Darby, J.[John],
Li, B.H.[Bai-Hua],
Costen, N.P.[Nicholas P.],
Tracking human pose with multiple activity models,
PR(43), No. 9, September 2010, pp. 3042-3058.
Elsevier DOI
1006
BibRef
Earlier:
Behaviour based particle filtering for human articulated motion
tracking,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
Tracking a walking person using activity-guided annealed particle
filtering,
FG08(1-6).
IEEE DOI
0809
BibRef
And:
Human Activity Tracking from Moving Camera Stereo Data,
BMVC08(xx-yy).
PDF File.
0809
Human motion analysis; 3D human tracking; Generative model; Particle
filter; Annealing
BibRef
Leightley, D.[Daniel],
Li, B.H.[Bai-Hua],
McPhee, J.S.[Jamie S.],
Yap, M.H.[Moi Hoon],
Darby, J.[John],
Exemplar-Based Human Action Recognition with Template Matching from a
Stream of Motion Capture,
ICIAR14(II: 12-20).
Springer DOI
1410
BibRef
Darby, J.[John],
Li, B.H.[Bai-Hua],
Costen, N.P.[Nicholas P.],
Fleet, D.J.[David J.],
Lawrence, N.D.[Neil D.],
Backing Off:
Hierarchical Decomposition of Activity for 3d Novel Pose Recovery,
BMVC09(xx-yy).
PDF File.
0909
BibRef
Yan, S.C.[Shui-Cheng],
Zhang, Z.Q.[Zhen-Qiu],
Fu, Y.[Yun],
Hu, Y.X.[Yu-Xiao],
Tu, J.L.[Ji-Lin],
Huang, T.S.[Thomas S.],
Learning a Person-Independent Representation for Precise 3D Pose
Estimation,
MTPH07(xx-yy).
Springer DOI
0705
BibRef
Ni, B.B.[Bing-Bing],
Pei, Y.[Yong],
Moulin, P.[Pierre],
Yan, S.,
Multilevel Depth and Image Fusion for Human Activity Detection,
Cyber(43), No. 5, 2013, pp. 1383-1394.
IEEE DOI
1309
Accuracy
BibRef
Ni, B.B.[Bing-Bing],
Paramathayalan, V.R.[Vignesh R.],
Li, T.[Teng],
Moulin, P.[Pierre],
Multiple Granularity Modeling:
A Coarse-to-Fine Framework for Fine-grained Action Analysis,
IJCV(120), No. 1, October 2016, pp. 28-43.
Springer DOI
1609
BibRef
Earlier: A1, A2, A4, Only:
Multiple Granularity Analysis for Fine-Grained Action Detection,
CVPR14(756-763)
IEEE DOI
1409
action detection; interaction tracking; multiple granularity
BibRef
Pei, Y.[Yong],
Ni, B.B.[Bing-Bing],
Atmosukarto, I.[Indriyati],
Mixture of Heterogeneous Attribute Analyzers for Human Action Detection,
ChaLearn14(528-540).
Springer DOI
1504
BibRef
Zhou, Y.[Yang],
Ni, B.B.[Bing-Bing],
Yan, S.C.[Shui-Cheng],
Moulin, P.[Pierre],
Tian, Q.[Qi],
Pipelining Localized Semantic Features for Fine-Grained Action
Recognition,
ECCV14(IV: 481-496).
Springer DOI
1408
BibRef
Ni, B.B.[Bing-Bing],
Pei, Y.[Yong],
Liang, Z.J.[Zhu-Jin],
Lin, L.[Liang],
Moulin, P.[Pierre],
Integrating multi-stage depth-induced contextual information for
human action recognition and localization,
FG13(1-8)
IEEE DOI
1309
computer vision. With depth sensor.
BibRef
Liu, L.[Li],
Shao, L.[Ling],
Zheng, F.[Feng],
Li, X.L.[Xue-Long],
Realistic action recognition via sparsely-constructed Gaussian
processes,
PR(47), No. 12, 2014, pp. 3819-3827.
Elsevier DOI
1410
Action recognition
BibRef
Shao, L.[Ling],
Liu, L.[Li],
Yu, M.Y.[Meng-Yang],
Kernelized Multiview Projection for Robust Action Recognition,
IJCV(118), No. 2, June 2016, pp. 115-129.
Springer DOI
1606
See also Learning Short Binary Codes for Large-scale Image Retrieval.
BibRef
Yu, M.Y.[Meng-Yang],
Liu, L.[Li],
Shao, L.[Ling],
Structure-Preserving Binary Representations for RGB-D Action
Recognition,
PAMI(38), No. 8, August 2016, pp. 1651-1664.
IEEE DOI
1608
BibRef
Earlier: A2, A1, A3:
Local Feature Binary Coding for Approximate Nearest Neighbor Search,
BMVC15(xx-yy).
DOI Link
1601
binary codes
See also Multiview Alignment Hashing for Efficient Image Search.
BibRef
Vieira, A.W.[Antonio W.],
Nascimento, E.R.[Erickson R.],
Oliveira, G.L.[Gabriel L.],
Liu, Z.C.[Zi-Cheng],
Campos, M.F.M.[Mario F.M.],
On the improvement of human action recognition from depth map
sequences using Space-Time Occupancy Patterns,
PRL(36), No. 1, 2014, pp. 221-227.
Elsevier DOI
1312
BibRef
Earlier:
Stop: Space-time Occupancy Patterns for 3d Action Recognition from
Depth Map Sequences,
CIARP12(252-259).
Springer DOI
1209
Pattern recognition
BibRef
Oliveira, G.L.,
Nascimento, E.R.,
Vieira, A.W.,
Campos, M.F.M.,
Sparse Spatial Coding: A Novel Approach to Visual Recognition,
IP(23), No. 6, June 2014, pp. 2719-2731.
IEEE DOI
1406
Accuracy
BibRef
Vasconcelos, L.O.[Levi O.],
Nascimento, E.R.[Erickson R.],
Campos, M.F.M.[Mario F.M.],
KVD: Scale invariant keypoints by combining visual and depth data,
PRL(86), No. 1, 2017, pp. 83-89.
Elsevier DOI
1702
Keypoint detector
BibRef
Nascimento, E.R.[Erickson R.],
Schwartz, W.R.[William Robson],
Campos, M.F.M.[Mario F.M.],
EDVD: Enhanced descriptor for visual and depth data,
ICPR12(2776-2779).
WWW Link.
1302
BibRef
Yuan, C.F.[Chun-Feng],
Li, X.[Xi],
Hu, W.M.[Wei-Ming],
Ling, H.B.[Hai-Bin],
Maybank, S.J.[Stephen J.],
Modeling Geometric-Temporal Context With Directional Pyramid
Co-Occurrence for Action Recognition,
IP(23), No. 2, February 2014, pp. 658-672.
IEEE DOI
1402
BibRef
Earlier:
3D-R Transform on Spatio-temporal Interest Points for Action
Recognition,
CVPR13(724-730)
IEEE DOI
1309
geometry
BibRef
Yuan, C.F.[Chun-Feng],
Hu, W.M.[Wei-Ming],
Li, X.[Xi],
Maybank, S.J.[Stephen J.],
Luo, G.[Guan],
Human Action Recognition under Log-Euclidean Riemannian Metric,
ACCV09(I: 343-353).
Springer DOI
0909
BibRef
Cao, X.C.[Xiao-Chun],
Zhang, H.[Hua],
Deng, C.[Chao],
Liu, Q.G.[Qi-Guang],
Liu, H.Y.[Han-Yu],
Action recognition using 3D DAISY descriptor,
MVA(25), No. 1, January 2014, pp. 159-171.
Springer DOI
1402
BibRef
Deng, C.[Chao],
Cao, X.C.[Xiao-Chun],
Liu, H.Y.[Han-Yu],
Chen, J.[Jian],
A Global Spatio-Temporal Representation for Action Recognition,
ICPR10(1816-1819).
IEEE DOI
1008
BibRef
Wang, J.[Jiang],
Liu, Z.C.[Zi-Cheng],
Wu, Y.[Ying],
Human Action Recognition with Depth Cameras,
Wang, J.[Jiang],
Liu, Z.C.[Zi-Cheng],
Wu, Y.[Ying],
Yuan, J.S.[Jun-Song],
Learning Actionlet Ensemble for 3D Human Action Recognition,
PAMI(36), No. 5, May 2014, pp. 914-927.
IEEE DOI
1405
BibRef
Earlier:
Mining actionlet ensemble for action recognition with depth cameras,
CVPR12(1290-1297).
IEEE DOI
1208
Feature extraction
See also Abnormal Event Detection in Crowded Scenes Using Sparse Representation.
BibRef
Song, Y.,
Tang, J.H.,
Liu, F.,
Yan, S.,
Body Surface Context: A New Robust Feature for Action Recognition
From Depth Videos,
CirSysVideo(24), No. 6, June 2014, pp. 952-964.
IEEE DOI
1407
Context
BibRef
Song, Y.[Yan],
Liu, S.[Shi],
Tang, J.H.[Jin-Hui],
Describing Trajectory of Surface Patch for Human Action Recognition
on RGB and Depth Videos,
SPLetters(22), No. 4, April 2015, pp. 426-429.
IEEE DOI
1411
feature extraction
BibRef
Liu, X.R.[Xin-Ran],
Song, Y.[Yan],
Tang, J.H.[Jin-Hui],
Effective Action Detection Using Temporal Context and Posterior
Probability of Length,
MMMod18(II:106-117).
Springer DOI
1802
Find action in untrimmed video. Consider length.
BibRef
Luo, J.J.[Jia-Jia],
Wang, W.[Wei],
Qi, H.R.[Hai-Rong],
Spatio-temporal feature extraction and representation for RGB-D human
action recognition,
PRL(50), No. 1, 2014, pp. 139-148.
Elsevier DOI
1410
Human action recognition
BibRef
Chen, L.[Lulu],
Wei, H.[Hong],
Ferryman, J.M.[James M.],
ReadingAct RGB-D action dataset and human action recognition from
local features,
PRL(50), No. 1, 2014, pp. 159-169.
Elsevier DOI
1410
Human action recognition
BibRef
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
Wang, Q.,
Large Margin Dimensionality Reduction for Action Similarity Labeling,
SPLetters(21), No. 8, August 2014, pp. 1022-1025.
IEEE DOI
1406
BibRef
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
Motion boundary based sampling and 3D co-occurrence descriptors for
action recognition,
IVC(32), No. 9, 2014, pp. 616-628.
Elsevier DOI
1408
Dense trajectory
BibRef
Peng, X.J.[Xiao-Jiang],
Zou, C.Q.[Chang-Qing],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
Action Recognition with Stacked Fisher Vectors,
ECCV14(V: 581-595).
Springer DOI
1408
BibRef
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
Qi, X.B.[Xian-Biao],
Exploring Motion Boundary based Sampling and Spatial-Temporal Context
Descriptors for Action Recognition,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Wang, L.M.[Li-Min],
Wang, Z.[Zhe],
Qiao, Y.[Yu],
Van Gool, L.J.[Luc J.],
Transferring Deep Object and Scene Representations for Event
Recognition in Still Images,
IJCV(126), No. 2-4, April 2018, pp. 390-409.
Springer DOI
1804
BibRef
Wang, L.M.[Li-Min],
Wang, Z.,
Guo, S.,
Qiao, Y.[Yu],
Better Exploiting OS-CNNs for Better Event Recognition in Images,
ChaLearnDec15(287-294)
IEEE DOI
1602
Computer vision
BibRef
Wang, L.M.[Li-Min],
Wang, Z.[Zhe],
Du, W.B.[Wen-Bin],
Qiao, Y.[Yu],
Object-Scene Convolutional Neural Networks for event recognition in
images,
ChaLearn15(30-35)
IEEE DOI
1510
Computer architecture
BibRef
Slama, R.[Rim],
Wannous, H.[Hazem],
Daoudi, M.[Mohamed],
Srivastava, A.[Anuj],
Accurate 3D action recognition using learning on the Grassmann
manifold,
PR(48), No. 2, 2015, pp. 556-567.
Elsevier DOI
1411
Human action recognition
See also 3D human motion analysis framework for shape similarity and retrieval.
BibRef
Chen, C.[Chen],
Jafari, R.[Roozbeh],
Kehtarnavaz, N.[Nasser],
Improving Human Action Recognition Using Fusion of Depth Camera and
Inertial Sensors,
HMS(45), No. 1, February 2015, pp. 51-61.
IEEE DOI
1502
BibRef
And:
Action Recognition from Depth Sequences Using Depth Motion Maps-Based
Local Binary Patterns,
WACV15(1092-1099)
IEEE DOI
1503
Feature extraction
BibRef
Chen, C.[Chen],
Liu, K.[Kui],
Kehtarnavaz, N.[Nasser],
Real-time human action recognition based on depth motion maps,
RealTimeIP(12), No. 1, June 2016, pp. 155-163.
WWW Link.
1606
BibRef
Dawar, N.,
Kehtarnavaz, N.[Nasser],
Continuous detection and recognition of actions of interest among
actions of non-interest using a depth camera,
ICIP17(4227-4231)
IEEE DOI
1803
Continuous action detection, continuous action recognition,
continuous detection and recognition of actions of interest
among actions of non-interest
BibRef
Hu, M.,
Chen, C.,
Cheng, W.,
Chang, C.,
Lai, J.,
Wu, J.,
Real-Time Human Movement Retrieval and Assessment With Kinect Sensor,
Cyber(45), No. 4, April 2015, pp. 742-753.
IEEE DOI
1503
Cameras
BibRef
Stückler, J.[Jörg],
Behnke, S.[Sven],
Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D
Video,
IJCV(113), No. 3, July 2015, pp. 233-245.
Springer DOI
1506
BibRef
Earlier:
Efficient Dense 3D Rigid-Body Motion Segmentation in RGB-D Video,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Cosar, S.[Serhan],
Çetin, M.[Müjdat],
Sparsity-Driven Bandwidth-Efficient Decentralized Tracking in Visual
Sensor Networks,
CVIU(139), No. 1, 2015, pp. 40-58.
Elsevier DOI
1509
BibRef
Earlier:
A group sparsity-driven approach to 3-D action recognition,
VS11(1904-1911).
IEEE DOI
1201
Camera networks
See also Sparsity-Driven Approach to Multi-Camera Tracking in Visual Sensor Networks, A.
BibRef
Koppula, H.S.[Hema S.],
Saxena, A.[Ashutosh],
Anticipating Human Activities Using Object Affordances for Reactive
Robotic Response,
PAMI(38), No. 1, January 2016, pp. 14-29.
IEEE DOI
1601
BibRef
Earlier:
Physically Grounded Spatio-temporal Object Affordances,
ECCV14(III: 831-847).
Springer DOI
1408
Context.
The associated objects.
BibRef
Jiang, Y.[Yun],
Koppula, H.S.[Hema S.],
Saxena, A.[Ashutosh],
Modeling 3D Environments through Hidden Human Context,
PAMI(38), No. 10, October 2016, pp. 2040-2053.
IEEE DOI
1609
BibRef
Earlier:
Hallucinated Humans as the Hidden Context for Labeling 3D Scenes,
CVPR13(2993-3000)
IEEE DOI
1309
Computational modeling.
hallucinated humans; scene labeling in context of human use.
(e.g. spatial relation of keyboard and monitor)
BibRef
Zhang, H.[Hao],
Parker, L.E.[Lynne E.],
CoDe4D: Color-Depth Local Spatio-Temporal Features for Human Activity
Recognition From RGB-D Videos,
CirSysVideo(26), No. 3, March 2016, pp. 541-555.
IEEE DOI
1603
Cameras
BibRef
Zhang, H.[Hao],
Zhou, W.J.[Wen-Jun],
Reardon, C.[Christopher],
Parker, L.E.[Lynne E.],
Simplex-Based 3D Spatio-temporal Feature Description for Action
Recognition,
CVPR14(2067-2074)
IEEE DOI
1409
Feature description
BibRef
Rahmani, H.[Hossein],
Huynh, D.Q.[Du Q.],
Mahmood, A.[Arif],
Mian, A.[Ajmal],
Discriminative human action classification using locality-constrained
linear coding,
PRL(72), No. 1, 2016, pp. 62-71.
Elsevier DOI
1604
BibRef
Earlier: A1, A3, A2, A4:
Action Classification with Locality-Constrained Linear Coding,
ICPR14(3511-3516)
IEEE DOI
1412
BibRef
Earlier: A1, A3, A2, A4:
HOPC: Histogram of Oriented Principal Components of 3D Pointclouds for
Action Recognition,
ECCV14(II: 742-757).
Springer DOI
1408
Human action classification
BibRef
Rahmani, H.[Hossein],
Mahmood, A.[Arif],
Huynh, D.Q.[Du Q.],
Mian, A.[Ajmal],
Histogram of Oriented Principal Components for Cross-View Action
Recognition,
PAMI(38), No. 12, December 2016, pp. 2430-2443.
IEEE DOI
1609
Detectors
BibRef
Rahmani, H.[Hossein],
Mian, A.[Ajmal],
3D Action Recognition from Novel Viewpoints,
CVPR16(1506-1515)
IEEE DOI
1612
BibRef
Earlier:
Learning a non-linear knowledge transfer model for cross-view action
recognition,
CVPR15(2458-2466)
IEEE DOI
1510
BibRef
Rahmani, H.[Hossein],
Mahmood, A.[Arif],
Huynh, D.Q.[Du Q.],
Mian, A.[Ajmal],
Real time action recognition using histograms of depth gradients and
random decision forests,
WACV14(626-633)
IEEE DOI
1406
Feature extraction
BibRef
Brun, L.[Luc],
Percannella, G.[Gennaro],
Saggese, A.[Alessia],
Vento, M.[Mario],
Action recognition by using kernels on aclets sequences,
CVIU(144), No. 1, 2016, pp. 3-13.
Elsevier DOI
1604
BibRef
Earlier:
HAck: A system for the recognition of human actions by kernels of
visual strings,
AVSS14(142-147)
IEEE DOI
1411
Human action recognition.
Computer hacking
BibRef
Saggese, A.[Alessia],
Strisciuglio, N.[Nicola],
Vento, M.[Mario],
Petkov, N.[Nicolai],
Learning skeleton representations for human action recognition,
PRL(118), 2019, pp. 23-31.
Elsevier DOI
1902
BibRef
Foggia, P.[Pasquale],
Saggese, A.[Alessia],
Strisciuglio, N.[Nicola],
Vento, M.[Mario],
Exploiting the deep learning paradigm for recognizing human actions,
AVSS14(93-98)
IEEE DOI
1411
Computer architecture
BibRef
Carletti, V.[Vincenzo],
Foggia, P.[Pasquale],
Percannella, G.[Gennaro],
Saggese, A.[Alessia],
Vento, M.[Mario],
Recognition of Human Actions from RGB-D Videos Using a Reject Option,
SBA13(436-445).
Springer DOI
1309
BibRef
Lin, L.[Liang],
Wang, K.Z.[Ke-Ze],
Zuo, W.M.[Wang-Meng],
Wang, M.[Meng],
Luo, J.B.[Jie-Bo],
Zhang, L.[Lei],
A Deep Structured Model with Radius-Margin Bound for 3D Human Activity
Recognition,
IJCV(118), No. 2, June 2016, pp. 256-273.
Springer DOI
1606
BibRef
Le, C.Q.[Chien-Quang],
Phan, S.[Sang],
Ngo, T.D.[Thanh Duc],
Le, D.D.[Duy-Dinh],
Satoh, S.[Shin'ichi],
Duong, D.A.[Duc Anh],
Human Action Recognition from Depth Videos Using Pool of Multiple
Projections with Greedy Selection,
IEICE(E99-D), No. 8, August 2016, pp. 2161-2171.
WWW Link.
1608
BibRef
Liang, C.,
Chen, E.,
Qi, L.,
Guan, L.,
Improving Action Recognition Using Collaborative Representation of
Local Depth Map Feature,
SPLetters(23), No. 9, September 2016, pp. 1241-1245.
IEEE DOI
1609
gesture recognition
BibRef
Liang, C.,
Qi, L.,
He, Y.,
Guan, L.,
3D Human Action Recognition Using a Single Depth Feature and
Locality-Constrained Affine Subspace Coding,
CirSysVideo(28), No. 10, October 2018, pp. 2920-2932.
IEEE DOI
1811
Feature extraction, Videos, Encoding,
Skeleton, Histograms, Action recognition,
LLC
BibRef
Liang, C.,
Qi, L.,
Guan, L.,
Motion energy guided multi-scale heterogeneous features for 3D action
recognition,
VCIP17(1-4)
IEEE DOI
1804
feature extraction, image classification, image motion analysis,
image representation, image sequences,
sub-action segmentation
BibRef
El Din El Madany, N.[Nour],
He, Y.F.[Yi-Feng],
Guan, L.[Ling],
Information Fusion for Human Action Recognition via Biset/Multiset
Globality Locality Preserving Canonical Correlation Analysis,
IP(27), No. 11, November 2018, pp. 5275-5287.
IEEE DOI
1809
BibRef
Earlier:
Human action recognition by fusing deep features with Globality
Locality Preserving Canonical Correlation Analysis,
ICIP17(2871-2875)
IEEE DOI
1803
feature extraction, image fusion, image motion analysis,
image recognition, image sensors, image sequences,
globality locality preserving canonical correlation analysis.
Correlation, Laplace equations,
Matrix decomposition, Optical imaging,
Multimodal Fusion.
Accelerometers
BibRef
Gao, L.[Lei],
Guan, L.[Ling],
Information Fusion via Multimodal Hashing With Discriminant
Correlation Maximization,
ICIP19(2224-2228)
IEEE DOI
1910
BibRef
And:
Information Fusion via Multimodal Hashing with Discriminant Canonical
Correlation Maximization,
ICIAR19(II:81-93).
Springer DOI
1909
Information fusion, multimodal hashing,
discriminant correlation maximization,
non-canonical correlation maximization.
BibRef
El Din El Madany, N.[Nour],
He, Y.F.[Yi-Feng],
Guan, L.[Ling],
Multimodal Learning for Human Action Recognition Via
Bimodal/Multimodal Hybrid Centroid Canonical Correlation Analysis,
MultMed(21), No. 5, May 2019, pp. 1317-1331.
IEEE DOI
1905
BibRef
Earlier:
Human action recognition via multiview discriminative analysis of
canonical correlations,
ICIP16(4170-4174)
IEEE DOI
1610
feature extraction, image motion analysis, image recognition,
image representation, learning (artificial intelligence),
MHCCCA
BibRef
Shahroudy, A.[Amir],
Ng, T.T.[Tian-Tsong],
Yang, Q.X.[Qing-Xiong],
Wang, G.[Gang],
Multimodal Multipart Learning for Action Recognition in Depth Videos,
PAMI(38), No. 10, October 2016, pp. 2123-2129.
IEEE DOI
1609
Feature extraction
BibRef
Shahroudy, A.[Amir],
Ng, T.T.[Tian-Tsong],
Gong, Y.,
Wang, G.[Gang],
Deep Multimodal Feature Analysis for Action Recognition in RGB+D
Videos,
PAMI(40), No. 5, May 2018, pp. 1045-1058.
IEEE DOI
1804
Correlation, Feature extraction, Robustness, Sensors, Skeleton,
Videos, Multimodal analysis, RGB+D,
structured sparsity
BibRef
Liu, J.[Jun],
Shahroudy, A.[Amir],
Perez, M.[Mauricio],
Wang, G.[Gang],
Duan, L.Y.[Ling-Yu],
Kot, A.C.[Alex C.],
NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity
Understanding,
PAMI(42), No. 10, October 2020, pp. 2684-2701.
IEEE DOI
WWW Link. Or:
WWW Link.
2009
Dataset, Human Activity. Benchmark testing, Cameras,
Deep learning, Semantics, Lighting, Skeleton, Activity understanding,
large-scale benchmark
BibRef
Shahroudy, A.[Amir],
Liu, J.,
Ng, T.T.[Tian-Tsong],
Wang, G.,
NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis,
CVPR16(1010-1019)
IEEE DOI
1612
Dataset, Human Activity.
BibRef
Hsu, Y.P.[Yen-Pin],
Liu, C.Y.[Cheng-Yin],
Chen, T.Y.[Tzu-Yang],
Fu, L.C.[Li-Chen],
Online view-invariant human action recognition using RGB-D
spatio-temporal matrix,
PR(60), No. 1, 2016, pp. 215-226.
Elsevier DOI
1609
Action recognition
BibRef
Jia, C.,
Fu, Y.,
Low-Rank Tensor Subspace Learning for RGB-D Action Recognition,
IP(25), No. 10, October 2016, pp. 4641-4652.
IEEE DOI
1610
gesture recognition
BibRef
Jia, C.,
Shao, M.,
Fu, Y.,
Sparse Canonical Temporal Alignment With Deep Tensor Decomposition
for Action Recognition,
IP(26), No. 2, February 2017, pp. 738-750.
IEEE DOI
1702
decomposition
BibRef
Vemulapalli, R.[Raviteja],
Arrate, F.[Felipe],
Chellappa, R.[Rama],
R3DG features: Relative 3D geometry-based skeletal representations
for human action recognition,
CVIU(152), No. 1, 2016, pp. 155-166.
Elsevier DOI
1609
BibRef
Earlier:
Human Action Recognition by Representing 3D Skeletons as Points in a
Lie Group,
CVPR14(588-595)
IEEE DOI
1409
Action Recognition;Lie Groups;Special Euclidean Group
Action recognition
BibRef
Vemulapalli, R.[Raviteja],
Chellappa, R.[Rama],
Rolling Rotations for Recognizing Human Actions from 3D Skeletal Data,
CVPR16(4471-4479)
IEEE DOI
1612
BibRef
Salih, A.A.A.[Al Alwani Adnan],
Youssef, C.[Chahir],
Spatiotemporal representation of 3D skeleton joints-based action
recognition using modified spherical harmonics,
PRL(83, Part 1), No. 1, 2016, pp. 32-41.
Elsevier DOI
1609
Spherical harmonics
BibRef
Wang, W.[Wei],
Yan, Y.[Yan],
Zhang, L.M.[Lu-Ming],
Hong, R.,
Sebe, N.[Nicu],
Collaborative Sparse Coding for Multiview Action Recognition,
MultMedMag(23), No. 4, October 2016, pp. 80-87.
IEEE DOI
1612
Collaboration
BibRef
Wang, W.[Wei],
Yan, Y.[Yan],
Nie, L.Q.[Li-Qiang],
Zhang, L.M.[Lu-Ming],
Winkler, S.[Stefan],
Sebe, N.[Nicu],
Sparse Code Filtering for Action Pattern Mining,
ACCV16(II: 3-18).
Springer DOI
1704
BibRef
Liu, Z.[Zhi],
Zhang, C.Y.[Chen-Yang],
Tian, Y.L.[Ying-Li],
3D-based Deep Convolutional Neural Network for action recognition
with depth sequences,
IVC(55, Part 2), No. 1, 2016, pp. 93-100.
Elsevier DOI
1612
Action recognition
BibRef
Quan, Z.Z.[Zhen-Zhen],
Chen, Q.S.[Qing-Shan],
Zhang, M.[Moyan],
Hu, W.F.[Wei-Feng],
Zhao, Q.[Qiang],
Hou, J.G.[Jian-Gang],
Li, Y.J.[Yu-Jun],
Liu, Z.[Zhi],
MAWKDN: A Multimodal Fusion Wavelet Knowledge Distillation Approach
Based on Cross-View Attention for Action Recognition,
CirSysVideo(33), No. 10, October 2023, pp. 5734-5749.
IEEE DOI
2310
BibRef
Zhang, C.Y.[Chen-Yang],
Tian, Y.L.[Ying-Li],
Guo, X.J.[Xiao-Jie],
Liu, J.G.[Jin-Gen],
DAAL: Deep activation-based attribute learning for action recognition
in depth videos,
CVIU(167), 2018, pp. 37-49.
Elsevier DOI
1804
Attribute learning, Action recognition, Depth camera
BibRef
Perez, A.[Alexandre],
Tabia, H.[Hedi],
Declercq, D.[David],
Zanotti, A.[Alain],
Using the conflict in Dempster-Shafer evidence theory as a rejection
criterion in classifier output combination for 3D human action
recognition,
IVC(55, Part 2), No. 1, 2016, pp. 149-157.
Elsevier DOI
1612
Human action recognition
BibRef
Perez, A.[Alexandre],
Tabia, H.[Hedi],
Declercq, D.[David],
Zanotti, A.[Alain],
Feature covariance for human action recognition,
IPTA16(1-5)
IEEE DOI
1703
covariance matrices
BibRef
Lillo, I.[Ivan],
Niebles, J.C.[Juan Carlos],
Soto, A.[Alvaro],
Sparse composition of body poses and atomic actions for human
activity recognition in RGB-D videos,
IVC(59), No. 1, 2017, pp. 63-75.
Elsevier DOI
1704
BibRef
And:
Corrigendum:
IVC(66), No. 1, 2017, pp. 48-.
Elsevier DOI
1710
BibRef
And:
A Hierarchical Pose-Based Approach to Complex Action Understanding
Using Dictionaries of Actionlets and Motion Poselets,
CVPR16(1981-1990)
IEEE DOI
1612
Activity recognition
BibRef
Guo, Y.[Yanan],
Tao, D.P.[Da-Peng],
Liu, W.,
Cheng, J.[Jun],
Multiview Cauchy Estimator Feature Embedding for Depth and Inertial
Sensor-Based Human Action Recognition,
SMCS(47), No. 4, April 2017, pp. 617-627.
IEEE DOI
1704
Cameras
BibRef
Huang, M.[Min],
Su, S.Z.[Song-Zhi],
Cai, G.R.[Guo-Rong],
Zhang, H.B.[Hong-Bo],
Cao, D.L.[Dong-Lin],
Li, S.Z.[Shao-Zi],
Meta-action descriptor for action recognition in RGBD video,
IET-CV(11), No. 4, June 2017, pp. 301-308.
DOI Link
1705
BibRef
Gao, Z.,
Li, S.H.,
Zhu, Y.J.,
Wang, C.,
Zhang, H.,
Collaborative sparse representation leaning model for RGBD action
recognition,
JVCIR(48), No. 1, 2017, pp. 442-452.
Elsevier DOI
1708
RGBD, action, recognition
BibRef
Hao, T.[Tong],
Wu, D.[Dan],
Wang, Q.[Qian],
Sun, J.S.[Jin-Sheng],
Multi-View Representation Learning for Multi-View Action Recognition,
JVCIR(48), No. 1, 2017, pp. 453-460.
Elsevier DOI
1708
Multi-view, learning
BibRef
Wang, J.[Jun],
Zhang, L.C.[Li-Chi],
Wang, Q.[Qian],
Chen, L.[Lei],
Shi, J.[Jun],
Chen, X.B.[Xiao-Bo],
Li, Z.Y.[Zuo-Yong],
Shen, D.G.[Ding-Gang],
Multi-Class ASD Classification Based on Functional Connectivity and
Functional Correlation Tensor via Multi-Source Domain Adaptation and
Multi-View Sparse Representation,
MedImg(39), No. 10, October 2020, pp. 3137-3147.
IEEE DOI
2010
Feature extraction, Correlation,
Functional magnetic resonance imaging, Autism, Tensile stress,
sparse representation
BibRef
Liang, B.,
Zheng, L.,
Specificity and Latent Correlation Learning for Action Recognition
Using Synthetic Multi-View Data From Depth Maps,
IP(26), No. 12, December 2017, pp. 5560-5574.
IEEE DOI
1710
stereo image processing, action recognition,
dictionary learning framework,
latent correlation learning,
view-specific information, Correlation, Dictionaries,
BibRef
Liang, B.,
Zheng, L.,
A Survey on Human Action Recognition Using Depth Sensors,
DICTA15(1-8)
IEEE DOI
1603
feature extraction
BibRef
Han, Y.M.[Ya-Min],
Zhang, P.[Peng],
Zhuo, T.[Tao],
Huang, W.[Wei],
Zhang, Y.N.[Yan-Ning],
Going deeper with two-stream ConvNets for action recognition in video
surveillance,
PRL(107), 2018, pp. 83-90.
Elsevier DOI
1805
Deeper, Two-stream, ConvNets, Action recognition, Video surveillance
BibRef
Liu, M.Y.[Meng-Yuan],
Liu, H.[Hong],
Chen, C.[Chen],
3D Action Recognition Using Multiscale Energy-Based Global Ternary
Image,
CirSysVideo(28), No. 8, August 2018, pp. 1824-1838.
IEEE DOI
1808
Skeleton, Shape, Robustness, Cameras,
Histograms, Transforms, Action recognition, depth sequence,
human-computer interaction
BibRef
Liu, M.Y.[Meng-Yuan],
Liu, H.[Hong],
Chen, C.[Chen],
Robust 3D Action Recognition Through Sampling Local Appearances and
Global Distributions,
MultMed(20), No. 8, August 2018, pp. 1932-1947.
IEEE DOI
1808
Shape, Cameras, Solid modeling, Clutter,
Detectors, Robustness, Depth data,
3-D action recognition
BibRef
Liu, M.Y.[Meng-Yuan],
Liu, H.[Hong],
Chen, C.[Chen],
Najafian, M.[Maryam],
Energy-Based Global Ternary Image for Action Recognition Using Sole
Depth Sequences,
3DV16(47-55)
IEEE DOI
1701
Encoding. Changes in depth pixels.
BibRef
Keçeli, A.S.[Ali Seydi],
Kaya, A.[Aydin],
Can, A.B.[Ahmet Burak],
Combining 2D and 3D deep models for action recognition with depth
information,
SIViP(12), No. 6, September 2018, pp. 1197-1205.
WWW Link.
1808
BibRef
Khaire, P.[Pushpajit],
Kumar, P.[Praveen],
Imran, J.[Javed],
Combining CNN streams of RGB-D and skeletal data for human activity
recognition,
PRL(115), 2018, pp. 107-116.
Elsevier DOI
1812
Convolutional neural networks, Deep learning, Depth motion map,
RGB-D sensors, Skeleton, UTD-MHAD, Motion history image and fusion
BibRef
Chaudhary, S.[Sachin],
Murala, S.[Subrahmanyam],
Depth-based end-to-end deep network for human action recognition,
IET-CV(13), No. 1, February 2019, pp. 15-22.
DOI Link
1902
BibRef
Kong, J.[Jun],
Liu, T.S.[Tian-Shan],
Jiang, M.[Min],
Collaborative multimodal feature learning for RGB-D action
recognition,
JVCIR(59), 2019, pp. 537-549.
Elsevier DOI
1903
RGB-D action recognition, Multimodal data,
Max-margin learning framework, Supervised matrix factorization
BibRef
Wang, S.Q.[Sheng-Quan],
Kong, J.[Jun],
Jiang, M.[Min],
Liu, T.S.[Tian-Shan],
Multiple depth-levels features fusion enhanced network for action
recognition,
JVCIR(73), 2020, pp. 102929.
Elsevier DOI
2012
Action recognition, Two-stream,
Multiple depth-levels features fusion, Group-wise spatial-channel enhance
BibRef
Deng, H.Y.[Hao-Yang],
Kong, J.[Jun],
Jiang, M.[Min],
Liu, T.S.[Tian-Shan],
Diverse Features Fusion Network for video-based action recognition,
JVCIR(77), 2021, pp. 103121.
Elsevier DOI
2106
Three-stream action recognition, Diverse features fusion,
DIverse Compact Bilinear, Channel-spatial Attention
BibRef
Zhuang, D.F.[Dan-Feng],
Jiang, M.[Min],
Kong, J.[Jun],
Participants-based Synchronous Optimization Network for
skeleton-based action recognition,
PRL(176), 2023, pp. 182-188.
Elsevier DOI
2312
Human-human interactive action, Online mutual response,
Skeleton-based action recognition, Spatial-temporal modeling
BibRef
Kong, J.[Jun],
Deng, H.Y.[Hao-Yang],
Jiang, M.[Min],
Symmetrical Enhanced Fusion Network for Skeleton-Based Action
Recognition,
CirSysVideo(31), No. 11, November 2021, pp. 4394-4408.
IEEE DOI
2112
Skeleton, Feature extraction, Long short term memory, Joints,
Data mining, Task analysis, Data models,
multi-perspective attention
BibRef
Li, X.Y.[Xin-Yu],
He, Y.[Yuan],
Jing, X.J.[Xiao-Jun],
A Survey of Deep Learning-Based Human Activity Recognition in Radar,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
He, Y.[Yuan],
Li, X.Y.[Xin-Yu],
Jing, X.J.[Xiao-Jun],
A Multiscale Residual Attention Network for Multitask Learning of
Human Activity Using Radar Micro-Doppler Signatures,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Sahoo, S.P.[Suraj Prakash],
Srinivasu, U.[Ulli],
Ari, S.[Samit],
3D Features for human action recognition with semi-supervised learning,
IET-IPR(13), No. 6, 10 May 2019, pp. 983-990.
DOI Link
1906
BibRef
Veinidis, C.[Christos],
Danelakis, A.[Antonios],
Pratikakis, I.[Ioannis],
Theoharis, T.[Theoharis],
Effective Descriptors for Human Action Retrieval from 3D Mesh Sequences,
IJIG(19), No. 3 2019, pp. 1950018.
DOI Link
1908
BibRef
Caetano, C.[Carlos],
de Melo, V.H.C.[Victor H.C.],
Brémond, F.[François],
dos Santos, J.A.[Jefersson A.],
Schwartz, W.R.[William Robson],
Magnitude-Orientation Stream network and depth information applied to
activity recognition,
JVCIR(63), 2019, pp. 102596.
Elsevier DOI
1909
Activity recognition, Convolutional neural networks (CNNs),
Two-stream convolutional networks, Depth information
BibRef
Hu, J.F.[Jian-Fang],
Zheng, W.S.[Wei-Shi],
Ma, L.Y.[Lian-Yang],
Wang, G.[Gang],
Lai, J.H.[Jian-Huang],
Zhang, J.G.[Jian-Guo],
Early Action Prediction by Soft Regression,
PAMI(41), No. 11, November 2019, pp. 2568-2583.
IEEE DOI
1910
Assistance of a low-cost depth camera.
Predictive models, Real-time systems, Feature extraction, Cameras,
Skeleton, Recurrent neural networks, Computational modeling,
soft regression
BibRef
Wang, L.,
Huynh, D.Q.,
Koniusz, P.,
A Comparative Review of Recent Kinect-Based Action Recognition
Algorithms,
IP(29), No. 1, 2020, pp. 15-28.
IEEE DOI
1910
cameras, feature extraction,
image motion analysis, image recognition, image representation,
3D action analysis
BibRef
Ghaderi, Z.[Zohreh],
Khotanlou, H.[Hassan],
Weakly supervised pairwise Frank-Wolfe algorithm to recognize a
sequence of human actions in RGB-D videos,
SIViP(13), No. 8, November 2019, pp. 1619-1627.
WWW Link.
1911
BibRef
Arunraj, M.[Muniandi],
Srinivasan, A.[Andy],
Juliet, A.V.[A. Vimala],
Online action recognition from RGB-D cameras based on reduced basis
decomposition,
RealTimeIP(17), No. 2, April 2020, pp. 341-356.
Springer DOI
2004
BibRef
Qi, F.,
Lv, H.,
Wang, J.,
Fathy, A.E.,
Quantitative Evaluation of Channel Micro-Doppler Capacity for MIMO
UWB Radar Human Activity Signals Based on Time-Frequency Signatures,
GeoRS(58), No. 9, September 2020, pp. 6138-6151.
IEEE DOI
2008
MIMO communication, Signal to noise ratio, Ultra wideband radar,
MIMO radar, Radar imaging, Micro-Doppler,
signal to noise ratio (SNR)
BibRef
Xu, L.[Lan],
Su, Z.[Zhuo],
Han, L.[Lei],
Yu, T.[Tao],
Liu, Y.B.[Ye-Bin],
Fang, L.[Lu],
UnstructuredFusion: Realtime 4D Geometry and Texture Reconstruction
Using Commercial RGBD Cameras,
PAMI(42), No. 10, October 2020, pp. 2508-2522.
IEEE DOI
2009
Human activities.
Cameras, Geometry, Skeleton, Dynamics, Surface reconstruction,
Image reconstruction, Videos, 4D reconstruction,
online calibration
BibRef
Ozbulak, U.[Utku],
Vandersmissen, B.[Baptist],
Jalalvand, A.[Azarakhsh],
Couckuyt, I.[Ivo],
van Messem, A.[Arnout],
de Neve, W.[Wesley],
Investigating the significance of adversarial attacks and their
relation to interpretability for radar-based human activity
recognition systems,
CVIU(202), 2021, pp. 103111.
Elsevier DOI
2012
Radar data, Activity recognition, Adversarial examples,
Neural network interpretability, Deep convolutional neural networks
BibRef
Manfredi, G.[Giovanni],
Hinostroza, I.D.S.[Israel D. Sáenz],
Menelle, M.[Michel],
Saillant, S.[Stéphane],
Ovarlez, J.P.[Jean-Philippe],
Thirion-Lefevre, L.[Laetitia],
Measurements and Analysis of the Doppler Signature of a Human Moving
within the Forest in UHF-Band,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Liu, Z.G.[Zhi-Gang],
Yin, Z.Y.[Zi-Yang],
Wu, Y.[Yin],
MLRMV: Multi-layer representation for multi-view action recognition,
IVC(116), 2021, pp. 104333.
Elsevier DOI
2112
Multi-layer representation, Multi-view action recognition,
Motion atom, Motion phrase
BibRef
Barkoky, A.[Alaa],
Charkari, N.M.[Nasrollah Moghaddam],
Complex Network-based features extraction in RGB-D human action
recognition,
JVCIR(82), 2022, pp. 103371.
Elsevier DOI
2201
Human action recognition, Complex network, Meta-path, 3D skeleton joints
BibRef
Han, S.J.[Shi-Jing],
Dong, X.R.[Xiao-Rui],
Hao, X.Y.[Xiang-Yang],
Miao, S.F.[Shu-Feng],
Extracting Objects' Spatial-Temporal Information Based on
Surveillance Videos and the Digital Surface Model,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
Calibrate the camera, get spatial info of objects for srveillance application.
See also Camera calibration: a personal retrospective.
BibRef
Cheng, J.[Jun],
Ren, Z.L.[Zi-Liang],
Zhang, Q.[Qieshi],
Gao, X.Y.[Xiang-Yang],
Hao, F.[Fusheng],
Cross-Modality Compensation Convolutional Neural Networks for RGB-D
Action Recognition,
CirSysVideo(32), No. 3, March 2022, pp. 1498-1509.
IEEE DOI
2203
Feature extraction, Image recognition, Optical imaging,
Task analysis, Dynamics, Data mining, Action recognition, dynamic image
BibRef
Wang, Q.[Qiang],
Sun, G.[Gan],
Dong, J.H.[Jia-Hua],
Wang, Q.Q.[Qian-Qian],
Ding, Z.M.[Zheng-Ming],
Continuous Multi-View Human Action Recognition,
CirSysVideo(32), No. 6, June 2022, pp. 3603-3614.
IEEE DOI
2206
Task analysis, Libraries, Kernel, Correlation, Sun, Feature extraction,
Lifelong machine learning, human action recognition,
subspace learning
BibRef
Liu, J.H.[Jia-Heng],
Guo, J.Y.[Jin-Yang],
Xu, D.[Dong],
APSNet: Toward Adaptive Point Sampling for Efficient 3D Action
Recognition,
IP(31), 2022, pp. 5287-5302.
IEEE DOI
2208
Point cloud compression, Feature extraction, Videos, Geometry,
Data mining, Task analysis, 3D action recognition, point cloud,
accuracy-efficiency trade-off
BibRef
Yang, Y.[Yang],
Zhang, Y.T.[Yu-Tong],
Ji, H.R.[Hao-Ran],
Li, B.C.[Bei-Chen],
Song, C.Y.[Chun-Ying],
Radar-Based Human Activity Recognition Under the Limited Measurement
Data Support Using Domain Translation,
SPLetters(29), 2022, pp. 1993-1997.
IEEE DOI
2210
Spectrogram, Radar, Radar measurements, Training, Radar antennas,
Generators, Data models, Generative adversarial networks,
micro-doppler spectrograms
BibRef
Li, X.[Xing],
Huang, Q.[Qian],
Wang, Z.J.[Zhi-Jian],
Yang, T.J.[Tian-Jin],
VirtualActionNet: A strong two-stream point cloud sequence network
for human action recognition,
JVCIR(89), 2022, pp. 103641.
Elsevier DOI
2212
Two-stream network, 3D action recognition, Point cloud sequence
BibRef
Guo, J.Y.[Jin-Yang],
Liu, J.H.[Jia-Heng],
Xu, D.[Dong],
3D-Pruning: A Model Compression Framework for Efficient 3D Action
Recognition,
CirSysVideo(32), No. 12, December 2022, pp. 8717-8729.
IEEE DOI
2212
Point cloud compression, Computational complexity,
Computational modeling, Solid modeling, Task analysis, model compression
BibRef
Liu, J.H.[Jia-Heng],
Guo, J.Y.[Jin-Yang],
Xu, D.[Dong],
GeometryMotion-Transformer:
An End-to-End Framework for 3D Action Recognition,
MultMed(25), 2023, pp. 5649-5661.
IEEE DOI
2311
BibRef
Fawad-Rahim, M.[Muhammad],
Hayama, T.[Tessai],
Mining User Activity Patterns from Time-Series Data Obtained from UWB
Sensors in Indoor Environments,
IEICE(E108-D), No. 4, April 2024, pp. 459-467.
WWW Link.
2404
BibRef
Wu, Z.X.[Zhi-Xuan],
Ma, N.[Nan],
Wang, C.[Cheng],
Xu, C.[Cheng],
Xu, G.[Genbao],
Li, M.X.[Ming-Xing],
Spatial-temporal hypergraph based on dual-stage attention network
for multi-view data lightweight action recognition,
PR(151), 2024, pp. 110427.
Elsevier DOI
2404
Dual-stage attention network, Salient region,
Spatial-temporal hypergraph neural network, Multi-view, Action recognition
BibRef
Yan, W.Q.[Wei-Qing],
Liu, S.[Shile],
Tang, C.[Chang],
Zhou, W.[Wujie],
PiSFANet: Pillar Scale-Aware Feature Aggregation Network for
Real-Time 3D Pedestrian Detection,
SPLetters(31), 2024, pp. 2000-2004.
IEEE DOI
2408
Feature extraction, Pedestrians, Point cloud compression, Encoding,
Real-time systems, Object detection, 3D object detection,
pillar-based
BibRef
Zhou, B.[Benjia],
Wang, P.[Pichao],
Wan, J.[Jun],
Liang, Y.Y.[Yan-Yan],
Wang, F.[Fan],
Zhang, D.[Du],
Lei, Z.[Zhen],
Li, H.[Hao],
Jin, R.[Rong],
Decoupling and Recoupling Spatiotemporal Representation for
RGB-D-based Motion Recognition,
CVPR22(20122-20131)
IEEE DOI
2210
Codes, Fuses, Redundancy, Feature extraction, Data models,
Spatiotemporal phenomena, Action and event recognition,
Face and gestures
BibRef
Li, L.[Linguo],
Wang, M.[Minsi],
Ni, B.B.[Bing-Bing],
Wang, H.[Hang],
Yang, J.C.[Jian-Cheng],
Zhang, W.J.[Wen-Jun],
3D Human Action Representation Learning via Cross-View Consistency
Pursuit,
CVPR21(4739-4748)
IEEE DOI
2111
Codes, Collaborative work, Pattern recognition
BibRef
Wang, H.Y.[Hai-Yan],
Yang, L.[Liang],
Rong, X.J.[Xue-Jian],
Feng, J.L.[Jing-Lun],
Tian, Y.L.[Ying-Li],
Self-supervised 4D Spatio-temporal Feature Learning via Order
Prediction of Sequential Point Cloud Clips,
WACV21(3761-3770)
IEEE DOI
2106
See also NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding. So that you don't need to annotate training data.
Training, Measurement, Learning systems,
Image motion analysis, Neural networks
BibRef
Murphy, H.J.,
Ren, C.X.,
Calef, M.T.,
Feature Augmentation Improves Anomalous Change Detection for Human
Activity Identification in Synthetic Aperture Radar Imagery,
SSIAI20(46-49)
IEEE DOI
2009
image registration, object detection, radar detection,
radar imaging, synthetic aperture radar, image differencing,
Human Activity
BibRef
Wang, L.,
Ding, Z.,
Tao, Z.,
Liu, Y.,
Fu, Y.,
Generative Multi-View Human Action Recognition,
ICCV19(6211-6220)
IEEE DOI
2004
feature extraction, image motion analysis, image recognition,
image representation, learning (artificial intelligence),
Generators
BibRef
Shekar, B.H.,
Rathnakara Shetty, P.,
Sharmila Kumari, M.,
Mestetsky, L.,
Action Recognition Using Undecimated Dual Tree Complex Wavelet
Transform From Depth Motion Maps / Depth Sequences,
PTVSBB19(203-209).
DOI Link
1912
BibRef
Das, S.[Srijan],
Thonnat, M.[Monique],
Sakhalkar, K.[Kaustubh],
Koperski, M.[Michal],
Bremond, F.[Francois],
Francesca, G.[Gianpiero],
A New Hybrid Architecture for Human Activity Recognition from RGB-D
Videos,
MMMod19(II:493-505).
Springer DOI
1901
BibRef
Li, C.[Chao],
Zhao, Z.H.[Zhe-Heng],
Guo, X.H.[Xiao-Hu],
ArticulatedFusion: Real-Time Reconstruction of Motion, Geometry and
Segmentation Using a Single Depth Camera,
ECCV18(VIII: 324-340).
Springer DOI
1810
BibRef
Bui, M.,
Duong, V.,
Tai, T.,
Wang, J.,
Depth Human Action Recognition Based on Convolution Neural Networks
and Principal Component Analysis,
ICIP18(1543-1547)
IEEE DOI
1809
Videos, Feature extraction, Principal component analysis,
Heuristic algorithms, Convolution, Image recognition,
feature representation
BibRef
Heidarivincheh, F.[Farnoosh],
Mirmehdi, M.[Majid],
Damen, D.[Dima],
Beyond Action Recognition: Action Completion in RGB-D Data,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Liu, J.,
Akhtar, N.,
Mian, A.,
Viewpoint Invariant RGB-D Human Action Recognition,
DICTA17(1-8)
IEEE DOI
1804
Fourier analysis, convolution, feature extraction,
gesture recognition, image colour analysis,
Videos
BibRef
Rong, T.[Tao],
Yang, R.[Rui],
Yang, R.[Ruoyu],
Continuous Motion Recognition in Depth Camera Based on Recurrent Neural
Networks and Grid-based Average Depth,
PSIVT17(212-221).
Springer DOI
1802
BibRef
Wei, L.L.[Liang-Lei],
Wu, Y.R.[Yi-Rui],
Wang, W.H.[Wen-Hai],
Lu, T.[Tong],
A Novel 3D Human Action Recognition Framework for Video Content
Analysis,
MMMod18(I:42-53).
Springer DOI
1802
BibRef
Wang, P.,
Wang, S.,
Gao, Z.,
Hou, Y.,
Li, W.,
Structured Images for RGB-D Action Recognition,
CEFR-LCV17(1005-1014)
IEEE DOI
1802
Aggregates, Benchmark testing, Dynamics, Image recognition,
Periodic structures, Skeleton,
BibRef
Asadi-Aghbolaghi, M.,
Bertiche, H.,
Roig, V.,
Kasaei, S.,
Escalera, S.,
Action Recognition from RGB-D Data: Comparison and Fusion of
Spatio-Temporal Handcrafted Features and Deep Strategies,
EmotionComp17(3179-3188)
IEEE DOI
1802
Cameras, Computational modeling, Machine learning, Optical imaging,
Trajectory, Videos
BibRef
Roegiers, S.[Sanne],
Allebosch, G.[Gianni],
Veelaert, P.[Peter],
Philips, W.[Wilfried],
Body Related Occupancy Maps for Human Action Recognition,
ACIVS17(15-27).
Springer DOI
1712
BibRef
Cipolla, E.[Emanuele],
Infantino, I.[Ignazio],
Maniscalco, U.[Umberto],
Pilato, G.[Giovanni],
Vella, F.[Filippo],
Indoor Actions Classification Through Long Short Term Memory Neural
Networks,
CIAP17(I:435-444).
Springer DOI
1711
RGB-D and IR.
BibRef
Luo, Z.L.[Ze-Lun],
Peng, B.Y.[Bo-Ya],
Huang, D.A.[De-An],
Alahi, A.[Alexandre],
Fei-Fei, L.[Li],
Unsupervised Learning of Long-Term Motion Dynamics for Videos,
CVPR17(7101-7110)
IEEE DOI
1711
Activity recognition, Hidden Markov models, Image reconstruction,
Semantics, Videos
BibRef
Awwad, S.,
Piccardi, M.[Massimo],
Local depth patterns for fine-grained activity recognition in depth
videos,
ICVNZ16(1-6)
IEEE DOI
1701
Activity recognition
BibRef
Li, J.,
Chen, J.,
Sun, L.,
Joint Motion Similarity (JMS)-Based Human Action Recognition Using
Kinect,
DICTA16(1-8)
IEEE DOI
1701
Feature extraction
BibRef
Wang, Q.[Qian],
Jin, W.[Wei],
Wang, G.[Gang],
Gathering Event Detection by Stereo Vision,
ISVC16(II: 431-442).
Springer DOI
1701
BibRef
Ling, J.X.[Jia-Xu],
Tian, L.H.[Li-Hua],
Li, C.[Chen],
3D Human Activity Recognition Using Skeletal Data from RGBD Sensors,
ISVC16(II: 133-142).
Springer DOI
1701
BibRef
Gupta, K.,
Bhavsar, A.,
Scale Invariant Human Action Detection from Depth Cameras Using Class
Templates,
PBVS16(304-311)
IEEE DOI
1612
BibRef
Zhu, Y.[Yi],
Lan, Z.Z.[Zhen-Zhong],
Newsam, S.[Shawn],
Hauptmann, A.G.[Alexander G.],
Hidden Two-Stream Convolutional Networks for Action Recognition,
ACCV18(III:363-378).
Springer DOI
1906
BibRef
Earlier: A2, A1, A4, A3:
Deep Local Video Feature for Action Recognition,
ActionCh17(1219-1225)
IEEE DOI
1709
Feature extraction, Neural networks,
Noise measurement, Pattern recognition, Streaming media, Training
BibRef
Zhu, Y.[Yi],
Newsam, S.[Shawn],
Random Temporal Skipping for Multirate Video Analysis,
ACCV18(III:542-557).
Springer DOI
1906
BibRef
Zhu, Y.[Yi],
Newsam, S.[Shawn],
Efficient Action Detection in Untrimmed Videos via Multi-task
Learning,
WACV17(197-206)
IEEE DOI
1609
BibRef
Earlier:
Depth2Action:
Exploring Embedded Depth for Large-Scale Action Recognition,
WebScale16(I: 668-684).
Springer DOI
1611
Computational modeling, Proposals,
Training, Training data, Videos
BibRef
Hu, J.F.[Jian-Fang],
Zheng, W.S.[Wei-Shi],
Ma, L.Y.[Lian-Yang],
Wang, G.[Gang],
Lai, J.H.[Jian-Huang],
Real-Time RGB-D Activity Prediction by Soft Regression,
ECCV16(I: 280-296).
Springer DOI
1611
BibRef
Cippitelli, E.[Enea],
Gambi, E.[Ennio],
Spinsante, S.[Susanna],
Florez-Revuelta, F.[Francisco],
Human Action Recognition Based on Temporal Pyramid of Key Poses Using
RGB-D Sensors,
ACIVS16(510-521).
Springer DOI
1611
BibRef
Nguyen, X.S.[Xuan Son],
Nguyen, T.P.[Thanh Phuong],
Charpillet, F.,
Effective surface normals based action recognition in depth images,
ICPR16(817-822)
IEEE DOI
1705
BibRef
And:
Improving surface normals based action recognition in depth images,
AVSS16(109-114)
IEEE DOI
1611
Computational modeling, Encoding, Feature extraction, Histograms,
Image recognition, Shape,
BibRef
Miao, J.,
Jia, X.,
Mathew, R.K.,
Xu, X.,
Taubman, D.S.,
Qing, C.,
Efficient action recognition from compressed depth maps,
ICIP16(16-20)
IEEE DOI
1610
Decision support systems
BibRef
Khan, M.H.,
Helsper, J.,
Boukhers, Z.,
Grzegorzek, M.,
Automatic recognition of movement patterns in the vojta-therapy using
RGB-D data,
ICIP16(1235-1239)
IEEE DOI
1610
Cameras
BibRef
Antunes, M.,
Aouada, D.,
Ottersten, B.,
A revisit to human action recognition from depth sequences:
Guided SVM-sampling for joint selection,
WACV16(1-8)
IEEE DOI
1606
Cameras
BibRef
Liu, Z.[Zhi],
Feng, X.[Xin],
Tian, Y.L.[Ying-Li],
An effective view and time-invariant action recognition method based
on depth videos,
VCIP15(1-4)
IEEE DOI
1605
Cameras
BibRef
Li, W.B.[Wen-Bo],
Wen, L.Y.[Long-Yin],
Chang, M.C.[Ming-Ching],
Lim, S.N.,
Lyu, S.W.[Si-Wei],
Adaptive RNN Tree for Large-Scale Human Action Recognition,
ICCV17(1453-1461)
IEEE DOI
1802
image motion analysis, image recognition, image representation,
learning (artificial intelligence), recurrent neural nets,
BibRef
Li, X.,
Chuah, M.C.,
ReHAR: Robust and Efficient Human Activity Recognition,
WACV18(362-371)
IEEE DOI
1806
feature extraction, image motion analysis, image representation,
image sequences, object tracking, NCAA Basketball Dataset, ReHAR,
Task analysis
BibRef
Li, W.B.[Wen-Bo],
Wen, L.Y.[Long-Yin],
Chuah, M.C.[Mooi Choo],
Lyu, S.W.[Si-Wei],
Category-Blind Human Action Recognition:
A Practical Recognition System,
ICCV15(4444-4452)
IEEE DOI
1602
Feature extraction
BibRef
Tachos, S.[Stavros],
Avgerinakis, K.[Konstantinos],
Briasouli, A.[Alexia],
Kompatsiaris, I.[Ioannis],
Appearance and Depth for Rapid Human Activity Recognition in Real
Applications,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Chen, C.[Chen],
Hou, Z.J.[Zhen-Jie],
Zhang, B.C.[Bao-Chang],
Jiang, J.J.[Jun-Jun],
Yang, Y.[Yun],
Gradient Local Auto-Correlations and Extreme Learning Machine for
Depth-Based Activity Recognition,
ISVC15(I: 613-623).
Springer DOI
1601
BibRef
Liu, H.[Hong],
Tian, L.[Lu],
Liu, M.Y.[Meng-Yuan],
Tang, H.[Hao],
SDM-BSM: A fusing depth scheme for human action recognition,
ICIP15(4674-4678)
IEEE DOI
1512
Bag of Words
BibRef
Chen, C.[Chen],
Jafari, R.[Roozbeh],
Kehtarnavaz, N.[Nasser],
UTD-MHAD: A multimodal dataset for human action recognition utilizing
a depth camera and a wearable inertial sensor,
ICIP15(168-172)
IEEE DOI
1512
Multimodal human action dataset
BibRef
Yang, R.[Rui],
Yang, R.[Ruoyu],
DMM-Pyramid Based Deep Architectures for Action Recognition with Depth
Cameras,
ACCV14(V: 37-49).
Springer DOI
1504
BibRef
Lee, A.R.[A-Reum],
Suk, H.I.[Heung-Il],
Lee, S.W.[Seong-Whan],
View-Invariant 3D Action Recognition Using Spatiotemporal
Self-Similarities from Depth Camera,
ICPR14(501-505)
IEEE DOI
1412
Computer vision
BibRef
Keceli, A.S.[Ali Seydi],
Can, A.B.[Ahmet Burak],
A Multimodal Approach for Recognizing Human Actions Using Depth
Information,
ICPR14(421-426)
IEEE DOI
1412
Accuracy
BibRef
Lin, Y.Y.[Yen-Yu],
Hua, J.H.[Ju-Hsuan],
Tang, N.C.[Nick C.],
Chen, M.H.[Min-Hung],
Liao, H.Y.M.[Hong-Yuan Mark],
Depth and Skeleton Associated Action Recognition without Online
Accessible RGB-D Cameras,
CVPR14(2617-2624)
IEEE DOI
1409
BibRef
Peng, G.[Gao],
Li, Y.L.[Yong-Lu],
Zhu, H.[Hao],
Tang, J.J.[Jia-Jun],
Xia, J.[Jin],
Lu, C.W.[Ce-Wu],
VVS: Action Recognition With Virtual View Synthesis,
ICIP21(384-388)
IEEE DOI
2201
Training, Image processing, Benchmark testing
BibRef
Lu, C.W.[Ce-Wu],
Jia, J.Y.[Jia-Ya],
Tang, C.K.[Chi-Keung],
Range-Sample Depth Feature for Action Recognition,
CVPR14(772-779)
IEEE DOI
1409
Action Recognition;Binary Feature;Depth;Sampling
BibRef
Hadfield, S.[Simon],
Lebeda, K.[Karel],
Bowden, R.[Richard],
Natural Action Recognition Using Invariant 3D Motion Encoding,
ECCV14(II: 758-771).
Springer DOI
1408
BibRef
Zanfir, M.[Mihai],
Leordeanu, M.[Marius],
Sminchisescu, C.[Cristian],
The Moving Pose: An Efficient 3D Kinematics Descriptor for
Low-Latency Action Recognition and Detection,
ICCV13(2752-2759)
IEEE DOI
1403
RGB-D cameras
BibRef
Luo, J.J.[Jia-Jia],
Wang, W.[Wei],
Qi, H.R.[Hai-Rong],
Group Sparsity and Geometry Constrained Dictionary Learning for
Action Recognition from Depth Maps,
ICCV13(1809-1816)
IEEE DOI
1403
BibRef
Körner, M.[Marco],
Denzler, J.[Joachim],
JAR-Aibo: A Multi-view Dataset for Evaluation of Model-Free Action
Recognition Systems,
SBA13(527-535).
Springer DOI
1309
BibRef
And:
Temporal Self-Similarity for Appearance-Based Action Recognition in
Multi-View Setups,
CAIP13(163-171).
Springer DOI
1308
BibRef
Earlier:
Analyzing the Subspaces Obtained by Dimensionality Reduction for Human
Action Recognition from 3d Data,
AVSS12(130-135).
IEEE DOI
1211
BibRef
Wang, H.J.[Hao-Jen],
Lin, Y.L.[Yen-Liang],
Huang, C.Y.[Cheng-Yu],
Hou, Y.L.[Yu-Lin],
Hsu, W.[Winston],
Full body human attribute detection in indoor surveillance
environment using color-depth information,
AVSS13(383-388)
IEEE DOI
1311
Color
BibRef
Negin, F.[Farhood],
Özdemir, F.[Flrat],
Akgül, C.B.[Ceyhun Burak],
Yüksel, K.A.[Kamer Ali],
Erçil, A.[Aytül],
A Decision Forest Based Feature Selection Framework for Action
Recognition from RGB-Depth Cameras,
ICIAR13(648-657).
Springer DOI
1307
BibRef
Oreifej, O.[Omar],
Liu, Z.C.[Zi-Cheng],
HON4D: Histogram of Oriented 4D Normals for Activity Recognition from
Depth Sequences,
CVPR13(716-723)
IEEE DOI
1309
3D
BibRef
Seidenari, L.[Lorenzo],
Varano, V.[Vincenzo],
Berretti, S.[Stefano],
del Bimbo, A.[Alberto],
Pala, P.[Pietro],
Weakly Aligned Multi-part Bag-of-Poses for Action Recognition from
Depth Cameras,
SBA13(446-455).
Springer DOI
1309
BibRef
And:
Recognizing Actions from Depth Cameras as Weakly Aligned Multi-part
Bag-of-Poses,
HAU3D13(479-485)
IEEE DOI
1309
RGB-D;action recognition;depth cameras
BibRef
Azary, S.[Sherif],
Savakis, A.E.[Andreas E.],
Grassmannian Spectral Regression for Action Recognition,
ISVC13(II:189-198).
Springer DOI
1311
BibRef
And:
Grassmannian Sparse Representations and Motion Depth Surfaces for 3D
Action Recognition,
HAU3D13(492-499)
IEEE DOI
1309
BibRef
Yumiba, R.[Ryo],
Agata, Y.[Yoshiki],
Fujiyoshi, H.[Hironobu],
A Compensation Method of Motion Features with Regression for
Deficient Depth Image,
HAU3D13(558-565)
IEEE DOI
1309
Action Recognition; Depth Image
BibRef
Avola, D.[Danilo],
Cinque, L.[Luigi],
Levialdi, S.[Stefano],
Placidi, G.[Giuseppe],
Human Body Language Analysis:
A Preliminary Study Based on Kinect Skeleton Tracking,
SBA13(465-473).
Springer DOI
1309
BibRef
Wang, J.[Jiang],
Liu, Z.C.[Zi-Cheng],
Chorowski, J.[Jan],
Chen, Z.Y.[Zhuo-Yuan],
Wu, Y.[Ying],
Robust 3D Action Recognition with Random Occupancy Patterns,
ECCV12(II: 872-885).
Springer DOI
1210
BibRef
Chen, L.J.[Lu-Jun],
Yao, H.X.[Hong-Xun],
Sun, X.S.[Xiao-Shuai],
Action retrieval based on generalized dynamic depth data matching,
VCIP12(1-4).
IEEE DOI
1302
BibRef
Li, W.Q.[Wan-Qing],
Zhang, Z.Y.[Zheng-You],
Liu, Z.C.[Zi-Cheng],
Action recognition based on a bag of 3D points,
CVPR4HB10(9-14).
IEEE DOI
1006
BibRef
Minhas, R.[Rashid],
Baradarani, A.[Aryaz],
Seifzadeh, S.[Sepideh],
Wu, Q.M.J.[Q. M. Jonathan],
Human Action Recognition Using Non-separable Oriented 3D Dual-Tree
Complex Wavelets,
ACCV09(III: 226-235).
Springer DOI
0909
BibRef
Hahn, M.[Markus],
Krüger, L.[Lars],
Wöhler, C.[Christian],
3D Action Recognition and Long-Term Prediction of Human Motion,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Grundmann, M.[Matthias],
Meier, F.[Franziska],
Essa, I.A.[Irfan A.],
3D Shape Context and Distance Transform for action recognition,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Klaeser, A.,
Marszalek, M.,
Schmid, C.,
A Spatio-Temporal Descriptor Based on 3D-Gradients,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Marszalek, M.[Marcin],
Laptev, I.[Ivan],
Schmid, C.[Cordelia],
Actions in context,
CVPR09(2929-2936).
IEEE DOI
0906
See:
See also Hollywood2 Human Actions and Scenes Dataset.
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Viewpoint invariant, View Invariant, Human Action Detection, Human Action Recognition .