, pp. 1556-1567.
DOI Link
1208
BibRef
Abramova, V.[Victoriya],
Abramov, S.[Sergey],
Lukin, V.[Vladimir],
Egiazarian, K.O.[Karen O.],
Astola, J.T.[Jaakko T.],
On required accuracy of mixed noise parameter estimation for image
enhancement via denoising,
JIVP(2014), No. 1, 2014, pp. 3.
DOI Link
1402
BibRef
Minasyan, S.,
Astola, J.T.,
Egiazarian, K.O.,
Guevorkian, D.,
Parametric Haar-Like Transforms in Image Denoising,
ICIP06(2629-2632).
IEEE DOI
0610
BibRef
Hou, Y.,
Zhao, C.,
Yang, D.,
Cheng, Y.,
Comments on 'Image Denoising by Sparse 3-D Transform-Domain
Collaborative Filtering',
IP(20), No. 1, January 2011, pp. 268-270.
IEEE DOI
1101
See also Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering.
BibRef
Hjouj, F.,
Kammler, D.W.,
Identification of Reflected, Scaled, Translated, and Rotated Objects
From Their Radon Projections,
IP(17), No. 3, March 2008, pp. 301-310.
IEEE DOI
0802
BibRef
Bi, G.,
Aung, A.,
Ng, B.P.,
Pipelined Hardware Structure for Sequency-Ordered Complex Hadamard
Transform,
SPLetters(15), No. 1, 2008, pp. 401-404.
IEEE DOI
0804
BibRef
Kingston, A.[Andrew],
Autrusseau, F.[Florent],
Lossless image compression via predictive coding of discrete Radon
projections,
SP:IC(23), No. 4, April 2008, pp. 313-324.
Elsevier DOI
0711
Lossless image coding; Discrete Radon transform; Mojette; Redundancy
BibRef
Kingston, A.,
Parrein, B.,
Autrusseau, F.,
Redundant image representation via multi-scale digital Radon
projections,
ICIP08(2920-2923).
IEEE DOI
0810
BibRef
Kingston, A.[Andrew],
Colosimo, S.,
Campisi, P.,
Autrusseau, F.[Florent],
Lossless Image Compression and Selective Encryption using a Discrete
Radon Transform,
ICIP07(IV: 465-468).
IEEE DOI
0709
BibRef
Huang, Q.[Qiu],
Zeng, G.L.[Gengsheng L.],
Gullberg, G.T.[Grant T.],
An Analytical Inversion of the 180deg Exponential Radon Transform
with a Numerically Generated Kernel,
IJIG(7), No. 1, January 2007, pp. 71-85.
0701
BibRef
Zhu, C.,
Xiong, B.,
Transform-Exempted Calculation of Sum of Absolute Hadamard Transformed
Differences,
CirSysVideo(19), No. 8, August 2009, pp. 1183-1188.
IEEE DOI
0909
BibRef
Ouyang, W.L.[Wan-Li],
Cham, W.K.,
Fast Algorithm for Walsh Hadamard Transform on Sliding Windows,
PAMI(32), No. 1, January 2010, pp. 165-171.
IEEE DOI
0912
About 1.5 additions per projection vector per sample.
BibRef
Anguelov, R.[Roumen],
Fabris-Rotelli, I.[Inger],
LULU Operators and Discrete Pulse Transform for Multidimensional Arrays,
IP(19), No. 11, November 2010, pp. 3012-3023.
IEEE DOI
1011
BibRef
Earlier:
Discrete Pulse Transform of Images,
ICISP08(1-9).
Springer DOI
0807
BibRef
Anguelov, R.[Roumen],
Discrete Pulse Transform of images: Algorithm and applications,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bartels, C.,
de Haan, G.,
Smoothness Constraints in Recursive Search Motion Estimation for
Picture Rate Conversion,
CirSysVideo(20), No. 10, October 2010, pp. 1310-1319.
IEEE DOI
1011
BibRef
Earlier:
Direct Motion Estimation in the Radon Transform Domain using
Match-Profile Backprojections,
ICIP07(VI: 153-156).
IEEE DOI
0709
BibRef
Laurie, D.P.,
The Roadmaker's Algorithm for the Discrete Pulse Transform,
IP(20), No. 2, February 2011, pp. 361-371.
IEEE DOI
1102
BibRef
Haltmeier, M.[Markus],
Inversion Formulas for a Cylindrical Radon Transform,
SIIMS(4), No. 3, 2011, pp. 789-806.
WWW Link.
1110
BibRef
Haltmeier, M.[Markus],
Sampling Conditions for the Circular Radon Transform,
IP(25), No. 6, June 2016, pp. 2910-2919.
IEEE DOI
1605
Detectors
BibRef
Dreier, F.[Florian],
Haltmeier, M.[Markus],
Explicit Inversion Formulas for the Two-Dimensional Wave Equation
from Neumann Traces,
SIIMS(13), No. 2, 2020, pp. 589-608.
DOI Link
2007
BibRef
Chiper, D.F.,
Fast Radix-2 Algorithm for the Discrete Hartley Transform of Type II,
SPLetters(18), No. 11, November 2011, pp. 687-689.
IEEE DOI
1112
BibRef
Muramatsu, S.,
Han, D.,
Kobayashi, T.,
Kikuchi, H.,
Directional Lapped Orthogonal Transform: Theory and Design,
IP(21), No. 5, May 2012, pp. 2434-2448.
IEEE DOI
1204
Cited by: 1
BibRef
Shu, H.,
Wu, J.,
Yang, C.,
Senhadji, L.,
Fast Radix-3 Algorithm for the Generalized Discrete Hartley Transform
of Type II,
SPLetters(19), No. 6, June 2012, pp. 348-351.
IEEE DOI
1202
BibRef
Su, T.[Teng],
Yu, F.[Feng],
A Family of Fast Hadamard-Fourier Transform Algorithms,
SPLetters(19), No. 9, September 2012, pp. 583-586.
IEEE DOI
1208
BibRef
Arguello, H.,
Arce, G.R.,
Rank Minimization Code Aperture Design for Spectrally Selective
Compressive Imaging,
IP(22), No. 3, March 2013, pp. 941-954.
IEEE DOI
1302
multiframe code aperture snapshot spectral imaging (CASSI).
BibRef
Arguello, H.,
Arce, G.R.,
Colored Coded Aperture Design by Concentration of Measure in
Compressive Spectral Imaging,
IP(23), No. 4, April 2014, pp. 1896-1908.
IEEE DOI
1404
focal planes
BibRef
Mejia, Y.,
Arguello, H.,
Binary Codification Design for Compressive Imaging by Uniform Sensing,
IP(27), No. 12, December 2018, pp. 5775-5786.
IEEE DOI
1810
compressed sensing, data compression, image coding,
image reconstruction, optimisation, singular value decomposition,
singular values
BibRef
Goel, N.[Navdeep],
Singh, K.[Kulbir],
Analysis of Dirichlet, Generalized Hamming and Triangular window
functions in the linear canonical transform domain,
SIViP(7), No. 5, September 2013, pp. 911-923.
WWW Link.
1309
BibRef
Goel, N.[Navdeep],
Singh, K.[Kulbir],
Modified correlation theorem for the linear canonical transform with
representation transformation in quantum mechanics,
SIViP(8), No. 3, March 2014, pp. 595-601.
WWW Link.
1403
BibRef
Li, Y.,
Li, H.,
Cai, Z.,
Fast Orthogonal Haar Transform Pattern Matching via Image Square Sum,
PAMI(36), No. 9, September 2014, pp. 1748-1760.
IEEE DOI
1408
Algorithm design and analysis for fast computation.
BibRef
Zhang, Z.C.[Zhi-Chao],
Luo, M.K.[Mao-Kang],
New Integral Transforms for Generalizing the Wigner Distribution and
Ambiguity Function,
SPLetters(22), No. 4, April 2015, pp. 460-464.
IEEE DOI
1411
Wigner distribution
BibRef
Bonneel, N.[Nicolas],
Rabin, J.[Julien],
Peyré, G.[Gabriel],
Pfister, H.[Hanspeter],
Sliced and Radon Wasserstein Barycenters of Measures,
JMIV(51), No. 1, January 2015, pp. 22-45.
Springer DOI
1503
BibRef
Peyré, G.[Gabriel],
Entropic Approximation of Wasserstein Gradient Flows,
SIIMS(8), No. 4, 2015, pp. 2323-2351.
DOI Link
1601
BibRef
Xiao, B.[Bin],
Cui, J.T.[Jiang-Tao],
Qin, H.X.[Hong-Xing],
Li, W.S.[Wei-Sheng],
Wang, G.Y.[Guo-Yin],
Moments and moment invariants in the Radon space,
PR(48), No. 9, 2015, pp. 2772-2784.
Elsevier DOI
1506
Radon transform
BibRef
ELouedi, I.[Ines],
Fournier, R.[Régis],
Naït-Ali, A.[Amine],
Hamouda, A.[Atef],
The polynomial discrete Radon transform,
SIViP(9), No. 1 Supp, December 2015, pp. 145-154.
Springer DOI
1601
BibRef
Carranza, C.[Cesar],
Llamocca, D.[Daniel],
Pattichis, M.[Marios],
Fast and Scalable Computation of the Forward and Inverse Discrete
Periodic Radon Transform,
IP(25), No. 1, January 2016, pp. 119-133.
IEEE DOI
1601
BibRef
Earlier:
A scalable architecture for implementing the fast discrete periodic
radon transform for prime sized images,
ICIP14(1208-1212)
IEEE DOI
1502
BibRef
And:
The Fast Discrete Periodic Radon Transform for prime sized images:
Algorithm, architecture, and VLSI/FPGA implementation,
Southwest14(169-172)
IEEE DOI
1406
Adders.
Radon transforms
BibRef
Carranza, C.[Cesar],
Pattichis, M.[Marios],
Llamocca, D.[Daniel],
Fast and Parallel Computation of the Discrete Periodic Radon
Transform on GPUs, Multicore CPUs and FPGAs,
ICIP18(4158-4162)
IEEE DOI
1809
Graphics processing units, Instruction sets,
Multicore processing, Radon, Transforms,
FPGA
BibRef
Carranza, C.[Cesar],
Llamocca, D.[Daniel],
Pattichis, M.[Marios],
Fast 2D Convolutions and Cross-Correlations Using Scalable
Architectures,
IP(26), No. 5, May 2017, pp. 2230-2245.
IEEE DOI
1704
Clocks
BibRef
d'Acunto, M.[Mario],
Benassi, A.[Antonio],
Moroni, D.[Davide],
Salvetti, O.[Ovidio],
3D image reconstruction using Radon transform,
SIViP(10), No. 1, January 2016, pp. 1-8.
Springer DOI
1601
BibRef
Kolouri, S.,
Park, S.R.,
Rohde, G.K.,
The Radon Cumulative Distribution Transform and Its Application to
Image Classification,
IP(25), No. 2, February 2016, pp. 920-934.
IEEE DOI
1601
Feature extraction
BibRef
Wang, B.,
Gao, Y.,
Structure Integral Transform Versus Radon Transform:
A 2D Mathematical Tool for Invariant Shape Recognition,
IP(25), No. 12, December 2016, pp. 5635-5648.
IEEE DOI
1612
Radon transforms
BibRef
Wang, Z.,
Wang, Y.,
Xu, L.,
Parameter Estimation of Hybrid Linear Frequency Modulation-Sinusoidal
Frequency Modulation Signal,
SPLetters(24), No. 8, August 2017, pp. 1238-1241.
IEEE DOI
1708
Radon transforms, frequency modulation, parameter estimation,
signal processing, extended Radon transform,
hybrid linear frequency modulation-sinusoidal frequency modulation signal,
inverse Radon transform, parameter estimation, Estimation,
Frequency estimation, Frequency modulation, Strips,
Transforms,
Hybrid linear frequency modulation (LFM)-sinusoidal frequency modulation
(SFM) signal,
parameters estimation, radon transform
BibRef
Moon, S.[Sunghwan],
Haltmeier, M.[Markus],
Analytic Inversion of a Conical Radon Transform Arising in
Application of Compton Cameras on the Cylinder,
SIIMS(10), No. 2, 2017, pp. 535-557.
DOI Link
1708
BibRef
Zheng, P.,
Huang, J.,
Efficient Encrypted Images Filtering and Transform Coding With
Walsh-Hadamard Transform and Parallelization,
IP(27), No. 5, May 2018, pp. 2541-2556.
IEEE DOI
1804
Cloud computing, Computational complexity,
Discrete cosine transforms, Encryption,
secure signal processing
BibRef
Gallagher, M.[Martin],
Chandra, S.I.[Sun-Il],
Kapsalas, P.[Petros],
Hughes, C.[Ciarán],
Glavin, M.[Martin],
Jones, E.[Edward],
Fourier Mellin transform characterisation in the automotive environment,
SIViP(12), No. 8, November 2018, pp. 1587-1594.
Springer DOI
1809
BibRef
Wang, Y.L.[Yu-Ling],
Li, M.[Ming],
Zhong, G.Y.[Guo-Yun],
Li, J.H.[Jun-Hua],
Lu, Y.M.[Yu-Ming],
Circular trace transform and its PCA-based fusion features for image
representation,
IET-IPR(12), No. 10, October 2018, pp. 1797-1806.
DOI Link
1809
BibRef
Silván-Cárdenas, J.L.[José Luis],
Salazar-Garibay, A.[Adán],
Local Geometric Deformations in the DHT Domain With Applications,
IP(28), No. 4, April 2019, pp. 1980-1992.
IEEE DOI
1901
DHT: discrete Hermite transform.
computational geometry, image matching, image reconstruction,
image segmentation, mathematical morphology, transforms,
depth from defocus
BibRef
Zhang, Z.,
The Optimal Linear Canonical Wigner Distribution of Noisy Linear
Frequency-Modulated Signals,
SPLetters(26), No. 8, August 2019, pp. 1127-1131.
IEEE DOI
1908
frequency modulation, optimisation, transforms,
Wigner distribution,
BibRef
Wang, B.,
Zhang, Y.,
Lu, W.,
Geng, J.,
A Robust and Efficient Sparse Time-Invariant Radon Transform in the
Mixed Time-Frequency Domain,
GeoRS(57), No. 10, October 2019, pp. 7558-7566.
IEEE DOI
1910
geophysical signal processing, geophysical techniques,
interpolation, inverse problems, iterative methods,
time-invariant Radon transform (TIRT)
BibRef
Yang, J.,
Lu, Z.,
Tang, Y.Y.,
Yuan, Z.,
Chen, Y.,
Quasi Fourier-Mellin Transform for Affine Invariant Features,
IP(29), 2020, pp. 4114-4129.
IEEE DOI
2002
Quasi Fourier-Mellin transform,
quasi Fourier-Mellin descriptor, Fourier-Mellin transform,
feature extraction
BibRef
Nguyen, T.P.[Thanh Phuong],
Nguyen, X.S.[Xuan Son],
Borgi, M.A.[Mohamed Anouar],
Nguyen, M.K.,
A Projection-Based Method for Shape Measurement,
JMIV(62), No. 4, May 2020, pp. 489-504.
Springer DOI
2005
Projection space of Radon transform.
BibRef
Ziou, D.[Djemel],
Nacereddine, N.[Nafaa],
Goumeidane, A.B.[Aicha Baya],
Scale space Radon transform,
IET-IPR(15), No. 9, 2021, pp. 2097-2111.
DOI Link
2106
BibRef
Beckmann, M.[Matthias],
Bhandari, A.[Ayush],
Krahmer, F.[Felix],
The Modulo Radon Transform: Theory, Algorithms, and Applications,
SIIMS(15), No. 2, 2022, pp. 455-490.
DOI Link
2205
BibRef
Zhang, Z.C.[Zhi-Chao],
Shi, X.[Xiya],
Kernel Function-tau-Wigner Distribution Associated With the Linear
Canonical Transform,
SPLetters(29), 2022, pp. 1764-1768.
IEEE DOI
2208
Kernel, Computational complexity, Uncertainty, Signal processing,
Noise measurement, Time-frequency analysis, Tensors,
tau-Wigner distribution
BibRef
Ganster, K.[Kevin],
Rieder, A.[Andreas],
Approximate Inversion of a Class of Generalized Radon Transforms,
SIIMS(16), No. 2, 2023, pp. 842-866.
DOI Link
2306
BibRef
Fan, Z.C.[Zi-Chen],
Li, D.[Di],
Rahardja, S.[Susanto],
Pure Number Discrete Fractional Complex Hadamard Transform,
SPLetters(30), 2023, pp. 1087-1091.
IEEE DOI
2310
BibRef
Lorenzana, M.B.[Marlon Bran],
Chandra, S.S.[Shekhar S.],
Non-Separable Two-Dimensional Hadamard Transform via a Discrete
Hadamard Slice Theorem,
SPLetters(30), 2023, pp. 1237-1241.
IEEE DOI
2310
BibRef
Wang, Y.[Yue],
Gong, X.B.[Xiang-Bo],
Hu, B.[Bin],
Seismic Data Reconstruction Using a
Phase-Shift-Plus-Interpolation-Based Apex-Shifted Hyperbolic Radon
Transform,
RS(16), No. 7, 2024, pp. 1114.
DOI Link
2404
BibRef
Katsevich, A.[Alexander],
Analysis of View Aliasing for the Generalized Radon Transform in R2,
SIIMS(17), No. 1, 2024, pp. 415-440.
DOI Link
2404
BibRef
Hertrich, J.[Johannes],
Beinert, R.[Robert],
Gräf, M.[Manuel],
Steidl, G.[Gabriele],
Wasserstein Gradient Flows of the Discrepancy with Distance Kernel on
the Line,
SSVM23(431-443).
Springer DOI
2307
BibRef
Quellmalz, M.[Michael],
Weissinger, L.[Lukas],
Hubmer, S.[Simon],
Erchinger, P.D.[Paul D.],
A Frame Decomposition of the Funk-Radon Transform,
SSVM23(42-54).
Springer DOI
2307
BibRef
Beckmann, M.[Matthias],
Bhandari, A.[Ayush],
MR.TOMP: Inversion of the Modulo Radon Transform (MRT) via
Orthogonal Matching Pursuit (OMP),
ICIP22(3748-3752)
IEEE DOI
2211
Photography, Heuristic algorithms, Radon,
Matching pursuit algorithms, Transforms, Dynamic range, Tomography,
Radon transform and sampling theory
BibRef
Ricordel, V.[Vincent],
Normand, N.[Nicolas],
Guédon, J.[Jeanpierre],
Mojette Transform on Densest Lattices in 2D and 3D,
DGCI17(159-170).
Springer DOI
1711
an exact discrete form of the Radon transform.
BibRef
Lin, R.P.[Rong-Ping],
Du, C.H.[Chun-Hui],
Luo, S.[Shan],
Xu, Q.[Qi],
Performance on a combined representation for time-frequency analysis,
ICIVC17(858-862)
IEEE DOI
1708
Noise measurement, Wigner-Ville distribution,
linear frequency modulated, local polynomial periodogram, time-frequency
BibRef
Ceko, M.[Matthew],
Svalbe, I.[Imants],
Symmetric Counterparts of Classical 1D Haar Filters for Improved Image
Reconstruction via Discrete Back-Projection,
ISMM17(68-80).
Springer DOI
1706
BibRef
Pereira, P.M.M.,
Domingues, P.,
Rodrigues, N.M.M.,
Faria, S.M.M.,
Falcao, G.,
Optimized fast Walsh-Hadamard transform on OpenCL-GPU and OpenCL-CPU,
IPTA16(1-6)
IEEE DOI
1703
Hadamard transforms
BibRef
Pitié, F.,
An alternative matting Laplacian,
ICIP16(3623-3627)
IEEE DOI
1610
Covariance matrices
BibRef
Muramatsu, S.,
Ishii, M.,
Chen, Z.,
Efficient parameter optimization for example-based design of
nonseparable oversampled lapped transform,
ICIP16(3618-3622)
IEEE DOI
1610
Dictionaries
BibRef
Chou, P.A.,
de Queiroz, R.L.,
Gaussian process transforms,
ICIP16(1524-1528)
IEEE DOI
1610
Covariance matrices
BibRef
Kaur, B.[Baljit],
Majumder, M.K.[Manoj Kumar],
Modified PPPE architecture for two-dimensional Radon Transform
computation,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Luisier, F.[Florian],
Blu, T.[Thierry],
Unser, M.[Michael],
Undecimated Haar thresholding for poisson intensity estimation,
ICIP10(1697-1700).
IEEE DOI
1009
BibRef
Hu, H.L.[Hong-Li],
Zhang, J.Z.[Jian-Zhou],
Approximate inverse based implementation for Tuy's formula,
ICIP10(621-624).
IEEE DOI
1009
BibRef
Morvidone, M.,
Truong, T.T.,
Nguyen, M.K.,
Zaidi, H.,
A novel V-line Radon transform and its imaging applications,
ICIP10(629-632).
IEEE DOI
1009
BibRef
Sang, A.J.[Ai-Jun],
Sun, T.N.[Tie-Ning],
Chen, H.X.[He-Xin],
Feng, H.[Hua],
A 4D nth-order Walsh orthogonal transform algorithm used for color
image coding,
IASP10(206-209).
IEEE DOI
1004
BibRef
Chandra, S.[Shekhar],
Svalbe, I.[Imants],
A Fast Number Theoretic Finite Radon Transform,
DICTA09(361-368).
IEEE DOI
0912
BibRef
Scherzer, O.[Otmar],
Walch, B.[Birgit],
Sparsity Regularization for Radon Measures,
SSVM09(452-463).
Springer DOI
0906
BibRef
Averbuch, A.,
Coifman, R.R.,
Donoho, D.L.,
Israeli, M., and
Walden, J.,
Fast slant stack: A notion of radon transform
for data on a cartesian grid which is rapidly computable,
algebraically exact, geometrically faithful, and
invertible,
TRStanford University, 2001.
BibRef
0100
Agaian, S.S.,
Caglayan, O.,
New Fast Hartley Transform with Linear Multiplicative Complexity,
ICIP06(377-380).
IEEE DOI
0610
BibRef
Antoniol, G.,
Ceccarelli, M.,
Petrosino, A.,
Microarray Image Addressing Based on the Radon Transform,
ICIP05(I: 13-16).
IEEE DOI
0512
BibRef
Svalbe, I.[Imants],
Kingston, A.[Andrew],
On Correcting the Unevenness of Angle Distributions Arising from
Integer Ratios Lying in Restricted Portions of the Farey Plane,
IWCIA04(110-121).
Springer DOI
0505
Projections must go to image grid positions, but they don't always do that.
BibRef
Svalbe, I.,
An Image Labeling Mechanism Using Digital Radon Projections,
ICIP01(III: 1015-1018).
IEEE DOI
0108
BibRef
Smeraldi, F.,
Rob, M.A.,
Ranklets on hexagonal pixel lattices,
BMVC03(xx-yy).
HTML Version.
0409
On square grid, similar to Haar.
BibRef
Boussakta, S.,
Alshibami, O.,
Bouridane, A.,
Radix-4x4 for fast calculation of the 2-D NMNT,
ICIP03(I: 709-712).
IEEE DOI
0312
2D new Mersenne number transform.
BibRef
Reichel, J.,
Ziliani, F.,
Controlled temporal Haar transform for video coding,
ICIP03(II: 767-770).
IEEE DOI
0312
BibRef
Crigoryan, A.M.,
Agaian, S.S.,
Manukyan, A.R.,
A novel method of splitting the 3-D discrete Hartley transform,
ICIP03(I: 1009-1012).
IEEE DOI
0312
BibRef
Ye, Q.G.[Qhi-Ghua],
Huang, H.N.[Hai-Ning],
He, X.Y.[Xin-Yi],
Zhang, C.H.[Chun-Hua],
A SR-based radon transform to extract weak lines from noise images,
ICIP03(I: 849-852).
IEEE DOI
0312
BibRef
Yarman, C.E.,
Yazici, B.,
Exponential Radon Transform Inversion Based on Harmonic Analysis of the
Euclidean Motion Group,
ICIP05(III: 613-615).
IEEE DOI
0512
BibRef
Earlier:
Radon Transform Inversion via Wiener Filtering over the Euclidean Motion
Group,
ICIP03(II: 811-814).
IEEE DOI
0312
BibRef
Lienhart, R.,
Maydt, J.,
An extended set of Haar-like features for rapid object detection,
ICIP02(I: 900-903).
IEEE DOI
0210
BibRef
Grigoryan, A.M.,
Three Algorithms for Computing the 2-d Discrete Hartley Transform,
ICIP00(Vol II: 359-362).
IEEE DOI
0008
BibRef
Siebert, A.,
A linear shift invariant multiscale transform,
ICIP98(III: 688-691).
IEEE DOI
9810
BibRef
Kazantsev, I.,
A New Formula of the Radon Transform Inversion,
ICIP97(I: 189-191).
IEEE DOI
BibRef
9700
Sarukhanyan, H.G.[Hakob G.],
Decomposition of the Hadamard matrices and fast Hadamard transform,
CAIP97(575-581).
Springer DOI
9709
BibRef
Stiller, C.,
Konrad, J.,
Region-adaptive transform based on a stochastic model,
ICIP95(II: 264-267).
IEEE DOI
9510
BibRef
Maragos, P.,
Bovik, A.C.,
Demodulation of images modeled by amplitude-frequency modulations using
multidimensional energy separation,
ICIP94(III: 421-425).
IEEE DOI
9411
BibRef
Baringer, W.B.,
Brodersen, R.W.,
Petkovic, D.,
Computer vision hardware using the Radon transform,
CVPR91(508-513).
IEEE DOI
0403
BibRef
Gindi, G.R.,
Gmitro, A.F.,
Optical Feature Extraction Via the Radon Transform,
ICPR84(702-704).
BibRef
8400
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Afine Transforms .