14.2.20.1 Training Support Vector Machines, SVM Training, Learning

Chapter Contents (Back)
Support Vector Machines. SVM. Recognition.

Foody, G.M., Mathur, A.,
A Relative Evaluation of Multiclass Image Classification by Support Vector Machines,
GeoRS(42), No. 6, June 2004, pp. 1335-1343.
IEEE Abstract. 0407
BibRef

Foody, G.M., Mathur, A.,
Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification,
RSE(93), No. 1-2, 2004, pp. 107-117.
Elsevier DOI 1102
BibRef

Zhan, Y.Q.[Yi-Qiang], Shen, D.G.[Ding-Gang],
Design efficient support vector machine for fast classification,
PR(38), No. 1, January 2005, pp. 157-161.
Elsevier DOI 0410
BibRef

Zhan, Y.Q.[Yi-Qiang], Shen, D.G.[Ding-Gang],
An adaptive error penalization method for training an efficient and generalized SVM,
PR(39), No. 3, March 2006, pp. 342-350.
Elsevier DOI 0601
BibRef

Lin, C.F.[Chun-Fu], Wang, S.D.[Sheng-De],
Training algorithms for fuzzy support vector machines with noisy data,
PRL(25), No. 14, 15 October 2004, pp. 1647-1656.
Elsevier DOI 0410
BibRef

Shin, H.J.[Hyun-Jung], Cho, S.Z.[Sung-Zoon],
Invariance of neighborhood relation under input space to feature space mapping,
PRL(26), No. 6, 1 May 2005, pp. 707-718.
Elsevier DOI 0501
SVM training by determining which will be useful. BibRef

Bazi, Y., Melgani, F.,
Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images,
GeoRS(44), No. 11, November 2006, pp. 3374-3385.
IEEE DOI 0611
BibRef

Bazi, Y., Melgani, F.,
Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation,
GeoRS(45), No. 6, June 2007, pp. 1887-1895.
IEEE DOI 0706

See also Gaussian Process Approach to Remote Sensing Image Classification. BibRef

Ghoggali, N., Melgani, F., Bazi, Y.,
A Multiobjective Genetic SVM Approach for Classification Problems With Limited Training Samples,
GeoRS(47), No. 6, June 2009, pp. 1707-1718.
IEEE DOI 0905
BibRef

Ghoggali, N., Melgani, F.,
Automatic Ground-Truth Validation With Genetic Algorithms for Multispectral Image Classification,
GeoRS(47), No. 7, July 2009, pp. 2172-2181.
IEEE DOI 0906
BibRef

Paoli, A., Melgani, F., Pasolli, E.,
Clustering of Hyperspectral Images Based on Multiobjective Particle Swarm Optimization,
GeoRS(47), No. 12, December 2009, pp. 4175-4188.
IEEE DOI 0912
BibRef

Orabona, F.[Francesco], Castellini, C.[Claudio], Caputo, B.[Barbara], Jie, L.[Luo], Sandini, G.[Giulio],
On-line independent support vector machines,
PR(43), No. 4, April 2010, pp. 1402-1412.
Elsevier DOI 1002
BibRef
Earlier:
Indoor Place Recognition using Online Independent Support Vector Machines,
BMVC07(xx-yy).
PDF File. 0709
Support vector machines; On-line learning; Bounded testing complexity; Linear independence BibRef

Jie, L.[Luo], Orabona, F.[Francesco], Fornoni, M.[Marco], Caputo, B.[Barbara], Cesa-Bianchi, N.[Nicolo],
OM-2: An online multi-class Multi-Kernel Learning algorithm,
OLCV10(43-50).
IEEE DOI 1006
BibRef

Orabona, F.[Francesco], Jie, L.[Luo], Caputo, B.[Barbara],
Online-batch strongly convex Multi Kernel Learning,
CVPR10(787-794).
IEEE DOI Video of talk:
WWW Link. 1006
BibRef
Earlier: A2, A1, A3:
An Online Framework for Learning Novel Concepts over Multiple Cues,
ACCV09(I: 269-280).
Springer DOI 0909
BibRef

Tommasi, T.[Tatiana], Orabona, F.[Francesco], Caputo, B.[Barbara],
Learning Categories From Few Examples With Multi Model Knowledge Transfer,
PAMI(36), No. 5, May 2014, pp. 928-941.
IEEE DOI 1405
BibRef
Earlier:
Safety in numbers: Learning categories from few examples with multi model knowledge transfer,
CVPR10(3081-3088).
IEEE DOI 1006
Adaptation models BibRef

Cuttano, C.[Claudia], Tavera, A.[Antonio], Cermelli, F.[Fabio], Averta, G.[Giuseppe], Caputo, B.[Barbara],
Cross-Domain Transfer Learning with CoRTe: Consistent and Reliable Transfer from Black-Box to Lightweight Segmentation Model,
REDLCV23(1404-1414)
IEEE DOI 2401
BibRef

Tommasi, T.[Tatiana], Caputo, B.[Barbara],
The more you know, the less you learn: from knowledge transfer to one-shot learning of object categories,
BMVC09(xx-yy).
PDF File. 0909
Learning from only a few examples. BibRef

Kuzborskij, I.[Ilja], Orabona, F.[Francesco], Caputo, B.[Barbara],
Scalable greedy algorithms for transfer learning,
CVIU(156), No. 1, 2017, pp. 174-185.
Elsevier DOI 1702
Transfer learning BibRef

Tommasi, T.[Tatiana], Orabona, F.[Francesco], Kaboli, M.[Mohsen], Caputo, B.[Barbara],
Leveraging over prior knowledge for online learning of visual categories,
BMVC12(87).
DOI Link 1301
BibRef

Jie, L.[Luo], Tommasi, T.[Tatiana], Caputo, B.[Barbara],
Multiclass transfer learning from unconstrained priors,
ICCV11(1863-1870).
IEEE DOI 1201
BibRef

Davenport, M.A.[Mark A.], Baraniuk, R.G.[Richard G.], Scott, C.D.[Clayton D.],
Tuning Support Vector Machines for Minimax and Neyman-Pearson Classification,
PAMI(32), No. 10, October 2010, pp. 1888-1898.
IEEE DOI 1008
SVM training. Neyman-Pearson usually is sensitive to errors. BibRef

Bellala, G.[Gowtham], Stanley, J.[Jason], Bhavnani, S.K.[Suresh K.], Scott, C.D.[Clayton D.],
A Rank-Based Approach to Active Diagnosis,
PAMI(35), No. 9, 2013, pp. 2078-2090.
IEEE DOI 1307
Approximation methods. Disease diagnosis or network fault analysis. BibRef

Kim, J.S.[Joo-Seuk], Scott, C.D.[Clayton D.],
L(2) Kernel Classification,
PAMI(32), No. 10, October 2010, pp. 1822-1831.
IEEE DOI 1008
Vs. KDE and SVM approaches. Optimizes the integrated squared error (ISE) of a difference of densities. L_2 usually poor for higher dimensions (vs. SVM), regularization to improve this. BibRef

Maulik, U.[Ujjwal], Chakraborty, D.[Debasis],
A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery,
PR(44), No. 3, March 2011, pp. 615-623.
Elsevier DOI 1011
Semisupervised learning; Support vector machines; Remote sensing satellite images; Quadratic programming; Self-training; Classifier ensemble BibRef

Maulik, U.[Ujjwal], Chakraborty, D.[Debasis],
Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery,
PandRS(77), No. 1, March 2013, pp. 66-78.
Elsevier DOI 1303
Pixel classification; Support vector machines; Remote sensing satellite images; Quadratic programming; Semisupervised classification; Transductive learning BibRef

Airola, A.[Antti], Pahikkala, T.[Tapio], Salakoski, T.[Tapio],
Training linear ranking SVMs in linearithmic time using red-black trees,
PRL(32), No. 9, 1 July 2011, pp. 1328-1336.
Elsevier DOI 1101
Bundle methods; Cutting plane method; Learning to rank; Ranking support vector machine; Red-black tree BibRef

Heimonen, J.H.[Ju-Ho], Salakoski, T.[Tapio], Pahikkala, T.[Tapio],
Properties of Object-Level Cross-Validation Schemes for Symmetric Pair-Input Data,
SSSPR14(384-393).
Springer DOI 1408
BibRef

Rivas-Perea, P.[Pablo], Cota-Ruiz, J.[Juan],
An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods,
PRL(34), No. 4, 1 March 2013, pp. 439-451.
Elsevier DOI 1302
BibRef
And: Corrigendum:
See also Corrigendum to An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods. Support vector machines; Support Vector Regression; Linear programming; Interior point methods BibRef

Rivas-Perea, P.[Pablo], Cota-Ruiz, J.[Juan], Rosiles, J.G.[Jose-Gerardo],
Corrigendum to 'An algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods',
PRL(34), No. 6, 15 April 2013, pp. 678.
Elsevier DOI 1303

See also algorithm for training a large scale support vector machine for regression based on linear programming and decomposition methods, An. BibRef

Prato, M., Zanni, L.,
A practical use of regularization for supervised learning with kernel methods,
PRL(34), No. 6, 15 April 2013, pp. 610-618.
Elsevier DOI 1303
Regularization algorithms; Kernel methods; Support vector machines; Conjugate gradient; Inverse problems BibRef

Xu, S.[Shuo], An, X.[Xin], Qiao, X.D.[Xiao-Dong], Zhu, L.J.[Li-Jun], Li, L.[Lin],
Multi-output least-squares support vector regression machines,
PRL(34), No. 9, July 2013, pp. 1078-1084.
Elsevier DOI 1305
Least-squares support vector regression machine (LS-SVR); Multiple task learning (MTL); Multi-output LS-SVR (MLS-SVR); Positive definite matrix BibRef

Mordelet, F., Vert, J.P.[Jean-Philippe],
A bagging SVM to learn from positive and unlabeled examples,
PRL(37), No. 1, 2014, pp. 201-209.
Elsevier DOI 1402
PU learning BibRef

Anguita, D.[Davide], Ghio, A.[Alessandro], Oneto, L.[Luca], Ridella, S.[Sandro],
Unlabeled patterns to tighten Rademacher complexity error bounds for kernel classifiers,
PRL(37), No. 1, 2014, pp. 210-219.
Elsevier DOI 1402
Support vector machine BibRef

Singla, A.[Anshu], Patra, S.[Swarnajyoti], Bruzzone, L.[Lorenzo],
A novel classification technique based on progressive transductive SVM learning,
PRL(42), No. 1, 2014, pp. 101-106.
Elsevier DOI 1404
Cluster assumption BibRef

Jung, H.G., Kim, G.,
Support Vector Number Reduction: Survey and Experimental Evaluations,
ITS(15), No. 2, April 2014, pp. 463-476.
IEEE DOI 1404
Approximation error BibRef

Doan, T.N.[Thanh-Nghi], Do, T.N.[Thanh-Nghi], Poulet, F.[François],
Parallel incremental power mean SVM for the classification of large-scale image datasets,
MultInfoRetr(3), No. 2, June 2014, pp. 89-96.
Springer DOI 1407
BibRef

Guo, H.S.[Hu-Sheng], Wang, W.J.[Wen-Jian],
An active learning-based SVM multi-class classification model,
PR(48), No. 5, 2015, pp. 1577-1597.
Elsevier DOI 1502
Multi-class classification with unknown categories BibRef

Carrasco, M.[Miguel], López, J.[Julio], Maldonado, S.[Sebastián],
A multi-class SVM approach based on the L1-norm minimization of the distances between the reduced convex hulls,
PR(48), No. 5, 2015, pp. 1598-1607.
Elsevier DOI 1502
Multi-class classification BibRef

Zhang, Y.Q.[Yun-Qiang], Zhang, P.L.[Pei-Lin],
Machine training and parameter settings with social emotional optimization algorithm for support vector machine,
PRL(54), No. 1, 2015, pp. 36-42.
Elsevier DOI 1502
Support vector machine BibRef

Chang, C.C.[Chin-Chun], Chou, S.H.[Shen-Huan],
Tuning of the hyperparameters for L2-loss SVMs with the RBF kernel by the maximum-margin principle and the jackknife technique,
PR(48), No. 12, 2015, pp. 3983-3992.
Elsevier DOI 1509
RBF kernels BibRef

Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef],
On the kernel Extreme Learning Machine speedup,
PRL(68, Part 1), No. 1, 2015, pp. 205-210.
Elsevier DOI 1512
Kernel extreme learning machine BibRef

Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef],
Multi-class Support Vector Machine classifiers using intrinsic and penalty graphs,
PR(55), No. 1, 2016, pp. 231-246.
Elsevier DOI 1604
Multi-class classification BibRef

Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef],
Nyström-based approximate kernel subspace learning,
PR(57), No. 1, 2016, pp. 190-197.
Elsevier DOI 1605
Nonlinear pattern recognition BibRef

Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef],
Prototype-based class-specific nonlinear subspace learning for large-scale face verification,
IPTA16(1-6)
IEEE DOI 1703
Face Recognition. face recognition BibRef

Iosifidis, A.[Alexandros], Gabbouj, M.[Moncef],
Hierarchical class-specific kernel discriminant analysis for face verification,
VCIP16(1-4)
IEEE DOI 1701
Face BibRef

Vural, E., Guillemot, C.,
Out-of-Sample Generalizations for Supervised Manifold Learning for Classification,
IP(25), No. 3, March 2016, pp. 1410-1424.
IEEE DOI 1602
Interpolation BibRef

Loosli, G.[Gaëlle], Canu, S.[Stéphane], Ong, C.S.[Cheng Soon],
Learning SVM in Krein Spaces,
PAMI(38), No. 6, June 2016, pp. 1204-1216.
IEEE DOI 1605
Cost function BibRef

Canu, S.[Stéphane],
Recent Advances in Kernel Machines,
CIARP10(1).
Springer DOI 1011
SVM techniques. BibRef

Montagner, I.S., Hirata, N.S.T., Hirata, R., Canu, S.[Stéphane],
NILC: A two level learning algorithm with operator selection,
ICIP16(1873-1877)
IEEE DOI 1610
Computational efficiency BibRef

Moraes, D.[Daniel], Wainer, J.[Jacques], Rocha, A.[Anderson],
Low false positive learning with support vector machines,
JVCIR(38), No. 1, 2016, pp. 340-350.
Elsevier DOI 1605
Support vector machines BibRef

Houthooft, R.[Rein], de Turck, F.[Filip],
Integrated inference and learning of neural factors in structural support vector machines,
PR(59), No. 1, 2016, pp. 292-301.
Elsevier DOI 1705
Structural support vector machine BibRef

Zhu, F.[Fa], Yang, J.[Jian], Gao, J.B.[Jun-Bin], Xu, C.Y.[Chun-Yan],
Extended nearest neighbor chain induced instance-weights for SVMs,
PR(60), No. 1, 2016, pp. 863-874.
Elsevier DOI 1609
Weighted support vector machine BibRef

Zhang, G.Q.[Guo-Qing], Sun, H.J.[Huai-Jiang], Ji, Z.X.[Ze-Xuan], Xia, G.Y.[Gui-Yu], Feng, L.[Lei], Sun, Q.S.[Quan-Sen],
Kernel dictionary learning based discriminant analysis,
JVCIR(40, Part B), No. 1, 2016, pp. 470-484.
Elsevier DOI 1610
Kernel method BibRef

Fan, Q.[Qi], Wang, Z.[Zhe], Zha, H.Y.[Hong-Yuan], Gao, D.[Daqi],
MREKLM: A fast multiple empirical kernel learning machine,
PR(61), No. 1, 2017, pp. 197-209.
Elsevier DOI 1705
Multiple Kernel Learning BibRef

Dong, A., Chung, F.l., Deng, Z., Wang, S.,
Semi-Supervised SVM With Extended Hidden Features,
Cyber(46), No. 12, December 2016, pp. 2924-2937.
IEEE DOI 1612
Convergence BibRef

Jung, H.G.[Ho Gi],
Support vector number reduction by extending iterative preimage addition using genetic algorithm-based preimage estimation,
PRL(84), No. 1, 2016, pp. 43-48.
Elsevier DOI 1612
Support vector number reduction (SVNR) BibRef

Jung, H.G.[Ho Gi],
Analysis of reduced-set construction using image reconstruction from a HOG feature vector,
IET-CV(11), No. 8, December 2017, pp. 725-732.
DOI Link 1712
BibRef

Morales, R.D.[Roberto Díaz], Vázquez, Á.N.[Ángel Navia],
Improving the efficiency of IRWLS SVMs using parallel Cholesky factorization,
PRL(84), No. 1, 2016, pp. 91-98.
Elsevier DOI 1612
Support Vector Machines BibRef

Duarte, E.[Edson], Wainer, J.[Jacques],
Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters,
PRL(88), No. 1, 2017, pp. 6-11.
Elsevier DOI 1703
SVM BibRef

Chu, D.J.[De-Jun], Zhang, C.S.[Chang-Shui], Tao, Q.[Qing],
A faster cutting plane algorithm with accelerated line search for linear SVM,
PR(67), No. 1, 2017, pp. 127-138.
Elsevier DOI 1704
Linear support vector machine BibRef

Ding, S.F.[Shi-Fei], Zhang, X.K.[Xie-Kai], An, Y.X.[Yue-Xuan], Xue, Y.[Yu],
Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification,
PR(67), No. 1, 2017, pp. 32-46.
Elsevier DOI 1704
Multi-class classification BibRef

Du, M.J.[Ming-Jing], Ding, S.[Shifei], Xue, Y.[Yu],
A novel density peaks clustering algorithm for mixed data,
PRL(97), No. 1, 2017, pp. 46-53.
Elsevier DOI 1709
Data clustering BibRef

Ping, Y.[Yuan], Tian, Y.J.[Ying-Jie], Guo, C.[Chun], Wang, B.C.[Bao-Cang], Yang, Y.[Yuehua],
FRSVC: Towards making support vector clustering consume less,
PR(69), No. 1, 2017, pp. 286-298.
Elsevier DOI 1706
Large-scale, data BibRef

Tharwat, A.[Alaa], Hassanien, A.E.[Aboul Ella], Elnaghi, B.E.[Basem E.],
A BA-based algorithm for parameter optimization of Support Vector Machine,
PRL(93), No. 1, 2017, pp. 13-22.
Elsevier DOI 1706
Optimization, algorithms BibRef

Wang, X.[Xin], Thome, N.[Nicolas], Cord, M.[Matthieu],
Gaze latent support vector machine for image classification improved by weakly supervised region selection,
PR(72), No. 1, 2017, pp. 59-71.
Elsevier DOI 1708
BibRef
Earlier:
Gaze latent support vector machine for image classification,
ICIP16(236-240)
IEEE DOI 1610
Weakly supervised learning. Computational modeling BibRef

Zuo, W., Wang, F., Zhang, D., Lin, L., Huang, Y., Meng, D., Zhang, L.,
Distance Metric Learning via Iterated Support Vector Machines,
IP(26), No. 10, October 2017, pp. 4937-4950.
IEEE DOI 1708
Face, Kernel, Learning systems, Measurement, Optimization, Support vector machines, Training, Lagrange duality, Metric learning, alternating minimization, kernel method, BibRef

Chum, O.[Ondrej],
Optimizing explicit feature maps on intervals,
IVC(66), No. 1, 2017, pp. 36-47.
Elsevier DOI 1710
Explicit feature maps BibRef

Liu, Y.[Yang], Wen, K.W.[Kai-Wen], Gao, Q.X.[Quan-Xue], Gao, X.B.[Xin-Bo], Nie, F.P.[Fei-Ping],
SVM based multi-label learning with missing labels for image annotation,
PR(78), 2018, pp. 307-317.
Elsevier DOI 1804
Multi-label learning, Missing labels, SVM, Image annotations BibRef

Kumar, D.[Deepak], Thakur, M.[Manoj],
All-in-one multicategory least squares nonparallel hyperplanes support vector machine,
PRL(105), 2018, pp. 165-174.
Elsevier DOI 1804
Multi-class classification, Least squares problem, Nonparallel support vector machine, Support vector machines BibRef

Melki, G.[Gabriella], Cano, A.[Alberto], Ventura, S.[Sebastián],
MIRSVM: Multi-instance support vector machine with bag representatives,
PR(79), 2018, pp. 228-241.
Elsevier DOI 1804
Machine learning, Multiple-instance learning, Support vector machines, Bag-representative selection BibRef

An, Y.X.[Yue-Xuan], Ding, S.F.[Shi-Fei], Shi, S.H.[Song-Hui], Li, J.C.[Jing-Can],
Discrete space reinforcement learning algorithm based on support vector machine classification,
PRL(111), 2018, pp. 30-35.
Elsevier DOI 1808
Support vector machines, Reinforcement learning, Actor-critic, Machine learning BibRef

Yang, Z.J.[Zhi-Ji], Xu, Y.T.[Yi-Tian],
A safe sample screening rule for Laplacian twin parametric-margin support vector machine,
PR(84), 2018, pp. 1-12.
Elsevier DOI 1809
Semi-supervised learning, Laplacian graph, Support vector machine, Safe screening BibRef

Wang, Q.C.[Qing-Chao], Fu, G.Y.[Guang-Yuan], Li, L.L.[Lin-Lin], Wang, H.Q.[Hong-Qiao], Li, Y.Q.[Yong-Qiang],
Data-dependent multiple kernel learning algorithm based on soft-grouping,
PRL(112), 2018, pp. 111-117.
Elsevier DOI 1809
Multiple kernel learning, Data-dependent kernel, Soft-clustering, Support vector machine BibRef

Yao, Y.Z.[Ya-Zhou], Shen, F.M.[Fu-Min], Zhang, J.[Jian], Liu, L.[Li], Tang, Z.M.[Zhen-Min], Shao, L.[Ling],
Extracting Privileged Information for Enhancing Classifier Learning,
IP(28), No. 1, January 2019, pp. 436-450.
IEEE DOI 1810
Noise measurement, Training, Dogs, Visualization, Semantics, Data mining, Robustness, Untagged corpora, classifier learning, privileged information BibRef

Kang, X., Duan, P., Xiang, X., Li, S., Benediktsson, J.A.,
Detection and Correction of Mislabeled Training Samples for Hyperspectral Image Classification,
GeoRS(56), No. 10, October 2018, pp. 5673-5686.
IEEE DOI 1810
Hyperspectral imaging, Training, Feature extraction, Transforms, Object detection, Image edge detection, support vector machines (SVMs) BibRef

Liu, Y., Hoai, M., Shao, M., Kim, T.,
Latent Bi-Constraint SVM for Video-Based Object Recognition,
CirSysVideo(28), No. 10, October 2018, pp. 3044-3052.
IEEE DOI 1811
Object recognition, Image recognition, Support vector machines, Training, Clutter, Manifolds, Face recognition, Object recognition, structured-output SVM BibRef

Zareapoor, M.[Masoumeh], Shamsolmoali, P.[Pourya], Jain, D.K.[Deepak Kumar], Wang, H.X.[Hao-Xiang], Yang, J.[Jie],
Kernelized support vector machine with deep learning: An efficient approach for extreme multiclass dataset,
PRL(115), 2018, pp. 4-13.
Elsevier DOI 1812
Deep learning, Deep belief networks, Multiclass-classification, Kernel-based SVM, Feature extraction BibRef

de Mello, A.R.[Alexandre Reeberg], Stemmer, M.R.[Marcelo Ricardo], Barbosa, F.G.O.[Flávio Gabriel Oliveira],
Support vector candidates selection via Delaunay graph and convex-hull for large and high-dimensional datasets,
PRL(116), 2018, pp. 43-49.
Elsevier DOI 1812
Support vector machine, Support vector candidates, Convex-hull, Delaunay graph BibRef

Durand, T.[Thibaut], Thome, N.[Nicolas], Cord, M.[Matthieu],
Exploiting Negative Evidence for Deep Latent Structured Models,
PAMI(41), No. 2, February 2019, pp. 337-351.
IEEE DOI 1901
BibRef
Earlier:
MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking,
ICCV15(2713-2721)
IEEE DOI 1602
Computational modeling, Predictive models, Training, Image segmentation, Semantics, Analytical models, localization. Detectors BibRef

Durand, T.[Thibaut], Mordan, T., Thome, N.[Nicolas], Cord, M.[Matthieu],
WILDCAT: Weakly Supervised Learning of Deep ConvNets for Image Classification, Pointwise Localization and Segmentation,
CVPR17(5957-5966)
IEEE DOI 1711
BibRef
Earlier: A1, A3, A4, Only:
WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks,
CVPR16(4743-4752)
IEEE DOI 1612
Dogs, Feature extraction, Head, Image segmentation, Legged locomotion, Object detection, Semantics BibRef

Durand, T.[Thibaut], Thome, N.[Nicolas], Cord, M.[Matthieu], Picard, D.[David],
Incremental learning of latent structural SVM for weakly supervised image classification,
ICIP14(4246-4250)
IEEE DOI 1502
Agriculture BibRef

Mills, P.[Peter],
Accelerating kernel classifiers through borders mapping,
RealTimeIP(17), No. 2, April 2020, pp. 313-327.
Springer DOI 2004
SVM. BibRef

Liu, L.M.[Li-Ming], Chu, M.X.[Mao-Xiang], Gong, R.F.[Rong-Fen], Peng, Y.C.[Yong-Cheng],
Nonparallel support vector machine with large margin distribution for pattern classification,
PR(106), 2020, pp. 107374.
Elsevier DOI 2006
Pattern classification, Nonparallel support vector machine, Margin distribution, Generalization performance BibRef

Wang, K.[Ke], Cheng, L.G.[Li-Gang], Yong, B.[Bin],
Spectral-Similarity-Based Kernel of SVM for Hyperspectral Image Classification,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Dang, S., Cao, Z., Cui, Z., Pi, Y., Liu, N.,
Class Boundary Exemplar Selection Based Incremental Learning for Automatic Target Recognition,
GeoRS(58), No. 8, August 2020, pp. 5782-5792.
IEEE DOI 2007
Training, Target recognition, Learning systems, Training data, Task analysis, Data models, Support vector machines, incremental learning BibRef

da Silva Santos, C.E.[Carlos Eduardo], Sampaio, R.C.[Renato Coral], dos Santos Coelho, L.[Leandro], Bestard, G.A.[Guillermo Alvarez], Llanos, C.H.[Carlos Humberto],
Multi-objective adaptive differential evolution for SVM/SVR hyperparameters selection,
PR(110), 2021, pp. 107649.
Elsevier DOI 2011
Support vector machines, Parameters selection problem, Multi-objective optimization, Differential evolution, Adaptive parameters strategy BibRef

Torres-Barrán, A.[Alberto], Alaíz, C.M.[Carlos M.], Dorronsoro, J.R.[José R.],
Faster SVM training via conjugate SMO,
PR(111), 2021, pp. 107644.
Elsevier DOI 2012
SVM, Conjugate gradient, SMO BibRef

Liang, Z.Z.[Zhi-Zheng], Zhang, L.[Lei],
Uncertainty-aware twin support vector machines,
PR(129), 2022, pp. 108706.
Elsevier DOI 2206
Uncertain data, Twin support vector machines, Halfspaces, Kernel functions, Data classification BibRef

Zhou, S.L.[Sheng-Long],
Sparse SVM for Sufficient Data Reduction,
PAMI(44), No. 9, September 2022, pp. 5560-5571.
IEEE DOI 2208
Support vector machines, Training, Optimization, Kernel, Fasteners, Convergence, Computational efficiency, Data reduction, one-step convergence property BibRef

Wang, Y.G.[You-Gan], Wu, J.[Jinran], Hu, Z.H.[Zhi-Hua], McLachlan, G.J.[Geoffrey J.],
A new algorithm for support vector regression with automatic selection of hyperparameters,
PR(133), 2023, pp. 108989.
Elsevier DOI 2210
Automatic selection, Loss functions, Noise models, Parameter estimation, Probability regularization BibRef

Aceña, V.[Víctor], Martín de Diego, I.[Isaac], Fernández, R.R.[Rubén R.], Moguerza, J.M.[Javier M.],
Support subsets estimation for support vector machines retraining,
PR(134), 2023, pp. 109117.
Elsevier DOI 2212
Support subset, Incremental learning, Retraining, Alpha seeding BibRef

Wu, W.[Wenguo], Zhou, Z.C.[Zheng-Chun], Adhikary, A.R.[Avik Ranjan], Dutta, B.[Bapi],
Discrete space reinforcement learning algorithm based on twin support vector machine classification,
PRL(164), 2022, pp. 254-260.
Elsevier DOI 2212
Twin support vector machines, Actor-Critic, Reinforcement learning, Small-scale discrete space environment BibRef

Shao, Y.H.[Yuan-Hai], Lv, X.J.[Xiao-Jing], Huang, L.W.[Ling-Wei], Bai, L.[Lan],
Twin SVM for conditional probability estimation in binary and multiclass classification,
PR(136), 2023, pp. 109253.
Elsevier DOI 2301
Support vector machine, Twin support vector machines, Conditional probability, Binary classification, Multiclass classification BibRef

Xie, X.J.[Xi-Jiong], Sun, F.X.[Fei-Xiang], Qian, J.B.[Jiang-Bo], Guo, L.J.[Li-Jun], Zhang, R.[Rong], Ye, X.[Xulun], Wang, Z.J.[Zhi-Jin],
Laplacian Lp norm least squares twin support vector machine,
PR(136), 2023, pp. 109192.
Elsevier DOI 2301
Semi-supervised learning, Geometric information, Laplacian Lp norm least squares twin support vector machine BibRef

Yu, L.[Lang], Li, S.J.[Sheng-Jie], Liu, S.Y.[Si-Yi],
Fast support vector machine training via three-term conjugate-like SMO algorithm,
PR(139), 2023, pp. 109478.
Elsevier DOI 2304
Support vector machine, Sequential minimal optimization, Three-term conjugate direction BibRef

Gao, T.[Tong], Chen, H.[Hao],
Multicycle disassembly-based decomposition algorithm to train multiclass support vector machines,
PR(140), 2023, pp. 109479.
Elsevier DOI 2305
Multicycle disassembly-based decomposition algorithm, Multiclass support vector machine, Decomposition algorithm, Support vector machine training BibRef

Dong, Z.J.[Zi-Jie], Xu, C.[Chen], Xu, J.[Jie], Zou, B.[Bin], Zeng, J.J.[Jing-Jing], Tang, Y.Y.[Yuan Yan],
Generalization capacity of multi-class SVM based on Markovian resampling,
PR(142), 2023, pp. 109720.
Elsevier DOI 2307
MSVM, Markovian resampling, Learning rate, Generalization bound BibRef


Pasricha, R.S.[Ravdeep S.], Devineni, P.[Pravallika], Papalexakis, E.E.[Evangelos E.], Kannan, R.[Ramakrishnan],
Tensorized Feature Spaces for Feature Explosion,
ICPR21(6298-6304)
IEEE DOI 2105
Training, Support vector machines, Tensors, Government, Supervised learning, Explosions, Tensor, Hyperspectral Imaging BibRef

Kim, S.B.[Sang-Baeg], Bae, J.M.[Jung-Man],
A New Convex Loss Function For Multiple Instance Support Vector Machines,
ICPR21(9023-9029)
IEEE DOI 2105
Support vector machines, Integer programming, Computational modeling, Perturbation methods, Video Classification BibRef

Tajima, K.[Kenya], Tsuchida, K.[Kohei], Zara, E.R.R.[Esmeraldo Ronnie R.], Ohta, N.[Naoya], Kato, T.[Tsuyoshi],
Learning Sign-Constrained Support Vector Machines,
ICPR21(3264-3271)
IEEE DOI 2105
Support vector machines, Training, Gradient methods, Prediction algorithms, Solids, Computational efficiency, Classification algorithms BibRef

Sahbi, H.[Hichem],
Deep Total Variation Support Vector Networks,
CEFRL19(3028-3038)
IEEE DOI 2004
image classification, action recognition, learning (artificial intelligence), object recognition. BibRef

Lee, W., Ko, B.J., Wang, S., Liu, C., Leung, K.K.,
Exact Incremental and Decremental Learning for LS-SVM,
ICIP19(2334-2338)
IEEE DOI 1910
Least-squares support vector machine (LS-SVM), machine learning, model updating BibRef

Wu, G., Tian, Y., Liu, D.,
Privileged Multi-Target Support Vector Regression,
ICPR18(385-390)
IEEE DOI 1812
Correlation, Kernel, Support vector machines, Biological system modeling, Training, Task analysis, Quadratic programming BibRef

Raziperchikolaei, R., Carreira-Perpiñán, M.Á.,
Learning circulant support vector machines for fast image search,
ICIP17(385-389)
IEEE DOI 1803
Binary codes, Complexity theory, Fast Fourier transforms, Frequency-domain analysis, Optimization, Support vector machines, image retrieval BibRef

Kawulok, M.[Michal], Nalepa, J.[Jakub], Dudzik, W.[Wojciech],
An Alternating Genetic Algorithm for Selecting SVM Model and Training Set,
MCPR17(94-104).
Springer DOI 1706
BibRef

Guo, X.F.[Xi-Feng], Chen, W.[Wei], Yin, J.P.[Jian-Ping],
A simple approach for unsupervised domain adaptation,
ICPR16(1566-1570)
IEEE DOI 1705
Benchmark testing, Kernel, Manifolds, Standards, Support vector machines, Training BibRef

Saikia, G., Shivagunde, S., Saradhi, V.V., Kannao, R.D., Guha, P.,
Multiple kernel learning using data envelopment analysis and feature vector selection and projection,
ICPR16(520-524)
IEEE DOI 1705
Complexity theory, Data envelopment analysis, Data models, Kernel, Mathematical model, Support vector machines BibRef

Langenkämper, D., Nattkemper, T.W.,
COATL: A learning architecture for online real-time detection and classification assistance for environmental data,
ICPR16(597-602)
IEEE DOI 1705
Feature extraction, Image color analysis, Labeling, Real-time systems, Support vector machines, Training BibRef

Mao, X.[Xue], Fu, Z.Y.[Zhou-Yu], Wu, O.[Ou], Hu, W.M.[Wei-Ming],
Fast kernel SVM training via support vector identification,
ICPR16(1554-1559)
IEEE DOI 1705
Kernel, Mathematical model, Prediction algorithms, Standards, Support vector machines, Training, Training, data BibRef

Liu, Y.W.[Yang-Wei], Xu, J.,
One-pass online SVM with extremely small space complexity,
ICPR16(3482-3487)
IEEE DOI 1705
Algorithm design and analysis, Approximation algorithms, Computer science, Pattern recognition, Support vector machines, Training, Training, data BibRef

Li, W., Dai, D., Tan, M., Xu, D., Van Gool, L.J.,
Fast Algorithms for Linear and Kernel SVM+,
CVPR16(2258-2266)
IEEE DOI 1612
BibRef

Mohapatra, P.[Pritish], Dokania, P.K.[Puneet Kumar], Jawahar, C.V., Kumar, M.P.[M. Pawan],
Partial Linearization Based Optimization for Multi-class SVM,
ECCV16(V: 842-857).
Springer DOI 1611
BibRef

Namin, S.R., Alvarez, J.M., Kneip, L., Petersson, L.,
Latent structural SVM with marginal probabilities for weakly labeled structured learning,
ICIP16(3733-3737)
IEEE DOI 1610
Algorithm design and analysis BibRef

Hoseinkhani, F., Nasersharif, B.,
A feature transformation method based on multi objective particle swarm optimization for reducing support vector machine error,
IPRIA15(1-6)
IEEE DOI 1603
feature extraction BibRef

Bouchacourt, D.[Diane], Nowozin, S.[Sebastian], Kumar, M.P.[M. Pawan],
Entropy-Based Latent Structured Output Prediction,
ICCV15(2920-2928)
IEEE DOI 1602
Computer vision BibRef

Goto, M.[Masanori], Ishida, R.[Ryosuke], Uchida, S.[Seiichi],
Preselection of support vector candidates by relative neighborhood graph for large-scale character recognition,
ICDAR15(306-310)
IEEE DOI 1511
BibRef

Stamos, D.[Dimitris], Martelli, S.[Samuele], Nabi, M.[Moin], McDonald, A.[Andrew], Murino, V.[Vittorio], Pontil, M.[Massimiliano],
Learning with dataset bias in latent subcategory models,
CVPR15(3650-3658)
IEEE DOI 1510
Latent subcategory models for training SVM BibRef

Shah, N.[Neel], Kolmogorov, V.[Vladimir], Lampert, C.H.[Christoph H.],
A multi-plane block-coordinate frank-wolfe algorithm for training structural SVMs with a costly max-oracle,
CVPR15(2737-2745)
IEEE DOI 1510
BibRef

Xu, X.[Xing], Shimada, A.[Atsushi], Taniguch, R.I.[Rin-Ichiro],
Exploring Image Specific Structured Loss for Image Annotation with Incomplete Labelling,
ACCV14(I: 704-719).
Springer DOI 1504
BibRef

Blondel, M.[Mathieu], Fujino, A.[Akinori], Ueda, N.[Naonori],
Large-Scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex,
ICPR14(1289-1294)
IEEE DOI 1412
Accuracy BibRef

Chen, Y.D.[Yao-Dong], Li, R.[Renfa],
Effective Part Localization in Latent-SVM Training,
ICPR14(4269-4274)
IEEE DOI 1412
Detectors BibRef

Álvarez-Meza, A.M.[Andrés Marino], Cárdenas-Peña, D., Castellanos-Domínguez, C.G.[César Germán],
Unsupervised Kernel Function Building Using Maximization of Information Potential Variability,
CIARP14(335-342).
Springer DOI 1411
BibRef

Bilen, H.[Hakan], Pedersoli, M.[Marco], Namboodiri, V.P.[Vinay P.], Tuytelaars, T.[Tinne], Van Gool, L.J.[Luc J.],
Object Classification with Adaptable Regions,
CVPR14(3662-3669)
IEEE DOI 1409
latent svm; object classification; weakly supervised detection BibRef

Behl, A.[Aseem], Mohapatra, P., Jawahar, C.V., Kumar, M.P.[M. Pawan],
Optimizing Average Precision Using Weakly Supervised Data,
PAMI(37), No. 12, December 2015, pp. 2545-2557.
IEEE DOI 1512
BibRef
Earlier: A1, A3, A4, Only: CVPR14(1011-1018)
IEEE DOI 1409
character recognition Optimization methods; Statistical methods and learning BibRef

Yang, J.[Jiyan], Sindhwani, V.[Vikas], Fan, Q.F.[Quan-Fu], Avron, H.[Haim], Mahoney, M.W.[Michael W.],
Random Laplace Feature Maps for Semigroup Kernels on Histograms,
CVPR14(971-978)
IEEE DOI 1409
BibRef

Takami, M.[Masato], Bell, P.[Peter], Ommer, B.[Bjorn],
Offline learning of prototypical negatives for efficient online Exemplar SVM,
WACV14(377-384)
IEEE DOI 1406
Art BibRef

Chen, D.Z.[Dao-Zheng], Batra, D.[Dhruv], Freeman, W.T.[William T.],
Group Norm for Learning Structured SVMs with Unstructured Latent Variables,
ICCV13(409-416)
IEEE DOI 1403
Concave-Convex Procedure BibRef

Vemulapalli, R.[Raviteja], Pillai, J.K.[Jaishanker K.], Chellappa, R.[Rama],
Kernel Learning for Extrinsic Classification of Manifold Features,
CVPR13(1782-1789)
IEEE DOI 1309
Extrinsic Classification. Features in non-linear space harder to cluster. BibRef

Branson, S.[Steve], Beijbom, O.[Oscar], Belongie, S.J.[Serge J.],
Efficient Large-Scale Structured Learning,
CVPR13(1806-1813)
IEEE DOI 1309
cost-sensitive SVM BibRef

Candel, D.[Diego], Ñanculef, R.[Ricardo], Concha, C.[Carlos], Allende, H.[Héctor],
A Sequential Minimal Optimization Algorithm for the All-Distances Support Vector Machine,
CIARP10(484-491).
Springer DOI 1011
BibRef

Frandi, E.[Emanuele], Gasparo, M.G.[Maria Grazia], Lodi, S.[Stefano], Ñanculef, R.[Ricardo], Sartori, C.[Claudio],
A New Algorithm for Training SVMs Using Approximate Minimal Enclosing Balls,
CIARP10(87-95).
Springer DOI 1011
BibRef

Zhang, D.Y.[De-Yuan], Wang, X.L.[Xiao-Long], Liu, B.Q.[Bing-Quan],
Learning the Kernel Combination for Object Categorization,
ICPR10(2929-2932).
IEEE DOI 1008
Learn optimal combination of kernels before SVM training BibRef

Timm, F.[Fabian], Klement, S.[Sascha], Martinetz, T.[Thomas],
Fast model selection for MaxMinOver-based training of support vector machines,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Sentelle, C.[Christopher], Anagnostopoulos, G.C.[Georgios C.], Georgiopoulos, M.[Michael],
A fast revised simplex method for SVM training,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Schnitzspan, P.[Paul], Fritz, M.[Mario], Schiele, B.[Bernt],
Hierarchical Support Vector Random Fields: Joint Training to Combine Local and Global Features,
ECCV08(II: 527-540).
Springer DOI 0810
BibRef

Mejía-Guevara, I.[Iván], Kuri-Morales, Á.[Ángel],
MP-Polynomial Kernel for Training Support Vector Machines,
CIARP07(584-593).
Springer DOI 0711
BibRef

Lebrun, G., Charrier, C., Cardot, H.,
SVM training time reduction using vector quantization,
ICPR04(I: 160-163).
IEEE DOI 0409
BibRef

Yang, M.H.[Ming-Hsuan], Ahuja, N.[Narendra],
A Geometric Approach to Train Support Vector Machines,
CVPR00(I: 430-437).
IEEE DOI 0005
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Support Vector Machines, SVM, Incremental, Multi-Step .


Last update:Aug 28, 2024 at 16:02:19