Thompson, R.[Richard],
A measure of shared information in classes of patterns,
PR(12), No. 6, 1980, pp. 369-379.
Elsevier DOI
0309
Insight into the patterns of variation in the amino acid sequences of proteins.
BibRef
Guigo, R.,
Smith, T.F.,
Inferring correlation between database queries: analysis of protein
sequence patterns,
PAMI(15), No. 10, October 1993, pp. 1030-1041.
IEEE DOI
0401
BibRef
Leherte, L.,
Glasgow, J.,
Baxter, K.,
Steeg, E., and
Fortier, S.,
Analysis of Three-Dimensional Protein Images,
JAIR(7), 1997, pp. 125-159.
HTML Version.
BibRef
9700
Zaki, M.J.,
Jin, S.[Shan],
Bystroff, C.,
Mining residue contacts in proteins using local structure predictions,
SMC-B(33), No. 5, October 2003, pp. 789-801.
IEEE Abstract.
0310
BibRef
Yang, Z.R.[Zheng Rong],
Orthogonal kernel Machine for the prediction of functional sites in
proteins,
SMC-B(35), No. 1, February 2005, pp. 100-106.
IEEE Abstract.
0501
BibRef
Zhang, G.Z.[Guang-Zheng],
Huang, D.S.,
Quan, Z.H.,
Combining a binary input encoding scheme with RBFNN for globulin
protein inter-residue contact map prediction,
PRL(26), No. 10, 15 July 2005, pp. 1543-1553.
Elsevier DOI
0506
BibRef
Zhang, G.Z.[Guang-Zheng],
Huang, D.S.,
Zhu, Y.P.,
Li, Y.X.,
Improving protein secondary structure prediction by using the residue
conformational classes,
PRL(26), No. 15, November 2005, pp. 2346-2352.
Elsevier DOI
0510
BibRef
Zhao, T.,
Velliste, M.,
Boland, M.V.,
Murphy, R.F.,
Object Type Recognition for Automated Analysis of Protein Subcellular
Location,
IP(14), No. 9, September 2005, pp. 1351-1359.
IEEE DOI
0508
BibRef
Zacharakis, G.,
Ripoll, J.,
Weissleder, R.,
Ntziachristos, V.,
Fluorescent protein tomography scanner for small animal imaging,
MedImg(24), No. 7, July 2005, pp. 878-885.
IEEE DOI
0508
BibRef
Lozano, M.A.,
Escolano, F.,
Protein classification by matching and clustering surface graphs,
PR(39), No. 4, April 2006, pp. 539-551.
Elsevier DOI Protein classification; Graph matching; Energy minimization; Graph clustering; EM algorithms
0604
BibRef
Kim, J.K.[Jong Kyoung],
Raghava, G.P.S.,
Bang, S.Y.[Sung-Yang],
Choi, S.J.[Seung-Jin],
Prediction of subcellular localization of proteins using pairwise
sequence alignment and support vector machine,
PRL(27), No. 9, July 2006, pp. 996-1001.
Elsevier DOI
0605
BibRef
Kim, J.K.[Jong Kyoung],
Bang, S.Y.[Sung-Yang],
Choi, S.J.[Seung-Jin],
Sequence-driven features for prediction of subcellular localization of
proteins,
PR(39), No. 12, December 2006, pp. 2301-2311.
Elsevier DOI
0609
Protein sequence feature extraction; Subcellular localization prediction;
Support vector machine
BibRef
Vijaya, P.A.,
Murty, M.N.[M. Narasimha],
Subramanian, D.K.,
Efficient bottom-up hybrid hierarchical clustering techniques for
protein sequence classification,
PR(39), No. 12, December 2006, pp. 2344-2355.
Elsevier DOI
0609
BibRef
Earlier:
An efficient technique for protein sequence clustering and
classification,
ICPR04(II: 447-450).
IEEE DOI
0409
Hybrid clustering; Hierarchical structure; Protein sequences;
Median strings/sequences; Prototypes; Feature selection;
Classification accuracy
BibRef
Khoja, R.[Rahim],
Marolia, M.[Mehul],
Acharya, T.[Tinku],
Chakrabarti, C.[Chaitali],
A coprocessor architecture for fast protein structure prediction,
PR(39), No. 12, December 2006, pp. 2494-2505.
Elsevier DOI
0609
Protein structure prediction; PSIPRED; PSI BLAST; Neural network;
VLSI architecture
BibRef
Plötz, T.[Thomas],
Fink, G.A.[Gernot A.],
Pattern Recognition methods for advanced stochastic protein sequence
analysis using HMMs,
PR(39), No. 12, December 2006, pp. 2267-2280.
Elsevier DOI
0609
BibRef
Earlier:
Feature Extraction for Improved Profile HMM Based Biological Sequence
Analysis,
ICPR04(II: 315-318).
IEEE DOI
0409
DNA sequencing.
Protein sequence analysis; Probabilistic protein family modeling; HMM
BibRef
Bergkvist, A.[Anders],
Damaschke, P.[Peter],
Fast algorithms for finding disjoint subsequences with extremal
densities,
PR(39), No. 12, December 2006, pp. 2281-2292.
Elsevier DOI
0609
Holes in data; Range prediction; Protein torsion angle;
Protein structure prediction; Dynamic programming;
Selection algorithms; Time complexity
BibRef
Huang, D.S.[De-Shuang],
Zhao, X.M.[Xing-Ming],
Huang, G.B.[Guang-Bin],
Cheung, Y.M.[Yiu-Ming],
Classifying protein sequences using hydropathy blocks,
PR(39), No. 12, December 2006, pp. 2293-2300.
Elsevier DOI
0609
Hydropathy blocks; Protein sequence classification; Support vector machine
BibRef
Kurgan, L.A.[Lukasz A.],
Homaeian, L.[Leila],
Prediction of structural classes for protein sequences and
domains--Impact of prediction algorithms, sequence representation and
homology, and test procedures on accuracy,
PR(39), No. 12, December 2006, pp. 2323-2343.
Elsevier DOI
0609
Protein structural class; SCOP; Machine learning;
Homology; Prediction; Secondary protein structure
BibRef
Chen, C.Y.[Chien-Yu],
Chung, W.C.[Wen-Chin],
Su, C.T.[Chung-Tsai],
Exploiting homogeneity in protein sequence clusters for construction of
protein family hierarchies,
PR(39), No. 12, December 2006, pp. 2356-2369.
Elsevier DOI
0609
Protein sequence clustering; Family analysis; Hierarchical algorithm
BibRef
Baldacci, L.,
Golfarelli, M.,
Lumini, A.,
Rizzi, S.,
Clustering techniques for protein surfaces,
PR(39), No. 12, December 2006, pp. 2370-2382.
Elsevier DOI
0609
BibRef
Earlier:
A Template-Matching Approach for Protein Surface Clustering,
ICPR06(III: 340-343).
IEEE DOI
0609
Clustering; Region growing; Template matching; Protein surface
BibRef
Mundra, P.[Piyushkumar],
Kumar, M.[Madhan],
Kumar, K.K.[K. Krishna],
Jayaraman, V.K.[Valadi K.],
Kulkarni, B.D.[Bhaskar D.],
Using pseudo amino acid composition to predict protein subnuclear
localization: Approached with PSSM,
PRL(28), No. 13, 1 October 2007, pp. 1610-1615.
Elsevier DOI
0709
Nuclear protein; Subnuclear localization; Multiclass SVM;
Factor solution score; PSSM
BibRef
Karnik, S.[Shreyas],
Mitra, J.[Joydeep],
Singh, A.[Arunima],
Kulkarni, B.D.,
Sundarajan, V.,
Jayaraman, V.K.,
Identification of N-Glycosylation Sites with Sequence and Structural
Features Employing Random Forests,
PReMI09(146-151).
Springer DOI
0912
BibRef
Karnik, S.[Shreyas],
Prasad, A.[Ajay],
Diwevedi, A.[Alok],
Sundararajan, V.,
Jayaraman, V.K.,
Identification of Defensins Employing Recurrence Quantification
Analysis and Random Forest Classifiers,
PReMI09(152-157).
Springer DOI
0912
BibRef
McLaren, G.[Gina],
Ellis, R.[Robert],
Douglass, J.W.[James W.],
Riding, T.J.[Thomas J.],
Ring, J.E.[James E.],
Automated detection of objects in a biological sample,
US_Patent7,177,454, Feb 13, 2007
WWW Link. Proteins.
BibRef
0702
Li, Y.L.[Yun-Lei],
de Ridder, D.[Dick],
Duin, R.P.W.[Robert P.W.],
Reinders, M.J.T.[Marcel J.T.],
Integration of prior knowledge of measurement noise in kernel density
classification,
PR(41), No. 1, January 2008, pp. 320-330.
Elsevier DOI
0710
Prior knowledge; Measurement noise; Kernel method; Parzen; Protein complex;
mRNA co-expression coefficient
BibRef
Tsai, C.Y.[Chieh-Yuan],
Chiu, C.C.[Chuang-Cheng],
An efficient conserved region detection method for multiple protein
sequences using principal component analysis and wavelet transform,
PRL(29), No. 5, 1 April 2008, pp. 616-628.
Elsevier DOI
0802
Protein sequence analysis; Conserved region detection;
Principal component analysis; Wavelet transform
BibRef
Savvides, A.[Alexios],
Promponas, V.J.[Vasilis J.],
Fokianos, K.[Konstantinos],
Clustering of biological time series by cepstral coefficients based
distances,
PR(41), No. 7, July 2008, pp. 2398-2412.
Elsevier DOI
0804
Exponential model; Likelihood; Distance measures; Spectral analysis;
Periodogram; Data mining; Protein sequence analysis
BibRef
Ding, Y.S.[Yong-Sheng],
Zhang, T.L.[Tong-Liang],
Using Chou's pseudo amino acid composition to predict subcellular
localization of apoptosis proteins: An approach with immune genetic
algorithm-based ensemble classifier,
PRL(29), No. 13, 1 October 2008, pp. 1887-1892.
Elsevier DOI
0804
Apoptosis protein subcellular location; Pseudo amino acid composition;
Approximate entropy; Ensemble classifier; Fuzzy K-nearest neighbor
classifier
BibRef
Buske, F.A.[Fabian A.],
Maetschke, S.[Stefan],
Boden, M.[Mikael],
It's about time:
Signal recognition in staged models of protein translocation,
PR(42), No. 4, April 2009, pp. 567-574.
Elsevier DOI
0812
Bioinformatics; Machine learning; Protein secretory pathway; Signal
peptide; Conditional random field; Amino acid sequence
BibRef
von Wegner, F.,
Schurmann, S.,
Fink, R.H.A.,
Vogel, M.,
Friedrich, O.,
Motor Protein Function in Skeletal Muscle:
A Multiple Scale Approach to Contractility,
MedImg(28), No. 10, October 2009, pp. 1632-1642.
IEEE DOI
0910
BibRef
Barash, E.,
Dinn, S.,
Sevinsky, C.,
Ginty, F.,
Multiplexed Analysis of Proteins in Tissue Using Multispectral
Fluorescence Imaging,
MedImg(29), No. 8, August 2010, pp. 1457-1462.
IEEE DOI
1008
BibRef
Sabarinathan, R.,
Banerjee, N.[Nirjhar],
Balakrishnan, N.,
Sekar, K.,
An algorithm to find distant repeats in a pair of protein sequences,
PRL(31), No. 14, 15 October 2010, pp. 2161-2169.
Elsevier DOI
1003
Distant repeats; Protein sequences; PAM matrix
BibRef
Diniz, M.C.[Michely C.],
Pacheco, A.C.L.[Ana Carolina L.],
Girao, K.T.[Karen T.],
Araujo, F.F.[Fabiana F.],
Walter, C.A.[Cezar A.],
Oliveira, D.M.[Diana M.],
The tetratricopeptide repeats (TPR)-like superfamily of proteins in
Leishmania spp., as revealed by multi-relational data mining,
PRL(31), No. 14, 15 October 2010, pp. 2178-2189.
Elsevier DOI
1003
Multi-relational data mining; Hidden Markov models; Viterbi algorithm;
Tetratricopeptide repeat motif; Leishmania proteins
BibRef
Wang, H.Y.[Hai-Ying],
Zheng, H.[Huiru],
Browne, F.[Fiona],
Glass, D.H.[David H.],
Azuaje, F.[Francisco],
Integration of Gene Ontology-based similarities for supporting analysis
of protein-protein interaction networks,
PRL(31), No. 14, 15 October 2010, pp. 2073-2082.
Elsevier DOI
1003
Gene ontology; Protein interaction networks; Bayesian networks; Classification
BibRef
Jancura, P.[Pavol],
Marchiori, E.[Elena],
Dividing protein interaction networks for modular network comparative
analysis,
PRL(31), No. 14, 15 October 2010, pp. 2083-2096.
Elsevier DOI
1003
Protein interaction network division; Modular network alignment;
Conserved protein complexes
BibRef
Anand, A.[Ashish],
Pugalenthi, G.[Ganesan],
Fogel, G.B.[Gary B.],
Suganthan, P.N.,
Identification and analysis of transcription factor family-specific
features derived from DNA and protein information,
PRL(31), No. 14, 15 October 2010, pp. 2097-2102.
Elsevier DOI
1003
Transcription factor; TF family-specific features; TF-TFBS
interaction; Multi-class classification; TFBS; Feature selection
BibRef
Horst, J.A.[Jeremy A.],
Samudrala, R.[Ram],
A protein sequence meta-functional signature for calcium binding
residue prediction,
PRL(31), No. 14, 15 October 2010, pp. 2103-2112.
Elsevier DOI
1003
Protein sequence analysis; Protein function prediction; Calcium;
Protein binding site; Functional signature
BibRef
Jain, B.J.[Brijnesh J.],
Obermayer, K.[Klaus],
Graph quantization,
CVIU(115), No. 7, July 2011, pp. 946-961.
Elsevier DOI
1106
BibRef
And:
Generalized Learning Graph Quantization,
GbRPR11(122-131).
Springer DOI
1105
BibRef
And:
Maximum Likelihood for Gaussians on Graphs,
GbRPR11(62-71).
Springer DOI
1105
BibRef
Earlier:
Consistent Estimator of Median and Mean Graph,
ICPR10(1032-1035).
IEEE DOI
1008
BibRef
Earlier:
Algorithms for the Sample Mean of Graphs,
CAIP09(351-359).
Springer DOI
0909
For protein analysis. Structure mining.
Quantization of graphs; Graph matching; Orbifolds; Consistent
estimators; Clustering; k-means; Competitive learning
BibRef
Jain, B.[Brijnesh],
Margin Perceptrons for Graphs,
ICPR14(3851-3856)
IEEE DOI
1412
BibRef
And:
Flip-Flop Sublinear Models for Graphs,
SSSPR14(93-102).
Springer DOI
1408
BibRef
And:
Mixtures of Radial Densities for Clustering Graphs,
CAIP13(110-119).
Springer DOI
1308
BibRef
Pietrosemoli, N.,
Lopez, D.,
Segura-Cabrera, A.,
Pazos, F.,
Computational Prediction of Important Regions in Protein Sequences,
SPMag(29), No. 3, 2012, pp. 143-147.
IEEE DOI
1210
Life Sciences.
BibRef
Lei, Y.K.[Ying-Ke],
You, Z.H.[Zhu-Hong],
Dong, T.[Tianbao],
Jiang, Y.X.[Yun-Xiao],
Yang, J.A.[Jun-An],
Increasing reliability of protein interactome by fast manifold
embedding,
PRL(34), No. 4, 1 March 2013, pp. 372-379.
Elsevier DOI
1302
Protein-protein interaction (PPI); Manifold embedding; Fast isometric
feature mapping (Fast ISOMAP); False positive (FP)
BibRef
Cantoni, V.,
Ferone, A.,
Ozbudak, O.,
Petrosino, A.,
Protein motifs retrieval by SS terns occurrences,
PRL(34), No. 5, 1 April 2013, pp. 559-563.
Elsevier DOI
1303
Protein motif retrieval; Secondary Structures; Similarity search;
Generalized Hough Transform; Pattern recognition; Structural biology
BibRef
Dou, H.[Hang],
Baker, M.L.[Matthew L.],
Ju, T.[Tao],
Graph-based deformable matching of 3D line with application in protein
fitting,
VC(31), No. 6-8, June 2015, pp. 967-977.
WWW Link.
1506
BibRef
And:
Erratum:
VC(31), No. 11, November 2015, pp. 1567.
WWW Link.
1512
BibRef
Mallek, S.[Sabrine],
Boukhris, I.[Imen],
Elouedi, Z.[Zied],
Community detection for graph-based similarity:
Application to protein binding pockets classification,
PRL(62), No. 1, 2015, pp. 49-54.
Elsevier DOI
1507
Graph-based similarity
BibRef
Suryanto, C.H.[Chendra Hadi],
Fukui, K.[Kazuhiro],
Hino, H.[Hideitsu],
Protein Fold Classification Using Large Margin Combination of Distance
Metrics,
IEICE(E99-D), No. 3, March 2016, pp. 714-723.
WWW Link.
1604
BibRef
Earlier: A1, A3, A2:
Combination of Multiple Distance Measures for Protein Fold
Classification,
ACPR13(440-445)
IEEE DOI
1408
biology computing
BibRef
Punjani, A.[Ali],
Brubaker, M.A.[Marcus A.],
Fleet, D.J.[David J.],
Building Proteins in a Day: Efficient 3D Molecular Structure
Estimation with Electron Cryomicroscopy,
PAMI(39), No. 4, April 2017, pp. 706-718.
IEEE DOI
1703
BibRef
Earlier: A2, A1, A3:
Building proteins in a day: Efficient 3D molecular reconstruction,
CVPR15(3099-3108)
IEEE DOI
1510
Computational modeling
BibRef
Sun, D.[Dengdi],
Liang, H.D.[Hua-Dong],
Ge, M.L.[Mei-Ling],
Ding, Z.L.[Zhuan-Lian],
Cai, W.T.[Wan-Ting],
Luo, B.[Bin],
Protein functional annotation refinement based on graph regularized
l1-norm PCA,
PRL(87), No. 1, 2017, pp. 212-221.
Elsevier DOI
1703
Graph regularization
BibRef
Barnett, A.[Alex],
Greengard, L.[Leslie],
Pataki, A.[Andras],
Spivak, M.[Marina],
Rapid Solution of the Cryo-EM Reconstruction Problem by Frequency
Marching,
SIIMS(10), No. 3, 2017, pp. 1170-1195.
DOI Link
1710
Determining the three-dimensional (3D) structure of proteins.
BibRef
Europe's new X-ray laser delivers results: Scientists used the EuXFEL
to reveal the structures of the tiniest proteins,
Spectrum(55), No. 11, November 2018, pp. 10-11.
IEEE DOI
1811
[News]
BibRef
Sit, A.[Atilla],
Shin, W.H.[Woong-Hee],
Kihara, D.[Daisuke],
Three-dimensional Krawtchouk descriptors for protein local surface
shape comparison,
PR(93), 2019, pp. 534-545.
Elsevier DOI
1906
3D image retrieval, Local image comparison, Region of interest,
Discrete orthogonal functions, Krawtchouk polynomials,
Structure-based function prediction
BibRef
Mensi, A.[Antonella],
Bicego, M.[Manuele],
Lovato, P.[Pietro],
Loog, M.[Marco],
Tax, D.M.J.[David M.J.],
A dissimilarity-based multiple instance learning approach for protein
remote homology detection,
PRL(128), 2019, pp. 231-236.
Elsevier DOI
1912
BibRef
Earlier:
Protein Remote Homology Detection Using Dissimilarity-Based Multiple
Instance Learning,
SSSPR18(119-129).
Springer DOI
1810
Protein Remote Homology Detection, Multiple-instance learning,
Dissimilarity representation
BibRef
Vascon, S.[Sebastiano],
Frasca, M.[Marco],
Tripodi, R.[Rocco],
Valentini, G.[Giorgio],
Pelillo, M.[Marcello],
Protein function prediction as a graph-transduction game,
PRL(134), 2020, pp. 96-105.
Elsevier DOI
2005
BibRef
Pan, X.Y.[Xiao-Yong],
Shen, H.B.[Hong-Bin],
Scoring disease-microRNA associations by integrating disease
hierarchy into graph convolutional networks,
PR(105), 2020, pp. 107385.
Elsevier DOI
2006
microRNAs, Protein coding genes, Interaction network,
Graph convolutional network, Disease hierarchy
BibRef
Cheng, J.Y.[Jin-Yong],
Liu, Y.H.[Yi-Hui],
Ma, Y.M.[Yu-Ming],
Protein secondary structure prediction based on integration of CNN
and LSTM model,
JVCIR(71), 2020, pp. 102844.
Elsevier DOI
2009
Protein secondary structure prediction,
Convolution neural networks, Long short-term memory, Softmax, Random forest
BibRef
Ye, X.B.[Xian-Bin],
Guan, Q.L.[Quan-Long],
Luo, W.Q.[Wei-Qi],
Fang, L.D.[Liang-Da],
Lai, Z.R.[Zhao-Rong],
Wang, J.[Jun],
Molecular substructure graph attention network for molecular property
identification in drug discovery,
PR(128), 2022, pp. 108659.
Elsevier DOI
2205
Molecular substructure, Graph attention, Molecular property identification
BibRef
Santander-Jiménez, S.[Sergio],
Vega-Rodríguez, M.A.[Miguel A.],
Sousa, L.[Leonel],
Inter-Algorithm Multiobjective Cooperation for Phylogenetic
Reconstruction on Amino Acid Data,
Cyber(52), No. 5, May 2022, pp. 3577-3591.
IEEE DOI
2206
Optimization, Phylogeny, Amino acids, Evolutionary computation,
Proteins, Bioinformatics,
multiobjective optimization
BibRef
Elnaggar, A.[Ahmed],
Heinzinger, M.[Michael],
Dallago, C.[Christian],
Rehawi, G.[Ghalia],
Wang, Y.[Yu],
Jones, L.[Llion],
Gibbs, T.[Tom],
Feher, T.[Tamas],
Angerer, C.[Christoph],
Steinegger, M.[Martin],
Bhowmik, D.[Debsindhu],
Rost, B.[Burkhard],
ProtTrans: Toward Understanding the Language of Life Through
Self-Supervised Learning,
PAMI(44), No. 10, October 2022, pp. 7112-7127.
IEEE DOI
2209
Proteins, Training, Amino acids, Task analysis, Databases,
Computational modeling, Computational biology,
deep learning
BibRef
Paquet, E.[Eric],
Viktor, H.L.[Herna L.],
Madi, K.[Kamel],
Wu, J.Z.[Jun-Zheng],
Deformable Protein Shape Classification Based on Deep Learning, and
the Fractional Fokker-Planck and Kähler-Dirac Equations,
PAMI(45), No. 1, January 2023, pp. 391-407.
IEEE DOI
2212
Shape, Proteins, Neural networks, Kernel, Deep learning, Manifolds,
Classification, fractional, Fokker-Planck, Dirac-Kähler,
pyramidal neural network
BibRef
Wang, Y.F.[Yi-Fei],
Wang, X.[Xue],
Chen, C.[Cheng],
Gao, H.L.[Hong-Li],
Salhi, A.[Adil],
Gao, X.[Xin],
Yu, B.[Bin],
RPI-CapsuleGAN: Predicting RNA-protein interactions through an
interpretable generative adversarial capsule network,
PR(141), 2023, pp. 109626.
Elsevier DOI
2306
RNA-protein interactions, elastic net, multi-information fusion,
convolutional block attention module
BibRef
Wang, W.[Wei],
Zhang, G.W.[Gao-Wei],
Han, H.Y.[Hong-Yong],
Zhang, C.[Chi],
Correntropy-Induced Wasserstein GCN: Learning Graph Embedding via
Domain Adaptation,
IP(32), 2023, pp. 3980-3993.
IEEE DOI
2307
Noise measurement, Knowledge transfer, Task analysis,
Pollution measurement, Data mining, Proteins,
correntropy
BibRef
Abniki, A.[Ahmad],
Beigy, H.[Hamid],
Learning Hidden Graphs From Samples,
PAMI(45), No. 10, October 2023, pp. 11993-12003.
IEEE DOI
2310
Molecular structure.
BibRef
Geva, A.S.[Adi Shasha],
Shkolnisky, Y.[Yoel],
A Common Lines Approach for Ab Initio Modeling of Molecules with
Tetrahedral and Octahedral Symmetry,
SIIMS(16), No. 4, 2023, pp. 1978-2014.
DOI Link
2312
BibRef
Kim, M.[Myeongseop],
Kim, S.J.[Sung-Jun],
Lee, D.[Dabin],
Jang, H.K.[Hyo-Keun],
Park, S.H.[Sang-Hoon],
Kim, Y.[Yejin],
Kim, J.[Jaesoon],
Youn, S.H.[Seok-Hyun],
Joo, H.[Huitae],
Son, S.H.[Seung-Hyun],
Lee, S.H.[Sang-Heon],
Spatiotemporal Protein Variations Based on VIIRS-Derived Regional
Protein Algorithm in the Northern East China Sea,
RS(16), No. 5, 2024, pp. 829.
DOI Link
2403
BibRef
Yao, Q.M.[Quan-Ming],
Shen, Z.Q.[Zhen-Qian],
Wang, Y.Q.[Ya-Qing],
Dou, D.[Dejing],
Property-Aware Relation Networks for Few-Shot Molecular Property
Prediction,
PAMI(46), No. 8, August 2024, pp. 5413-5429.
IEEE DOI
2407
Task analysis, Training, Predictive models, Machine learning,
Adaptation models, Drugs, Graph neural networks, Few-Shot learning,
transfer learning
BibRef
Yang, Z.[Ziduo],
Zhong, W.[Weihe],
Lv, Q.J.[Qiu-Jie],
Dong, T.J.[Tie-Jun],
Chen, G.X.[Guan-Xing],
Chen, C.Y.C.[Calvin Yu-Chian],
Interaction-Based Inductive Bias in Graph Neural Networks: Enhancing
Protein-Ligand Binding Affinity Predictions From 3D Structures,
PAMI(46), No. 12, December 2024, pp. 8191-8208.
IEEE DOI
2411
Proteins, Programmable logic arrays, Predictive models,
Graph neural networks, Data models, Convolution,
structure-based virtual screening
BibRef
Martinez-Sanchez, A.[Antonio],
Lamm, L.[Lorenz],
Jasnin, M.[Marion],
Phelippeau, H.[Harold],
Simulating the Cellular Context in Synthetic Datasets for
Cryo-Electron Tomography,
MedImg(43), No. 11, November 2024, pp. 3742-3754.
IEEE DOI
2411
Organizations, Synthetic data, Proteins, Biomembranes, Geometry,
Tomography, Cryo-electron tomography, deep learning,
synthetic data generation
BibRef
Kamiya, S.[Satoshi],
Toida, K.[Keisuke],
Tsunoyama, T.A.[Taka-Aki],
Hotta, K.[Kazuhiro],
Tracking Correction Method for Rapid and Random Protein Molecules
Movement,
ACCV24(II: 449-465).
Springer DOI
2412
BibRef
Carbone, A.[Alessandra],
Decelle, A.[Aurélien],
Rosset, L.[Lorenzo],
Seoane, B.[Beatriz],
Fast and Functional Structured Data Generators Rooted in
Out-of-Equilibrium Physics,
PAMI(47), No. 2, February 2025, pp. 1309-1316.
IEEE DOI
2501
Training, Computational modeling, Data models, Accuracy, RNA,
Biological system modeling, Synthetic data, Generators, Taxonomy,
sequence modeling
BibRef
Gong, X.[Xu],
Liu, M.[Maotao],
Liu, Q.[Qun],
Guo, Y.[Yike],
Wang, G.[Guoyin],
MDFCL: Multimodal data fusion-based graph contrastive learning
framework for molecular property prediction,
PR(163), 2025, pp. 111463.
Elsevier DOI
2503
Molecular property prediction, Graph representation,
Multimodal data fusion, Graph contrastive learning
BibRef
Peng, Z.Y.[Zeng-Yan],
Chen, S.L.[Shiang-Liang],
Hsu, M.H.[Miao-Hsin],
Chang, D.M.[Dong-Meau],
Chen, C.C.[Chun-Chi],
MLP Kernel-Based to Predict the Optimal Conditions of
Transglutaminase on Protein Polymerization,
IoTDesign24(666-670)
IEEE DOI
2404
Proteins, Dairy products, Estimation, Artificial neural networks,
Numerical simulation, Electrophoresis, Fats
BibRef
Chen, W.J.[Wei-Jie],
Wang, X.[Xinyan],
Wang, Y.H.[Yu-Hang],
FFF: Fragment-Guided Flexible Fitting for Building Complete Protein
Structures,
CVPR23(19776-19785)
IEEE DOI
2309
BibRef
Ding, L.F.[Long-Fei],
Zhao, M.B.[Meng-Biao],
Yin, F.[Fei],
Zeng, S.L.[Shui-Ling],
Liu, C.L.[Cheng-Lin],
A Large-Scale Database for Chemical Structure Recognition and
Preliminary Evaluation,
ICPR22(1464-1470)
IEEE DOI
2212
Image recognition, Databases, Annotations,
Biological system modeling, Benchmark testing, Image-to-Markup
BibRef
Liu, Z.[Ziyi],
Wang, Z.[Zengmao],
Du, B.[Bo],
Multi-marginal Contrastive Learning for Multilabel Subcellular
Protein Localization,
CVPR22(20594-20603)
IEEE DOI
2210
Proteins, Location awareness, Training, Deep learning,
Computational modeling, Medical,
retrieval
BibRef
Uddin, M.R.[Mostofa Rafid],
Howe, G.[Gregory],
Zeng, X.R.[Xiang-Rui],
Xu, M.[Min],
Harmony: A Generic Unsupervised Approach for Disentangling Semantic
Content from Parameterized Transformations,
CVPR22(20614-20623)
IEEE DOI
2210
Proteins, Protein engineering, Visualization, Image analysis, Shape,
Semantics, Medical, biological and cell microscopy, Representation learning
BibRef
Ghahremani, P.[Parmida],
Marino, J.[Joseph],
Dodds, R.[Ricardo],
Nadeem, S.[Saad],
DeepLIIF: An Online Platform for Quantification of Clinical Pathology
Slides,
CVPR22(21367-21373)
IEEE DOI
2210
Proteins, Multiplexing, Visualization, Pathology,
Graphics processing units, Glass
BibRef
Mkhayar, K.[Khaoula],
Daoui, O.[Ossama],
Elkhattabi, S.[Souad],
Chtita, S.[Samir],
Elkhalabi, R.[Rachida],
In silico molecular investigations of derived cyclohexane-1,3-dione
compounds as potential inhibitors of protein tyrosine kinase C-met:
2D QSAR, molecular docking and ADMET,
ISCV22(1-8)
IEEE DOI
2208
Proteins, Drugs, In vivo, Inhibitors, Biological system modeling,
Linear regression, Lung cancer, QSAR, ADMET, Molecular Docking, C-met
BibRef
Zhong, E.D.[Ellen D.],
Lerer, A.[Adam],
Davis, J.H.[Joseph H.],
Berger, B.[Bonnie],
CryoDRGN2: Ab initio neural reconstruction of 3D protein structures
from real cryo-EM images,
ICCV21(4046-4055)
IEEE DOI
2203
Proteins, Adaptation models, Computational modeling,
Reconstruction algorithms, Task analysis, Medical, biological,
Vision applications and systems
BibRef
Ratul, M.A.R.[Md Aminur Rab],
Elahi, M.T.[Maryam Tavakol],
Mozaffari, M.H.[M. Hamed],
Lee, W.[WonSook],
PS8-Net: A Deep Convolutional Neural Network to Predict the
Eight-State Protein Secondary Structure,
DICTA20(1-3)
IEEE DOI
2201
Deep learning, Digital images, Computer architecture,
Feature extraction, Protein sequence, Functional analysis,
Skip Connection
BibRef
Chung, S.C.[Szu-Chi],
Hung, C.Y.[Cheng-Yu],
Siao, H.L.[Huei-Lun],
Wu, H.Y.[Hung-Yi],
Chang, W.H.[Wei-Hau],
Tu, I.P.[I-Ping],
Cryo-Ralib: A Modular Library for Accelerating Alignment in CRYO-EM,
ICIP21(225-229)
IEEE DOI
2201
Proteins, Image analysis, Pandemics, Graphics processing units,
Data visualization, Data science, Computational biology, cryo-EM,
multiple reference alignment
BibRef
de Oliveira, G.B.[Gabriel Bianchin],
Pedrini, H.[Helio],
Dias, Z.[Zanoni],
MMEC: Multi-Modal Ensemble Classifier for Protein Secondary Structure
Prediction,
CAIP21(I:175-184).
Springer DOI
2112
BibRef
Sverrisson, F.[Freyr],
Feydy, J.[Jean],
Correia, B.E.[Bruno E.],
Bronstein, M.M.[Michael M.],
Fast end-to-end learning on protein surfaces,
CVPR21(15267-15276)
IEEE DOI
2111
Proteins, Deep learning, Drugs,
Computational modeling, Atomic layer deposition
BibRef
Kishan, K.C.,
Cui, F.[Feng],
Haake, A.R.[Anne R.],
Li, R.[Rui],
Interpretable Structured Learning with Sparse Gated Sequence Encoder
for Protein-Protein Interaction Prediction,
ICPR21(7126-7133)
IEEE DOI
2105
Proteins, Recurrent neural networks, Biological system modeling,
Computational modeling, Predictive models, Logic gates, Amino acids
BibRef
Golkov, V.[Vladimir],
Skwark, M.J.[Marcin J.],
Mirchev, A.[Atanas],
Dikov, G.[Georgi],
Geanes, A.R.[Alexander R.],
Mendenhall, J.[Jeffrey],
Meiler, J.[Jens],
Cremers, D.[Daniel], c
3D Deep Learning for Biological Function Prediction from Physical
Fields,
3DV20(928-937)
IEEE DOI
2102
Predicting the biological function of molecules, be it proteins or
drug-like compounds, from their atomic structure.
Proteins, Atomic measurements,
Electrostatics, Electric potential, Amino acids, Compounds, drug discovery
BibRef
Arnal, R.D.,
Metz, M.,
Morgan, A.J.,
Chapman, H.N.,
Millane, R.P.,
Ab initio phasing using diffraction data from different crystal forms,
IVCNZ19(1-6)
IEEE DOI
2004
ab initio calculations, biology computing, crystal structure,
crystallography, iterative methods, molecular biophysics, proteins,
phase problem
BibRef
Bahi, M.,
Batouche, M.,
Deep semi-supervised learning for DTI prediction using large datasets
and H2O-spark platform,
ISCV18(1-7)
IEEE DOI
1807
Big Data, drugs, genomics, learning (artificial intelligence),
medical computing, molecular biophysics, neural nets, proteins,
Stacked Autoencoders
BibRef
Sriwastava, B.K.[Brijesh Kumar],
Basu, S.[Subhadip],
Maulik, U.[Ujjwal],
A Quasi-Clique Mining Algorithm for Analysis of the Human
Protein-Protein Interaction Network,
PReMI17(411-417).
Springer DOI
1711
BibRef
Bankapur, S.[Sanjay],
Patil, N.[Nagamma],
Efficient and Effective Multiple Protein Sequence Alignment Model Using
Dynamic Progressive Approach with Novel Look Back Ahead Scoring System,
PReMI17(397-404).
Springer DOI
1711
BibRef
Li, H.,
Zhao, Y.M.[Yu-Ming],
Bai, J.,
Zhang, J.,
Yang, J.,
Comparative study in complex network:
Node degree and topological potential,
ICIVC17(928-932)
IEEE DOI
1708
Annealing, Indexes, Proteins, comparative study,
complex network, node degree, topological, potential
BibRef
Martino, A.[Alessio],
Maiorino, E.[Enrico],
Giuliani, A.[Alessandro],
Giampieri, M.[Mauro],
Rizzi, A.[Antonello],
Supervised Approaches for Function Prediction of Proteins Contact
Networks from Topological Structure Information,
SCIA17(I: 285-296).
Springer DOI
1706
BibRef
Hossain, M.J.,
Keynote speaker: An experimental and computational framework to build
a dynamic protein atlas for human cell division,
IVPR17(1-1)
IEEE DOI
1704
Biographies;Embryo;Engineering profession;Europe;Proteins;Software
BibRef
Shweta,
Ekbal, A.,
Saha, S.,
Bhattacharyya, P.,
A deep learning architecture for protein-protein Interaction Article
identification,
ICPR16(3128-3133)
IEEE DOI
1705
Convolution, Feature extraction, Neural networks,
Protein engineering, Proteins, Support vector machines,
Convolutional Neural Network (CNN),
Protein Protein Interaction (PPI), Word, Embedding
BibRef
Megrian, D.[Daniela],
Aguilar, P.S.[Pablo S.],
Lecumberry, F.[Federico],
Similarity Measure for Cell Membrane Fusion Proteins Identification,
CIARP16(257-265).
Springer DOI
1703
BibRef
Cucci, A.[Andrea],
Lovato, P.[Pietro],
Bicego, M.[Manuele],
Enriched Bag of Words for Protein Remote Homology Detection,
SSSPR16(463-473).
Springer DOI
1611
BibRef
On, V.,
Zahedi, A.,
Ethell, I.,
Bhanu, B.,
Spatio-temporal pattern recognition of dendritic spines and protein
dynamics using live multichannel fluorescence microscopy,
ICPR16(2042-2047)
IEEE DOI
1705
Feature extraction, Fluorescence, Image segmentation,
Protein engineering, Proteins, Shape, Videos, classification,
dendritic spines, multichannel imaging, protein, flux
BibRef
Yan, J.[Jing],
Kurgan, L.[Lukasz],
Consensus-Based Prediction of RNA and DNA Binding Residues from Protein
Sequences,
PReMI15(501-511).
Springer DOI
1511
BibRef
Chatterjee, P.[Piyali],
Basu, S.[Subhadip],
Zubek, J.[Julian],
Kundu, M.[Mahantapas],
Nasipuri, M.[Mita],
Plewczynski, D.[Dariusz],
PDP-RF:
Protein Domain Boundary Prediction Using Random Forest Classifier,
PReMI15(441-450).
Springer DOI
1511
BibRef
Mazzocco, G.[Giovanni],
Bhowmick, S.S.[Shib Sankar],
Saha, I.[Indrajit],
Maulik, U.[Ujjwal],
Bhattacharjee, D.[Debotosh],
Plewczynski, D.[Dariusz],
MaER: A New Ensemble Based Multiclass Classifier for Binding Activity
Prediction of HLA Class II Proteins,
PReMI15(462-471).
Springer DOI
1511
BibRef
Mrozek, D.[Dariusz],
Malysiak-Mrozek, B.[Bozena],
Socha, B.[Bartek],
Kozielski, S.[Stanislaw],
Selection of a Consensus Area Size for Multithreaded Wavefront-Based
Alignment Procedure for Compressed Sequences of Protein Secondary
Structures,
PReMI15(472-481).
Springer DOI
1511
BibRef
Cantoni, V.,
Ferone, A.,
Ozbudak, O.,
Petrosino, A.,
Search of protein structural blocks through secondary structure
triplets,
IPTA12(222-226)
IEEE DOI
1503
Hough transforms
BibRef
Penczek, P.A.[Pawel A.],
Asturias, F.J.[Francisco J.],
Ab initio cryo-EM structure determination as a validation problem,
ICIP14(2090-2094)
IEEE DOI
1502
Biology
BibRef
Gien, J.[Jing],
Tang, Y.Y.[Yuan Yan],
Client, C.L.P.[C.L. Philip],
Lin, Y.W.[Yue-Wei],
Dual Fuzzy Hypergraph Regularized Multi-label Learning for Protein
Subcellular Location Prediction,
ICPR14(512-516)
IEEE DOI
1412
Feature extraction
BibRef
Okada, K.[Kazunori],
Flores, L.[Lorenzo],
Wong, M.[Mike],
Petkovic, D.[Dragutin],
Microenvironment-Based Protein Function Analysis by Random Forest,
ICPR14(3138-3143)
IEEE DOI
1412
Accuracy
BibRef
Chamorro, A.E.M.[Alfonso E. Márquez],
Divina, F.[Federico],
Aguilar-Ruiz, J.S.[Jesús S.],
Improving the Efficiency of MECoMaP: A Protein Residue-Residue Contact
Predictor,
CIARP13(II:166-173).
Springer DOI
1311
BibRef
Drago, G.[Giacomo],
Ferretti, M.[Marco],
Musci, M.[Mirto],
CCMS: A Greedy Approach to Motif Extraction,
PR-PS-BB13(363-371).
Springer DOI
1309
BibRef
Cantoni, V.[Virginio],
Dimov, D.T.[Dimo T.],
Structural Blocks Retrieval in Macromolecules:
Saliency and Precision Aspects,
PR-PS-BB13(372-380).
Springer DOI
1309
Molecular analysis
BibRef
König, C.[Caroline],
Cruz-Barbosa, R.[Raúl],
Alquézar, R.[René],
Vellido, A.[Alfredo],
SVM-Based Classification of Class C GPCRs from Alignment-Free
Physicochemical Transformations of Their Sequences,
PR-PS-BB13(336-343).
Springer DOI
1309
G protein-coupled receptors
BibRef
Nghiep, H.V.,
Hung, P.N.,
Ly, L.,
Structural Investigation of Supercooled Water Confined in Antifreeze
Proteins: Models' Performance Evaluation between Coarse Grained and
Atomistic Simulation Models,
PR-PS-BB13(344-355).
Springer DOI
1309
BibRef
Cantoni, V.[Virginio],
Ferone, A.[Alessio],
Petrosino, A.[Alfredo],
Sanniti di Baja, G.[Gabriella],
A Supervised Approach to 3D Structural Classification of Proteins,
PR-PS-BB13(326-335).
Springer DOI
1309
BibRef
Laine, E.[Elodie],
Carbone, A.[Alessandra],
Identification of Protein Interaction Partners from Shape
Complementarity Molecular Cross-Docking,
PR-PS-BB13(318-325).
Springer DOI
1309
BibRef
Suryanto, C.H.[Chendra Hadi],
Jiang, S.[Shukun],
Fukui, K.[Kazuhiro],
Protein structure similarity based on multi-view images generated from
3D molecular visualization,
ICPR12(3447-3451).
WWW Link.
1302
BibRef
Cantoni, V.[Virginio],
Ozbudak, O.[Ozlem],
Ferone, A.[Alessio],
Petrosino, A.[Alfredo],
Structural analysis of protein Secondary Structure by GHT,
ICPR12(1767-1770).
WWW Link.
1302
BibRef
Mavridis, L.,
Venkatraman, V.,
Ritchie, D.W.,
Morikawa, N.,
Andonov, R.,
Cornu, A.,
Malod-Dognin, N.,
Nicolas, J.,
Temerinac-Ott, M.,
Reisert, M.,
Burkhardt, H.,
Axenopoulos, A.,
Daras, P.,
SHREC'10 Track: Protein Model Classification,
EG3DOR10(117-124)
PDF File.
DOI Link
1301
BibRef
Toca, C.E.S.[Cosme E. Santiesteban],
García-Borroto, M.[Milton],
Ruiz, J.S.A.[Jesus S. Aguilar],
Using Short-Range Interactions and Simulated Genetic Strategy to
Improve the Protein Contact Map Prediction,
MCPR12(166-175).
Springer DOI
1208
BibRef
Sturm, D.[Deborah],
Jawad, M.[Mahdi],
Alonso, A.[Alejandra],
Corbo, C.[Chris],
A cytoskeleton linearity measure,
Southwest12(45-48).
IEEE DOI
1205
Study properties of proteins
BibRef
Axenopoulos, A.[Apostolos],
Daras, P.[Petros],
Papadopoulos, G.[Georgios],
Houstis, E.[Elias],
3D protein-protein docking using shape complementarity and fast
alignment,
ICIP11(1569-1572).
IEEE DOI
1201
BibRef
Mirceva, G.[Georgina],
Davcev, D.[Danco],
Incorporating several features in the protein ray descriptor for more
accurate protein 3D structure retrieval,
3DOR10(51-56).
DOI Link
1111
BibRef
Vegas, E.[Esteban],
Reverter, F.[Ferran],
Oller, J.M.[Josep M.],
Elías, J.M.[José M.],
A Comparison of Spectrum Kernel Machines for Protein Subnuclear
Localization,
IbPRIA11(734-741).
Springer DOI
1106
BibRef
Guerra, C.[Concettina],
Mina, M.[Marco],
Computational Methods for the Prediction of Protein-Protein
Interactions,
IWCIA11(13-16).
Springer DOI
1105
BibRef
Sakar, O.[Okan],
Kursun, O.[Olcay],
Seker, H.[Huseyin],
Gurgen, F.[Fikret],
Prediction of Protein Sub-nuclear Location by Clustering mRMR Ensemble
Feature Selection,
ICPR10(2572-2575).
IEEE DOI
1008
BibRef
Mamidipally, C.[Chandrasekhar],
Noronha, S.B.[Santosh B.],
Roy, S.D.[Sumantra Dutta],
Automated Identification of Protein Structural Features,
PReMI09(171-176).
Springer DOI
0912
BibRef
Stamatopoulos, V.G.,
Karras, D.A.,
Moschopoulos, C.,
Kossida, S.,
Interpretation of Coherence Phase and Rhythmic Cumulant Results:
A Simulation Study,
WSSIP09(1-6).
IEEE DOI
0906
BibRef
Moschopoulos, C.,
Likothanassis, S.,
Stamatopoulos, V.G.,
Kossida, S.,
Applying Graph Theory on Protein-Protein Interaction Data,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Cai, J.H.[Jin-Hai],
Enhanced HMM for the Recognition of Sigma70 Promoters in Escherichia
coli,
DICTA08(46-51).
IEEE DOI
0812
BibRef
Cantoni, V.[Virginio],
Gatti, R.[Riccardo],
Lombardi, L.[Luca],
Towards Protein Interaction Analysis through Surface Labeling,
CIAP09(604-612).
Springer DOI
0909
BibRef
Kuksa, P.P.[Pavel P.],
Pavlovic, V.[Vladimir],
Spatial Representation for Efficient Sequence Classification,
ICPR10(3320-3323).
IEEE DOI
1008
BibRef
Kuksa, P.P.[Pavel P.],
Huang, P.H.[Pai-Hsi],
Pavlovic, V.[Vladimir],
Fast protein homology and fold detection with sparse spatial sample
kernels,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Jung, J.[Jaehee],
Thon, M.R.[Michael R.],
Gene function prediction using protein domain probability and
hierarchical Gene Ontology information,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Kim, D.[Donguk],
Lee, C.H.[Chang-Hee],
Cho, Y.S.[Young-Song],
Kim, D.S.[Deok-Soo],
Manifoldization of beta-Shapes by Topology Operators,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Xiang, J.P.[Jun-Ping],
Hu, M.L.[Mao-Lin],
Protein Surface Modeling Using Active Contour Model,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Xu, D.[Dong],
Li, H.[Hua],
Gu, T.J.[Tong-Jun],
Shape Representation and Invariant Description of Protein Tertiary
Structure in Applications to Shape Retrieval and Classification,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Kumar, P.[Pankaj],
Jayaraman, V.K.,
Kulkarni, B.D.,
Granular Support Vector Machine Based Method for Prediction of
Solubility of Proteins on Overexpression in Escherichia Coli,
PReMI07(406-415).
Springer DOI
0712
BibRef
Tsatsaias, V.,
Daras, P.,
Strintzis, M.G.,
3D Protein Classification using Topological, Geometrical and Biological
Information,
ICIP07(VI: 537-540).
IEEE DOI
0709
See also Ellipsoidal Harmonics for 3-D Shape Description and Retrieval.
BibRef
Gedda, M.[Magnus],
Svensson, S.[Stina],
Flexibility Description of the MET Protein Stalk Based on the Use of
Non-uniform B-Splines,
CAIP07(173-180).
Springer DOI
0708
BibRef
Bonet, I.[Isis],
Saeys, Y.[Yvan],
Ábalo, R.G.[Ricardo Grau],
García, M.M.[María M.],
Sanchez, R.[Robersy],
van de Peer, Y.[Yves],
Feature Extraction Using Clustering of Protein,
CIARP06(614-623).
Springer DOI
0611
BibRef
Yu, Z.Y.[Ze-Yun],
Bajaj, C.,
A Structure Tensor Approach for 3D Image Skeletonization:
Applications in Protein Secondary Structure Analysis,
ICIP06(2513-2516).
IEEE DOI
0610
BibRef
Mallick, S.P.[Satya P.],
Agarwal, S.[Sameer],
Kriegman, D.J.[David J.],
Belongie, S.J.[Serge J.],
Vision in the Small: Reconstructing the Structure of Protein
Macromolecules from Cryo-Electron Micrographs,
BMVC06(I:1).
PDF File.
0609
BibRef
Wen, Q.[Quan],
Gao, J.[Jean],
Luby-Phelps, K.[Kate],
Markov Chain Monte Carlo Data Association for Merge and Split Detection
in Tracking Protein Clusters,
ICPR06(I: 1030-1033).
IEEE DOI
0609
BibRef
Sintorn, I.M.[Ida-Maria],
Borgefors, G.[Gunilla],
Shape Based Identification of Proteins in Volume Images,
SCIA05(253-262).
Springer DOI
0506
BibRef
Bouchaffra, D.,
Tan, J.,
Protein Fold Recognition using a Structural Hidden Markov Model,
ICPR06(III: 186-189).
IEEE DOI
0609
BibRef
Zhang, Y.[Ya],
Zha, H.Y.[Hong-Yuan],
Chu, C.H.[Chao-Hisen],
Ji, X.[Xiang],
Protein Interaction Inference as a MAX-SAT Problem,
BioInfo05(III: 146-146).
IEEE DOI
0507
BibRef
Daras, P.,
Zarpalas, D.,
Tzovaras, D.,
Strintzis, M.G.,
3D Shape-Based Techniques for Protein Classification,
ICIP05(II: 1130-1133).
IEEE DOI
0512
BibRef
Wen, Q.,
Gao, J.,
Kosaka, A.,
Iwaki, H.,
Luby-Phelps, K.,
Mundy, D.,
A Particle Filter Framework Using Optimal Importance Function for
Protein Molecules Tracking,
ICIP05(I: 1161-1164).
IEEE DOI
0512
BibRef
Svensson, L.[Lennart],
Sintorn, I.M.[Ida-Maria],
A Probabilistic Template Model for Finding Macromolecules in MET Volume
Images,
IbPRIA13(855-862).
Springer DOI
1307
BibRef
Sintorn, I.M.[Ida-Maria],
Gedda, M.[Magnus],
Mata, S.[Susana],
Svensson, S.[Stina],
Medial Grey-Level Based Representation for Proteins in Volume Images,
IbPRIA05(II:421).
Springer DOI
0509
BibRef
Hao, Y.[Yu],
Zhu, X.Y.[Xiao-Yan],
Li, M.[Ming],
A New Algorithm for Pattern Optimization in Protein-Protein Interaction
Extraction System,
IbPRIA05(II:397).
Springer DOI
0509
BibRef
Raman, S.,
Parvin, B.,
Maxwell, C.,
Barcellos-Hoff, M.H.,
Geometric Approach to Segmentation and Protein Localization in Cell
Cultured Assays,
ISVC05(427-436).
Springer DOI
0512
BibRef
Burkhardt, S.,
Fredriksson, K.,
Ojamies, T.,
Ravantti, J.,
Ukkonen, E.,
Local approximate 3D matching of proteins in viral cryo-EM density maps,
3DPVT04(979-986).
IEEE DOI
0412
BibRef
Colle, G.,
Pelillo, M.,
Relaxation labeling processes for protein secondary structure
prediction,
ICPR04(II: 355-358).
IEEE DOI
0409
BibRef
Persson, M.[Martin],
Bigun, J.[Josef],
Protein Spot Detection by Symmetry Derivatives of Gaussians,
SCIA03(520-525).
Springer DOI
0310
BibRef
Chen, S.C.[Shann-Ching],
Chen, T.H.[Tsu-Han],
Retrieval of 3D protein structures,
ICIP02(III: 933-936).
IEEE DOI
0210
BibRef
Vendruscolo, M.,
Protein folding using inter-residue contact,
3DPVT02(724-728).
0206
BibRef
Zhang, B.H.[Bio-Hong],
Godzik, A.,
The neaning and limitations of protein structure alignments,
3DPVT02(729-736).
0206
BibRef
Guerra, C.,
Lonardi, S.,
Zanotti, G.,
Analysis of secondary structure elements of proteins using indexing
techniques,
3DPVT02(812-821).
IEEE DOI
0206
BibRef
Fischer, D.,
Lin, S.L.,
Nusainov, R.,
Wolfson, H.,
Docking of protein molecules,
ICPR94(B:145-149).
IEEE DOI
9410
BibRef
Vargas, J.R.[J. Reynaldo],
Appel, R.D.[Ron D.],
Hochstrasser, D.F.[Denis F.],
Pellegrini, C.[Christian],
Modeling and quantification of protein maps by Gaussian fitting,
CAIP93(627-633).
Springer DOI
9309
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Blood Cells, Counting, Extraction, Analysis .