14.2.2.4.8 Hyperspectral Data Anomaly Detection, Hyper-Spectral Anomaly

Chapter Contents (Back)
Hyperspectral. Anomaly Detection. Sometimes the same thing:
See also Hyperspectral Target Detection.

Du, Q.[Qian], Chang, C.I.[Chein-I],
A linear constrained distance-based discriminant analysis for hyperspectral image classification,
PR(34), No. 2, February 2001, pp. 361-373.
Elsevier DOI 0011
BibRef

Chang, C.I.[C. I], Du, Q., Sun, T.L., Althouse, M.L.G.,
A Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification,
GeoRS(7), No. 6, November 1999, pp. 2631.
IEEE Top Reference. 9911
BibRef

Du, Q.[Qian], Nekovei, R.[Reza],
Implementation of real-time constrained linear discriminant analysis to remote sensing image classification,
PR(38), No. 4, April 2005, pp. 459-471.
Elsevier DOI 0501
BibRef

Du, Q.[Qian], Nekovei, R.[Reza],
Fast real-time onboard processing of hyperspectral imagery for detection and classification,
RealTimeIP(4), No. 3, August 2009, pp. xx-yy.
Springer DOI 0909
BibRef

Du, Q.[Qian],
Unsupervised real-time constrained linear discriminant analysis to hyperspectral image classification,
PR(40), No. 5, May 2007, pp. 1510-1519.
Elsevier DOI 0702
Hyperspectral imagery; Classification; Constrained linear discriminant analysis; Unsupervised constrained linear discriminant analysis; Real-time processing BibRef

Chang, C.I.[Chein-I], Chiang, S.S.[Shao-Shan],
Anomaly detection and classification for hyperspectral imagery,
GeoRS(40), No. 6, June 2002, pp. 1314-1325.
IEEE Top Reference. 0208

See also Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery.
See also Hyperspectral Imaging: Techniques for Spectral Detection and Classification. BibRef

Chang, C.I.[Chein-I], Liu, W.M.[Wei-Min], Chang, C.C.[Chein-Chi],
Discrimination and identification for subpixel targets in hyperspectral imagery,
ICIP04(V: 3339-3342).
IEEE DOI 0505
BibRef

Xie, W.Y.[Wei-Ying], Liu, B.Z.[Bao-Zhu], Li, Y.S.[Yun-Song], Lei, J.[Jie], Chang, C.I.[Chein-I], He, G.[Gang],
Spectral Adversarial Feature Learning for Anomaly Detection in Hyperspectral Imagery,
GeoRS(58), No. 4, April 2020, pp. 2352-2365.
IEEE DOI 2004
Feature extraction, Anomaly detection, Hyperspectral imaging, Decoding, Image reconstruction, Training, Adversarial learning, iterative optimization BibRef

Zhong, J.P.[Jia-Ping], Xie, W.Y.[Wei-Ying], Li, Y.S.[Yun-Song], Lei, J.[Jie], Du, Q.[Qian],
Characterization of Background-Anomaly Separability With Generative Adversarial Network for Hyperspectral Anomaly Detection,
GeoRS(59), No. 7, July 2021, pp. 6017-6028.
IEEE DOI 2106
Anomaly detection, Hyperspectral imaging, Generative adversarial networks, Training, hyperspectral anomaly detection
See also Discriminative Reconstruction for Hyperspectral Anomaly Detection With Spectral Learning. BibRef

Jiang, K.[Kai], Xie, W.Y.[Wei-Ying], Li, Y.S.[Yun-Song], Lei, J.[Jie], He, G.[Gang], Du, Q.[Qian],
Semisupervised Spectral Learning With Generative Adversarial Network for Hyperspectral Anomaly Detection,
GeoRS(58), No. 7, July 2020, pp. 5224-5236.
IEEE DOI 2006
Anomaly detection, Hyperspectral imaging, Training, Feature extraction, Generative adversarial networks, semisupervised learning BibRef

Xie, W.Y.[Wei-Ying], Liu, B.Z.[Bao-Zhu], Li, Y.S.[Yun-Song], Lei, J.[Jie], Du, Q.[Qian],
Autoencoder and Adversarial-Learning-Based Semisupervised Background Estimation for Hyperspectral Anomaly Detection,
GeoRS(58), No. 8, August 2020, pp. 5416-5427.
IEEE DOI 2007
Anomaly detection, Hyperspectral imaging, Estimation, Training, Feature extraction, Data models, Anomaly detection, semisupervised learning
See also Hyperspectral Pansharpening Based on Spectral Constrained Adversarial Autoencoder. BibRef

Qu, J.H.[Jia-Hui], Du, Q.[Qian], Li, Y.S.[Yun-Song], Tian, L.[Long], Xia, H.M.[Hao-Ming],
Anomaly Detection in Hyperspectral Imagery Based on Gaussian Mixture Model,
GeoRS(59), No. 11, November 2021, pp. 9504-9517.
IEEE DOI 2111
Anomaly detection, Hyperspectral imaging, Gaussian distribution, Correlation, Partitioning algorithms, Gaussian mixture model, hyperspectral image (HSI) BibRef

Li, W.[Wei], Du, Q.[Qian],
Collaborative Representation for Hyperspectral Anomaly Detection,
GeoRS(53), No. 3, March 2015, pp. 1463-1474.
IEEE DOI 1412
geophysical image processing BibRef

Tan, K.[Kun], Hou, Z.F.[Zeng-Fu], Wu, F.Y.[Fu-Yu], Du, Q.[Qian], Chen, Y.[Yu],
Anomaly Detection for Hyperspectral Imagery Based on the Regularized Subspace Method and Collaborative Representation,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Li, W.[Wei], Du, Q.[Qian], Zhang, B.[Bing],
Combined Sparse and Collaborative Representation for Hyperspectral Target Detection,
PR(48), No. 12, 2015, pp. 3904-3916.
Elsevier DOI 1509
Target detection BibRef

Zhao, X.O.[Xia-Obin], Li, W.[Wei], Zhang, M.M.[Meng-Meng], Tao, R.[Ran], Ma, P.G.[Peng-Ge],
Adaptive Iterated Shrinkage Thresholding-Based LP-Norm Sparse Representation for Hyperspectral Imagery Target Detection,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Li, W.[Wei], Du, Q.[Qian],
A survey on representation-based classification and detection in hyperspectral remote sensing imagery,
PRL(83, Part 2), No. 1, 2016, pp. 115-123.
Elsevier DOI 1609
Hyperspectral imagery BibRef

Fowler, J.E., Du, Q.,
Anomaly Detection and Reconstruction From Random Projections,
IP(21), No. 1, January 2012, pp. 184-195.
IEEE DOI 1112
Compressed-sensing. Analyze preservation of anomalies with random projections used in compressive sensing. BibRef

Du, Q.[Qian], Ren, H.[Hsuan],
Real-time constrained linear discriminant analysis to target detection and classification in hyperspectral imagery,
PR(36), No. 1, January 2003, pp. 1-12.
Elsevier DOI 0210
BibRef

Du, B., Zhang, L.,
Random-Selection-Based Anomaly Detector for Hyperspectral Imagery,
GeoRS(49), No. 5, May 2011, pp. 1578-1589.
IEEE DOI 1105
BibRef

Du, B., Zhang, L.,
A Discriminative Metric Learning Based Anomaly Detection Method,
GeoRS(52), No. 11, November 2014, pp. 6844-6857.
IEEE DOI 1407
Covariance matrices BibRef

Sun, W.W.[Wei-Wei], Tian, L.[Long], Xu, Y.[Yan], Du, B.[Bo], Du, Q.[Qian],
A Randomized Subspace Learning Based Anomaly Detector for Hyperspectral Imagery,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Shi, Q., Zhang, L., Du, B.,
Semisupervised Discriminative Locally Enhanced Alignment for Hyperspectral Image Classification,
GeoRS(51), No. 9, 2013, pp. 4800-4815.
IEEE DOI 1309
Educational institutions BibRef

Jiang, T.[Tao], Li, Y.S.[Yun-Song], Xie, W.Y.[Wei-Ying], Du, Q.[Qian],
Discriminative Reconstruction Constrained Generative Adversarial Network for Hyperspectral Anomaly Detection,
GeoRS(58), No. 7, July 2020, pp. 4666-4679.
IEEE DOI 2006
Image reconstruction, Hyperspectral imaging, Feature extraction, Detectors, Generative adversarial networks, Anomaly detection, spatial-spectral detector BibRef

Lei, J.[Jie], Fang, S.[Shuo], Xie, W.Y.[Wei-Ying], Li, Y.S.[Yun-Song], Chang, C.I.[Chein-I],
Discriminative Reconstruction for Hyperspectral Anomaly Detection With Spectral Learning,
GeoRS(58), No. 10, October 2020, pp. 7406-7417.
IEEE DOI 2009
Anomaly detection, Hyperspectral imaging, Image reconstruction, Decoding, Detectors, Detection algorithms, Anomaly detection, spectral learning
See also Characterization of Background-Anomaly Separability With Generative Adversarial Network for Hyperspectral Anomaly Detection. BibRef

Chang, C.I., Ren, H.[Hsuan], Chiang, S.S.[Shao-Shan],
Real-time processing algorithms for target detection and classification in hyperspectral imagery,
GeoRS(39), No. 4, April 2001, pp. 760-768.
IEEE Top Reference. 0105
BibRef

Chiang, S.S.[Shao-Shan], Chang, C.I., Ginsberg, I.W.,
Unsupervised target detection in hyperspectral images using projection pursuit,
GeoRS(39), No. 7, July 2001, pp. 1380-1391.
IEEE Top Reference. 0108
BibRef

Chang, C.I.[Chein-I], Chen, J.[Jie],
Orthogonal Subspace Projection Using Data Sphering and Low-Rank and Sparse Matrix Decomposition for Hyperspectral Target Detection,
GeoRS(59), No. 10, October 2021, pp. 8704-8722.
IEEE DOI 2109
Sparse matrices, Object detection, Matrix decomposition, Hyperspectral imaging, Detectors, Signal detection, Minimization, orthogonal subspace projection (OSP) BibRef

Chang, C.I.[Chein-I],
Target signature-constrained mixed pixel classification for hyperspectral imagery,
GeoRS(40), No. 5, May 2002, pp. 1065-1081.
IEEE Top Reference. 0206
BibRef

Mayer, R., Priest, R.,
Object detection using transformed signatures in multitemporal hyperspectral imagery,
GeoRS(40), No. 4, April 2002, pp. 831-840.
IEEE Top Reference. 0206
BibRef

Mayer, R., Bucholtz, F., Scribner, D.,
Object detection by using 'whitening/dewhitening' to transform target signatures in multitemporal hyperspectral and multispectral imagery,
GeoRS(41), No. 5, May 2003, pp. 1136-1142.
IEEE Abstract. 0307
BibRef

Kwon, H.S.[Hee-Sung], Nasrabadi, N.M.,
Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery,
GeoRS(43), No. 2, February 2005, pp. 388-397.
IEEE Abstract. 0501
BibRef

Kwon, H.S.[Hee-Sung], Nasrabadi, N.M.[Nasser M.],
Kernel Matched Subspace Detectors for Hyperspectral Target Detection,
PAMI(28), No. 2, February 2006, pp. 178-194.
IEEE DOI 0601
BibRef

Kwon, H.S.[Hee-Sung], Nasrabadi, N.M.[Nasser M.],
Kernel Orthogonal Subspace Projection for Hyperspectral Signal Classification,
GeoRS(43), No. 12, December 2005, pp. 2952-2962.
IEEE DOI 0512
BibRef
Earlier:
Hyperspectral Target Detection Using Kernel Orthogonal Subspace Projection,
ICIP05(II: 702-705).
IEEE DOI 0512
BibRef
And:
Kernel Matched Signal Detectors for Hyperspectral Target Detection,
OTCBVS05(III: 6-6).
IEEE DOI 0507
BibRef
Earlier:
Hyperspectral target detection using kernel matched subspace detector,
ICIP04(V: 3327-3330).
IEEE DOI 0505
BibRef
Earlier:
Hyperspectral anomaly detection using kernel rx-algorithm,
ICIP04(V: 3331-3334).
IEEE DOI 0505
BibRef
Earlier:
Hyperspectral Target Detection Using Kernel Spectral Matched Filter,
OTCBVS04(127).
WWW Link. 0502
BibRef

Nasrabadi, N.M.[Nasser M.],
Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery,
SPLetters(15), No. 1, 2008, pp. 317-320.
IEEE DOI 0804
BibRef
Earlier:
Kernel-Based Spectral Matched Signal Detectors for Hyperspectral Target Detection,
PReMI07(67-76).
Springer DOI 0712
BibRef
And:
Regularized Spectral Matched Filter for Target Detection in Hyperspectral Imagery,
ICIP07(IV: 105-108).
IEEE DOI 0709
BibRef

Nasrabadi, N.M.,
Hyperspectral Target Detection : An Overview of Current and Future Challenges,
SPMag(31), No. 1, January 2014, pp. 34-44.
IEEE DOI 1403
Survey, Hyperspectral Targets. hyperspectral imaging BibRef

Kwon, H.S.[Hee-Sung], Nasrabadi, N.M.[Nasser M.],
Kernel Spectral Matched Filter for Hyperspectral Imagery,
IJCV(71), No. 2, February 2007, pp. 127-141.
Springer DOI 0609
BibRef

Kwon, H.S.[Hee-Sung], Der, S.Z., Nasrabadi, N.M.,
Projection-based adaptive anomaly detection for hyperspectral imagery,
ICIP03(I: 1001-1004).
IEEE DOI 0312
BibRef

Acito, N., Corsini, G., Diani, M.,
Adaptive detection algorithm for full pixel targets in hyperspectral images,
VISP(152), No. 6, December 2005, pp. 731-740.
DOI Link 0512
BibRef

Acito, N., Diani, M., Corsini, G.,
A New Algorithm for Robust Estimation of the Signal Subspace in Hyperspectral Images in the Presence of Rare Signal Components,
GeoRS(47), No. 11, November 2009, pp. 3844-3856.
IEEE DOI 0911
BibRef

Acito, N., Diani, M., Corsini, G.,
Hyperspectral Signal Subspace Identification in the Presence of Rare Signal Components,
GeoRS(48), No. 4, April 2010, pp. 1940-1954.
IEEE DOI 1003
BibRef

Acito, N., Diani, M., Corsini, G.,
Subspace-Based Striping Noise Reduction in Hyperspectral Images,
GeoRS(49), No. 4, April 2011, pp. 1325-1342.
IEEE DOI 1104
BibRef

Acito, N., Diani, M., Corsini, G.,
Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images,
GeoRS(49), No. 8, August 2011, pp. 2957-2971.
IEEE DOI 1108
BibRef

Acito, N., Diani, M., Corsini, G.,
On the CFAR Property of the RX Algorithm in the Presence of Signal-Dependent Noise in Hyperspectral Images,
GeoRS(51), No. 6, 2013, pp. 3475-3491.
IEEE DOI 1307
anomaly detection robustness; Covariance matrix BibRef

Acito, N., Diani, M., Corsini, G.,
Hyperspectral Signal Subspace Identification in the Presence of Rare Vectors and Signal-Dependent Noise,
GeoRS(51), No. 1, January 2013, pp. 283-299.
IEEE DOI 1301
BibRef

Acito, N., Diani, M.,
Unsupervised Atmospheric Compensation of Airborne Hyperspectral Images in the VNIR Spectral Range,
GeoRS(56), No. 4, April 2018, pp. 2083-2106.
IEEE DOI 1804
Aerosols, Atmospheric measurements, Atmospheric modeling, Hyperspectral imaging, Scattering, Atmospheric compensation (AC), radiative transfer model (RTM) BibRef

Matteoli, S., Acito, N., Diani, M., Corsini, G.,
An Automatic Approach to Adaptive Local Background Estimation and Suppression in Hyperspectral Target Detection,
GeoRS(49), No. 2, February 2011, pp. 790-800.
IEEE DOI 1102
BibRef

Matteoli, S., Veracini, T., Diani, M., Corsini, G.,
Models and Methods for Automated Background Density Estimation in Hyperspectral Anomaly Detection,
GeoRS(51), No. 5, May 2013, pp. 2837-2852.
IEEE DOI 1305
BibRef

Matteoli, S., Diani, M., Corsini, G.,
Impact of Signal Contamination on the Adaptive Detection Performance of Local Hyperspectral Anomalies,
GeoRS(52), No. 4, April 2014, pp. 1948-1968.
IEEE DOI 1403
adaptive signal processing BibRef

Acito, N., Corsini, G., Diani, M., Greco, M.,
A Stochastic Mixing Model Approach to Sub-Pixel Target Detection in Hyper-Spectral Images,
ICIP05(I: 653-656).
IEEE DOI 0512
BibRef

Acito, N., Matteoli, S., Diani, M., Corsini, G.,
Complexity-aware algorithm architecture for real-time enhancement of local anomalies in hyperspectral images,
RealTimeIP(8), No. 1, March 2013, pp. 53-68.
WWW Link. 1303
BibRef

Rossi, A., Acito, N., Diani, M., Corsini, G.,
RX architectures for real-time anomaly detection in hyperspectral images,
RealTimeIP(9), No. 3, September 2014, pp. 503-517.
WWW Link. 1408
BibRef

Banerjee, A.[Amit], Burlina, P.[Philippe], Diehl, C.,
A Support Vector Method for Anomaly Detection in Hyperspectral Imagery,
GeoRS(44), No. 8, August 2006, pp. 2282-2291.
IEEE DOI 0608
BibRef

Banerjee, A.[Amit], Burlina, P.[Philippe], Meth, R.[Reuven],
Fast Hyperspectral Anomaly Detection via SVDD,
ICIP07(IV: 101-104).
IEEE DOI 0709
BibRef

Duran, O., Petrou, M.,
A Time-Efficient Method for Anomaly Detection in Hyperspectral Images,
GeoRS(45), No. 12, December 2007, pp. 3894-3904.
IEEE DOI 0711
BibRef

Duran, O., Petrou, M.,
Subpixel temporal spectral imaging,
PRL(48), No. 1, 2014, pp. 15-23.
Elsevier DOI 1410
Remote sensing BibRef

Duran, O., Petrou, M.,
Robust Endmember Extraction in the Presence of Anomalies,
GeoRS(49), No. 6, June 2011, pp. 1986-1996.
IEEE DOI 1106
BibRef

Di, W.[Wei], Pan, Q.[Quan], He, L.[Lin], Cheng, Y.M.[Yong-Mei],
Anomaly Detection in Hyperspectral Imagery by Fuzzy Integral Fusion of Band-subsets,
PhEngRS(74), No. 2, February 2008, pp. 201-214.
WWW Link. 0803
An anomaly target detection algorithm in hyperspectral imagery through merging detection results of band-subsets by a fuzzy integral fusion method. BibRef

He, L.[Lin], Pan, Q.[Quan], Di, W.[Wei], Li, Y.Q.[Yuan-Qing],
Anomaly detection in hyperspectral imagery based on maximum entropy and nonparametric estimation,
PRL(29), No. 9, 1 July 2008, pp. 1392-1403.
Elsevier DOI 0711
Hyperspectral imagery; Anomaly detection; Maximum entropy and nonparametric estimation detector BibRef

Malpica, J.A.[Jose A.], Rejas, J.G.[Juan G.], Alonso, M.C.[Maria C.],
A projection pursuit algorithm for anomaly detection in hyperspectral imagery,
PR(41), No. 11, November 2008, pp. 3313-3327.
Elsevier DOI 0808
Hyperspectral imagery; Projection pursuit; Simulated annealing; Simplex optimization BibRef

Khazai, S.[Safa], Safari, A.[Abdolreza], Mojaradi, B.[Barat], Homayouni, S.[Saeid],
Performance Comparison of Contemporary Anomaly Detectors for Detecting Man-Made Objects in Hyperspectral Images,
PFG(2013), No. 1, 2013, pp. 19-30.
DOI Link 1303
BibRef

Johnson, R.J., Williams, J.P., Bauer, K.W.,
AutoGAD: An Improved ICA-Based Hyperspectral Anomaly Detection Algorithm,
GeoRS(51), No. 6, 2013, pp. 3492-3503.
IEEE DOI 1307
covariance matrices; image denoising; independent component analysis; anomaly feature selection BibRef

Ratto, C.R., Morton, K.D., Collins, L.M., Torrione, P.A.,
Bayesian Context-Dependent Learning for Anomaly Classification in Hyperspectral Imagery,
GeoRS(52), No. 4, April 2014, pp. 1969-1981.
IEEE DOI 1403
geophysical image processing BibRef

Quinn, J.A.[John A.], Sugiyama, M.[Masashi],
A least-squares approach to anomaly detection in static and sequential data,
PRL(40), No. 1, 2014, pp. 36-40.
Elsevier DOI 1403
Anomaly detection BibRef

Yuan, Y.[Yuan], Wang, Q.[Qi], Zhu, G.[Guokang],
Fast Hyperspectral Anomaly Detection via High-Order 2-D Crossing Filter,
GeoRS(53), No. 2, February 2015, pp. 620-630.
IEEE DOI 1411
estimation theory BibRef

Xu, Y., Wu, Z., Li, J., Plaza, A., Wei, Z.,
Anomaly Detection in Hyperspectral Images Based on Low-Rank and Sparse Representation,
GeoRS(54), No. 4, April 2016, pp. 1990-2000.
IEEE DOI 1604
Detectors BibRef

Zhan, T.M.[Tian-Ming], Sun, L.[Le], Xu, Y.[Yang], Yang, G.W.[Guo-Wei], Zhang, Y.[Yan], Wu, Z.B.[Ze-Bin],
Hyperspectral Classification via Superpixel Kernel Learning-Based Low Rank Representation,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Xu, Y., Wu, Z.B.[Ze-Bin], Chanussot, J., Wei, Z.,
Joint Reconstruction and Anomaly Detection From Compressive Hyperspectral Images Using Mahalanobis Distance-Regularized Tensor RPCA,
GeoRS(56), No. 5, May 2018, pp. 2919-2930.
IEEE DOI 1805
Anomaly detection, Compressed sensing, Hyperspectral imaging, Image coding, Image reconstruction, Tensile stress, robust principal component analysis (RPCA) BibRef

Niu, Y.B.[Yu-Bin], Wang, B.[Bin],
Hyperspectral Anomaly Detection Based on Low-Rank Representation and Learned Dictionary,
RS(8), No. 4, 2016, pp. 289.
DOI Link 1604
BibRef

Niu, Y.B.[Yu-Bin], Wang, B.[Bin],
Extracting Target Spectrum for Hyperspectral Target Detection: An Adaptive Weighted Learning Method Using a Self-Completed Background Dictionary,
GeoRS(55), No. 3, March 2017, pp. 1604-1617.
IEEE DOI 1703
Detectors BibRef

Cheng, T.K.[Tong-Kai], Wang, B.[Bin],
Graph and Total Variation Regularized Low-Rank Representation for Hyperspectral Anomaly Detection,
GeoRS(58), No. 1, January 2020, pp. 391-406.
IEEE DOI 2001
Hyperspectral imaging, Anomaly detection, Detectors, Object detection, Manifolds, TV, Anomaly detection, total variation (TV) BibRef

Zhang, X.[Xing], Wen, G.J.[Gong-Jian], Dai, W.[Wei],
A Tensor Decomposition-Based Anomaly Detection Algorithm for Hyperspectral Image,
GeoRS(54), No. 10, October 2016, pp. 5801-5820.
IEEE DOI 1610
Gaussian noise BibRef

Zhou, J., Kwan, C., Ayhan, B., Eismann, M.T.,
A Novel Cluster Kernel RX Algorithm for Anomaly and Change Detection Using Hyperspectral Images,
GeoRS(54), No. 11, November 2016, pp. 6497-6504.
IEEE DOI 1610
Approximation algorithms BibRef

Yuan, Y.[Yuan], Ma, D.D.[Dan-Dan], Wang, Q.[Qi],
Hyperspectral Anomaly Detection by Graph Pixel Selection,
Cyber(46), No. 12, December 2016, pp. 3123-3134.
IEEE DOI 1612
Detectors BibRef

Ma, D.D.[Dan-Dan], Yuan, Y.[Yuan], Wang, Q.[Qi],
Hyperspectral Anomaly Detection via Discriminative Feature Learning with Multiple-Dictionary Sparse Representation,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Ma, D.D.[Dan-Dan], Yuan, Y.[Yuan], Wang, Q.[Qi],
Hyperspectral Anomaly Detection Based on Separability-Aware Sample Cascade,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Delibalta, I.[Ibrahim], Gokcesu, K.[Kaan], Simsek, M.[Mustafa], Baruh, L.[Lemi], Kozat, S.S.[Suleyman S.],
Online Anomaly Detection With Nested Trees,
SPLetters(23), No. 12, December 2016, pp. 1867-1871.
IEEE DOI 1612
decision trees BibRef

Zhao, R., Du, B., Zhang, L., Zhang, L.,
Beyond Background Feature Extraction: An Anomaly Detection Algorithm Inspired by Slowly Varying Signal Analysis,
GeoRS(54), No. 3, March 2016, pp. 1757-1774.
IEEE DOI 1603
Detectors BibRef

Zhao, R., Du, B., Zhang, L.,
Hyperspectral Anomaly Detection via a Sparsity Score Estimation Framework,
GeoRS(55), No. 6, June 2017, pp. 3208-3222.
IEEE DOI 1706
Detectors, Dictionaries, Encoding, Estimation, Hyperspectral imaging, Sparse matrices, Anomaly detection, K-SVD algorithm, dictionary enhancement, hyperspectral, negative log atom usage probability, sparse coding, sparsity, score, estimation BibRef

Zhao, C.H.[Chun-Hui], Yao, X.F.[Xi-Feng], Huang, B.[Bormin],
Real-Time Anomaly Detection Based on a Fast Recursive Kernel RX Algorithm,
RS(8), No. 12, 2016, pp. 1011.
DOI Link 1612
BibRef

Frontera-Pons, J., Pascal, F., Ovarlez, J.P.,
Adaptive Nonzero-Mean Gaussian Detection,
GeoRS(55), No. 2, February 2017, pp. 1117-1124.
IEEE DOI 1702
Gaussian distribution BibRef

Frontera-Pons, J., Ovarlez, J.P., Pascal, F.,
Robust ANMF Detection in Noncentered Impulsive Background,
SPLetters(24), No. 12, December 2017, pp. 1891-1895.
IEEE DOI 1712
Covariance matrices, Detectors, Maximum likelihood estimation, Object detection, Parameter estimation, Robustness, M-estimation, robustness BibRef

Veganzones, M.Á.[Miguel Ángel], Frontera-Pons, J., Pascal, F., Ovarlez, J.P., Chanussot, J.[Jocelyn],
Binary Partition Trees-Based Robust Adaptive Hyperspectral RX Anomaly Detection,
ICIP14(5077-5081)
IEEE DOI 1502
Detectors
See also Context-Adaptive Pansharpening Based on Binary Partition Tree Segmentation. BibRef

Veganzones, M.Á.[Miguel Ángel], Mura, M.D.[Mauro Dalla], Tochon, G.[Guillaume], Chanussot, J.[Jocelyn],
Binary Partition Trees-Based Spectral-Spatial Permutation Ordering,
ISMM15(434-445).
Springer DOI 1506
BibRef

Wang, L.[Lin], Chang, C.I.[Chein-I], Lee, L.C.[Li-Chien], Wang, Y.[Yulei], Xue, B.[Bai], Song, M.P.[Mei-Ping], Yu, C.Y.[Chuan-Yan], Li, S.[Sen],
Band Subset Selection for Anomaly Detection in Hyperspectral Imagery,
GeoRS(55), No. 9, September 2017, pp. 4887-4898.
IEEE DOI 1709
geophysical image processing, hyperspectral imaging, iterative methods, least squares approximations,
See also Progressive Band Selection of Spectral Unmixing for Hyperspectral Imagery. BibRef

Lei, J.[Jie], Xie, W.Y.[Wei-Ying], Yang, J.[Jian], Li, Y.S.[Yun-Song], Chang, C.I.[Chein-I],
Spectral-Spatial Feature Extraction for Hyperspectral Anomaly Detection,
GeoRS(57), No. 10, October 2019, pp. 8131-8143.
IEEE DOI 1910
feature extraction, hyperspectral imaging, image filtering, image representation, learning (artificial intelligence), interference suppression BibRef

Xie, W.Y.[Wei-Ying], Li, Y.S.[Yun-Song], Lei, J.[Jie], Yang, J.[Jian], Chang, C.I.[Chein-I], Li, Z.[Zhen],
Hyperspectral Band Selection for Spectral-Spatial Anomaly Detection,
GeoRS(58), No. 5, May 2020, pp. 3426-3436.
IEEE DOI 2005
Anomaly detection, band selection, hyperspectral image (HSI), spectral-spatial optimization, unsupervised representation learning
See also Deep Latent Spectral Representation Learning-Based Hyperspectral Band Selection for Target Detection. BibRef

Yu, C.Y.[Chun-Yan], Song, M.P.[Mei-Ping], Chang, C.I.[Chein-I],
Band Subset Selection for Hyperspectral Image Classification,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Chang, C.I.[Chein-I], Kuo, Y.M.[Yi-Mei], Ma, K.Y.[Kenneth Yeonkong],
Band Selection via Band Density Prominence Clustering for Hyperspectral Image Classification,
RS(16), No. 6, 2024, pp. 942.
DOI Link 2403
BibRef

Chang, C.I.[Chein-I], Kuo, Y.M.[Yi-Mei], Chen, S.H.[Shu-Han], Liang, C.C.[Chia-Chen], Ma, K.Y.[Kenneth Yeonkong], Hu, P.F.M.[Peter Fu-Ming],
Self-Mutual Information-Based Band Selection for Hyperspectral Image Classification,
GeoRS(59), No. 7, July 2021, pp. 5979-5997.
IEEE DOI 2106
Hyperspectral imaging, Entropy, Correlation, Extraterrestrial measurements, Probability distribution, Sensors, virtual dimensionality (VD) BibRef

Li, J.H.[Jin-Hui], Li, X.R.[Xiao-Run], Chen, S.H.[Shu-Han],
HyperBT: Redundancy Reduction-Based Self-Supervised Learning for Hyperspectral Image Classification,
SPLetters(31), 2024, pp. 2385-2389.
IEEE DOI 2410
Feature extraction, Redundancy, Data mining, Correlation, Training, Hyperspectral imaging, Data augmentation, HyperBT, spatial-spectral feature BibRef

Zhang, L.[Lili], Zhao, C.H.[Chun-Hui],
Tensor decomposition-based sparsity divergence index for hyperspectral anomaly detection,
JOSA-A(34), No. 9, September 2017, pp. 1585-1594.
DOI Link 1709
Digital image processing, Image analysis BibRef

Zhang, L.[Lili], Ma, J.C.[Jia-Chen], Cheng, B.Z.[Bao-Zhi], Lin, F.[Fang],
Fractional Fourier Transform-Based Tensor RX for Hyperspectral Anomaly Detection,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Feng, S.[Shou], Tang, S.[Shulu], Zhao, C.H.[Chun-Hui], Cui, Y.[Ying],
A Hyperspectral Anomaly Detection Method Based on Low-Rank and Sparse Decomposition With Density Peak Guided Collaborative Representation,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI 2112
Sparse matrices, Hyperspectral imaging, Detectors, Matrix decomposition, Covariance matrices, Collaboration, low-rank and sparse decomposition BibRef

Kang, X., Zhang, X., Li, S., Li, K., Li, J., Benediktsson, J.A.,
Hyperspectral Anomaly Detection With Attribute and Edge-Preserving Filters,
GeoRS(55), No. 10, October 2017, pp. 5600-5611.
IEEE DOI 1710
geophysical techniques, Boolean map-based fusion approach, edge-preserving filters, hyperspectral anomaly detection, BibRef

Zhao, L.Y.[Liao-Ying], Lin, W.J.[Wei-Jun], Wang, Y.[Yulei], Li, X.R.[Xiao-Run],
Recursive Local Summation of RX Detection for Hyperspectral Image Using Sliding Windows,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Kittler, J.V.[Josef V.], Zor, C.[Cemre], Kaloskampis, I.[Ioannis], Hicks, Y.[Yulia], Wang, W.W.[Wen-Wu],
Error sensitivity analysis of Delta divergence-a novel measure for classifier incongruence detection,
PR(77), 2018, pp. 30-44.
Elsevier DOI 1802
Anomaly detection, Classifier decision incongruence, Bayesian surprise BibRef

Soofbaf, S.R.[Seyyed Reza], Sahebi, M.R.[Mahmod Reza], Mojaradi, B.[Barat],
A Sliding Window-Based Joint Sparse Representation (SWJSR) Method for Hyperspectral Anomaly Detection,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Zhu, L.X.[Ling-Xiao], Wen, G.J.[Gong-Jian],
Hyperspectral Anomaly Detection via Background Estimation and Adaptive Weighted Sparse Representation,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Imani, M.[Maryam],
Hyperspectral anomaly detection using differential image,
IET-IPR(12), No. 5, May 2018, pp. 801-809.
DOI Link 1804
BibRef

Zhu, L.X.[Ling-Xiao], Wen, G.J.[Gong-Jian], Qiu, S.H.[Shao-Hua],
Low-Rank and Sparse Matrix Decomposition with Cluster Weighting for Hyperspectral Anomaly Detection,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Chang, S., Du, B., Zhang, L.,
BASO: A Background-Anomaly Component Projection and Separation Optimized Filter for Anomaly Detection in Hyperspectral Images,
GeoRS(56), No. 7, July 2018, pp. 3747-3761.
IEEE DOI 1807
geophysical image processing, hyperspectral imaging, image segmentation, matched filters, object detection, matched filter BibRef

Li, F., Zhang, X., Zhang, L., Jiang, D., Zhang, Y.,
Exploiting Structured Sparsity for Hyperspectral Anomaly Detection,
GeoRS(56), No. 7, July 2018, pp. 4050-4064.
IEEE DOI 1807
Bayes methods, geophysical image processing, hyperspectral imaging, image reconstruction, structured sparse representation BibRef

Qu, Y., Wang, W.[Wei], Guo, R., Ayhan, B.[Bulent], Kwan, C.[Chiman], Vance, S.[Steven], Qi, H.R.[Hai-Rong],
Hyperspectral Anomaly Detection Through Spectral Unmixing and Dictionary-Based Low-Rank Decomposition,
GeoRS(56), No. 8, August 2018, pp. 4391-4405.
IEEE DOI 1808
hyperspectral imaging, matrix decomposition, object detection, pattern clustering, vectors, abundance vectors, spectral unmixing BibRef

Li, S.J.[Shuang-Jiang], Wang, W.[Wei], Qi, H.R.[Hai-Rong], Ayhan, B.[Bulent], Kwan, C.[Chiman], Vance, S.[Steven],
Low-rank tensor decomposition based anomaly detection for hyperspectral imagery,
ICIP15(4525-4529)
IEEE DOI 1512
Hyperspectral imaging BibRef

Yang, Y.X.[Yi-Xin], Zhang, J.Q.[Jian-Qi], Song, S.Z.[Shang-Zhen], Liu, D.L.[De-Lian],
Hyperspectral Anomaly Detection via Dictionary Construction-Based Low-Rank Representation and Adaptive Weighting,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Song, S.Z.[Shang-Zhen], Yang, Y.X.[Yi-Xin], Zhou, H.X.[Hui-Xin], Chan, J.C.W.[Jonathan Cheung-Wai],
Hyperspectral Anomaly Detection via Graph Dictionary-Based Low Rank Decomposition with Texture Feature Extraction,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Xiang, P.[Pei], Song, J.[Jiangluqi], Li, H.[Huan], Gu, L.[Lin], Zhou, H.X.[Hui-Xin],
Hyperspectral Anomaly Detection with Harmonic Analysis and Low-Rank Decomposition,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Xie, W.B.[Wen-Bin], Yin, H.[Hong], Wang, M.N.[Mei-Ni], Shao, Y.[Yan], Yu, B.[Bosi],
Low-rank structured sparse representation and reduced dictionary learning-based abnormity detection,
IET-CV(13), No. 1, February 2019, pp. 8-14.
DOI Link 1902
BibRef

Ling, Q., Guo, Y., Lin, Z., An, W.,
A Constrained Sparse Representation Model for Hyperspectral Anomaly Detection,
GeoRS(57), No. 4, April 2019, pp. 2358-2371.
IEEE DOI 1904
computational complexity, feature extraction, image representation, mixture models, object detection, linear mixture model (LMM) BibRef

Ning, H.Y.[Hu-Yan], Zhang, X., Zhou, H., Jiao, L.,
Hyperspectral Anomaly Detection via Background and Potential Anomaly Dictionaries Construction,
GeoRS(57), No. 4, April 2019, pp. 2263-2276.
IEEE DOI 1904
dictionaries, hyperspectral imaging, image representation, matrix decomposition, object detection, remote sensing, potential anomaly dictionary BibRef

Zhang, J., Wang, Z., Meng, J., Tan, Y., Yuan, J.,
Boosting Positive and Unlabeled Learning for Anomaly Detection With Multi-Features,
MultMed(21), No. 5, May 2019, pp. 1332-1344.
IEEE DOI 1905
learning (artificial intelligence), pattern classification, machine learning-based anomaly detection, anomaly data, boosting BibRef

Ma, N.[Ning], Yu, X.M.[Xi-Ming], Peng, Y.[Yu], Wang, S.J.[Shao-Jun],
A Lightweight Hyperspectral Image Anomaly Detector for Real-Time Mission,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Madathil, B., George, S.N.,
Simultaneous Reconstruction and Anomaly Detection of Subsampled Hyperspectral Images Using l_(1/2) Regularized Joint Sparse and Low-Rank Recovery,
GeoRS(57), No. 7, July 2019, pp. 5190-5197.
IEEE DOI 1907
Anomaly detection, Image reconstruction, Hyperspectral imaging, Data models, Sparse matrices, Detectors, Anomaly detection, l(1/2) regularization BibRef

Tan, K.[Kun], Hou, Z.F.[Zeng-Fu], Ma, D.[Donglei], Chen, Y.[Yu], Du, Q.[Qian],
Anomaly Detection in Hyperspectral Imagery Based on Low-Rank Representation Incorporating a Spatial Constraint,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Zhang, W.X.[Wu-Xia], Lu, X.Q.[Xiao-Qiang], Li, X.L.[Xue-Long],
Similarity Constrained Convex Nonnegative Matrix Factorization for Hyperspectral Anomaly Detection,
GeoRS(57), No. 7, July 2019, pp. 4810-4822.
IEEE DOI 1907
Anomaly detection, Hyperspectral imaging, Detectors, Sparse matrices, Matrix decomposition, Dictionaries, similarity constrained BibRef

Huang, Z., Li, S.,
From Difference to Similarity: A Manifold Ranking-Based Hyperspectral Anomaly Detection Framework,
GeoRS(57), No. 10, October 2019, pp. 8118-8130.
IEEE DOI 1910
feature extraction, graph theory, hyperspectral imaging, image segmentation, object detection, anomaly pixels, similarity BibRef

Díaz, M., Guerra, R., Horstrand, P., López, S., Sarmiento, R.,
A Line-by-Line Fast Anomaly Detector for Hyperspectral Imagery,
GeoRS(57), No. 11, November 2019, pp. 8968-8982.
IEEE DOI 1911
Hyperspectral imaging, Detectors, Real-time systems, Covariance matrices, Computational complexity, real-time applications BibRef

Tu, B.[Bing], Li, N.Y.[Nan-Ying], Liao, Z.L.[Zhuo-Lang], Ou, X.F.[Xian-Feng], Zhang, G.Y.[Guo-Yun],
Hyperspectral Anomaly Detection via Spatial Density Background Purification,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Tu, B.[Bing], Yang, X.C.[Xian-Chang], Li, N.Y.[Nan-Ying], Zhou, C.[Chengle], He, D.B.[Dan-Bing],
Hyperspectral anomaly detection via density peak clustering,
PRL(129), 2020, pp. 144-149.
Elsevier DOI 2001
Anomaly detection, Density peak clustering, Hyperspectral image BibRef

Zhao, C.H.[Chun-Hui], Yao, X.F.[Xi-Feng],
Progressive line processing of global and local real-time anomaly detection in hyperspectral images,
RealTimeIP(16), No. 6, December 2019, pp. 2289-2303.
WWW Link. 1912
BibRef

Marchetti, Y.[Yuliya], Rosenberg, R.[Robert], Crisp, D.[David],
Classification of Anomalous Pixels in the Focal Plane Arrays of Orbiting Carbon Observatory-2 and -3 via Machine Learning,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Li, S., Zhang, K., Duan, P., Kang, X.,
Hyperspectral Anomaly Detection With Kernel Isolation Forest,
GeoRS(58), No. 1, January 2020, pp. 319-329.
IEEE DOI 2001
Kernel, Anomaly detection, Hyperspectral imaging, Detectors, Vegetation, Forestry, Anomaly detection, hyperspectral image (HSI), kernel method BibRef

Lu, X.Q.[Xiao-Qiang], Zhang, W.X.[Wu-Xia], Huang, J.[Ju],
Exploiting Embedding Manifold of Autoencoders for Hyperspectral Anomaly Detection,
GeoRS(58), No. 3, March 2020, pp. 1527-1537.
IEEE DOI 2003
Hyperspectral imaging, Anomaly detection, Manifolds, Learning systems, Image reconstruction, Task analysis, manifold learning BibRef

Huang, Z., Kang, X., Li, S., Hao, Q.,
Game Theory-Based Hyperspectral Anomaly Detection,
GeoRS(58), No. 4, April 2020, pp. 2965-2976.
IEEE DOI 2004
Anomaly detection, decision fusion, game theory, hyperspectral images (HSIs), Nash equilibrium, spectral-spatial information BibRef

Mestav, K.R., Tong, L.,
Universal Data Anomaly Detection via Inverse Generative Adversary Network,
SPLetters(27), 2020, pp. 511-515.
IEEE DOI 2005
Anomaly detection, Generators, Training, Testing, Training data, Quantization (signal), Machine learning, coincidence test BibRef

Turkoz, M.[Mehmet], Kim, S.[Sangahn], Son, Y.[Youngdoo], Jeong, M.K.[Myong K.], Elsayed, E.A.[Elsayed A.],
Generalized support vector data description for anomaly detection,
PR(100), 2020, pp. 107119.
Elsevier DOI 2005
Anomaly detection, Bayesian statistics, Multimode process, Support vector data description BibRef

Chang, S., Du, B., Zhang, L.,
A Subspace Selection-Based Discriminative Forest Method for Hyperspectral Anomaly Detection,
GeoRS(58), No. 6, June 2020, pp. 4033-4046.
IEEE DOI 2005
Anomaly detection axis-parallel subspace, dimensionality reduction, hyperspectral imagery, isolation-based forest BibRef

Huang, Z., Fang, L., Li, S.,
Subpixel-Pixel-Superpixel Guided Fusion for Hyperspectral Anomaly Detection,
GeoRS(58), No. 9, September 2020, pp. 5998-6007.
IEEE DOI 2008
Feature extraction, Detectors, Hyperspectral imaging, Anomaly detection, Optimization, Object detection, subpixel BibRef

Wang, R., Nie, F., Wang, Z., He, F., Li, X.,
Multiple Features and Isolation Forest-Based Fast Anomaly Detector for Hyperspectral Imagery,
GeoRS(58), No. 9, September 2020, pp. 6664-6676.
IEEE DOI 2008
Feature extraction, Hyperspectral imaging, Anomaly detection, Clustering algorithms, Forestry, Detectors, multiple features BibRef

Li, Z.X.[Zhao-Xu], Ling, Q.A.[Qi-Ang], Wu, J.[Jing], Wang, Z.Y.[Zheng-Yan], Lin, Z.P.[Zai-Ping],
A Constrained Sparse-Representation-Based Spatio-Temporal Anomaly Detector for Moving Targets in Hyperspectral Imagery Sequences,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Wang, S.Y.[Shao-Yu], Wang, X.Y.[Xin-Yu], Zhong, Y.F.[Yan-Fei], Zhang, L.P.[Liang-Pei],
Hyperspectral Anomaly Detection via Locally Enhanced Low-Rank Prior,
GeoRS(58), No. 10, October 2020, pp. 6995-7009.
IEEE DOI 2009
Anomaly detection, Hyperspectral imaging, Dictionaries, Sparse matrices, Image segmentation, Matrix decomposition, matrix decomposition BibRef

Zhu, X.[Xuhe], Cao, L.Q.[Li-Qin], Wang, S.Y.[Shao-Yu], Gao, L.Z.[Lyu-Zhou], Zhong, Y.F.[Yan-Fei],
Anomaly Detection in Airborne Fourier Transform Thermal Infrared Spectrometer Images Based on Emissivity and a Segmented Low-Rank Prior,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Andika, F.[Ferdi], Rizkinia, M.[Mia], Okuda, M.[Masahiro],
A Hyperspectral Anomaly Detection Algorithm Based on Morphological Profile and Attribute Filter with Band Selection and Automatic Determination of Maximum Area,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Su, H.J.[Hong-Jun], Wu, Z.Y.[Zhao-Yue], Zhu, A.X.[A-Xing], Du, Q.[Qian],
Low rank and collaborative representation for hyperspectral anomaly detection via robust dictionary construction,
PandRS(169), 2020, pp. 195-211.
Elsevier DOI 2011
Low-rank representation, Collaborative representation, Dictionary construction, Anomaly detection, Hyperspectral image BibRef

Tu, B., Yang, X., Zhou, C., He, D., Plaza, A.,
Hyperspectral Anomaly Detection Using Dual Window Density,
GeoRS(58), No. 12, December 2020, pp. 8503-8517.
IEEE DOI 2012
Anomaly detection, Detectors, Hyperspectral imaging, Contamination, Covariance matrices, intrinsic image decomposition (IID) BibRef

Cheng, T., Wang, B.,
Total Variation and Sparsity Regularized Decomposition Model With Union Dictionary for Hyperspectral Anomaly Detection,
GeoRS(59), No. 2, February 2021, pp. 1472-1486.
IEEE DOI 2101
Hyperspectral imaging, Dictionaries, Anomaly detection, Detectors, Object detection, TV, Anomaly detection, total variation (TV) BibRef

Li, Z.A.[Zhu-Ang], Zhang, Y.[Ye],
Hyperspectral Anomaly Detection via Image Super-Resolution Processing and Spatial Correlation,
GeoRS(59), No. 3, March 2021, pp. 2307-2320.
IEEE DOI 2103
Anomaly detection, Correlation, Spatial resolution, Hyperspectral imaging, Object detection, Anomaly detection, super-resolution (SR) BibRef

Chang, C.I., Cao, H., Chen, S., Shang, X., Yu, C., Song, M.,
Orthogonal Subspace Projection-Based Go-Decomposition Approach to Finding Low-Rank and Sparsity Matrices for Hyperspectral Anomaly Detection,
GeoRS(59), No. 3, March 2021, pp. 2403-2429.
IEEE DOI 2103
Sparse matrices, Matrix decomposition, Hyperspectral imaging, Anomaly detection, Iterative algorithms, virtual dimensionality (VD) BibRef

Li, Z.H.[Zhong-Heng], He, F.[Fang], Hu, H.J.[Hao-Jie], Wang, F.[Fei], Yu, W.Z.[Wei-Zhong],
Random Collective Representation-Based Detector with Multiple Features for Hyperspectral Images,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Shibi, S.[Sherin], Rajagopal, G.[Gayathri],
Target object detection using chicken social-based deep belief network with hyperspectral imagery,
IET-IPR(14), No. 15, 15 December 2020, pp. 3781-3790.
DOI Link 2103
Objects as anomalies. Integrating the chicken swarm optimisation with the social ski-driver algorithm. BibRef

Mishra, P.[Pankaj], Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
Image Anomaly Detection by Aggregating Deep Pyramidal Representations,
IML20(705-718).
Springer DOI 2103
BibRef

Sun, X.T.[Xiao-Tong], Qu, Y.[Ying], Gao, L.[Lianru], Sun, X.[Xu], Qi, H.R.[Hai-Rong], Zhang, B.[Bing], Shen, T.[Ting],
Target Detection Through Tree-Structured Encoding for Hyperspectral Images,
GeoRS(59), No. 5, May 2021, pp. 4233-4249.
IEEE DOI 2104
Object detection, Hyperspectral imaging, Detectors, Vegetation, Encoding, Binary trees, Binary trees, encoding, target detection BibRef

Taghipour, A.[Ashkan], Ghassemian, H.[Hassan],
A bottom-up and top-down human visual attention approach for hyperspectral anomaly detection,
JVCIR(77), 2021, pp. 103113.
Elsevier DOI 2106
Hyperspectral image, Visual attention, Anomaly detection, Bottom-up attention, Top-down attention BibRef

Kurt, M.N.[Mehmet Necip], Yilmaz, Y.[Yasin], Wang, X.D.[Xiao-Dong],
Real-Time Nonparametric Anomaly Detection in High-Dimensional Settings,
PAMI(43), No. 7, July 2021, pp. 2463-2479.
IEEE DOI 2106
Anomaly detection, Real-time systems, Data models, Approximation algorithms, Reliability, cumulative sum (CUSUM) BibRef

Zhang, Z.[Zheng], Deng, X.G.[Xiao-Gang],
Anomaly detection using improved deep SVDD model with data structure preservation,
PRL(148), 2021, pp. 1-6.
Elsevier DOI 2107
Anomaly detection, Support vector data description, Deep learning, Autoencoder BibRef

Lesouple, J.[Julien], Baudoin, C.[Cédric], Spigai, M.[Marc], Tourneret, J.Y.[Jean-Yves],
Generalized isolation forest for anomaly detection,
PRL(149), 2021, pp. 109-119.
Elsevier DOI 2108
Anomaly detection, Isolation forest BibRef

Li, L.[Lu], Li, W.[Wei], Du, Q.[Qian], Tao, R.[Ran],
Low-Rank and Sparse Decomposition With Mixture of Gaussian for Hyperspectral Anomaly Detection,
Cyber(51), No. 9, September 2021, pp. 4363-4372.
IEEE DOI 2109
Detectors, Hyperspectral imaging, Anomaly detection, Matrix decomposition, Robustness, Mathematical model, mixture of Gaussian (MoG) BibRef

Gafni, T.[Tomer], Cohen, K.[Kobi], Zhao, Q.[Qing],
Searching for Unknown Anomalies in Hierarchical Data Streams,
SPLetters(28), 2021, pp. 1774-1778.
IEEE DOI 2109
Task analysis, Search problems, Complexity theory, Inference algorithms, Computational modeling, Testing, sequential design of experiments BibRef

Yang, Y.X.[Yi-Xin], Song, S.Z.[Shang-Zhen], Liu, D.L.[De-Lian], Zhang, J.Q.[Jian-Qi], Chan, J.C.W.[Jonathan Cheung-Wai],
Robust Background Feature Extraction Through Homogeneous Region-Based Joint Sparse Representation for Hyperspectral Anomaly Detection,
GeoRS(59), No. 10, October 2021, pp. 8723-8737.
IEEE DOI 2109
Dictionaries, Detectors, Feature extraction, Sparse matrices, Interference, Anomaly detection (AD), spectral-spatial characteristics BibRef

Liu, S.[Senhao], Zhang, L.[Lifu], Cen, Y.[Yi], Chen, L.[Likun], Wang, Y.[Yibo],
A Fast Hyperspectral Anomaly Detection Algorithm Based on Greedy Bilateral Smoothing and Extended Multi-Attribute Profile,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Zhao, G.P.[Gen-Ping], Li, F.[Fei], Zhang, X.W.[Xiu-Wei], Laakso, K.[Kati], Chan, J.C.W.[Jonathan Cheung-Wai],
Archetypal Analysis and Structured Sparse Representation for Hyperspectral Anomaly Detection,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Fu, X.Y.[Xi-You], Jia, S.[Sen], Zhuang, L.[Lina], Xu, M.[Meng], Zhou, J.[Jun], Li, Q.Q.[Qing-Quan],
Hyperspectral Anomaly Detection via Deep Plug-and-Play Denoising CNN Regularization,
GeoRS(59), No. 11, November 2021, pp. 9553-9568.
IEEE DOI 2111
Anomaly detection, Detectors, Hyperspectral imaging, Dictionaries, Noise reduction, Collaboration, Optimization, Anomaly detection, plug-and-play BibRef

Tang, L.[Linbo], Li, Z.[Zhen], Wang, W.Z.[Wen-Zheng], Zhao, B.[Baojun], Pan, Y.[Yu], Tian, Y.B.[Yi-Bing],
An Efficient and Robust Framework for Hyperspectral Anomaly Detection,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Wang, S.Y.[Shao-Yu], Wang, X.Y.[Xin-Yu], Zhang, L.P.[Liang-Pei], Zhong, Y.F.[Yan-Fei],
Auto-AD: Autonomous Hyperspectral Anomaly Detection Network Based on Fully Convolutional Autoencoder,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI 2112
Image reconstruction, Hyperspectral imaging, Anomaly detection, Detectors, Estimation, Training, Feature extraction, hyperspectral anomaly detection BibRef

Zhang, K.T.[Kai-Tai], Wang, B.[Bin], Kuo, C.C.J.[C.C. Jay],
PEDENet: Image anomaly localization via patch embedding and density estimation,
PRL(153), 2022, pp. 144-150.
Elsevier DOI 2201
Image anomaly detection, Image anomaly localization, Density estimation BibRef

Guo, T.[Tan], Luo, F.[Fulin], Fang, L.Y.[Le-Yuan], Zhang, B.[Bob],
Meta-Pixel-Driven Embeddable Discriminative Target and Background Dictionary Pair Learning for Hyperspectral Target Detection,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Ahn, J.Y.[Jae-Young], Kim, G.H.[Gyeong-Hwan],
Application of optimal clustering and metric learning to patch-based anomaly detection,
PRL(154), 2022, pp. 110-115.
Elsevier DOI 2202
Anomaly detection, -nearest neighborhood algorithm, Mini-batch -means algorithm, Metric learning, Anomaly synthesis BibRef

Yu, S.Q.[Shao-Qi], Li, X.R.[Xiao-Run], Chen, S.H.[Shu-Han], Zhao, L.Y.[Liao-Ying],
Exploring the Intrinsic Probability Distribution for Hyperspectral Anomaly Detection,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Xiang, P.[Pei], Li, H.[Huan], Song, J.Q.[Jianglu-Qi], Wang, D.B.[Da-Bao], Zhang, J.J.[Jia-Jia], Zhou, H.X.[Hui-Xin],
Spectral-Spatial Complementary Decision Fusion for Hyperspectral Anomaly Detection,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Zhang, X.D.[Xiao-Dian], Gao, K.[Kun], Wang, J.W.[Jun-Wei], Hu, Z.[Zibo], Wang, H.[Hong], Wang, P.Y.[Peng-Yu],
Siamese Network Ensembles for Hyperspectral Target Detection with Pseudo Data Generation,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Li, Z.W.[Zhong-Wei], Shi, S.X.[Shun-Xiao], Wang, L.Q.[Lei-Quan], Xu, M.M.[Ming-Ming], Li, L.[Luyao],
Unsupervised Generative Adversarial Network with Background Enhancement and Irredundant Pooling for Hyperspectral Anomaly Detection,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Yao, W.[Wei], Li, L.[Lu], Ni, H.Y.[Hong-Yu], Li, W.[Wei], Tao, R.[Ran],
Hyperspectral Anomaly Detection Based on Improved RPCA with Non-Convex Regularization,
RS(14), No. 6, 2022, pp. xx-yy.
DOI Link 2204
BibRef

Lin, S.[Sheng], Zhang, M.[Min], Cheng, X.[Xi], Wang, L.[Liang], Xu, M.P.[Mai-Ping], Wang, H.[Hai],
Hyperspectral Anomaly Detection via Dual Dictionaries Construction Guided by Two-Stage Complementary Decision,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Hu, X.[Xing], Xie, C.[Chun], Fan, Z.[Zhe], Duan, Q.Q.[Qian-Qian], Zhang, D.W.[Da-Wei], Jiang, L.H.[Lin-Hua], Wei, X.[Xian], Hong, D.F.[Dan-Feng], Li, G.Q.[Guo-Qiang], Zeng, X.H.[Xin-Hua], Chen, W.M.[Wen-Ming], Wu, D.F.[Dong-Fang], Chanussot, J.[Jocelyn],
Hyperspectral Anomaly Detection Using Deep Learning: A Review,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Cheng, X.Y.[Xiao-Yu], Wen, M.X.[Mao-Xing], Gao, C.[Cong], Wang, Y.M.[Yue-Ming],
Hyperspectral Anomaly Detection Based on Wasserstein Distance and Spatial Filtering,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Zhong, J.[Jiaping], Li, Y.S.[Yun-Song], Xie, W.[Weiying], Lei, J.[Jie], Jia, X.P.[Xiu-Ping],
Multi-Prior Twin Least-Square Network for Anomaly Detection of Hyperspectral Imagery,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Ahmed, I.[Imtiaz], Galoppo, T.[Travis], Hu, X.[Xia], Ding, Y.[Yu],
Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection,
PAMI(44), No. 8, August 2022, pp. 4110-4124.
IEEE DOI 2207
Manifolds, Anomaly detection, Neural networks, Laplace equations, Dimensionality reduction, Decoding, Measurement, Autoencoder, unsupervised learning BibRef

Zhu, J.Q.[Jia-Qi], Deng, F.[Fang], Zhao, J.C.[Jia-Chen], Chen, J.[Jie],
Adaptive aggregation-distillation autoencoder for unsupervised anomaly detection,
PR(131), 2022, pp. 108897.
Elsevier DOI 2208
Anomaly detection, Aggregation-distillation mechanism, Autoencoders, Unsupervised learning BibRef

Cheng, X.[Xi], Zhang, M.[Min], Lin, S.[Sheng], Zhou, K.[Kexue], Wang, L.[Liang], Wang, H.[Hai],
Multiscale Superpixel Guided Discriminative Forest for Hyperspectral Anomaly Detection,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Xue, T.R.[Tian-Ru], Jia, J.X.[Jian-Xin], Xie, H.[Hui], Zhang, C.X.[Chang-Xing], Deng, X.[Xuan], Wang, Y.M.[Yue-Ming],
Kernel Minimum Noise Fraction Transformation-Based Background Separation Model for Hyperspectral Anomaly Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Wang, J.S.[Jin-Shen], Ouyang, T.B.[Tong-Bin], Duan, Y.X.[Yu-Xiao], Cui, L.Y.[Lin-Yan],
SAOCNN: Self-Attention and One-Class Neural Networks for Hyperspectral Anomaly Detection,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Zhang, L.[Lili], Ma, J.C.[Jia-Chen], Fu, B.[Baohong], Lin, F.[Fang], Sun, Y.[Yudan], Wang, F.[Fengpin],
Improved Central Attention Network-Based Tensor RX for Hyperspectral Anomaly Detection,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Mu, Z.H.[Zhen-Hua], Wang, M.[Ming], Wang, Y.[Yihan], Song, R.X.[Ruo-Xi], Wang, X.H.[Xiang-Hai],
SI2FM: SID Isolation Double Forest Model for Hyperspectral Anomaly Detection,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

He, F.[Fang], Yan, S.[Shuai], Ding, Y.[Yao], Sun, Z.S.[Zhen-Sheng], Zhao, J.W.[Jian-Wei], Hu, H.J.[Hao-Jie], Zhu, Y.J.[Yu-Jie],
Recursive RX with Extended Multi-Attribute Profiles for Hyperspectral Anomaly Detection,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Wang, H.Y.[Han-Yu], Yang, M.Y.[Ming-Yu], Zhang, T.[Tao], Tian, D.P.[Da-Peng], Wang, H.[Hao], Yao, D.[Dong], Meng, L.T.[Ling-Tong], Shen, H.H.[Hong-Hai],
Hyperspectral Anomaly Detection with Differential Attribute Profiles and Genetic Algorithms,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Wang, J.X.[Jing-Xuan], Sun, J.Q.[Jin-Qiu], Xia, Y.[Yong], Zhang, Y.N.[Yan-Ning],
Hyperspectral anomaly detection via weighted-sparsity-regularized tensor linear representation,
IET-IPR(17), No. 4, 2023, pp. 1029-1043.
DOI Link 2303
anomaly detection, band selection, hyperspectral image, tensor linear representation, weighted-sparsity BibRef

Shang, W.T.[Wen-Ting], Jouni, M.[Mohamad], Wu, Z.B.[Ze-Bin], Xu, Y.[Yang], Mura, M.D.[Mauro Dalla], Wei, Z.H.[Zhi-Hui],
Hyperspectral Anomaly Detection Based on Regularized Background Abundance Tensor Decomposition,
RS(15), No. 6, 2023, pp. 1679.
DOI Link 2304
BibRef

Liu, L.F.[Ling-Feng], Ni, D.[Dong], Dai, L.[Liankui],
Spatial Anomaly Detection in Hyperspectral Imaging Using Optical Neural Networks,
IEEE_Int_Sys(38), No. 2, March 2023, pp. 64-72.
IEEE DOI 2305
Optical imaging, Optical computing, Hyperspectral imaging, Optical diffraction, Anomaly detection, Optical sensors, Optical modulation BibRef

Lv, S.[Shuai], Zhao, S.W.[Si-Wei], Li, D.D.[Dan-Dan], Pang, B.[Boyu], Lian, X.Y.[Xiao-Ying], Liu, Y.[Yinnian],
Spatial-Spectral Joint Hyperspectral Anomaly Detection Based on a Two-Branch 3D Convolutional Autoencoder and Spatial Filtering,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Zhang, W.[Wuxia], Guo, H.[Huibo], Liu, S.[Shuo], Wu, S.Y.[Si-Yuan],
Attention-Aware Spectral Difference Representation for Hyperspectral Anomaly Detection,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Duan, Y.X.[Yu-Xiao], Ouyang, T.B.[Tong-Bin], Wang, J.S.[Jin-Shen],
CRNN: Collaborative Representation Neural Networks for Hyperspectral Anomaly Detection,
RS(15), No. 13, 2023, pp. 3357.
DOI Link 2307
BibRef

Lin, S.[Sheng], Zhang, M.[Min], Cheng, X.[Xi], Zhao, S.B.[Shao-Bo], Shi, L.[Lei], Wang, H.[Hai],
Hyperspectral Anomaly Detection Using Spatial-Spectral-Based Union Dictionary and Improved Saliency Weight,
RS(15), No. 14, 2023, pp. 3609.
DOI Link 2307
BibRef

Liang, Y.F.[Yu-Fei], Zhang, J.N.[Jiang-Ning], Zhao, S.W.[Shi-Wei], Wu, R.[Runze], Liu, Y.[Yong], Pan, S.W.[Shu-Wen],
Omni-Frequency Channel-Selection Representations for Unsupervised Anomaly Detection,
IP(32), 2023, pp. 4327-4340.
IEEE DOI 2308
Image reconstruction, Anomaly detection, Task analysis, Training data, Data models, Semantics, Training, Anomaly detection, reconstruction-based network BibRef

Xing, P.[Peng], Li, Z.C.[Ze-Chao],
Visual Anomaly Detection via Partition Memory Bank Module and Error Estimation,
CirSysVideo(33), No. 8, August 2023, pp. 3596-3607.
IEEE DOI 2308
Image reconstruction, Memory modules, Anomaly detection, Histograms, Location awareness, Feature extraction, Error analysis, histogram error estimation module BibRef

Wu, Z.Y.[Zi-Yu], Wang, B.[Bin],
Background Reconstruction via 3D-Transformer Network for Hyperspectral Anomaly Detection,
RS(15), No. 18, 2023, pp. 4592.
DOI Link 2310
BibRef

Wang, Z.W.[Zhi-Wei], Wang, X.[Xue], Tan, K.[Kun], Han, B.[Bo], Ding, J.W.[Jian-Wei], Liu, Z.X.[Zhao-Xian],
Hyperspectral anomaly detection based on variational background inference and generative adversarial network,
PR(143), 2023, pp. 109795.
Elsevier DOI 2310
Background distribution characteristics, GAN, Hyperspectral anomaly detection BibRef

Tu, J.K.[Jian-Kai], Liu, H.[Huan], Li, C.G.[Chun-Guang],
Weighted subspace anomaly detection in high-dimensional space,
PR(146), 2024, pp. 110056.
Elsevier DOI 2311
Anomaly detection, High-dimensional space, Subspace method, Correntropy, Block sparsity BibRef

Liu, H.[Huan], Tu, J.K.[Jian-Kai], Li, C.G.[Chun-Guang],
Distributed Online Ordinal Regression Based on VUS Maximization,
SPLetters(31), 2024, pp. 2395-2399.
IEEE DOI 2410
Distributed databases, Linear programming, Loss measurement, Diseases, Classification algorithms, Approximation methods, online learning BibRef

Chen, S.H.[Shu-Han], Li, X.R.[Xiao-Run], Yan, Y.F.[Yun-Feng],
Hyperspectral Anomaly Detection with Auto-Encoder and Independent Target,
RS(15), No. 22, 2023, pp. 5266.
DOI Link 2311
BibRef

Shah, R.A.[Rizwan Ali], Urmonov, O.[Odilbek], Kim, H.W.[Hyung-Won],
Two-stage coarse-to-fine image anomaly segmentation and detection model,
IVC(139), 2023, pp. 104817.
Elsevier DOI Code:
WWW Link. 2311
Anomaly detection and segmentation, Convolutional neural network, Pseudo anomaly insertion, Superpixel segmentation BibRef

Chen, X.[Xi'ai], Wang, Z.[Zhen], Wang, K.[Kaidong], Jia, H.[Huidi], Han, Z.[Zhi], Tang, Y.D.[Yan-Dong],
Multi-Dimensional Low-Rank with Weighted Schatten p-Norm Minimization for Hyperspectral Anomaly Detection,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

Chang, C.I.[Chein-I], Chen, S.H.[Shu-Han], Zhong, S.W.[Sheng-Wei], Shi, Y.[Yidan],
Exploration of Data Scene Characterization and 3D ROC Evaluation for Hyperspectral Anomaly Detection,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

Zhao, R.[Rui], Yang, Z.W.[Zhi-Wei], Meng, X.C.[Xiang-Chao], Shao, F.[Feng],
A Novel Fully Convolutional Auto-Encoder Based on Dual Clustering and Latent Feature Adversarial Consistency for Hyperspectral Anomaly Detection,
RS(16), No. 4, 2024, pp. 717.
DOI Link 2402
BibRef

Zhang, J.J.[Jia-Jia], Xiang, P.[Pei], Teng, X.[Xiang], Zhao, D.[Dong], Li, H.[Huan], Song, J.[Jiangluqi], Zhou, H.X.[Hui-Xin], Tan, W.[Wei],
Enhancing Hyperspectral Anomaly Detection with a Novel Differential Network Approach for Precision and Robust Background Suppression,
RS(16), No. 3, 2024, pp. 434.
DOI Link 2402
BibRef

Cheng, X.[Xi], Mu, R.Q.[Rui-Qi], Lin, S.[Sheng], Zhang, M.[Min], Wang, H.[Hai],
Hyperspectral Anomaly Detection via Low-Rank Representation with Dual Graph Regularizations and Adaptive Dictionary,
RS(16), No. 11, 2024, pp. 1837.
DOI Link 2406
BibRef

Yu, Q.[Quan], Bai, M.[Minru],
Generalized Nonconvex Hyperspectral Anomaly Detection via Background Representation Learning with Dictionary Constraint,
SIIMS(17), No. 2, 2024, pp. 917-950.
DOI Link 2407
BibRef

Shao, Y.Z.[Ying-Zhao], Li, S.H.[Shu-Han], Yang, P.F.[Peng-Fei], Cheng, F.[Fei], Ding, Y.[Yueli], Sun, J.G.[Jian-Guo],
JointNet: Multitask Learning Framework for Denoising and Detecting Anomalies in Hyperspectral Remote Sensing,
RS(16), No. 14, 2024, pp. 2619.
DOI Link 2408
BibRef

A, R.[Ruhan], Shen, D.[Danyao], Liu, L.J.[Li-Jing], Yin, J.J.[Juan-Juan], Lin, R.[Renpu],
Hyperspectral Anomaly Detection Based on a Beta Wavelet Graph Neural Network,
MultMedMag(31), No. 2, April 2024, pp. 69-79.
IEEE DOI 2408
Hyperspectral imaging, Anomaly detection, Graph neural networks, Wavelet transforms, Band-pass filters, Symmetric matrices, Image edge detection BibRef

Yang, Z.W.[Zhi-Wei], Zhao, R.[Rui], Meng, X.C.[Xiang-Chao], Yang, G.[Gang], Sun, W.W.[Wei-Wei], Zhang, S.[Shenfu], Li, J.H.[Jing-Hui],
A Multi-Scale Mask Convolution-Based Blind-Spot Network for Hyperspectral Anomaly Detection,
RS(16), No. 16, 2024, pp. 3036.
DOI Link 2408
BibRef


McIntosh, D.[Declan], Albu, A.B.[Alexandra Branzan],
Inter-Realization Channels: Unsupervised Anomaly Detection Beyond One-Class Classification,
ICCV23(6262-6272)
IEEE DOI 2401
BibRef

Yao, X.C.[Xin-Cheng], Li, R.[Ruoqi], Qian, Z.F.[Ze-Feng], Luo, Y.[Yan], Zhang, C.Y.[Chong-Yang],
Focus the Discrepancy: Intra- and Inter-Correlation Learning for Image Anomaly Detection,
ICCV23(6780-6790)
IEEE DOI Code:
WWW Link. 2401
BibRef

Shin, W.[Woosang], Lee, J.[Jonghyeon], Lee, T.[Taehan], Lee, S.[Sangmoon], Yun, J.P.[Jong Pil],
Anomaly Detection using Score-based Perturbation Resilience,
ICCV23(23315-23325)
IEEE DOI 2401
BibRef

Gula, T.[Tetiana], Bertoldo, J.P.C.[Joăo P. C.],
Gaussian Image Anomaly Detection with Greedy Eigencomponent Selection,
LXCV-ICCV23(4112-4120)
IEEE DOI 2401
BibRef

Shao, Y.Z.[Ying-Zhao], Li, Y.S.[Yun-Song], Li, L.[Li], Wang, Y.[Yuanle], Yang, Y.C.[Yu-Chen], Ding, Y.[Yueli], Zhang, M.M.[Ming-Ming], Liu, Y.[Yang], Gao, X.Q.[Xiang-Qiang],
RANet: Relationship Attention for Hyperspectral Anomaly Detection,
RS(15), No. 23, 2023, pp. 5570.
DOI Link 2312
BibRef

de Nardin, A.[Axel], Mishra, P.[Pankaj], Piciarelli, C.[Claudio], Foresti, G.L.[Gian Luca],
Bringing Attention to Image Anomaly Detection,
PART22(115-126).
Springer DOI 2208
BibRef

Yu, S.F.[Sheng-Feng], Chiu, W.C.[Wei-Chen],
Boosting Semi-Supervised Anomaly Detection via Contrasting Synthetic Images,
MVA21(1-6)
DOI Link 2109
Training, Detectors, Boosting, Anomaly detection BibRef

Li, T.Q.[Tang-Qing], Wang, Z.[Zheng], Liu, S.Y.[Si-Ying], Lin, W.Y.[Wen-Yan],
Deep Unsupervised Anomaly Detection,
WACV21(3635-3644)
IEEE DOI 2106
Clustering algorithms, Benchmark testing, Reliability, Anomaly detection BibRef

Pölönen, I., Riihiaho, K., Hakola, A.M., Annala, L.,
Minimal Learning Machine In Anomaly Detection From Hyperspectral Images,
ISPRS20(B3:467-472).
DOI Link 2012
BibRef

Merrill, N., Olson, C.C.,
Unsupervised Ensemble-Kernel Principal Component Analysis for Hyperspectral Anomaly Detection,
PBVS20(507-515)
IEEE DOI 2008
Kernel, Data models, Anomaly detection, Principal component analysis, Hyperspectral imaging, Computational modeling BibRef

Park, H., Noh, J., Ham, B.,
Learning Memory-Guided Normality for Anomaly Detection,
CVPR20(14360-14369)
IEEE DOI 2008
Image reconstruction, Anomaly detection, Feature extraction, Task analysis, Memory modules, Decoding, Video sequences BibRef

Zhao, Q.A.[Qi-Ang], Karray, F.[Fakhri],
Anomaly Detection for Images Using Auto-encoder Based Sparse Representation,
ICIAR20(II:144-153).
Springer DOI 2007
BibRef

Zhang, J., Qing, L., Miao, J.,
Temporal Convolutional Network with Complementary Inner Bag Loss for Weakly Supervised Anomaly Detection,
ICIP19(4030-4034)
IEEE DOI 1910
Anomaly detection, weakly-supervised learning, multiple instance learning BibRef

Al-Sarayreh, M.[Mahmoud], Reis, M.M.[Marlon M.], Yan, W.Q.[Wei Qi], Klette, R.[Reinhard],
A Sequential CNN Approach for Foreign Object Detection in Hyperspectral Images,
CAIP19(I:271-283).
Springer DOI 1909
BibRef

Vafadar, M., Ghassemian, H.,
Hyperspectral anomaly detection using outlier removal from collaborative representation,
IPRIA17(13-19)
IEEE DOI 1712
geophysical image processing, hyperspectral imaging, image representation, remote sensing, AUC values, CRBORAD method, residual image BibRef

Kulczycki, P.[Piotr], Kruszewski, D.[Damian],
Detection of Atypical Elements by Transforming Task to Supervised Form,
PReMI17(458-466).
Springer DOI 1711
Atypical elemnent in data set. BibRef

Olson, C.C., Doster, T.,
A Novel Detection Paradigm and Its Comparison to Statistical and Kernel-Based Anomaly Detection Algorithms for Hyperspectral Imagery,
PBVS17(302-308)
IEEE DOI 1709
Anomaly detection, Data models, Detectors, Hyperspectral imaging, Kernel, Principal component analysis, Skeleton BibRef

Ayuga, J.G.R.[J. G. Rejas], Marín, R.M.[R. Martínez], Sacristán, M.M.[M. Marchamalo], Bonatti, J., Ojeda, J.C.,
Hyperspectral Anomaly Detection In Urban Scenarios,
ISPRS16(B7: 111-116).
DOI Link 1610
BibRef

Xiao, T.[Tan], Zhang, C.[Chao], Zha, H.B.[Hong-Bin], Wei, F.Y.[Fang-Yun],
Anomaly Detection via Local Coordinate Factorization and Spatio-Temporal Pyramid,
ACCV14(V: 66-82).
Springer DOI 1504
BibRef

Hachiya, H., Matsugu, M.,
NSH: Normality Sensitive Hashing for Anomaly Detection,
VECTaR13(795-802)
IEEE DOI 1403
Locality sensitive hashing. cryptography BibRef

Chen, G.L.[Guang-Liang], Iwen, M.[Mark], Chin, S.[Sang], Maggioni, M.[Mauro],
A fast multiscale framework for data in high-dimensions: Measure estimation, anomaly detection, and compressive measurements,
VCIP12(1-6).
IEEE DOI 1302
BibRef

Rejas, J.G., Martínez-Frías, J., Bonatti, J., Martínez, R., Marchamalo, M.,
Anomaly Detection And Comparative Analysis Of Hydrothermal Alteration Materials Trough Hyperspectral Multisensor Data In The Turrialba Volcano,
ISPRS12(XXXIX-B7:151-155).
DOI Link 1209
BibRef

Du, B., Zhang, L., Xin, H.,
Robust Metric based Anomaly Detection in Kernel Feature Space,
ISPRS12(XXXIX-B7:113-119).
DOI Link 1209
BibRef

Carrera, D., Boracchi, G., Foi, A., Wohlberg, B.,
Scale-invariant anomaly detection with multiscale group-sparse models,
ICIP16(3892-3896)
IEEE DOI 1610
Detectors BibRef

Theiler, J.[James], Wohlberg, B.[Brendt],
Detection of spectrally sparse anomalies in hyperspectral imagery,
Southwest12(117-120).
IEEE DOI 1205
BibRef

Bachega, L.R.[Leonardo R.], Theiler, J.[James], Bouman, C.A.[Charles A.],
Evaluating and improving local hyperspectral anomaly detectors,
AIPR11(1-8).
IEEE DOI 1204
BibRef

Nasrabadi, N.M.[Nasser M.],
A nonlinear kernel-based joint fusion/detection of anomalies using Hyperspectral and SAR imagery,
ICIP08(1864-1867).
IEEE DOI 0810
BibRef

Huck, A.[Alexis], Guillaume, M.[Mireille],
A CFAR algorithm for anomaly detection and discrimination in hyperspectral images,
ICIP08(1868-1871).
IEEE DOI 0810
BibRef

Huck, A.[Alexis], Guillaume, M.[Mireille],
Independent Component Analysis-Based Estimation of Anomaly Abundances in Hyperspectral Images,
ACIVS07(168-177).
Springer DOI 0708
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Unsupervised Clustering, Classification, Unsupervised Learning .


Last update:Sep 28, 2024 at 17:47:54