Listopad, C.,
Drake, J.,
Masters, R.,
Weishampel, J.,
Portable and Airborne Small Footprint LiDAR:
Forest Canopy Structure Estimation of Fire Managed Plots,
RS(3), No. 7, July 2011, pp. 1284-1307.
DOI Link
1203
BibRef
Lewis, S.,
Robichaud, P.,
Hudak, A.,
Austin, B.,
Liebermann, R.,
Utility of Remotely Sensed Imagery for Assessing the Impact of Salvage
Logging after Forest Fires,
RS(4), No. 7, July 2012, pp. 2112-2132.
DOI Link
1208
BibRef
Bisquert, M.[Mar],
Sánchez, J.M.[Juan Manuel],
Caselles, V.[Vicente],
Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS
Images,
RS(6), No. 1, 2014, pp. 540-554.
DOI Link
1402
BibRef
Freeborn, P.H.[Patrick H.],
Cochrane, M.A.[Mark A.],
Wooster, M.J.[Martin J.],
A Decade Long, Multi-Scale Map Comparison of Fire Regime Parameters
Derived from Three Publically Available Satellite-Based Fire
Products: A Case Study in the Central African Republic,
RS(6), No. 5, 2014, pp. 4061-4089.
DOI Link
1407
BibRef
Ling, B.[Bohua],
Goodin, D.G.[Douglas G.],
Mohler, R.L.[Rhett L.],
Laws, A.N.[Angela N.],
Joern, A.[Anthony],
Estimating Canopy Nitrogen Content in a Heterogeneous Grassland with
Varying Fire and Grazing Treatments: Konza Prairie, Kansas, USA,
RS(6), No. 5, 2014, pp. 4430-4453.
DOI Link
1407
BibRef
Katagis, T.[Thomas],
Gitas, I.Z.[Ioannis Z.],
Mitri, G.H.[George H.],
An Object-Based Approach for Fire History Reconstruction by Using
Three Generations of Landsat Sensors,
RS(6), No. 6, 2014, pp. 5480-5496.
DOI Link
1407
BibRef
Daldegan, G.A.[Gabriel Antunes],
de Carvalho, O.A.[Osmar Abílio],
Guimarães, R.F.[Renato Fontes],
Gomes, R.A.T.[Roberto Arnaldo Trancoso],
de Figueiredo Ribeiro, F.[Fernanda],
McManus, C.[Concepta],
Spatial Patterns of Fire Recurrence Using Remote Sensing and GIS in
the Brazilian Savanna: Serra do Tombador Nature Reserve, Brazil,
RS(6), No. 10, 2014, pp. 9873-9894.
DOI Link
1411
BibRef
Chowdhury, E.H.[Ehsan H.],
Hassan, Q.K.[Quazi K.],
Development of a New Daily-Scale Forest Fire Danger Forecasting
System Using Remote Sensing Data,
RS(7), No. 3, 2015, pp. 2431-2448.
DOI Link
1504
BibRef
Chowdhury, E.H.[Ehsan H.],
Hassan, Q.K.[Quazi K.],
Operational perspective of remote sensing-based forest fire danger
forecasting systems,
PandRS(104), No. 1, 2015, pp. 224-236.
Elsevier DOI
1505
Fire occurrence
BibRef
Abdollahi, M.[Masoud],
Islam, T.[Tanvir],
Gupta, A.[Anil],
Hassan, Q.K.[Quazi K.],
An Advanced Forest Fire Danger Forecasting System: Integration of
Remote Sensing and Historical Sources of Ignition Data,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Borrelli, P.[Pasquale],
Armenteras, D.[Dolors],
Panagos, P.[Panos],
Modugno, S.[Sirio],
Schütt, B.[Brigitta],
The Implications of Fire Management in the Andean Paramo: A
Preliminary Assessment Using Satellite Remote Sensing,
RS(7), No. 9, 2015, pp. 11061.
DOI Link
1511
BibRef
Bui, D.T.[Dieu Tien],
Le, K.T.T.[Kim-Thoa Thi],
Nguyen, V.C.[Van Cam],
Le, H.D.[Hoang Duc],
Revhaug, I.[Inge],
Tropical Forest Fire Susceptibility Mapping at the Cat Ba National
Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic
Regression,
RS(8), No. 4, 2016, pp. 347.
DOI Link
1604
BibRef
García, M.[Mariano],
Saatchi, S.[Sassan],
Casas, A.[Angeles],
Koltunov, A.[Alexander],
Ustin, S.L.[Susan L.],
Ramirez, C.[Carlos],
Balzter, H.[Heiko],
Extrapolating Forest Canopy Fuel Properties in the California Rim
Fire by Combining Airborne LiDAR and Landsat OLI Data,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Myoung, B.[Boksoon],
Kim, S.H.[Seung Hee],
Nghiem, S.V.[Son V.],
Jia, S.[Shenyue],
Whitney, K.[Kristen],
Kafatos, M.C.[Menas C.],
Estimating Live Fuel Moisture from MODIS Satellite Data for Wildfire
Danger Assessment in Southern California USA,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Jia, S.[Shenyue],
Kim, S.H.[Seung Hee],
Nghiem, S.V.[Son V.],
Kafatos, M.[Menas],
Estimating Live Fuel Moisture Using SMAP L-Band Radiometer Soil
Moisture for Southern California, USA,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Kelly, M.[Maggi],
Su, Y.J.[Yan-Jun],
di Tommaso, S.[Stefania],
Fry, D.L.[Danny L.],
Collins, B.M.[Brandon M.],
Stephens, S.L.[Scott L.],
Guo, Q.H.[Qing-Hua],
Impact of Error in Lidar-Derived Canopy Height and Canopy Base Height
on Modeled Wildfire Behavior in the Sierra Nevada, California, USA,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Rozario, P.F.[Papia F.],
Madurapperuma, B.D.[Buddhika D.],
Wang, Y.J.[Yi-Jun],
Remote Sensing Approach to Detect Burn Severity Risk Zones in Palo
Verde National Park, Costa Rica,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Kim, S.J.[Sea Jin],
Lim, C.H.[Chul-Hee],
Kim, G.S.[Gang Sun],
Lee, J.Y.[Jong-Yeol],
Geiger, T.[Tobias],
Rahmati, O.[Omid],
Son, Y.[Yowhan],
Lee, W.K.[Woo-Kyun],
Multi-Temporal Analysis of Forest Fire Probability Using
Socio-Economic and Environmental Variables,
RS(11), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Ying, H.[Hong],
Shan, Y.[Yu],
Zhang, H.Y.[Hong-Yan],
Yuan, T.[Tao],
Rihan, W.[Wu],
Deng, G.R.[Guo-Rong],
The Effect of Snow Depth on Spring Wildfires on the Hulunbuir from
2001-2018 Based on MODIS,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Abdollahi, M.[Masoud],
Dewan, A.[Ashraf],
Hassan, Q.K.[Quazi K.],
Applicability of Remote Sensing-Based Vegetation Water Content in
Modeling Lightning-Caused Forest Fire Occurrences,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Jaafari, A.[Abolfazl],
Mafi-Gholami, D.[Davood],
Pham, B.T.[Binh Thai],
Bui, D.T.[Dieu Tien],
Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Carvajal-Ramírez, F.[Fernando],
Marques da Silva, J.R.[José Rafael],
Agüera-Vega, F.[Francisco],
Martínez-Carricondo, P.[Patricio],
Serrano, J.[João],
Moral, F.J.[Francisco Jesús],
Evaluation of Fire Severity Indices Based on Pre- and Post-Fire
Multispectral Imagery Sensed from UAV,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Parks, S.A.[Sean A.],
Holsinger, L.M.[Lisa M.],
Koontz, M.J.[Michael J.],
Collins, L.[Luke],
Whitman, E.[Ellen],
Parisien, M.A.[Marc-André],
Loehman, R.A.[Rachel A.],
Barnes, J.L.[Jennifer L.],
Bourdon, J.F.[Jean-François],
Boucher, J.[Jonathan],
Boucher, Y.[Yan],
Caprio, A.C.[Anthony C.],
Collingwood, A.[Adam],
Hall, R.J.[Ron J.],
Park, J.[Jane],
Saperstein, L.B.[Lisa B.],
Smetanka, C.[Charlotte],
Smith, R.J.[Rebecca J.],
Soverel, N.[Nick],
Giving Ecological Meaning to Satellite-Derived Fire Severity Metrics
across North American Forests,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Wei, X.Y.[Xin-Yuan],
Larsen, C.P.S.[Chris P. S.],
Methods to Detect Edge Effected Reductions in Fire Frequency in
Simulated Forest Landscapes,
IJGI(8), No. 6, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Ahmed, M.R.[M. Razu],
Hassan, Q.K.[Quazi K.],
Abdollahi, M.[Masoud],
Gupta, A.[Anil],
Introducing a New Remote Sensing-Based Model for Forecasting Forest
Fire Danger Conditions at a Four-Day Scale,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Rihan, W.[Wu],
Zhao, J.J.[Jian-Jun],
Zhang, H.Y.[Hong-Yan],
Guo, X.Y.[Xiao-Yi],
Ying, H.[Hong],
Deng, G.R.[Guo-Rong],
Li, H.[Hui],
Wildfires on the Mongolian Plateau: Identifying Drivers and Spatial
Distributions to Predict Wildfire Probability,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Szpakowski, D.M.[David M.],
Jensen, J.L.R.[Jennifer L. R.],
A Review of the Applications of Remote Sensing in Fire Ecology,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Stefanidou, A.[Alexandra],
Gitas, I.Z.[Ioannis Z.],
Stavrakoudis, D.[Dimitris],
Eftychidis, G.[Georgios],
Midterm Fire Danger Prediction Using Satellite Imagery and Auxiliary
Thematic Layers,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Pérez-Rodríguez, L.A.[Luis A.],
Quintano, C.[Carmen],
Marcos, E.[Elena],
Suarez-Seoane, S.[Susana],
Calvo, L.[Leonor],
Fernández-Manso, A.[Alfonso],
Evaluation of Prescribed Fires from Unmanned Aerial Vehicles (UAVs)
Imagery and Machine Learning Algorithms,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Farahmand, A.[Alireza],
Stavros, E.N.[E. Natasha],
Reager, J.T.[John T.],
Behrangi, A.[Ali],
Introducing Spatially Distributed Fire Danger from Earth Observations
(FDEO) Using Satellite-Based Data in the Contiguous United States,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Razavi-Termeh, S.V.[Seyed Vahid],
Sadeghi-Niaraki, A.[Abolghasem],
Choi, S.M.[Soo-Mi],
Ubiquitous GIS-Based Forest Fire Susceptibility Mapping Using
Artificial Intelligence Methods,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Donovan, V.M.[Victoria M.],
Wonkka, C.L.[Carissa L.],
Wedin, D.A.[David A.],
Twidwell, D.[Dirac],
Land-Use Type as a Driver of Large Wildfire Occurrence in the U.S.
Great Plains,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
García, M.[Mariano],
Riaño, D.[David],
Yebra, M.[Marta],
Salas, J.[Javier],
Cardil, A.[Adrián],
Monedero, S.[Santiago],
Ramirez, J.[Joaquín],
Martín, M.P.[M. Pilar],
Vilar, L.[Lara],
Gajardo, J.[John],
Ustin, S.[Susan],
A Live Fuel Moisture Content Product from Landsat TM Satellite Time
Series for Implementation in Fire Behavior Models,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Li, Z.P.[Zheng-Peng],
Shi, H.[Hua],
Vogelmann, J.E.[James E.],
Hawbaker, T.J.[Todd J.],
Peterson, B.[Birgit],
Assessment of Fire Fuel Load Dynamics in Shrubland Ecosystems in the
Western United States Using MODIS Products,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Guldåker, N.[Nicklas],
Geovisualization and Geographical Analysis for Fire Prevention,
IJGI(9), No. 6, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Graff, C.A.,
Coffield, S.R.,
Chen, Y.,
Foufoula-Georgiou, E.,
Randerson, J.T.,
Smyth, P.,
Forecasting Daily Wildfire Activity Using Poisson Regression,
GeoRS(58), No. 7, July 2020, pp. 4837-4851.
IEEE DOI
2006
Predictive models, Weather forecasting, MODIS,
Atmospheric modeling, Forecasting, Satellites,
vapor pressure deficit (VPD)
BibRef
Marino, E.[Eva],
Yebra, M.[Marta],
Guillén-Climent, M.[Mariluz],
Algeet, N.[Nur],
Tomé, J.L.[José Luis],
Madrigal, J.[Javier],
Guijarro, M.[Mercedes],
Hernando, C.[Carmen],
Investigating Live Fuel Moisture Content Estimation in Fire-Prone
Shrubland from Remote Sensing Using Empirical Modelling and RTM
Simulations,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Zhu, L.J.[Liu-Jun],
Webb, G.I.[Geoffrey I.],
Yebra, M.[Marta],
Scortechini, G.[Gianluca],
Miller, L.[Lynn],
Petitjean, F.[François],
Live fuel moisture content estimation from MODIS:
A deep learning approach,
PandRS(179), 2021, pp. 81-91.
Elsevier DOI
2108
Live fuel moisture content, MODIS,
Convolutional neural network, Time series analysis, Fire risk, Fire danger
BibRef
Song, Y.J.[Yong-Jia],
Wang, Y.H.[Yu-Hang],
Global Wildfire Outlook Forecast with Neural Networks,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Laneve, G.[Giovanni],
Pampanoni, V.[Valerio],
Shaik, R.U.[Riyaaz Uddien],
The Daily Fire Hazard Index: A Fire Danger Rating Method for
Mediterranean Areas,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Aubard, V.[Valentine],
Pereira-Pires, J.E.[João E.],
Campagnolo, M.L.[Manuel L.],
Pereira, J.M.C.[José M. C.],
Mora, A.[André],
Silva, J.M.N.[João M. N.],
Fully Automated Countrywide Monitoring of Fuel Break Maintenance
Operations,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Afonso, R.[Ricardo],
Neves, A.[André],
Damásio, C.V.[Carlos Viegas],
Pires, J.M.[João Moura],
Birra, F.[Fernando],
Santos, M.Y.[Maribel Yasmina],
Assessment of Interventions in Fuel Management Zones Using Remote
Sensing,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Adaktylou, N.[Nektaria],
Stratoulias, D.[Dimitris],
Landenberger, R.[Rick],
Wildfire Risk Assessment Based on Geospatial Open Data: Application
on Chios, Greece,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Domingo, D.[Darío],
de la Riva, J.[Juan],
Lamelas, M.T.[María Teresa],
García-Martín, A.[Alberto],
Ibarra, P.[Paloma],
Echeverría, M.[Maite],
Hoffrén, R.[Raúl],
Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2
Data in Mediterranean Forest Affected by Wildfires,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Kalantar, B.[Bahareh],
Ueda, N.[Naonori],
Idrees, M.O.[Mohammed O.],
Janizadeh, S.[Saeid],
Ahmadi, K.[Kourosh],
Shabani, F.[Farzin],
Forest Fire Susceptibility Prediction Based on Machine Learning
Models with Resampling Algorithms on Remote Sensing Data,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
See also Forest Fire Susceptibility Prediction Based on Machine Learning Models with Resampling Algorithms on Remote Sensing Data.
BibRef
Novo, A.[Ana],
Fariñas-Álvarez, N.[Noelia],
Martínez-Sánchez, J.[Joaquín],
González-Jorge, H.[Higinio],
Fernández-Alonso, J.M.[José María],
Lorenzo, H.[Henrique],
Mapping Forest Fire Risk: A Case Study in Galicia (Spain),
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Alonso-Rego, C.[Cecilia],
Arellano-Pérez, S.[Stéfano],
Cabo, C.[Carlos],
Ordoñez, C.[Celestino],
Álvarez-González, J.G.[Juan Gabriel],
Díaz-Varela, R.A.[Ramón Alberto],
Ruiz-González, A.D.[Ana Daría],
Estimating Fuel Loads and Structural Characteristics of Shrub
Communities by Using Terrestrial Laser Scanning,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Barreto, J.S.[Joan Sebastian],
Armenteras, D.[Dolors],
Open Data and Machine Learning to Model the Occurrence of Fire in the
Ecoregion of 'Llanos Colombo-Venezolanos',
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Krsnik, G.[Goran],
Olivé, E.B.[Eduard Busquets],
Nicolau, M.P.[Míriam Piqué],
Larrañaga, A.[Asier],
Cardil, A.[Adrián],
García-Gonzalo, J.[Jordi],
Olabarría, J.R.G.[José Ramón González],
Regional Level Data Server for Fire Hazard Evaluation and Fuel
Treatments Planning,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Mathews, L.E.H.[Lauren E. H.],
Kinoshita, A.M.[Alicia M.],
Urban Fire Severity and Vegetation Dynamics in Southern California,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Sulova, A.[Andrea],
Arsanjani, J.J.[Jamal Jokar],
Exploratory Analysis of Driving Force of Wildfires in Australia:
An Application of Machine Learning within Google Earth Engine,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Mauro, F.[Francisco],
Hudak, A.T.[Andrew T.],
Fekety, P.A.[Patrick A.],
Frank, B.[Bryce],
Temesgen, H.[Hailemariam],
Bell, D.M.[David M.],
Gregory, M.J.[Matthew J.],
McCarley, T.R.[T. Ryan],
Regional Modeling of Forest Fuels and Structural Attributes Using
Airborne Laser Scanning Data in Oregon,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Revilla, S.[Sergio],
Lamelas, M.T.[María Teresa],
Domingo, D.[Darío],
de la Riva, J.[Juan],
Montorio, R.[Raquel],
Montealegre, A.L.[Antonio Luis],
García-Martín, A.[Alberto],
Assessing the Potential of the DART Model to Discrete Return LiDAR
Simulation: Application to Fuel Type Mapping,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Smith, C.W.[Christopher William],
Panda, S.K.[Santosh K.],
Bhatt, U.S.[Uma Suren],
Meyer, F.J.[Franz J.],
Improved Boreal Forest Wildfire Fuel Type Mapping in Interior Alaska
Using AVIRIS-NG Hyperspectral Data,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Badola, A.[Anushree],
Panda, S.K.[Santosh K.],
Roberts, D.A.[Dar A.],
Waigl, C.F.[Christine F.],
Bhatt, U.S.[Uma S.],
Smith, C.W.[Christopher W.],
Jandt, R.R.[Randi R.],
Hyperspectral Data Simulation (Sentinel-2 to AVIRIS-NG) for Improved
Wildfire Fuel Mapping, Boreal Alaska,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Li, Y.X.[Yan-Xi],
Quan, X.W.[Xing-Wen],
Liao, Z.M.[Zhan-Mang],
He, B.B.[Bin-Bin],
Forest Fuel Loads Estimation from Landsat ETM+ and ALOS PALSAR Data,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Lin, C.S.[Chin-Su],
Ma, S.E.[Siao-En],
Huang, L.P.[Li-Ping],
Chen, C.I.[Chung-I],
Lin, P.T.[Pei-Ting],
Yang, Z.K.[Zhih-Kai],
Lin, K.T.[Kuan-Ting],
Generating a Baseline Map of Surface Fuel Loading Using Stratified
Random Sampling Inventory Data through Cokriging and Multiple Linear
Regression Methods,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wu, Z.C.[Ze-Chuan],
Li, M.Z.[Ming-Ze],
Wang, B.[Bin],
Quan, Y.[Ying],
Liu, J.Y.[Jian-Yang],
Using Artificial Intelligence to Estimate the Probability of Forest
Fires in Heilongjiang, Northeast China,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
d'Este, M.[Marina],
Elia, M.[Mario],
Giannico, V.[Vincenzo],
Spano, G.[Giuseppina],
Lafortezza, R.[Raffaele],
Sanesi, G.[Giovanni],
Machine Learning Techniques for Fine Dead Fuel Load Estimation Using
Multi-Source Remote Sensing Data,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Al-Fugara, A.[A'kif],
Mabdeh, A.N.[Ali Nouh],
Ahmadlou, M.[Mohammad],
Pourghasemi, H.R.[Hamid Reza],
Al-Adamat, R.[Rida],
Pradhan, B.[Biswajeet],
Al-Shabeeb, A.R.[Abdel Rahman],
Wildland Fire Susceptibility Mapping Using Support Vector Regression
and Adaptive Neuro-Fuzzy Inference System-Based Whale Optimization
Algorithm and Simulated Annealing,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Naderpour, M.[Mohsen],
Rizeei, H.M.[Hossein Mojaddadi],
Ramezani, F.[Fahimeh],
Forest Fire Risk Prediction:
A Spatial Deep Neural Network-Based Framework,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Tomar, J.S.[Jagpal Singh],
Kranjcic, N.[Nikola],
Ðurin, B.[Bojan],
Kanga, S.[Shruti],
Singh, S.K.[Suraj Kumar],
Forest Fire Hazards Vulnerability and Risk Assessment in Sirmaur
District Forest of Himachal Pradesh (India): A Geospatial Approach,
IJGI(10), No. 7, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Philogene, S.[Sheena],
Ni-Meister, W.[Wenge],
Relationship between Fire Events and Land Use Changes in the State of
São Paulo, Brazil,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Pickell, P.D.[Paul D.],
Chavardès, R.D.[Raphaël D.],
Li, S.J.[Shuo-Jie],
Daniels, L.D.[Lori D.],
FuelNet: An Artificial Neural Network for Learning and Updating Fuel
Types for Fire Research,
GeoRS(59), No. 9, September 2021, pp. 7338-7352.
IEEE DOI
2109
Fuels, Forestry, Remote sensing, Neural networks, Meteorology, Indexes,
Earth, Artificial neural network,
wildfire
BibRef
Costa-Saura, J.M.[José M.],
Balaguer-Beser, Á.[Ángel],
Ruiz, L.A.[Luis A.],
Pardo-Pascual, J.E.[Josep E.],
Soriano-Sancho, J.L.[José L.],
Empirical Models for Spatio-Temporal Live Fuel Moisture Content
Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2
Indices and Meteorological Data,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhao, P.C.[Peng-Cheng],
Zhang, F.[Fuquan],
Lin, H.F.[Hai-Feng],
Xu, S.[Shuwen],
GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National
Forest Park, Nanjing,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Park, M.S.[Min-Soo],
Tran, D.Q.[Dai Quoc],
Lee, S.[Seungsoo],
Park, S.[Seunghee],
Multilabel Image Classification with Deep Transfer Learning for
Decision Support on Wildfire Response,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Bai, B.[Bing],
Zhao, H.M.[Hong-Mei],
Zhang, S.[Sumei],
Zhang, X.L.[Xue-Lei],
Du, Y.[Yabin],
Can Neural Networks Forecast Open Field Burning of Crop Residue in
Regions with Anthropogenic Management and Control? A Case Study in
Northeastern China,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Maffei, C.[Carmine],
Lindenbergh, R.[Roderik],
Menenti, M.[Massimo],
Combining multi-spectral and thermal remote sensing to predict forest
fire characteristics,
PandRS(181), 2021, pp. 400-412.
Elsevier DOI
2110
Fire danger, MODIS, Land surface temperature (LST),
Live fuel moisture content (LFMC), Fire Weather Index (FWI),
Probability of extreme events
BibRef
Fitzgerald, A.M.[Alissa M.],
A New Wildfire Watchdog: Alerts About Forest Fires Shouldn't Depend
on Pets Smelling Smoke. We Need Smart Infrastructure, and that Needs
Zero-Power Sensors,
Spectrum(58), No. 11, November 2021, pp. 38-43.
IEEE DOI
2112
Fires, Automobiles
BibRef
Dragozi, E.[Eleni],
Giannaros, T.M.[Theodore M.],
Kotroni, V.[Vasiliki],
Lagouvardos, K.[Konstantinos],
Koletsis, I.[Ioannis],
Dead Fuel Moisture Content (DFMC) Estimation Using MODIS and
Meteorological Data: The Case of Greece,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Arkin, J.[Jeremy],
Coops, N.C.[Nicholas C.],
Daniels, L.D.[Lori D.],
Plowright, A.[Andrew],
Estimation of Vertical Fuel Layers in Tree Crowns Using High Density
LiDAR Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Alonso-Rego, C.[Cecilia],
Arellano-Pérez, S.[Stéfano],
Guerra-Hernández, J.[Juan],
Molina-Valero, J.A.[Juan Alberto],
Martínez-Calvo, A.[Adela],
Pérez-Cruzado, C.[César],
Castedo-Dorado, F.[Fernando],
González-Ferreiro, E.[Eduardo],
Álvarez-González, J.G.[Juan Gabriel],
Ruiz-González, A.D.[Ana Daría],
Estimating Stand and Fire-Related Surface and Canopy Fuel Variables
in Pine Stands Using Low-Density Airborne and Single-Scan Terrestrial
Laser Scanning Data,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Cui, L.[Lilu],
Luo, C.J.[Chuan-Jiang],
Yao, C.L.[Chao-Long],
Zou, Z.B.[Zheng-Bo],
Wu, G.J.[Gui-Ju],
Li, Q.[Qiong],
Wang, X.L.[Xiao-Long],
The Influence of Climate Change on Forest Fires in Yunnan Province,
Southwest China Detected by GRACE Satellites,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Piralilou, S.T.[Sepideh Tavakkoli],
Einali, G.[Golzar],
Ghorbanzadeh, O.[Omid],
Nachappa, T.G.[Thimmaiah Gudiyangada],
Gholamnia, K.[Khalil],
Blaschke, T.[Thomas],
Ghamisi, P.[Pedram],
A Google Earth Engine Approach for Wildfire Susceptibility Prediction
Fusion with Remote Sensing Data of Different Spatial Resolutions,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Sakti, A.D.[Anjar Dimara],
Fauzi, A.I.[Adam Irwansyah],
Takeuchi, W.[Wataru],
Pradhan, B.[Biswajeet],
Yarime, M.[Masaru],
Vega-Garcia, C.[Cristina],
Agustina, E.[Elprida],
Wibisono, D.[Dionisius],
Anggraini, T.S.[Tania Septi],
Theodora, M.O.[Megawati Oktaviani],
Ramadhanti, D.[Desi],
Muhammad, M.F.[Miqdad Fadhil],
Aufaristama, M.[Muhammad],
Perdana, A.M.P.[Agung Mahadi Putra],
Wikantika, K.[Ketut],
Spatial Prioritization for Wildfire Mitigation by Integrating
Heterogeneous Spatial Data: A New Multi-Dimensional Approach for
Tropical Rainforests,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Apostolakis, A.[Alexis],
Girtsou, S.[Stella],
Giannopoulos, G.[Giorgos],
Bartsotas, N.S.[Nikolaos S.],
Kontoes, C.[Charalampos],
Estimating Next Day's Forest Fire Risk via a Complete Machine
Learning Methodology,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Shaik, R.U.[Riyaaz Uddien],
Laneve, G.[Giovanni],
Fusilli, L.[Lorenzo],
An Automatic Procedure for Forest Fire Fuel Mapping Using
Hyperspectral (PRISMA) Imagery: A Semi-Supervised Classification
Approach,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Trencanová, B.[Bianka],
Proença, V.[Vânia],
Bernardino, A.[Alexandre],
Development of Semantic Maps of Vegetation Cover from UAV Images to
Support Planning and Management in Fine-Grained Fire-Prone Landscapes,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Palaiologou, P.[Palaiologos],
Kalabokidis, K.[Kostas],
Day, M.A.[Michelle A.],
Ager, A.A.[Alan A.],
Galatsidas, S.[Spyros],
Papalampros, L.[Lampros],
Modelling Fire Behavior to Assess Community Exposure in Europe:
Combining Open Data and Geospatial Analysis,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
DeCastro, A.L.[Amy L.],
Juliano, T.W.[Timothy W.],
Kosovic, B.[Branko],
Ebrahimian, H.[Hamed],
Balch, J.K.[Jennifer K.],
A Computationally Efficient Method for Updating Fuel Inputs for
Wildfire Behavior Models Using Sentinel Imagery and Random Forest
Classification,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Rafaqat, W.[Warda],
Iqbal, M.[Mansoor],
Kanwal, R.[Rida],
Song, W.G.[Wei-Guo],
Study of Driving Factors Using Machine Learning to Determine the
Effect of Topography, Climate, and Fuel on Wildfire in Pakistan,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Sharma, S.K.[Saroj Kumar],
Aryal, J.[Jagannath],
Rajabifard, A.[Abbas],
Remote Sensing and Meteorological Data Fusion in Predicting Bushfire
Severity: A Case Study from Victoria, Australia,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Luz, A.E.O.[Andréa Eliza O.],
Negri, R.G.[Rogério G.],
Massi, K.G.[Klécia G.],
Colnago, M.[Marilaine],
Silva, E.A.[Erivaldo A.],
Casaca, W.[Wallace],
Mapping Fire Susceptibility in the Brazilian Amazon Forests Using
Multitemporal Remote Sensing and Time-Varying Unsupervised Anomaly
Detection,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
He, W.Q.[Wan-Qin],
Shirowzhan, S.[Sara],
Pettit, C.J.[Christopher James],
GIS and Machine Learning for Analysing Influencing Factors of
Bushfires Using 40-Year Spatio-Temporal Bushfire Data,
IJGI(11), No. 6, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Michael, Y.[Yaron],
Kozokaro, G.[Gilad],
Brenner, S.[Steve],
Lensky, I.M.[Itamar M.],
Improving WRF-Fire Wildfire Simulation Accuracy Using SAR and Time
Series of Satellite-Based Vegetation Indices,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Camprubí, À.C.[Àngel Cunill],
González-Moreno, P.[Pablo],
de Dios, V.R.[Víctor Resco],
Live Fuel Moisture Content Mapping in the Mediterranean Basin Using
Random Forests and Combining MODIS Spectral and Thermal Data,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Cheng, S.[Sibo],
Jin, Y.F.[Yu-Fang],
Harrison, S.P.[Sandy P.],
Quilodrán-Casas, C.[César],
Prentice, I.C.[Iain Colin],
Guo, Y.K.[Yi-Ke],
Arcucci, R.[Rossella],
Parameter Flexible Wildfire Prediction Using Machine Learning
Techniques: Forward and Inverse Modelling,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Brook, A.[Anna],
Hamzi, S.[Seham],
Roberts, D.[Dar],
Ichoku, C.[Charles],
Shtober-Zisu, N.[Nurit],
Wittenberg, L.[Lea],
Total Carbon Content Assessed by UAS Near-Infrared Imagery as a New
Fire Severity Metric,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, Y.Y.[Yan-Yan],
Zhang, F.[Fuquan],
Lin, H.F.[Hai-Feng],
Xu, S.[Shuwen],
A Forest Fire Susceptibility Modeling Approach Based on Light
Gradient Boosting Machine Algorithm,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Chen, J.[Jiahui],
Yang, Y.[Yi],
Peng, L.[Ling],
Chen, L.[Luanjie],
Ge, X.[Xingtong],
Knowledge Graph Representation Learning-Based Forest Fire Prediction,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Nur, A.S.[Arip Syaripudin],
Kim, Y.J.[Yong Je],
Lee, C.W.[Chang-Wook],
Creation of Wildfire Susceptibility Maps in Plumas National Forest
Using InSAR Coherence, Deep Learning, and Metaheuristic Optimization
Approaches,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xie, L.X.[Ling-Xiao],
Zhang, R.[Rui],
Zhan, J.Y.[Jun-Yu],
Li, S.[Song],
Shama, A.[Age],
Zhan, R.[Runqing],
Wang, T.[Ting],
Lv, J.[Jichao],
Bao, X.[Xin],
Wu, R.Z.[Ren-Zhe],
Wildfire Risk Assessment in Liangshan Prefecture, China Based on An
Integration Machine Learning Algorithm,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Xie, J.J.[Jiang-Jian],
Qi, T.[Tao],
Hu, W.[Wanjun],
Huang, H.G.[Hua-Guo],
Chen, B.B.[Bei-Bei],
Zhang, J.[Junguo],
Retrieval of Live Fuel Moisture Content Based on Multi-Source Remote
Sensing Data and Ensemble Deep Learning Model,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Mlynarczyk, A.[Adam],
Konatowska, M.[Monika],
Królewicz, S.[Slawomir],
Rutkowski, P.[Pawel],
Piekarczyk, J.[Jan],
Kowalewski, W.[Wojciech],
Spectral Indices as a Tool to Assess the Moisture Status of Forest
Habitats,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Costa-Saura, J.M.[Jose Maria],
Bacciu, V.[Valentina],
Ribotta, C.[Claudio],
Spano, D.[Donatella],
Massaiu, A.[Antonella],
Sirca, C.[Costantino],
Predicting and Mapping Potential Fire Severity for Risk Analysis at
Regional Level Using Google Earth Engine,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Li, W.J.[Wen-Jun],
Li, P.[Peng],
Feng, Z.M.[Zhi-Ming],
Delineating Fire-Hazardous Areas and Fire-Induced Patterns Based on
Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires in
Northeast China,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Pang, Y.Q.[Yong-Qi],
Li, Y.D.[Yu-Dong],
Feng, Z.K.[Zhong-Ke],
Feng, Z.[Zemin],
Zhao, Z.Y.[Zi-Yu],
Chen, S.L.[Shi-Lin],
Zhang, H.[Hanyue],
Forest Fire Occurrence Prediction in China Based on Machine Learning
Methods,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhou, Q.[Qing],
Zhang, H.[Heng],
Wu, Z.W.[Zhi-Wei],
Effects of Forest Fire Prevention Policies on Probability and Drivers
of Forest Fires in the Boreal Forests of China during Different
Periods,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Cimdins, R.[Reinis],
Krasovskiy, A.[Andrey],
Kraxner, F.[Florian],
Regional Variability and Driving Forces behind Forest Fires in Sweden,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ren, H.[Hongge],
Zhang, L.[Li],
Yan, M.[Min],
Chen, B.[Bowei],
Yang, Z.Y.[Zhen-Yu],
Ruan, L.L.[Lin-Lin],
Spatiotemporal Assessment of Forest Fire Vulnerability in China Using
Automated Machine Learning,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, Y.H.[Yu-Heng],
Xu, S.X.[Shu-Xing],
Fan, Z.F.[Zhao-Fei],
Zhang, X.[Xiao],
Yang, X.H.[Xiao-Hui],
Wen, S.[Shuo],
Shi, Z.J.[Zhong-Jie],
Risk Factors and Prediction of the Probability of Wildfire Occurrence
in the China-Mongolia-Russia Cross-Border Area,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Li, Y.X.[Yan-Xi],
He, B.B.[Bin-Bin],
A Semi-Empirical Retrieval Method of Above-Ground Live Forest Fuel
Loads by Combining SAR and Optical Data,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhang, X.[Xiao],
Lan, M.[Meng],
Ming, J.[Jinke],
Zhu, J.P.[Ji-Ping],
Lo, S.[Siuming],
Spatiotemporal Heterogeneity of Forest Fire Occurrence Based on
Remote Sensing Data: An Analysis in Anhui, China,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Nur, A.S.[Arip Syaripudin],
Kim, Y.J.[Yong Je],
Lee, J.[Junho],
Lee, C.W.[Chang-Wook],
Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine
Learning Models Based on Support Vector Regression in Sydney,
Australia,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Jo, H.W.[Hyun-Woo],
Krasovskiy, A.[Andrey],
Hong, M.[Mina],
Corning, S.[Shelby],
Kim, W.[Whijin],
Kraxner, F.[Florian],
Lee, W.K.[Woo-Kyun],
Modeling Historical and Future Forest Fires in South Korea:
The FLAM Optimization Approach,
RS(15), No. 5, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Chrysafis, I.[Irene],
Damianidis, C.[Christos],
Giannakopoulos, V.[Vasileios],
Mitsopoulos, I.[Ioannis],
Dokas, I.M.[Ioannis M.],
Mallinis, G.[Giorgos],
Vegetation Fuel Mapping at Regional Scale Using Sentinel-1,
Sentinel-2, and DEM Derivatives: The Case of the Region of East
Macedonia and Thrace, Greece,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Calvo, R.C.[Roberto Crespo],
Martínez, M.Á.V.[Ma Ángeles Varo],
Gómez, F.R.[Francisco Ruiz],
Salamanca, A.J.A.[Antonio Jesús Ariza],
Navarro-Cerrillo, R.M.[Rafael M.],
Improvements of Fire Fuels Attributes Maps by Integrating Field
Inventories, Low Density ALS, and Satellite Data in Complex
Mediterranean Forests,
RS(15), No. 8, 2023, pp. 2023.
DOI Link
2305
BibRef
Barmpoutis, P.[Panagiotis],
Kastridis, A.[Aristeidis],
Stathaki, T.[Tania],
Yuan, J.[Jing],
Shi, M.J.[Meng-Jie],
Grammalidis, N.[Nikos],
Suburban Forest Fire Risk Assessment and Forest Surveillance Using
360-Degree Cameras and a Multiscale Deformable Transformer,
RS(15), No. 8, 2023, pp. 1995.
DOI Link
2305
BibRef
Badola, A.[Anushree],
Panda, S.K.[Santosh K.],
Thompson, D.R.[David R.],
Roberts, D.A.[Dar A.],
Waigl, C.F.[Christine F.],
Bhatt, U.S.[Uma S.],
Estimation and Validation of Sub-Pixel Needleleaf Cover Fraction in
the Boreal Forest of Alaska to Aid Fire Management,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Yue, W.T.[Wei-Ting],
Ren, C.[Chao],
Liang, Y.[Yueji],
Liang, J.[Jieyu],
Lin, X.Q.[Xiao-Qi],
Yin, A.[Anchao],
Wei, Z.K.[Zhen-Kui],
Assessment of Wildfire Susceptibility and Wildfire Threats to
Ecological Environment and Urban Development Based on GIS and
Multi-Source Data: A Case Study of Guilin, China,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Penglase, K.[Kim],
Lewis, T.[Tom],
Srivastava, S.K.[Sanjeev K.],
A New Approach to Estimate Fuel Budget and Wildfire Hazard Assessment
in Commercial Plantations Using Drone-Based Photogrammetry and Image
Analysis,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Chang, C.[Chang],
Chang, Y.[Yu],
Xiong, Z.P.[Zai-Ping],
Ping, X.Y.[Xiao-Ying],
Zhang, H.[Heng],
Guo, M.[Meng],
Hu, Y.M.[Yuan-Man],
Predicting Grassland Fire-Occurrence Probability in Inner Mongolia
Autonomous Region, China,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Sim, M.S.[Min-Sung],
Wee, S.J.[Shi-Jun],
Alcantara, E.[Enner],
Park, E.[Edward],
Deforestation as the Prominent Driver of the Intensifying Wildfire in
Cambodia, Revealed through Geospatial Analysis,
RS(15), No. 13, 2023, pp. 3388.
DOI Link
2307
BibRef
Truong, T.X.[Tran Xuan],
Nhu, V.H.[Viet-Ha],
Phuong, D.T.N.[Doan Thi Nam],
Nghi, L.T.[Le Thanh],
Hung, N.N.[Nguyen Nhu],
Hoa, P.V.[Pham Viet],
Bui, D.T.[Dieu Tien],
A New Approach Based on TensorFlow Deep Neural Networks with ADAM
Optimizer and GIS for Spatial Prediction of Forest Fire Danger in
Tropical Areas,
RS(15), No. 14, 2023, pp. 3458.
DOI Link
2307
BibRef
Akay, A.E.,
Erdogan, A.,
Developing Validation of Forest Fire Risk Maps Based on Historical Fire
Incidences,
SmartCityApp21(33-38).
DOI Link
2201
BibRef
Apostolakis, A.[Alexis],
Girtsou, S.[Stella],
Kontoes, C.[Charalampos],
Papoutsis, I.[Ioannis],
Tsoutsos, M.[Michalis],
Implementation of a Random Forest Classifier to Examine Wildfire
Predictive Modelling in Greece Using Diachronically Collected Fire
Occurrence and Fire Mapping Data,
MMMod21(II:318-329).
Springer DOI
2106
BibRef
Eusuf, M.S.R.S.,
Barton, J.,
Gorte, B.,
Zlatanova, S.,
Volume Estimation of Fuel Load for Hazard Reduction Burning: First
Results to A Voxel Approach,
ISPRS20(B3:1199-1206).
DOI Link
2012
BibRef
Moyo, T.,
Musakwa, W.,
Nyathi, N.A.,
Mpofu, E.,
Gumbo, T.,
Modelling of Natural Fire Occurrences: A Case of South Africa,
ISPRS20(B3:1477-1482).
DOI Link
2012
BibRef
Nasanbat, E.,
Lkhamjav, O.,
Balkhai, A.,
Tsevee-Oirov, C.,
Purev, A.,
Dorjsuren, M.,
A Spatial Distributionmap Of The Wildfire Risk In Mongolia Using
Decision Support System,
Gi4DM18(357-362).
DOI Link
1805
BibRef
Nasanbat, E.[Elbegjargal],
Lkhamjav, O.[Ochirkhuyag],
Wild Fire Risk Map In The Eastern Steppe Of Mongolia Using Spatial
Multi-criteria Analysis,
ISPRS16(B1: 469-473).
DOI Link
1610
BibRef
Shadlouei, A.J.[A. Jalilzadeh],
Delavar, M.R.,
The Zoning of Forest Fire Potential of Gulestan Province Forests Using
Granular Computing and MODIS Images,
SMPR13(365-370).
DOI Link
1311
BibRef
Canale, S.,
de Santis, A.,
Iacoviello, D.,
Pirri, F.,
Sagratella, S.,
High-Resolution SAR images for fire susceptibility estimation in urban
forestry,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Burned Area Detection, Fire Damage Assessment, Post-Fire Analysis .